Source

z3 / src / math / polynomial / upolynomial_factorization.cpp

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/*++
Copyright (c) 2011 Microsoft Corporation

Module Name:

    polynomial_factorization.cpp

Abstract:

    Implementation of polynomial factorization.

Author:

    Dejan (t-dejanj) 2011-11-15

Notes:

   [1] Elwyn Ralph Berlekamp. Factoring Polynomials over Finite Fields. Bell System Technical Journal, 
       46(8-10):1853–1859, 1967.
   [2] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison Wesley, third 
       edition, 1997.
   [3] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993.

--*/
#include"trace.h"
#include"util.h"
#include"upolynomial_factorization_int.h"
#include"prime_generator.h"

using namespace std;

namespace upolynomial {

// get the prime as unsigned while throwing exceptions if anything goes bad`
unsigned get_p_from_manager(zp_numeral_manager const & zp_nm) {
    z_numeral_manager & nm = zp_nm.m();
    numeral const & p = zp_nm.p();
    if (!nm.is_uint64(p)) {
        throw upolynomial_exception("The prime number attempted in factorization is too big!");
    }
    uint64 p_uint64 = nm.get_uint64(p);
    unsigned p_uint = static_cast<unsigned>(p_uint64);
    if (((uint64)p_uint) != p_uint64) {
        throw upolynomial_exception("The prime number attempted in factorization is too big!");
    }
    return p_uint;
}

/**
   \brief The Q-I matrix from Berelkamp's algorithm [1,2].
   
   Given a polynomial f = \sum f_k x^k of degree n, with f_i in Z_p[x], the i-th row of Q is a representation of 
   x^(p*i) modulo f, i.e.

      x^(p*i) modulo f = \sum_j q[i][j] x^j
    
   If f is of degree n, the matrix is square nxn. When the this matrix is constructed we obtain Q - I, because 
   this is what we need in the algorithm. After construction, the null space vectors can be extracted one-by one using 
   the next_null_space_vector method.
*/
class berlekamp_matrix {

    zp_manager &         m_upm;
    mpzzp_manager &      m_zpm;

    svector<mpz>         m_matrix;
    unsigned             m_size;

    unsigned             m_null_row;     // 0, ..., m_size - 1, state for null vectors
    svector<int>         m_column_pivot; // position of pivots in the columns
    svector<int>         m_row_pivot;    // position of pivots in the rows

    mpz & get(unsigned i, unsigned j) {
        SASSERT(i < m_size && j < m_size);
        return m_matrix[i*m_size + j];
    }

    mpz const & get(unsigned i, unsigned j) const {
        SASSERT(i < m_size && j < m_size);
        return m_matrix[i*m_size + j];
    }

public:
    
    /**
       \brief Construct the matrix as explained above, f should be in the Z_p.
    */
    berlekamp_matrix(zp_manager & upm, numeral_vector const & f)
    : m_upm(upm),
      m_zpm(upm.m()),
      m_size(m_upm.degree(f)),
      m_null_row(1),
      m_column_pivot(m_size, -1),
      m_row_pivot(m_size, -1) {
        unsigned p = get_p_from_manager(m_zpm);

        TRACE("polynomial::factorization::bughunt", tout << "polynomial::berlekamp_matrix("; m_upm.display(tout, f); tout << ", " << p << ")" << endl;);

        // the first row is always the vector [1, 0, ..., 0], since x^0 = 0 (modulo f)        
        m_matrix.push_back(1);
        for (unsigned j = 0; j < m_size; ++ j) {
            m_matrix.push_back(0);
        }

        // the rest of the rows, we can get as follows, given f = x^n + f_{n-1} x^{n-1} + ... + f_1 x + f_0
        // if x^k = \sum a_{k,j} x^j   (modulo p), hence 0 <= j <= n-1 then
        // x^{k+1} = a_{k,n-1}(-f_{n-1} x^{n-1} + ... + f_0) + a_{k,n-2} x^{n-1} + ... + a_{k, 0} x
        // so we can compute a_{k+1,j} = a_{k, j-1} - a_{k,n-1}*f_j
        // every p-th row we add to the matrix
        scoped_numeral tmp(m_zpm);
        unsigned row = 0, previous_row = 0;        
        for (unsigned k = 1; true; previous_row = row, ++ k) {

            // add another row if we need it
            if (k % p == 1) {
                if (++ row >= m_size) {
                    break;
                }                
                for (unsigned j = 0; j < m_size; ++ j) {
                    m_matrix.push_back(0);
                }            
            }            
            
            // the multiplier
            m_zpm.set(tmp, get(previous_row, m_size - 1));

            // go down the row and shift it
            for (unsigned j = m_size - 1; j > 0; -- j) {
                m_zpm.submul(get(previous_row, j-1), tmp, f[j], get(row, j));
            }

            // add the 0 element (same formula with a_{k,-1} = 0)
            m_zpm.mul(f[0], tmp, get(row, 0));
            m_zpm.neg(get(row, 0));
        }        

        // do Q - I
        for (unsigned i = 0; i < m_size; ++ i) {
            m_zpm.dec(get(i, i));
        }

        TRACE("polynomial::factorization::bughunt", tout << "polynomial::berlekamp_matrix():" << endl; display(tout); tout << endl;);
    }

    /**
       \brief Destructor, just removing the numbers
    */
    ~berlekamp_matrix() {
        for (unsigned k = 0; k < m_matrix.size(); ++ k) {
            m_zpm.del(m_matrix[k]);
        }
    }

    /**
       \brief 'Disagonalizes' the matrix using only column operations. The reusling matrix will have -1 at pivot 
       elements. Returns the rank of the null space.
    */
    unsigned diagonalize() {
        
        scoped_numeral multiplier(m_zpm);

        unsigned null_rank = 0;
        for (unsigned i = 0; i < m_size; ++ i) {

            // get the first non-zero entry in the m_null_row row        
            bool column_found = false;
            for (unsigned j = 0; j < m_size; ++ j) {
                if (m_column_pivot[j] < 0 && !m_zpm.is_zero(get(i, j))) {                    
                    column_found = true;
                    m_column_pivot[j] = i;
                    m_row_pivot[i] = j;

                    // found a pivot, to make it -1 we compute the multuplier -p^-1
                    m_zpm.set(multiplier, get(i, j));
                    m_zpm.inv(multiplier);
                    m_zpm.neg(multiplier);

                    // multiply the pivot column with the multiplier
                    for (unsigned k = m_null_row; k < m_size; ++ k) {
                        m_zpm.mul(get(k, j), multiplier, get(k, j));                        
                    }
                    // pivot is -1 so we can add it to the rest of the columns to eliminate the row
                    for (unsigned other_j = 0; other_j < m_size; ++ other_j) {
                        if (j != other_j) {
                            m_zpm.set(multiplier, get(i, other_j));
                            for (unsigned k = m_null_row; k < m_size; ++ k) {
                                m_zpm.addmul(get(k, other_j), multiplier, get(k, j), get(k, other_j));
                            }
                        }
                    }
                }
            }
            if (!column_found) {
                null_rank ++;
            }
        }
    
