Source

cpython-withatomic / Objects / floatobject.c

The branch 'legacy-trunk' does not exist.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

/* Float object implementation */

/* XXX There should be overflow checks here, but it's hard to check
   for any kind of float exception without losing portability. */

#include "Python.h"

#include <ctype.h>

#ifdef i860
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
#undef HUGE_VAL
#endif

#if defined(HUGE_VAL) && !defined(CHECK)
#define CHECK(x) if (errno != 0) ; \
	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
	else errno = ERANGE
#endif

#ifndef CHECK
#define CHECK(x) /* Don't know how to check */
#endif

#if !defined(__STDC__) && !defined(macintosh)
extern double fmod(double, double);
extern double pow(double, double);
#endif

#if defined(sun) && !defined(__SVR4)
/* On SunOS4.1 only libm.a exists. Make sure that references to all
   needed math functions exist in the executable, so that dynamic
   loading of mathmodule does not fail. */
double (*_Py_math_funcs_hack[])() = {
	acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
	fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh
};
#endif

/* Special free list -- see comments for same code in intobject.c. */
#define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
#define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
#define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))

struct _floatblock {
	struct _floatblock *next;
	PyFloatObject objects[N_FLOATOBJECTS];
};

typedef struct _floatblock PyFloatBlock;

static PyFloatBlock *block_list = NULL;
static PyFloatObject *free_list = NULL;

static PyFloatObject *
fill_free_list(void)
{
	PyFloatObject *p, *q;
	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
	if (p == NULL)
		return (PyFloatObject *) PyErr_NoMemory();
	((PyFloatBlock *)p)->next = block_list;
	block_list = (PyFloatBlock *)p;
	p = &((PyFloatBlock *)p)->objects[0];
	q = p + N_FLOATOBJECTS;
	while (--q > p)
		q->ob_type = (struct _typeobject *)(q-1);
	q->ob_type = NULL;
	return p + N_FLOATOBJECTS - 1;
}

PyObject *
PyFloat_FromDouble(double fval)
{
	register PyFloatObject *op;
	if (free_list == NULL) {
		if ((free_list = fill_free_list()) == NULL)
			return NULL;
	}
	/* PyObject_New is inlined */
	op = free_list;
	free_list = (PyFloatObject *)op->ob_type;
	PyObject_INIT(op, &PyFloat_Type);
	op->ob_fval = fval;
	return (PyObject *) op;
}

/**************************************************************************
RED_FLAG 22-Sep-2000 tim
PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG,

1.  If v was a regular string, *pend was set to point to its terminating
    null byte.  That's useless (the caller can find that without any
    help from this function!).

2.  If v was a Unicode string, or an object convertible to a character
    buffer, *pend was set to point into stack trash (the auto temp
    vector holding the character buffer).  That was downright dangerous.

Since we can't change the interface of a public API function, pend is
still supported but now *officially* useless:  if pend is not NULL,
*pend is set to NULL.
**************************************************************************/
PyObject *
PyFloat_FromString(PyObject *v, char **pend)
{
	const char *s, *last, *end;
	double x;
	char buffer[256]; /* for errors */
	char s_buffer[256]; /* for objects convertible to a char buffer */
	int len;

	if (pend)
		*pend = NULL;
	if (PyString_Check(v)) {
		s = PyString_AS_STRING(v);
		len = PyString_GET_SIZE(v);
	}
	else if (PyUnicode_Check(v)) {
		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
			PyErr_SetString(PyExc_ValueError,
				"Unicode float() literal too long to convert");
			return NULL;
		}
		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
					    PyUnicode_GET_SIZE(v),
					    s_buffer, 
					    NULL))
			return NULL;
		s = s_buffer;
		len = (int)strlen(s);
	}
	else if (PyObject_AsCharBuffer(v, &s, &len)) {
		PyErr_SetString(PyExc_TypeError,
				"float() needs a string argument");
		return NULL;
	}

