z3 / src / tactic / ufbv / ufbv_rewriter.cpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*++
Copyright (c) 2006 Microsoft Corporation

Module Name:

    demodulator.cpp

Abstract:

    <abstract>

Author:

    Leonardo de Moura (leonardo) 2010-04-12.

Revision History:

    Christoph M. Wintersteiger (cwinter) 2010-04-21: Implementation
    Christoph M. Wintersteiger (cwinter) 2012-10-24: Moved from demodulator.h to ufbv_rewriter.h

--*/

#include"ast_pp.h"
#include"ufbv_rewriter.h"
#include"for_each_expr.h"
#include"var_subst.h"
#include"uint_set.h"

ufbv_rewriter::ufbv_rewriter(ast_manager & m, basic_simplifier_plugin & p):
    m_manager(m),
    m_match_subst(m),
    m_bsimp(p),
    m_todo(m),
    m_rewrite_todo(m),
    m_rewrite_cache(m),
    m_new_exprs(m) {
}

ufbv_rewriter::~ufbv_rewriter() {
    reset_dealloc_values(m_fwd_idx);
    reset_dealloc_values(m_back_idx);
    for (demodulator2lhs_rhs::iterator it = m_demodulator2lhs_rhs.begin(); it != m_demodulator2lhs_rhs.end(); it++) {
        m_manager.dec_ref(it->m_key);
        m_manager.dec_ref(it->m_value.first);
        m_manager.dec_ref(it->m_value.second);
    }
}

bool ufbv_rewriter::is_demodulator(expr * e, expr_ref & large, expr_ref & small) const {
    if (e->get_kind() == AST_QUANTIFIER) {
        quantifier * q = to_quantifier(e);
        if (q->is_forall()) {            
            expr * qe = q->get_expr();
            if ((m_manager.is_eq(qe) || m_manager.is_iff(qe))) {
                app * eq = to_app(q->get_expr());
                expr * lhs = eq->get_arg(0);
                expr * rhs = eq->get_arg(1);
                int subset = is_subset(lhs, rhs);
                int smaller = is_smaller(lhs, rhs);
                TRACE("demodulator", tout << "testing is_demodulator:\n"
                      << mk_pp(lhs, m_manager) << "\n"
                      << mk_pp(rhs, m_manager) << "\n"
                      << "subset: " << subset << ", smaller: " << smaller << "\n";);
                // We only track uninterpreted functions, everything else is likely too expensive. 
                if ((subset == +1 || subset == +2) && smaller == +1) {
                    if (is_uninterp(rhs)) {
                        large = rhs;
                        small = lhs;
                        return true;
                    }
#if 1
                    // lhs = (not rhs) --> (not lhs) = rhs
                    expr * not_rhs;
                    if (m_manager.is_not(rhs, not_rhs) && is_uninterp(not_rhs)) {
                        large = not_rhs;
                        small = m_manager.mk_not(lhs);
                        return true;
                    }
#endif
                }
                
                if ((subset == -1 || subset == +2) && smaller == -1) {
                    if (is_uninterp(lhs)) {
                        large = lhs;
                        small = rhs;
                        return true;
                    }
#if 1
                    // (not lhs) = rhs --> lhs = (not rhs)
                    expr * not_lhs;
                    if (m_manager.is_not(lhs, not_lhs) && is_uninterp(not_lhs)) {
                        large = not_lhs;
                        small = m_manager.mk_not(rhs);
                        return true;
                    }
#endif
                }

            } else if (m_manager.is_not(qe) && is_uninterp(to_app(qe)->get_arg(0))) {
                // this is like (not (f ... )) --> (= (f ...) false)
                large = to_app(qe)->get_arg(0);
                small = m_manager.mk_false();
                return true;
            } else if (is_uninterp(qe)) {
                // this is like (f ... ) --> (= (f ...) true)
                large = to_app(qe);
                small = m_manager.mk_true();
                return true;
            }
        }
    }

    return false;
}

class var_set_proc {    
    uint_set & m_set;
public:
    var_set_proc(uint_set &s):m_set(s) {}
    void operator()(var * n) { m_set.insert(n->get_idx()); }
    void operator()(quantifier * n) {}
    void operator()(app * n) {}    
};

int ufbv_rewriter::is_subset(expr * e1, expr * e2) const {
    uint_set ev1, ev2;

    if (m_manager.is_value(e1))
        return 1; // values are always a subset!

    var_set_proc proc1(ev1);
    for_each_expr(proc1, e1);
    var_set_proc proc2(ev2);
    for_each_expr(proc2, e2);
        
    return (ev1==ev2          ) ? +2 : // We return +2 if the sets are equal. 
           (ev1.subset_of(ev2)) ? +1 : 
           (ev2.subset_of(ev1)) ? -1 : 
                                   0 ;
}

int ufbv_rewriter::is_smaller(expr * e1, expr * e2) const {
    unsigned sz1 = 0, sz2 = 0;