        TRACE("polynomial::factorization::bughunt", tout << "polynomial::diagonalize():" << endl; display(tout); tout << endl;);
        
        return null_rank;
    }

    /**
       If rank of the matrix is n - r, we are interested in linearly indeprendent vectors v_1, ..., v_r (the basis of 
       the null space), such that v_k A = 0. This method will give one at a time. The method returns true if vector has
       been computed properly. The first vector [1, 0, ..., 0] is ignored (m_null_row starts from 1).       
    */
    bool next_null_space_vector(numeral_vector & v) {        
        SASSERT(v.size() <= m_size);
        v.resize(m_size);
        for (; m_null_row < m_size; ++ m_null_row) {
            if (m_row_pivot[m_null_row] < 0) {
                // output the vector
                for (unsigned j = 0; j < m_size; ++ j) {
                    if (m_row_pivot[j] >= 0) {
                        m_zpm.set(v[j], get(m_null_row, m_row_pivot[j]));
                    } 
                    else {
                        if (j == m_null_row) {
                            m_zpm.set(v[j], 1);
                        } 
                        else {
                            m_zpm.set(v[j], 0);
                        }
                    }
                }
                ++ m_null_row;
                return true;
            }
        }    
        // didn't find the vector
        return false;
    }

    /**
       \brief Display the matrix on the output stream.
    */
    void display(std::ostream & out) const {
        for (unsigned i = 0; i < m_matrix.size() / m_size; ++ i) {
            for (unsigned j = 0; j < m_size; ++ j) {
                out << m_zpm.to_string(get(i, j)) << "\t";    
            }
            out << endl;
        }
    }
};

/**
   See [3] p. 125.
*/
void zp_square_free_factor(zp_manager & upm, numeral_vector const & f, zp_factors & sq_free_factors) {

    zp_numeral_manager & nm = upm.m();
    unsigned p = get_p_from_manager(upm.m());

    TRACE("polynomial::factorization", tout << "polynomial::square_free_factor("; upm.display(tout, f); tout << ") over Z_" << p << endl;);    

    scoped_numeral_vector div_tmp(nm);

    // [initialize] T_0 = f, e = 1    
    // trim and get the make it monic if not already
    SASSERT(f.size() > 1);        
    scoped_numeral_vector T_0(nm);    
    upm.set(f.size(), f.c_ptr(), T_0);    
    scoped_numeral constant(nm);    
    upm.mk_monic(T_0.size(), T_0.c_ptr(), constant);
    sq_free_factors.set_constant(constant);
    TRACE("polynomial::factorization::bughunt", 
        tout << "Initial factors: " << sq_free_factors << endl;
        tout << "R.<x> = GF(" << p << ")['x']" << endl;
        tout << "T_0 = "; upm.display(tout, T_0); tout << endl;
    );    
    unsigned e = 1;

    // we repeat until we get a constant 
    scoped_numeral_vector T_0_d(nm);
    scoped_numeral_vector T(nm);        
    scoped_numeral_vector V(nm);
    scoped_numeral_vector W(nm);
    scoped_numeral_vector A_ek(nm);
    while (T_0.size() > 1) 
    {
        // [initialize e-loop] T = gcd(T_0, T_0'), V / T_0/T, k = 0
        unsigned k = 0;
        TRACE("polynomial::factorization::bughunt", tout << "k = 0" << endl;);    

        // T_0_d = T_0'
        upm.derivative(T_0.size(), T_0.c_ptr(), T_0_d);
        TRACE("polynomial::factorization::bughunt", 
            tout << "T_0_d = T_0.derivative(x)" << endl;    
            tout << "T_0_d == "; upm.display(tout, T_0_d); tout << endl;
        );    

        // T = gcd(T_0, T_0')
        upm.gcd(T_0.size(), T_0.c_ptr(), T_0_d.size(), T_0_d.c_ptr(), T);
        TRACE("polynomial::factorization::bughunt", 
            tout << "T = T_0.gcd(T_0_d)" << endl;
            tout << "T == "; upm.display(tout, T); tout << endl;
        );    

        // V = T_0 / T
        upm.div(T_0.size(), T_0.c_ptr(), T.size(), T.c_ptr(), V);
        TRACE("polynomial::factorization::bughunt", 
            tout << "V = T_0.quo_rem(T)[0]" << endl;
            tout << "V == "; upm.display(tout, V); tout << endl;
        );    

        while (V.size() > 1) {
            // [special case] 
            if ((++k) % p == 0) {
                ++ k;
                // T = T/V
                upm.div(T.size(), T.c_ptr(), V.size(), V.c_ptr(), T);
                TRACE("polynomial::factorization::bughunt", 
                    tout << "T = T.quo_rem(V)[0]" << endl;
                    tout << "T == "; upm.display(tout, T); tout << endl;
                );    
            }

            // [compute A_ek]

            // W = gcd(T, V)
            upm.gcd(T.size(), T.c_ptr(), V.size(), V.c_ptr(), W);
            TRACE("polynomial::factorization::bughunt", 
                tout << "W = T.gcd(V)" << endl;
                upm.display(tout, W); tout << endl;
            );    

            // A_ek = V/W
            upm.div(V.size(), V.c_ptr(), W.size(), W.c_ptr(), A_ek);
            TRACE("polynomial::factorization::bughunt", 
                tout << "A_ek = V.quo_rem(W)[0]" << endl;
                tout << "A_ek == "; upm.display(tout, A_ek); tout << endl;
            );    

            // V = W
            V.swap(W);
            TRACE("polynomial::factorization::bughunt", 
                tout << "V = W" << endl;    
                tout << "V == "; upm.display(tout, V); tout << endl;
            );    

            // T = T/V
            upm.div(T.size(), T.c_ptr(), V.size(), V.c_ptr(), T);
            TRACE("polynomial::factorization::bughunt", 
                tout << "T = T.quo_rem(V)[0]" << endl;
                tout << "T == "; upm.display(tout, T); tout << endl;
            );    

            // if not constant, we output it
            if (A_ek.size() > 1) {
                TRACE("polynomial::factorization::bughunt", tout << "Factor: ("; upm.display(tout, A_ek); tout << ")^" << e*k << endl;);    
                sq_free_factors.push_back(A_ek, e*k);
            }
        }

        // [finished e-loop] T_0 = \sum_{p div j} t_j x^j, set T_0 \sum_{p div j} t_j x^{j/p}, e = pe
        e *= p;
        T_0.reset();
        for (unsigned deg_p = 0; deg_p < T.size(); deg_p += p) {
            T_0.push_back(numeral());
            nm.set(T_0.back(), T[deg_p]);
        }
        TRACE("polynomial::factorization::bughunt", 
            tout << "T_0 = "; upm.display(tout, T_0); tout << endl;
        );    
    }

    TRACE("polynomial::factorization", tout << "polynomial::square_free_factor("; upm.display(tout, f); tout << ") => " << sq_free_factors << endl;);    
}

bool zp_factor(zp_manager & upm, numeral_vector const & f, zp_factors & factors) {

    unsigned p = get_p_from_manager(upm.m());

    TRACE("polynomial::factorization", tout << "polynomial::factor("; upm.display(tout, f); tout << ") over Z_" << p << endl;);    