	last = s + len;
	while (*s && isspace(Py_CHARMASK(*s)))
		s++;
	if (*s == '\0') {
		PyErr_SetString(PyExc_ValueError, "empty string for float()");
		return NULL;
	}
	/* We don't care about overflow or underflow.  If the platform supports
	 * them, infinities and signed zeroes (on underflow) are fine.
	 * However, strtod can return 0 for denormalized numbers, where atof
	 * does not.  So (alas!) we special-case a zero result.  Note that
	 * whether strtod sets errno on underflow is not defined, so we can't
	 * key off errno.
         */
	PyFPE_START_PROTECT("strtod", return NULL)
	x = strtod(s, (char **)&end);
	PyFPE_END_PROTECT(x)
	errno = 0;
	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
	   byte at the end of the string, when the input is inf(inity). */
	if (end > last)
		end = last;
	if (end == s) {
		sprintf(buffer, "invalid literal for float(): %.200s", s);
		PyErr_SetString(PyExc_ValueError, buffer);
		return NULL;
	}
	/* Since end != s, the platform made *some* kind of sense out
	   of the input.  Trust it. */
	while (*end && isspace(Py_CHARMASK(*end)))
		end++;
	if (*end != '\0') {
		sprintf(buffer, "invalid literal for float(): %.200s", s);
		PyErr_SetString(PyExc_ValueError, buffer);
		return NULL;
	}
	else if (end != last) {
		PyErr_SetString(PyExc_ValueError,
				"null byte in argument for float()");
		return NULL;
	}
	if (x == 0.0) {
		/* See above -- may have been strtod being anal
		   about denorms. */
		PyFPE_START_PROTECT("atof", return NULL)
		x = atof(s);
		PyFPE_END_PROTECT(x)
		errno = 0;    /* whether atof ever set errno is undefined */
	}
	return PyFloat_FromDouble(x);
}

static void
float_dealloc(PyFloatObject *op)
{
	op->ob_type = (struct _typeobject *)free_list;
	free_list = op;
}

double
PyFloat_AsDouble(PyObject *op)
{
	PyNumberMethods *nb;
	PyFloatObject *fo;
	double val;
	
	if (op && PyFloat_Check(op))
		return PyFloat_AS_DOUBLE((PyFloatObject*) op);
	
	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
	    nb->nb_float == NULL) {
		PyErr_BadArgument();
		return -1;
	}
	
	fo = (PyFloatObject*) (*nb->nb_float) (op);
	if (fo == NULL)
		return -1;
	if (!PyFloat_Check(fo)) {
		PyErr_SetString(PyExc_TypeError,
				"nb_float should return float object");
		return -1;
	}
	
	val = PyFloat_AS_DOUBLE(fo);
	Py_DECREF(fo);
	
	return val;
}

/* Methods */

void
PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
{
	register char *cp;
	/* Subroutine for float_repr and float_print.
	   We want float numbers to be recognizable as such,
	   i.e., they should contain a decimal point or an exponent.
	   However, %g may print the number as an integer;
	   in such cases, we append ".0" to the string. */
	sprintf(buf, "%.*g", precision, v->ob_fval);
	cp = buf;
	if (*cp == '-')
		cp++;
	for (; *cp != '\0'; cp++) {
		/* Any non-digit means it's not an integer;
		   this takes care of NAN and INF as well. */
		if (!isdigit(Py_CHARMASK(*cp)))
			break;
	}
	if (*cp == '\0') {
		*cp++ = '.';
		*cp++ = '0';
		*cp++ = '\0';
	}
}

/* Macro and helper that convert PyObject obj to a C double and store
   the value in dbl; this replaces the functionality of the coercion
   slot function */

#define CONVERT_TO_DOUBLE(obj, dbl)			\
	if (PyFloat_Check(obj))				\
		dbl = PyFloat_AS_DOUBLE(obj);		\
	else if (convert_to_double(&(obj), &(dbl)) < 0)	\
		return obj;

static int
convert_to_double(PyObject **v,
		  double *dbl)
{
	register PyObject *obj = *v;
	
	if (PyInt_Check(obj)) {
		*dbl = (double)PyInt_AS_LONG(obj);
	}
	else if (PyLong_Check(obj)) {
		PyFPE_START_PROTECT("convert_to_double", {*v=NULL;return -1;})
		*dbl = PyLong_AsDouble(obj);
		PyFPE_END_PROTECT(*dbl)
	}
	else {
		Py_INCREF(Py_NotImplemented);
		*v = Py_NotImplemented;
		return -1;
	}
	return 0;
}

/* Precisions used by repr() and str(), respectively.

   The repr() precision (17 significant decimal digits) is the minimal number
   that is guaranteed to have enough precision so that if the number is read
   back in the exact same binary value is recreated.  This is true for IEEE
   floating point by design, and also happens to work for all other modern
   hardware.