    // values are always smaller!
    if (m_manager.is_value(e1))
        return +1;
    else if (m_manager.is_value(e2))
        return -1;

    // interpreted stuff is always better than uninterpreted.
    if (!is_uninterp(e1) && is_uninterp(e2))
        return +1;
    else if (is_uninterp(e1) && !is_uninterp(e2))
        return -1;

    // two uninterpreted functions are ordered first by the number of 
    // arguments, then by their id. 
    if (is_uninterp(e1) && is_uninterp(e2)) {
        if (to_app(e1)->get_num_args() < to_app(e2)->get_num_args())
            return +1;
        else if (to_app(e1)->get_num_args() > to_app(e2)->get_num_args())
            return -1;
        else {
            unsigned a = to_app(e1)->get_decl()->get_id();
            unsigned b = to_app(e2)->get_decl()->get_id();            
            if (a < b) 
                return +1;
            else if (a > b) 
                return -1;
        }
    }

    switch (e1->get_kind()) {
        case AST_VAR: sz1 = 1; break;
        case AST_QUANTIFIER: sz1 = to_quantifier(e1)->get_depth(); break;
        case AST_APP: sz1 = to_app(e1)->get_depth(); break;
        default: UNREACHABLE();
    }

    switch (e2->get_kind()) {
        case AST_VAR: sz2 = 1; break;
        case AST_QUANTIFIER: sz2 = to_quantifier(e2)->get_depth(); break;
        case AST_APP: sz2 = to_app(e2)->get_depth(); break;
        default: UNREACHABLE();
    }

    return (sz1 == sz2) ?  0 : 
           (sz1  < sz2) ? +1 : 
                          -1 ;
}

class max_var_id_proc {
    unsigned    m_max_var_id;
public:
    max_var_id_proc(void):m_max_var_id(0) {}
    void operator()(var * n) { 
        if(n->get_idx() > m_max_var_id) 
            m_max_var_id = n->get_idx(); 
    }
    void operator()(quantifier * n) {}
    void operator()(app * n) {}
    unsigned get_max(void) { return m_max_var_id; }
};

unsigned ufbv_rewriter::max_var_id(expr * e)
{
    max_var_id_proc proc;
    for_each_expr(proc, e);    
    return proc.get_max();
}

void ufbv_rewriter::insert_fwd_idx(expr * large, expr * small, quantifier * demodulator) {
    SASSERT(large->get_kind() == AST_APP);
    SASSERT(demodulator);
    SASSERT(large && small);
    TRACE("demodulator_fwd", tout << "INSERT: " << mk_pp(demodulator, m_manager) << std::endl; );

    func_decl * fd = to_app(large)->get_decl();

    fwd_idx_map::iterator it = m_fwd_idx.find_iterator(fd);
    if (it == m_fwd_idx.end()) {            
        quantifier_set * qs = alloc(quantifier_set, 1);        
        m_fwd_idx.insert(fd, qs);
        it = m_fwd_idx.find_iterator(fd);
    }

    SASSERT(it->m_value);
    it->m_value->insert(demodulator);    

    m_manager.inc_ref(demodulator);
    m_manager.inc_ref(large);
    m_manager.inc_ref(small);
    m_demodulator2lhs_rhs.insert(demodulator, expr_pair(large, small));
}

void ufbv_rewriter::remove_fwd_idx(func_decl * f, quantifier * demodulator) {
    TRACE("demodulator_fwd", tout << "REMOVE: " << std::hex << (size_t)demodulator << std::endl; );

    fwd_idx_map::iterator it = m_fwd_idx.find_iterator(f);
    if (it != m_fwd_idx.end()) {        
        demodulator2lhs_rhs::iterator fit = m_demodulator2lhs_rhs.find_iterator(demodulator);
        m_manager.dec_ref(fit->m_value.first);
        m_manager.dec_ref(fit->m_value.second);
        m_manager.dec_ref(demodulator);
        m_demodulator2lhs_rhs.erase(demodulator);
        it->m_value->erase(demodulator);        
    } else {
        SASSERT(m_demodulator2lhs_rhs.contains(demodulator));
    }
}

bool ufbv_rewriter::check_fwd_idx_consistency(void) {
    for (fwd_idx_map::iterator it = m_fwd_idx.begin(); it != m_fwd_idx.end() ; it++ ) {
        quantifier_set * set = it->m_value;
        SASSERT(set);

        for (quantifier_set::iterator sit = set->begin(); sit != set->end(); sit++) {
            if (!m_demodulator2lhs_rhs.contains(*sit)) return false;
        }
    }