    // get the sq-free parts (all of them will be monic)
    zp_factors sq_free_factors(upm);
    zp_square_free_factor(upm, f, sq_free_factors);

    // factor the sq-free parts individually
    for (unsigned i = 0; i < sq_free_factors.distinct_factors(); ++ i) {
        unsigned j = factors.distinct_factors();
        if (upm.degree(sq_free_factors[i]) > 1) {
            zp_factor_square_free(upm, sq_free_factors[i], factors); // monic from aq-free decomposition
            for (; j < factors.distinct_factors(); ++ j) {
                factors.set_degree(j, sq_free_factors.get_degree(i)*factors.get_degree(j));
            }
        } 
        else {
            factors.push_back(sq_free_factors[i], sq_free_factors.get_degree(i));
        }
    }
    // add the constant
    factors.set_constant(sq_free_factors.get_constant());

    TRACE("polynomial::factorization", tout << "polynomial::factor("; upm.display(tout, f); tout << ") => " << factors << endl;);    

    return factors.total_factors() > 1;
}

bool zp_factor_square_free(zp_manager & upm, numeral_vector const & f, zp_factors & factors) {
    return zp_factor_square_free_berlekamp(upm, f, factors, false);
}

bool zp_factor_square_free_berlekamp(zp_manager & upm, numeral_vector const & f, zp_factors & factors, bool randomized) {    
    SASSERT(upm.degree(f) > 1);

    mpzzp_manager & zpm = upm.m();
    unsigned p = get_p_from_manager(zpm);
    
    TRACE("polynomial::factorization", tout << "upolynomial::factor_square_free_berlekamp("; upm.display(tout, f); tout << ", " << p << ")" << endl;);    
    SASSERT(zpm.is_one(f.back()));

    // construct the berlekamp Q matrix to get the null space
    berlekamp_matrix Q_I(upm, f);
    
    // copy the inital polynomial to factors
    unsigned first_factor = factors.distinct_factors();
    factors.push_back(f, 1);

    // rank of the null-space (and the number of factors)
    unsigned r = Q_I.diagonalize();
    if (r == 1) {
        // since r == 1 == number of factors, then f is irreducible
        TRACE("polynomial::factorization", tout << "upolynomial::factor_square_free_berlekamp("; upm.display(tout, f); tout << ", " << p << ") => " << factors << endl;);    
        return false;
    }

    TRACE("polynomial::factorization::bughunt", tout << "upolynomial::factor_square_free_berlekamp(): computing factors, expecting " << r << endl;);        

    scoped_numeral_vector gcd(zpm);
    scoped_numeral_vector div(zpm);

    // process the null space vectors (skip first one, it's [1, 0, ..., 0]) while generating the factors
    unsigned d = upm.degree(f);
    scoped_numeral_vector v_k(zpm);
    while (Q_I.next_null_space_vector(v_k)) {

        TRACE("polynomial::factorization::bughunt", 
            tout << "null vector: "; 
            for(unsigned j = 0; j < d; ++ j) {
                tout << zpm.to_string(v_k[j]) << " ";
            }
            tout << endl;
        );
        
        upm.trim(v_k);
        // TRACE("polynomial::factorization", tout << "v_k = "; upm.display(tout, v_k); tout << endl;);    
        
        unsigned current_factor_end = factors.distinct_factors();
        for (unsigned current_factor_i = first_factor; current_factor_i < current_factor_end; ++ current_factor_i) {

            // we have v such that vQ = v, viewing v as a polynomial, we get that v^n - v = 0 (mod f)
            // since v^n -v = v*(v-1)*...*(v - p-1) we compute the gcd(v - s, f) to extract the 
            // factors. it also holds that g = \prod gcd(v - s, f), so we just accumulate them
            
            // if it's of degree 1, we're done (have to index the array as we are adding to it), as 
            if (factors[current_factor_i].size() == 2) {
                continue;
            }

            for (unsigned s = 0; s < p; ++ s) {
                
                numeral_vector const & current_factor = factors[current_factor_i];

                // we just take one off v_k each time to get all of them
                zpm.dec(v_k[0]);
            
                // get the gcd
                upm.gcd(v_k.size(), v_k.c_ptr(), current_factor.size(), current_factor.c_ptr(), gcd);

                // if the gcd is 1, or the the gcd is f, we just ignroe it
                if (gcd.size() != 1 && gcd.size() != current_factor.size()) {
                
                    // get the divisor also (no need to normalize the div, both are monic)
                    upm.div(current_factor.size(), current_factor.c_ptr(), gcd.size(), gcd.c_ptr(), div);

                    TRACE("polynomial::factorization::bughunt", 
                        tout << "current_factor = "; upm.display(tout, current_factor); tout << endl;
                        tout << "gcd_norm = "; upm.display(tout, gcd); tout << endl;
                        tout << "div = "; upm.display(tout, div); tout << endl;
                    );                

                    // continue with the rest
                    factors.swap_factor(current_factor_i, div);

                    // add the new factor(s)
                    factors.push_back(gcd, 1);

                } 

                // at the point where we have all the factors, we are done
                if (factors.distinct_factors() - first_factor == r) {
                    TRACE("polynomial::factorization", tout << "polynomial::factor("; upm.display(tout, f); tout << ", " << p << ") => " << factors << " of degree " << factors.get_degree() << endl;);    
                    return true;
                }
            }
        }
    }

    // should never get here
    SASSERT(false);
    return true;
}

/**
   Check if the hensel lifting was correct, i.e. that C = A*B (mod br).
*/
bool check_hansel_lift(z_manager & upm, numeral_vector const & C, 
    numeral const & a, numeral const & b, numeral const & r, 
    numeral_vector const & A, numeral_vector const & B,
    numeral_vector const & A_lifted, numeral_vector const & B_lifted) 
{
    z_numeral_manager & nm = upm.zm();

    scoped_mpz br(nm);
    nm.mul(b, r, br);
    
    zp_manager br_upm(upm.zm());
    br_upm.set_zp(br);

    if (A_lifted.size() != A.size()) return false;
    if (B_lifted.size() != B.size()) return false;
    if (!nm.eq(A.back(), A_lifted.back())) return false;

    // test1: check that C = A_lifted * B_lifted (mod b*r)
    scoped_mpz_vector test1(nm);
    upm.mul(A_lifted.size(), A_lifted.c_ptr(), B_lifted.size(), B_lifted.c_ptr(), test1);
    upm.sub(C.size(), C.c_ptr(), test1.size(), test1.c_ptr(), test1);
    to_zp_manager(br_upm, test1);
    if (!test1.size() == 0) {
        TRACE("polynomial::factorization::bughunt", 
            tout << "sage: R.<x> = ZZ['x']" << endl;
            tout << "sage: A = "; upm.display(tout, A); tout << endl;
            tout << "sage: B = "; upm.display(tout, B); tout << endl;
            tout << "sage: C = "; upm.display(tout, C); tout << endl;
            tout << "sage: test1 = C - AB" << endl;
            tout << "sage: print test1.change_ring(GF(" << nm.to_string(br) << "))" << endl;
            tout << "sage: print 'expected 0'" << endl;
        );    
        return false;
    }

    zp_manager b_upm(nm);
    b_upm.set_zp(b);