   The str() precision is chosen so that in most cases, the rounding noise
   created by various operations is suppressed, while giving plenty of
   precision for practical use.

*/

#define PREC_REPR	17
#define PREC_STR	12

void
PyFloat_AsString(char *buf, PyFloatObject *v)
{
	PyFloat_AsStringEx(buf, v, PREC_STR);
}

/* ARGSUSED */
static int
float_print(PyFloatObject *v, FILE *fp, int flags)
{
	char buf[100];
	PyFloat_AsStringEx(buf, v, flags&Py_PRINT_RAW ? PREC_STR : PREC_REPR);
	fputs(buf, fp);
	return 0;
}

static PyObject *
float_repr(PyFloatObject *v)
{
	char buf[100];
	PyFloat_AsStringEx(buf, v, PREC_REPR);
	return PyString_FromString(buf);
}

static PyObject *
float_str(PyFloatObject *v)
{
	char buf[100];
	PyFloat_AsStringEx(buf, v, PREC_STR);
	return PyString_FromString(buf);
}

static int
float_compare(PyFloatObject *v, PyFloatObject *w)
{
	double i = v->ob_fval;
	double j = w->ob_fval;
	return (i < j) ? -1 : (i > j) ? 1 : 0;
}

static long
float_hash(PyFloatObject *v)
{
	return _Py_HashDouble(v->ob_fval);
}

static PyObject *
float_add(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("add", return 0)
	a = a + b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_sub(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("subtract", return 0)
	a = a - b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_mul(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	PyFPE_START_PROTECT("multiply", return 0)
	a = a * b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_div(PyObject *v, PyObject *w)
{
	double a,b;
	CONVERT_TO_DOUBLE(v, a);
	CONVERT_TO_DOUBLE(w, b);
	if (b == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
		return NULL;
	}
	PyFPE_START_PROTECT("divide", return 0)
	a = a / b;
	PyFPE_END_PROTECT(a)
	return PyFloat_FromDouble(a);
}

static PyObject *
float_rem(PyObject *v, PyObject *w)
{
	double vx, wx;
	double mod;
 	CONVERT_TO_DOUBLE(v, vx);
 	CONVERT_TO_DOUBLE(w, wx);
	if (wx == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
		return NULL;
	}
	PyFPE_START_PROTECT("modulo", return 0)
	mod = fmod(vx, wx);
	/* note: checking mod*wx < 0 is incorrect -- underflows to
	   0 if wx < sqrt(smallest nonzero double) */
	if (mod && ((wx < 0) != (mod < 0))) {
		mod += wx;
	}
	PyFPE_END_PROTECT(mod)
	return PyFloat_FromDouble(mod);
}

static PyObject *
float_divmod(PyObject *v, PyObject *w)
{
	double vx, wx;
	double div, mod, floordiv;
 	CONVERT_TO_DOUBLE(v, vx);
 	CONVERT_TO_DOUBLE(w, wx);
	if (wx == 0.0) {
		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
		return NULL;
	}
	PyFPE_START_PROTECT("divmod", return 0)
	mod = fmod(vx, wx);
	/* fmod is typically exact, so vx-mod is *mathematically* an
	   exact multiple of wx.  But this is fp arithmetic, and fp
	   vx - mod is an approximation; the result is that div may
	   not be an exact integral value after the division, although
	   it will always be very close to one.
	*/
	div = (vx - mod) / wx;
	/* note: checking mod*wx < 0 is incorrect -- underflows to
	   0 if wx < sqrt(smallest nonzero double) */
	if (mod && ((wx < 0) != (mod < 0))) {
		mod += wx;
		div -= 1.0;
	}
	/* snap quotient to nearest integral value */
	floordiv = floor(div);
	if (div - floordiv > 0.5)
		floordiv += 1.0;
	PyFPE_END_PROTECT(div)
	return Py_BuildValue("(dd)", floordiv, mod);
}

static double powu(double x, long n)
{
	double r = 1.;
	double p = x;
	long mask = 1;
	while (mask > 0 && n >= mask) {
		if (n & mask)
			r *= p;
		mask <<= 1;
		p *= p;
	}
	return r;
}

static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
	double iv, iw, ix;
	long intw;
 /* XXX Doesn't handle overflows if z!=None yet; it may never do so :(
  * The z parameter is really only going to be useful for integers and
  * long integers.  Maybe something clever with logarithms could be done.
  * [AMK]
  */
	CONVERT_TO_DOUBLE(v, iv);
	CONVERT_TO_DOUBLE(w, iw);
	intw = (long)iw;