    // test2: A_lifted = A (mod b)
    scoped_mpz_vector test2a(nm), test2b(nm);
    to_zp_manager(b_upm, A, test2a);
    to_zp_manager(b_upm, A_lifted, test2b);
    if (!upm.eq(test2a, test2b)) {
        return false;
    }

    // test3: B_lifted = B (mod b)
    scoped_mpz_vector test3a(nm), test3b(nm);
    to_zp_manager(b_upm, B, test3a);
    to_zp_manager(b_upm, B_lifted, test3b);
    if (!upm.eq(test3a, test3b)) {
        return false;
    }

    return true;
}

/**
   Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and and a = p^{a_k}, b = p^{b_k},
   r = (a, b), with the following assumptions:
   
     (1) UA + VB = 1 (mod a) 
     (2) C = A*B (mod b)
     (3) (l(A), r) = 1 (importand in order to divide by A, i.e. to invert l(A))
     (4) deg(A) + deg(B) = deg(C)     

   The output of is two polynomials A1, B1  such that A1 = A (mod b), B1 = B (mod b), 
   l(A1) = l(A), deg(A1) = deg(A), deg(B1) = deg(B) and C = A1 B1 (mod b*r). Such A1, B1 are unique if 
   r is prime. See [3] p. 138.
*/
void hensel_lift(z_manager & upm, numeral const & a, numeral const & b, numeral const & r,
    numeral_vector const & U, numeral_vector const & A, numeral_vector const & V, numeral_vector const & B,
    numeral_vector const & C, numeral_vector & A_lifted, numeral_vector & B_lifted) {

    z_numeral_manager & nm = upm.zm();
    
    TRACE("polynomial::factorization::bughunt", 
        tout << "polynomial::hensel_lift(";
        tout << "a = " << nm.to_string(a) << ", ";
        tout << "b = " << nm.to_string(b) << ", ";
        tout << "r = " << nm.to_string(r) << ", ";
        tout << "U = "; upm.display(tout, U); tout << ", ";
        tout << "A = "; upm.display(tout, A); tout << ", ";
        tout << "V = "; upm.display(tout, V); tout << ", ";
        tout << "B = "; upm.display(tout, B); tout << ", ";
        tout << "C = "; upm.display(tout, C); tout << ")" << endl;
    );

    zp_manager r_upm(nm);
    r_upm.set_zp(r);

    SASSERT(upm.degree(C) == upm.degree(A) + upm.degree(B));
    SASSERT(upm.degree(U) < upm.degree(B) && upm.degree(V) < upm.degree(A));

    // by (2) C = AB (mod b), hence (C - AB) is divisible by b
    // define thus let f = (C - AB)/b in Z_r
    scoped_numeral_vector f(upm.m());
    upm.mul(A.size(), A.c_ptr(), B.size(), B.c_ptr(), f); 
    upm.sub(C.size(), C.c_ptr(), f.size(), f.c_ptr(), f); 
    upm.div(f, b);
    to_zp_manager(r_upm, f);
    TRACE("polynomial::factorization", 
        tout << "f = "; upm.display(tout, f); tout << endl;
    );

    // we need to get A1 = A (mod b), B1 = B (mode b) so we know that we need 
    // A1 = A + b*S, B1 = B + b*T in Z[x] for some S and T with deg(S) <= deg(A), deg(T) <= deg(B)
    // we also need (mod b*r) C = A1*B1 = (A + b*S)*(B + b*T) = AB + b(AT + BS) + b^2*ST 
    // if we find S and T, we will have found our A1 and B1
    // since r divides b, then b^2 contains b*r and we know that it must be that C = AB + b(AT + BS) (mod b*r) 
    // which is equivalent to 
    //   (5) f = (C - AB)/b = AT + BS (mod r)     
    // having (1) AU + BV = 1 (mod r) and (5) AT + BS = f (mod r), we know that 
    // A*(fU) + B*(fV) = f (mod r), i.e. T = fU, S = fV is a solution
    // but we also know that we need an S with deg(S) <= deg(A) so we can do the following
    // we know that l(A) is invertible so we can find the exact remainder of fV with A, i.e. find the qotient 
    // t in the division and set
    // A*(fU + tB) + B*(fV - tA) = f 
    // T = fU + tB, S = fU - tA
    // since l(A) is invertible in Z_r, we can (in Z_r) use exact division to get Vf = At + R with deg(R) < A
    // we now know that deg(A+bS) = deg(A), but we also know (4) which will guarantee that deg(B+bT) = deg(B)
    
    // compute the S, T (compute in Z_r[x])
    scoped_numeral_vector Vf(r_upm.m()), t(r_upm.m()), S(r_upm.m());
    TRACE("polynomial::factorization::bughunt", 
        tout << "V == "; upm.display(tout, V); tout << endl;
    );
    r_upm.mul(V.size(), V.c_ptr(), f.size(), f.c_ptr(), Vf);
    TRACE("polynomial::factorization::bughunt", 
        tout << "Vf = V*f" << endl; 
        tout << "Vf == "; upm.display(tout, Vf); tout << endl;
    );
    r_upm.div_rem(Vf.size(), Vf.c_ptr(), A.size(), A.c_ptr(), t, S);    
    TRACE("polynomial::factorization::bughunt", 
        tout << "[t, S] = Vf.quo_rem(A)" << endl; 
        tout << "t == "; upm.display(tout, t); tout << endl;
        tout << "S == "; upm.display(tout, S); tout << endl;
    );
    scoped_numeral_vector T(r_upm.m()), tmp(r_upm.m());
    r_upm.mul(U.size(), U.c_ptr(), f.size(), f.c_ptr(), T); // T = fU
    TRACE("polynomial::factorization::bughunt", 
        tout << "T == U*f" << endl; 
        tout << "T == "; upm.display(tout, T); tout << endl;
    );
    r_upm.mul(B.size(), B.c_ptr(), t.size(), t.c_ptr(), tmp); // tmp = Bt
    TRACE("polynomial::factorization::bughunt", 
        tout << "tmp = B*t" << endl; 
        tout << "tmp == "; upm.display(tout, tmp); tout << endl;
    );
    r_upm.add(T.size(), T.c_ptr(), tmp.size(), tmp.c_ptr(), T); // T = Uf + Bt
    TRACE("polynomial::factorization::bughunt", 
        tout << "T = B*tmp" << endl; 
        tout << "T == "; upm.display(tout, T); tout << endl;
    );

    // set the result, A1 = A + b*S, B1 = B + b*T (now we compute in Z[x])
    upm.mul(S, b);
    upm.mul(T, b);
    upm.add(A.size(), A.c_ptr(), S.size(), S.c_ptr(), A_lifted);
    upm.add(B.size(), B.c_ptr(), T.size(), T.c_ptr(), B_lifted);

    CASSERT("polynomial::factorizatio::bughunt", check_hansel_lift(upm, C, a, b, r, A, B, A_lifted, B_lifted));
}

bool check_quadratic_hensel(zp_manager & zpe_upm, numeral_vector const & U, numeral_vector const & A, numeral_vector const & V, numeral_vector const & B) {
    z_numeral_manager & nm = zpe_upm.zm();

    // compute UA+BV expecting to get 1 (in Z_pe[x])
    scoped_mpz_vector tmp1(nm);
    scoped_mpz_vector tmp2(nm);    
    zpe_upm.mul(U.size(), U.c_ptr(), A.size(), A.c_ptr(), tmp1);
    zpe_upm.mul(V.size(), V.c_ptr(), B.size(), B.c_ptr(), tmp2);
    scoped_mpz_vector one(nm);
    zpe_upm.add(tmp1.size(), tmp1.c_ptr(), tmp2.size(), tmp2.c_ptr(), one);
    if (one.size() != 1 || !nm.is_one(one[0])) {
        TRACE("polynomial::factorization::bughunt", 
            tout << "sage: R.<x> = Zmod(" << nm.to_string(zpe_upm.m().p()) << ")['x']" << endl;
            tout << "sage: A = "; zpe_upm.display(tout, A); tout << endl;
            tout << "sage: B = "; zpe_upm.display(tout, B); tout << endl;
            tout << "sage: U = "; zpe_upm.display(tout, U); tout << endl;
            tout << "sage: V = "; zpe_upm.display(tout, V); tout << endl;
            tout << "sage: print  (1 - UA - VB)" << endl;
            tout << "sage: print 'expected 0'" << endl;
        );    
        return false;
    }

    return true;
}

/**
   Lift C = A*B from Z_p[x] to Z_{p^e}[x] such that:
     * A = A_lift (mod p)
     * B = B_lift (mod p)
     * C = A*B (mod p^e)
*/
void hensel_lift_quadratic(z_manager& upm, numeral_vector const & C, 
                           zp_manager & zpe_upm, numeral_vector & A, numeral_vector & B, unsigned e) {
    z_numeral_manager & nm = upm.zm();

    TRACE("polynomial::factorization::bughunt", 
        tout << "polynomial::hansel_lift_quadratic(";
        tout << "A = "; upm.display(tout, A); tout << ", ";
        tout << "B = "; upm.display(tout, B); tout << ", ";
        tout << "C = "; upm.display(tout, C); tout << ", ";
        tout << "p = " << nm.to_string(zpe_upm.m().p()) << ", e = " << e << ")" << endl;
    );

    // we create a new Z_p manager, since we'll be changing the input one
    zp_manager zp_upm(nm);
    zp_upm.set_zp(zpe_upm.m().p());
    zp_numeral_manager & zp_nm = zp_upm.m();

    // get the U, V, such that A*U + B*V = 1 (mod p)
    scoped_mpz_vector U(nm), V(nm), D(nm);
    zp_upm.ext_gcd(A.size(), A.c_ptr(), B.size(), B.c_ptr(), U, V, D);
    SASSERT(D.size() == 1 && zp_nm.is_one(D[0]));

    // we start lifting from (a = p, b = p, r = p)
    scoped_mpz_vector A_lifted(nm), B_lifted(nm);
    for (unsigned k = 1; k < e; k *= 2) {
        upm.checkpoint();
        // INVARIANT(a = p^e, b = p^e, r = gcd(a, b) = p^e): 
        // C = AB (mod b), UA + VB = 1 (mod a)
        // deg(U) < deg(B), dev(V) < deg(A), deg(C) = deg(A) + deg(V)
        // gcd(l(A), r) = 1
        
        // regular hensel lifting from a to b*r, here from pe -> pk*pk = p^{k*k} 
        numeral const & pe = zpe_upm.m().p();  
        
        hensel_lift(upm, pe, pe, pe, U, A, V, B, C, A_lifted, B_lifted);
        // now we have C = AB (mod b*r)
        TRACE("polynomial::factorization::bughunt", 
            tout << "A_lifted = "; upm.display(tout, A_lifted); tout << endl;
            tout << "B_lifted = "; upm.display(tout, B_lifted); tout << endl;
            tout << "C = "; upm.display(tout, C); tout << endl;
        );
        
        // we employ similar reasoning as in the regular hansel lemma now
        // we need to lift UA + VB = 1 (mod a) 
        // since after the lift, we still have UA + VB = 1 (mod a) we know that (1 - UA - VB)/a is in Z[x]
        // so we can compute g = (1 - UA - VB)/a 
        // we need U1 and V1 such that U1A + V1B = 1 (mod a^2), with U1 = U mod a, V1 = V mod a
        // hence U1 = U + aS, V1 = V + aT and we need
        // (U + aS)A + (V + aT)B = 1 (mod a^2) same as
        // UA + VB + a(SA + TB) = 1 (mod a^2) same as 
        // SA + TB = g (mod a) hence
        // (gU + tB)A + (gV - tA)B = g (mod a) will be a solution and we pick t such that deg(gV - tA) < deg(A)
        
        // compute g
        scoped_mpz_vector tmp1(nm), g(nm);
        g.push_back(numeral());
        nm.set(g.back(), 1); // g = 1
        upm.mul(A_lifted.size(), A_lifted.c_ptr(), U.size(), U.c_ptr(), tmp1); // tmp1 = AU
        upm.sub(g.size(), g.c_ptr(), tmp1.size(), tmp1.c_ptr(), g); // g = 1 - UA
        upm.mul(B_lifted.size(), B_lifted.c_ptr(), V.size(), V.c_ptr(), tmp1); // tmp1 = BV
        upm.sub(g.size(), g.c_ptr(), tmp1.size(), tmp1.c_ptr(), g); // g = 1 - UA - VB
        upm.div(g, pe);
        to_zp_manager(zpe_upm, g);
        TRACE("polynomial::factorization::bughunt", 
            tout << "g = (1 - A_lifted*U - B_lifted*V)/" << nm.to_string(pe) << endl;
            tout << "g == "; upm.display(tout, g); tout << endl;
        );

        // compute the S, T
        scoped_mpz_vector S(nm), T(nm), t(nm), tmp2(nm);
        zpe_upm.mul(g.size(), g.c_ptr(), V.size(), V.c_ptr(), tmp1); // tmp1 = gV
        zpe_upm.div_rem(tmp1.size(), tmp1.c_ptr(), A.size(), A.c_ptr(), t, T); // T = gV - tA, deg(T) < deg(A)
        zpe_upm.mul(g.size(), g.c_ptr(), U.size(), U.c_ptr(), tmp1); // tmp1 = gU
        zpe_upm.mul(t.size(), t.c_ptr(), B.size(), B.c_ptr(), tmp2); // tmp2 = tB
        zpe_upm.add(tmp1.size(), tmp1.c_ptr(), tmp2.size(), tmp2.c_ptr(), S);
        
        // now update U = U + a*S and V = V + a*T
        upm.mul(S.size(), S.c_ptr(), pe);
        upm.mul(T.size(), T.c_ptr(), pe);
        upm.add(U.size(), U.c_ptr(), S.size(), S.c_ptr(), U);
        upm.add(V.size(), V.c_ptr(), T.size(), T.c_ptr(), V); // deg(V) < deg(A), deg(T) < deg(A) => deg(V') < deg(A)

        // we go quadratic
        zpe_upm.m().set_p_sq();
        to_zp_manager(zpe_upm, U);
        to_zp_manager(zpe_upm, V);
        to_zp_manager(zpe_upm, A_lifted);
        to_zp_manager(zpe_upm, B_lifted);