	/* Sort out special cases here instead of relying on pow() */
	if (iw == 0) { 		/* x**0 is 1, even 0**0 */
		PyFPE_START_PROTECT("pow", return NULL)
		if ((PyObject *)z != Py_None) {
			double iz;
			CONVERT_TO_DOUBLE(z, iz);
			ix=fmod(1.0, iz);
			if (ix!=0 && iz<0) ix+=iz;
		}
		else
			ix = 1.0;
		PyFPE_END_PROTECT(ix)
		return PyFloat_FromDouble(ix); 
	}
	if (iv == 0.0) {
		if (iw < 0.0) {
			PyErr_SetString(PyExc_ZeroDivisionError,
					"0.0 cannot be raised to a negative power");
			return NULL;
		}
		return PyFloat_FromDouble(0.0);
	}

	if (iw == intw && intw > LONG_MIN) {
		/* ruled out LONG_MIN because -LONG_MIN isn't representable */
		errno = 0;
		PyFPE_START_PROTECT("pow", return NULL)
		if (intw > 0)
			ix = powu(iv, intw);
		else
			ix = 1./powu(iv, -intw);
		PyFPE_END_PROTECT(ix)
	}
	else {
		/* Sort out special cases here instead of relying on pow() */
		if (iv < 0.0) {
			PyErr_SetString(PyExc_ValueError,
					"negative number cannot be raised to a fractional power");
			return NULL;
		}
		errno = 0;
		PyFPE_START_PROTECT("pow", return NULL)
		ix = pow(iv, iw);
		PyFPE_END_PROTECT(ix)
	}
	CHECK(ix);
	if (errno != 0) {
		/* XXX could it be another type of error? */
		PyErr_SetFromErrno(PyExc_OverflowError);
		return NULL;
	}
	if ((PyObject *)z != Py_None) {
		double iz;
		CONVERT_TO_DOUBLE(z, iz);
		PyFPE_START_PROTECT("pow", return 0)
	 	ix=fmod(ix, iz);	/* XXX To Be Rewritten */
	 	if (ix!=0 && ((iv<0 && iz>0) || (iv>0 && iz<0) )) {
		     ix+=iz;
		}
  		PyFPE_END_PROTECT(ix)
	}
	return PyFloat_FromDouble(ix);
}

static PyObject *
float_neg(PyFloatObject *v)
{
	return PyFloat_FromDouble(-v->ob_fval);
}

static PyObject *
float_pos(PyFloatObject *v)
{
	Py_INCREF(v);
	return (PyObject *)v;
}

static PyObject *
float_abs(PyFloatObject *v)
{
	if (v->ob_fval < 0)
		return float_neg(v);
	else
		return float_pos(v);
}

static int
float_nonzero(PyFloatObject *v)
{
	return v->ob_fval != 0.0;
}

static int
float_coerce(PyObject **pv, PyObject **pw)
{
	if (PyInt_Check(*pw)) {
		long x = PyInt_AsLong(*pw);
		*pw = PyFloat_FromDouble((double)x);
		Py_INCREF(*pv);
		return 0;
	}
	else if (PyLong_Check(*pw)) {
		*pw = PyFloat_FromDouble(PyLong_AsDouble(*pw));
		Py_INCREF(*pv);
		return 0;
	}
	return 1; /* Can't do it */
}

static PyObject *
float_int(PyObject *v)
{
	double x = PyFloat_AsDouble(v);
	if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN
	          : (x = floor(x)) > (double)LONG_MAX) {
		PyErr_SetString(PyExc_OverflowError,
				"float too large to convert");
		return NULL;
	}
	return PyInt_FromLong((long)x);
}

static PyObject *
float_long(PyObject *v)
{
	double x = PyFloat_AsDouble(v);
	return PyLong_FromDouble(x);
}

static PyObject *
float_float(PyObject *v)
{
	Py_INCREF(v);
	return v;
}


static PyNumberMethods float_as_number = {
	(binaryfunc)float_add, /*nb_add*/
	(binaryfunc)float_sub, /*nb_subtract*/
	(binaryfunc)float_mul, /*nb_multiply*/
	(binaryfunc)float_div, /*nb_divide*/
	(binaryfunc)float_rem, /*nb_remainder*/
	(binaryfunc)float_divmod, /*nb_divmod*/
	(ternaryfunc)float_pow, /*nb_power*/
	(unaryfunc)float_neg, /*nb_negative*/
	(unaryfunc)float_pos, /*nb_positive*/
	(unaryfunc)float_abs, /*nb_absolute*/
	(inquiry)float_nonzero, /*nb_nonzero*/
	0,		/*nb_invert*/
	0,		/*nb_lshift*/
	0,		/*nb_rshift*/
	0,		/*nb_and*/
	0,		/*nb_xor*/
	0,		/*nb_or*/
	(coercion)float_coerce, /*nb_coerce*/
	(unaryfunc)float_int, /*nb_int*/
	(unaryfunc)float_long, /*nb_long*/
	(unaryfunc)float_float, /*nb_float*/
	0,		/*nb_oct*/
	0,		/*nb_hex*/
	0,		/*nb_inplace_add*/
	0,		/*nb_inplace_subtract*/
	0,		/*nb_inplace_multiply*/
	0,		/*nb_inplace_divide*/
	0,		/*nb_inplace_remainder*/
	0, 		/*nb_inplace_power*/
	0,		/*nb_inplace_lshift*/
	0,		/*nb_inplace_rshift*/
	0,		/*nb_inplace_and*/
	0,		/*nb_inplace_xor*/
	0,		/*nb_inplace_or*/
};

PyTypeObject PyFloat_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"float",
	sizeof(PyFloatObject),
	0,
	(destructor)float_dealloc, /*tp_dealloc*/
	(printfunc)float_print, /*tp_print*/
	0,			/*tp_getattr*/
	0,			/*tp_setattr*/
	(cmpfunc)float_compare, /*tp_compare*/
	(reprfunc)float_repr,	/*tp_repr*/
	&float_as_number,	/*tp_as_number*/
	0,			/*tp_as_sequence*/
	0,			/*tp_as_mapping*/
	(hashfunc)float_hash,	/*tp_hash*/
        0,			/*tp_call*/
        (reprfunc)float_str,	/*tp_str*/
	0,			/*tp_getattro*/
	0,			/*tp_setattro*/
	0,			/*tp_as_buffer*/
	Py_TPFLAGS_CHECKTYPES	/*tp_flags*/
};

void
PyFloat_Fini(void)
{
	PyFloatObject *p;
	PyFloatBlock *list, *next;
	int i;
	int bc, bf;	/* block count, number of freed blocks */
	int frem, fsum;	/* remaining unfreed floats per block, total */

	bc = 0;
	bf = 0;
	fsum = 0;
	list = block_list;
	block_list = NULL;
	free_list = NULL;
	while (list != NULL) {
		bc++;
		frem = 0;
		for (i = 0, p = &list->objects[0];
		     i < N_FLOATOBJECTS;
		     i++, p++) {
			if (PyFloat_Check(p) && p->ob_refcnt != 0)
				frem++;
		}
		next = list->next;
		if (frem) {
			list->next = block_list;
			block_list = list;
			for (i = 0, p = &list->objects[0];
			     i < N_FLOATOBJECTS;
			     i++, p++) {
				if (!PyFloat_Check(p) || p->ob_refcnt == 0) {
					p->ob_type = (struct _typeobject *)
						free_list;
					free_list = p;
				}
			}
		}
		else {
			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
			bf++;
		}
		fsum += frem;
		list = next;
	}
	if (!Py_VerboseFlag)
		return;
	fprintf(stderr, "# cleanup floats");
	if (!fsum) {
		fprintf(stderr, "\n");
	}
	else {
		fprintf(stderr,
			": %d unfreed float%s in %d out of %d block%s\n",
			fsum, fsum == 1 ? "" : "s",
			bc - bf, bc, bc == 1 ? "" : "s");
	}
	if (Py_VerboseFlag > 1) {
		list = block_list;
		while (list != NULL) {
			for (i = 0, p = &list->objects[0];
			     i < N_FLOATOBJECTS;
			     i++, p++) {
				if (PyFloat_Check(p) && p->ob_refcnt != 0) {
					char buf[100];
					PyFloat_AsString(buf, p);
					fprintf(stderr,
			     "#   <float at %p, refcnt=%d, val=%s>\n",
						p, p->ob_refcnt, buf);
				}
			}
			list = list->next;
		}
	}
}