        // at this point we have INVARIANT(a = (p^e)^2, b = (p^e)^2, r = (p^e)^2) 
        A.swap(A_lifted);
        B.swap(B_lifted);

        CASSERT("polynomial::factorizatio::bughunt", check_quadratic_hensel(zpe_upm, U, A, V, B));
    }
}

bool check_hensel_lift(z_manager & upm, numeral_vector const & f, zp_factors const & zp_fs, zp_factors const & zpe_fs, unsigned e) {
    numeral_manager & nm(upm.m());
    
    zp_manager & zp_upm = zp_fs.upm();
    zp_manager & zpe_upm = zpe_fs.upm();

    numeral const & p = zp_fs.nm().p();
    numeral const & pe = zpe_fs.nm().p();

    scoped_numeral power(nm);
    nm.power(p, e, power);
    if (!nm.ge(pe, power)) {
        return false;
    }
    
    // check f = lc(f) * zp_fs (mod p)
    scoped_numeral_vector mult_zp(nm), f_zp(nm);
    zp_fs.multiply(mult_zp);
    to_zp_manager(zp_upm, f, f_zp);
    zp_upm.mul(mult_zp, f_zp.back());
    if (!upm.eq(mult_zp, f_zp)) {
        TRACE("polynomial::factorization::bughunt", 
            tout << "f = "; upm.display(tout, f); tout << endl;
            tout << "zp_fs = " << zp_fs << endl;
            tout << "sage: R.<x> = Zmod(" << nm.to_string(p) << ")['x']" << endl;
            tout << "sage: mult_zp = "; upm.display(tout, mult_zp); tout << endl;
            tout << "sage: f_zp = "; upm.display(tout, f_zp); tout << endl;
            tout << "sage: mult_zp == f_zp" << endl;
        );    
        return false;
    }

    // check individual factors 
    if (zpe_fs.distinct_factors() != zp_fs.distinct_factors()) {
        return false;
    }

    // check f = lc(f) * zpe_fs (mod p^e)
    scoped_numeral_vector mult_zpe(nm), f_zpe(nm);
    zpe_fs.multiply(mult_zpe);
    to_zp_manager(zpe_upm, f, f_zpe);   
    zpe_upm.mul(mult_zpe, f_zpe.back());
    if (!upm.eq(mult_zpe, f_zpe)) {
        TRACE("polynomial::factorization::bughunt", 
            tout << "f = "; upm.display(tout, f); tout << endl;
            tout << "zpe_fs = " << zpe_fs << endl;
            tout << "sage: R.<x> = Zmod(" << nm.to_string(pe) << ")['x']" << endl;
            tout << "sage: mult_zpe = "; upm.display(tout, mult_zpe); tout << endl;
            tout << "sage: f_zpe = "; upm.display(tout, f_zpe); tout << endl;
            tout << "sage: mult_zpe == f_zpe" << endl;
        );
        return false;
    }

    return true;
}

bool check_individual_lift(zp_manager & zp_upm, numeral_vector const & A_p, zp_manager & zpe_upm, numeral_vector const & A_pe) {
    scoped_numeral_vector A_pe_p(zp_upm.m());
    to_zp_manager(zp_upm, A_pe, A_pe_p);

    if (!zp_upm.eq(A_p, A_pe_p)) {
        return false;
    }

    return true;
}

void hensel_lift(z_manager & upm, numeral_vector const & f, zp_factors const & zp_fs, unsigned e, zp_factors & zpe_fs) {
    SASSERT(zp_fs.total_factors() > 0);

    zp_numeral_manager & zp_nm = zp_fs.nm();
    zp_manager & zp_upm = zp_fs.upm();
    z_numeral_manager & nm = zp_nm.m();

    SASSERT(nm.is_one(zp_fs.get_constant()));

    zp_numeral_manager & zpe_nm = zpe_fs.nm();
    zp_manager & zpe_upm = zpe_fs.upm();
    zpe_nm.set_zp(zp_nm.p());
    
    TRACE("polynomial::factorization::bughunt", 
        tout << "polynomial::hansel_lift("; upm.display(tout, f); tout << ", " << zp_fs << ")" << endl;
    );

    // lift the factors one by one
    scoped_mpz_vector A(nm), B(nm), C(nm), f_parts(nm); // these will all be in Z_p
    
    // copy of f, that we'll be cutting parts of
    upm.set(f.size(), f.c_ptr(), f_parts);

    // F_k are factors mod Z_p, A_k the factors mod p^e
    // the invariant we keep is that:
    // (1) f_parts = C = lc(f) * \prod_{k = i}^n F_k, C in Z_p[x]
    // (2) A_k = F_k (mod p), for k < i
    // (3) f = (\prod_{k < i} A_k) * f_parts (mod p^e)
    for (int i = 0, i_end = zp_fs.distinct_factors()-1; i < i_end; ++ i) {
        SASSERT(zp_fs.get_degree(i) == 1); // p was chosen so that f is square-free
        
        // F_i = A (mod Z_p)
        zp_upm.set(zp_fs[i].size(), zp_fs[i].c_ptr(), A);
        TRACE("polynomial::factorization::bughunt", 
            tout << "A = "; upm.display(tout, A); tout << endl;
        );
        
        // C = f_parts (mod Z_p)
        if (i > 0) {
            to_zp_manager(zp_upm, f_parts, C);
        } 
        else {
            // first time around, we don't have p^e yet, so first time we just compute C 
            zp_fs.multiply(C);
            scoped_mpz lc(nm);
            zp_nm.set(lc, f.back());
            zp_upm.mul(C, lc);
        }
        TRACE("polynomial::factorization::bughunt", 
            tout << "C = "; upm.display(tout, C); tout << endl;
        );

        // we take B to be what's left from C and A
        zp_upm.div(C.size(), C.c_ptr(), A.size(), A.c_ptr(), B);
        TRACE("polynomial::factorization::bughunt", 
            tout << "B = "; upm.display(tout, B); tout << endl;
        );

        // lift A and B to p^e (this will change p^e and put it zp_upm)
        zpe_nm.set_zp(zp_nm.p());
        hensel_lift_quadratic(upm, f_parts, zpe_upm, A, B, e);
        CASSERT("polynomial::factorizatio::bughunt", check_individual_lift(zp_upm, zp_fs[i], zpe_upm, A));
        TRACE("polynomial::factorization", 
            tout << "lifted to " << nm.to_string(zpe_upm.m().p()) << endl;        
            tout << "A = "; upm.display(tout, A); tout << endl;
            tout << "B = "; upm.display(tout, B); tout << endl;
        );
        
        // if this is the first time round, we also construct f_parts (now we have correct p^e)
        if (i == 0) {
            to_zp_manager(zpe_upm, f, f_parts);
        }
        
        // take the lifted A out of f_parts
        zpe_upm.div(f_parts.size(), f_parts.c_ptr(), A.size(), A.c_ptr(), f_parts);
        
        // add the lifted factor (kills A)
        zpe_fs.push_back_swap(A, 1);
    }

    // we have one last factor, but it also contains lc(f), so take it out
    scoped_mpz lc_inv(nm);
    zpe_nm.set(lc_inv, f.back());
    zpe_nm.inv(lc_inv);
    zpe_upm.mul(B, lc_inv);
    zpe_fs.push_back_swap(B, 1);

    TRACE("polynomial::factorization::bughunt", 
        tout << "polynomial::hansel_lift("; upm.display(tout, f); tout << ", " << zp_fs << ") => " << zpe_fs << endl;
    );

    CASSERT("polynomial::factorizatio::bughunt", check_hensel_lift(upm, f, zp_fs, zpe_fs, e));
}

// get a bound on B for the factors of f with degree less or equal to deg(f)/2
// and then choose e to be smallest such that p^e > 2*lc(f)*B, we use the mignotte
// 
// from [3, pg 134] 
// |p| = sqrt(\sum |p_i|^2). If a = \sum a_i x^i, b = \sum b_j, deg b = n, and b divides a, then for all j 
// 
//                 |b_j| <= (n-1 over j)|a| + (n-1 over j-1)|lc(a)|
//
// when factoring a polynomial, we find a bound B for a factor of f of degree <= deg(f)/2
// allowing both positive and negative as coefficients of b, we now want a power p^e such that all coefficients
// can be represented, i.e. [-B, B] \subset [-\ceil(p^e/2), \ceil(p^e)/2], so we peek e, such that p^e >= 2B

static unsigned mignotte_bound(z_manager & upm, numeral_vector const & f, numeral const & p) {
    numeral_manager & nm = upm.m();

    SASSERT(upm.degree(f) >= 2);
    unsigned n = upm.degree(f)/2; // >= 1

    // get the approximation for the norm of a
    scoped_numeral f_norm(nm);
    for (unsigned i = 0; i < f.size(); ++ i) {
        if (!nm.is_zero(f[i])) {
            nm.addmul(f_norm, f[i], f[i], f_norm);
        }
    }
    nm.root(f_norm, 2);

    // by above we can pick (n-1 over (n-1/2))|a| + (n-1 over (n-1)/2)lc(a)
    // we approximate both binomial-coefficients with 2^(n-1), so to get 2B we use 2^n(f_norm + lc(f))
    scoped_numeral bound(nm); 
    nm.set(bound, 1);
    nm.mul2k(bound, n, bound);
    scoped_numeral tmp(nm);
    nm.set(tmp, f.back());
    nm.abs(tmp);
    nm.add(f_norm, tmp, f_norm);
    nm.mul(bound, f_norm, bound);

    // we need e such that p^e >= B    
    nm.set(tmp, p);
    unsigned e;
    for (e = 1; nm.le(tmp, bound); e *= 2) {
        nm.mul(tmp, tmp, tmp);
    }

    return e;
}

/**
   \brief Given f from Z[x] that is square free, it factors it.
   This method also assumes f is primitive.
*/
bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs, unsigned k, factor_params const & params) {
    TRACE("polynomial::factorization::bughunt", 
        tout << "sage: f = "; upm.display(tout, f); tout << endl;
        tout << "sage: if (not f.is_squarefree()): print 'Error, f is not square-free'" << endl;
        tout << "sage: print 'Factoring :', f" << endl;
        tout << "sage: print 'Expected factors: ', f.factor()" << endl;
    );    

    numeral_manager & nm = upm.m();

    // This method assumes f is primitive. Thus, the content of f must be one
    DEBUG_CODE({
        scoped_numeral f_cont(nm);
        nm.gcd(f.size(), f.c_ptr(), f_cont);
        SASSERT(f.size() == 0 || nm.is_one(f_cont));
    });

    scoped_numeral_vector f_pp(nm);
    upm.set(f.size(), f.c_ptr(), f_pp);
    
    // make sure the leading coefficient is positive
    if (!f_pp.empty() && nm.is_neg(f_pp[f_pp.size() - 1])) {
        for (unsigned i = 0; i < f_pp.size(); i++)
            nm.neg(f_pp[i]);
        // flip sign constant if k is odd
        if (k % 2 == 1) {
            scoped_numeral c(nm);
            nm.set(c, fs.get_constant());
            nm.neg(c);
            fs.set_constant(c);
        }
    }

    TRACE("polynomial::factorization::bughunt", 
        tout << "sage: f_pp = "; upm.display(tout, f_pp); tout << endl;
        tout << "sage: if (not (f_pp * 1 == f): print 'Error, content computation wrong'" << endl;
    ); 

    // the variables we'll be using and updating in Z_p
    scoped_numeral p(nm); 
    nm.set(p, 2);
    zp_manager zp_upm(nm.m());
    zp_upm.set_zp(p);
    zp_factors zp_fs(zp_upm);
    scoped_numeral zp_fs_p(nm); nm.set(zp_fs_p, 2);
    
    // we keep all the possible sets of degrees of factors in this set
    factorization_degree_set degree_set(zp_upm);

    // we try get some number of factorizations in Z_p, for some primes
    // get the prime p such that 
    // (1) (f_prim mod p) stays square-free
    // (2) l(f_prim) mod p doesn't vanish, i.e. we don't get a polynomial of smaller degree            
    prime_iterator prime_it;
    scoped_numeral gcd_tmp(nm);    
    unsigned trials = 0;
    while (trials < params.m_p_trials) {
        upm.checkpoint();
        // construct prime to check 
        uint64 next_prime = prime_it.next();
        if (next_prime > params.m_max_p) {
            fs.push_back(f_pp, k);
            return false;
        }
        nm.set(p, next_prime);
        zp_upm.set_zp(p);

        // we need gcd(lc(f_pp), p) = 1
        nm.gcd(p, f_pp.back(), gcd_tmp);
        TRACE("polynomial::factorization::bughunt", 
            tout << "sage: if (not (gcd(" << nm.to_string(p) << ", " << nm.to_string(f_pp.back()) << ")) == " << 
              nm.to_string(gcd_tmp) << "): print 'Error, wrong gcd'" << endl;
        );    
        if (!nm.is_one(gcd_tmp)) {
            continue;
        }
    
        // if it's not square free, we also try somehting else 
        scoped_numeral_vector f_pp_zp(nm);
        to_zp_manager(zp_upm, f_pp, f_pp_zp);

        TRACE("polynomial::factorization::bughunt", 
            tout << "sage: Rp.<x_p> = GF(" << nm.to_string(p) << ")['x_p']"; tout << endl;
            tout << "sage: f_pp_zp = "; zp_upm.display(tout, f_pp_zp, "x_p"); tout << endl;
        );    

        if (!zp_upm.is_square_free(f_pp_zp.size(), f_pp_zp.c_ptr()))
            continue;
        
        // we make it monic
        zp_upm.mk_monic(f_pp_zp.size(), f_pp_zp.c_ptr());

        // found a candidate, factorize in Z_p and add back the constant
        zp_factors current_fs(zp_upm);
        bool factored = zp_factor_square_free(zp_upm, f_pp_zp, current_fs);        
        if (!factored) {
            fs.push_back(f_pp, k);
            return true;
        }

        // get the factors degrees set
        factorization_degree_set current_degree_set(current_fs);
        if (degree_set.max_degree() == 0) {
            // first time, initialize
            degree_set.swap(current_degree_set);
        } 
        else {
            degree_set.intersect(current_degree_set);
        }

        // if the degree set is trivial, we are done
        if (degree_set.is_trivial()) {
            fs.push_back(f_pp, k);
            return true;
        }

        // we found a candidate, lets keep it if it has less factors than the current best
        trials ++;
        if (zp_fs.distinct_factors() == 0 || zp_fs.total_factors() > current_fs.total_factors()) {
            zp_fs.swap(current_fs);
            nm.set(zp_fs_p, p);

            TRACE("polynomial::factorization::bughunt", 
                tout << "best zp factorization (Z_" << nm.to_string(zp_fs_p) << "): ";
                tout << zp_fs << endl;
                tout << "best degree set: "; degree_set.display(tout); tout << endl;
            );
        }
    }
#ifndef _EXTERNAL_RELEASE 
    IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :at GF_" << nm.to_string(zp_upm.p()) << ")" << std::endl;);
#endif
    
    // make sure to set the zp_manager back to modulo zp_fs_p 
    zp_upm.set_zp(zp_fs_p);
    
    TRACE("polynomial::factorization::bughunt", 
          tout << "best zp factorization (Z_" << nm.to_string(zp_fs_p) << "): " << zp_fs << endl;
          tout << "best degree set: "; degree_set.display(tout); tout << endl;
          );
    
    // get a bound on B for the factors of f_pp with degree less or equal to deg(f)/2
    // and then choose e to be smallest such that p^e > 2*lc(f)*B, we use the mignotte
    unsigned e = mignotte_bound(upm, f_pp, zp_fs_p);
    TRACE("polynomial::factorization::bughunt", 
          tout << "out p = " << nm.to_string(zp_fs_p) << ", and we'll work p^e for e = " << e << endl;
          );
    
    // we got a prime factoring, so we do the lifting now
    zp_manager zpe_upm(nm.m());
    zpe_upm.set_zp(zp_fs_p);
    zp_numeral_manager & zpe_nm = zpe_upm.m();
    
    zp_factors zpe_fs(zpe_upm);
    // this might give something bigger than p^e, but the lifting proocedure will update the zpe_nm
    // zp factors are monic, so will be the zpe factors, i.e. f_pp = zpe_fs * lc(f_pp) (mod p^e)
    hensel_lift(upm, f_pp, zp_fs, e, zpe_fs); 
    
#ifndef _EXTERNAL_RELEASE 
    IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :num-candidate-factors " << zpe_fs.distinct_factors() << ")" << std::endl;);
#endif
    
    // the leading coefficient of f_pp mod p^e
    scoped_numeral f_pp_lc(nm);
    zpe_nm.set(f_pp_lc, f_pp.back());
    
    // we always keep in f_pp the the actual primitive part f_pp*lc(f_pp)
    upm.mul(f_pp, f_pp_lc);
    
    // now we go through the combinations of factors to check construct the factorization
    ufactorization_combination_iterator it(zpe_fs, degree_set);
    scoped_numeral_vector trial_factor(nm), trial_factor_quo(nm);
    scoped_numeral trial_factor_cont(nm);
    TRACE("polynomial::factorization::bughunt", 
          tout << "STARTING TRIAL DIVISION" << endl;
          tout << "zpe_fs" << zpe_fs << endl;
          tout << "degree_set = "; degree_set.display(tout); tout << endl;
          );
    bool result = true;
    bool remove = false;
    unsigned counter = 0;
    while (it.next(remove)) {
        upm.checkpoint();
        counter++;
        if (counter > params.m_max_search_size) {
            // stop search
            result = false;
            break;
        }
        //
        // our bound ensures we can extract the right factors of degree at most 1/2 of the original
        // so, if out trial factor has degree bigger than 1/2, we need to take the rest of the factors
        // but, if we take the rest and it works, it doesn't mean that the rest is factorized, so we still take out
        // the original factor
        bool using_left = it.current_degree() <= zp_fs.get_degree()/2;
        if (using_left) {
            // do a quick check first
            scoped_numeral tmp(nm);
            it.get_left_tail_coeff(f_pp_lc, tmp);
            if (!nm.divides(tmp, f_pp[0])) {
                // don't remove this combination
                remove = false;
                continue;
            }
            it.left(trial_factor);
        } 
        else {
            // do a quick check first
            scoped_numeral tmp(nm);
            it.get_right_tail_coeff(f_pp_lc, tmp);
            if (!nm.divides(tmp, f_pp[0])) {
                // don't remove this combination
                remove = false;
                continue;
            }
            it.right(trial_factor);
        }

        // add the lc(f_pp) to the trial divisor
        zpe_upm.mul(trial_factor, f_pp_lc);
        TRACE("polynomial::factorization::bughunt", 
            tout << "f_pp*lc(f_pp) = "; upm.display(tout, f_pp); tout << endl;
            tout << "trial_factor = "; upm.display(tout, trial_factor); tout << endl;    
        );

        bool true_factor = upm.exact_div(f_pp, trial_factor, trial_factor_quo);        
        
        TRACE("polynomial::factorization::bughunt", 
            tout << "trial_factor = "; upm.display(tout, trial_factor); tout << endl;    
            tout << "trial_factor_quo = "; upm.display(tout, trial_factor_quo); tout << endl;
            tout << "result = " << (true_factor ? "true" : "false") << endl;
        );

        // if division is precise we have a factor
        if (true_factor) {
            if (!using_left) {
                // as noted above, we still use the original factor
                trial_factor.swap(trial_factor_quo);
            }
            // We need to get the content out of the factor 
            upm.get_primitive_and_content(trial_factor, trial_factor, trial_factor_cont);
            // add the factor
            fs.push_back(trial_factor, k);
            // we continue with the quotient (with the content added back)
            // but we also have to keep lc(f_pp)*f_pp
            upm.get_primitive_and_content(trial_factor_quo, f_pp, trial_factor_cont);
            nm.set(f_pp_lc, f_pp.back());
            upm.mul(f_pp, f_pp_lc);
            // but we also remove it from the iterator
            remove = true;
        } 
        else {
            // don't remove this combination
            remove = false;
        }
        TRACE("polynomial::factorization::bughunt", 
            tout << "factors = " << fs << endl;
            tout << "f_pp*lc(f_pp) = "; upm.display(tout, f_pp); tout << endl;
            tout << "lc(f_pp) = " << f_pp_lc << endl;
        );
    }
#ifndef _EXTERNAL_RELEASE 
    IF_VERBOSE(FACTOR_VERBOSE_LVL, verbose_stream() << "(polynomial-factorization :search-size " << counter << ")" << std::endl;);
#endif

    // add the what's left to the factors (if not a constant)
    if (f_pp.size() > 1) {
        upm.div(f_pp, f_pp_lc);
        fs.push_back(f_pp, k);
    } 
    else {
        // if a constant it must be 1 (it was primitve)
        SASSERT(f_pp.size() == 1 && nm.is_one(f_pp.back()));
    }

    return result;
}

bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs, factor_params const & params) {
    return factor_square_free(upm, f, fs, 1, params);
}

}; // end upolynomial namespace