    return true;
}

void ufbv_rewriter::show_fwd_idx(std::ostream & out) {
    for (fwd_idx_map::iterator it = m_fwd_idx.begin(); it != m_fwd_idx.end() ; it++ ) {
        quantifier_set * set = it->m_value;
        SASSERT(!set);

        out << it->m_key->get_name() << ": " << std::endl;

        for (quantifier_set::iterator sit = set->begin(); sit != set->end(); sit++) {
            out << std::hex << (size_t)*sit << std::endl;
        }
    }

    out << "D2LR: " << std::endl;
    for (demodulator2lhs_rhs::iterator it = m_demodulator2lhs_rhs.begin(); it != m_demodulator2lhs_rhs.end() ; it++) {
        out << (size_t) it->m_key << std::endl;
    }
}

bool ufbv_rewriter::rewrite1(func_decl * f, ptr_vector<expr> & m_new_args, expr_ref & np) {        
    fwd_idx_map::iterator it = m_fwd_idx.find_iterator(f);
    if (it != m_fwd_idx.end()) {
        TRACE("demodulator_bug", tout << "trying to rewrite: " << f->get_name() << " args:\n";
              for (unsigned i = 0; i < m_new_args.size(); i++) { tout << mk_pp(m_new_args[i], m_manager) << "\n"; });
        quantifier_set::iterator dit = it->m_value->begin();
        quantifier_set::iterator dend = it->m_value->end();        
        for ( ; dit != dend ; dit++ ) {
            quantifier * d = *dit;

            SASSERT(m_demodulator2lhs_rhs.contains(d));
            expr_pair l_s;
            m_demodulator2lhs_rhs.find(d, l_s);
            app * large = to_app(l_s.first);

            if (large->get_num_args() != m_new_args.size())
                continue;

            TRACE("demodulator_bug", tout << "Matching with demodulator: " << mk_pp(d, m_manager) << std::endl; );

            SASSERT(large->get_decl() == f);
            
            if (m_match_subst(large, l_s.second, m_new_args.c_ptr(), np)) {
                TRACE("demodulator_bug", tout << "succeeded...\n" << mk_pp(l_s.second, m_manager) << "\n===>\n" << mk_pp(np, m_manager) << "\n";);
                return true;
            }
        }
    }

    return false;
}

bool ufbv_rewriter::rewrite_visit_children(app * a) {
    bool res=true;
    unsigned j = a->get_num_args();
    while (j > 0) {
        expr * e = a->get_arg(--j);
        if (!m_rewrite_cache.contains(e) || !m_rewrite_cache.get(e).second) {
            m_rewrite_todo.push_back(e);
            res = false;
        }
    }
    return res;
}

void ufbv_rewriter::rewrite_cache(expr * e, expr * new_e, bool done) {
    m_rewrite_cache.insert(e, expr_bool_pair(new_e, done));
}

expr * ufbv_rewriter::rewrite(expr * n) {
    if (m_fwd_idx.empty()) 
        return n;

    TRACE("demodulator", tout << "rewrite: " << mk_pp(n, m_manager) << std::endl; );
    app * a;
    
    SASSERT(m_rewrite_todo.empty());
    m_rewrite_cache.reset();
    
    m_rewrite_todo.push_back(n);
    while (!m_rewrite_todo.empty()) {
        TRACE("demodulator_stack", tout << "STACK: " << std::endl;
              for ( unsigned i = 0; i<m_rewrite_todo.size(); i++) 
                  tout << std::dec << i << ": " << std::hex << (size_t)m_rewrite_todo[i] << std::endl;
              );        
        
        expr * e = m_rewrite_todo.back();
        expr * actual = e;

        if (m_rewrite_cache.contains(e)) {
            const expr_bool_pair &ebp = m_rewrite_cache.get(e);
            if (ebp.second) {
                m_rewrite_todo.pop_back();
                continue;
            } 
            else {
                actual = ebp.first;
            }
        }

        switch (actual->get_kind()) {
        case AST_VAR:
            rewrite_cache(e, actual, true);
            m_rewrite_todo.pop_back();
            break;
        case AST_APP:            
            a = to_app(actual);            
            if (rewrite_visit_children(a)) {
                func_decl * f = a->get_decl();
                m_new_args.reset();
                unsigned num_args = a->get_num_args();
                bool all_untouched=true;
                for (unsigned i = 0 ; i < num_args ; i++ ) {
                    expr * o_child = a->get_arg(i);
                    expr * n_child;
                    SASSERT(m_rewrite_cache.contains(o_child) && m_rewrite_cache.get(o_child).second);
                    expr_bool_pair const & ebp = m_rewrite_cache.get(o_child);
                    n_child = ebp.first;
                    if (n_child != o_child)
                        all_untouched = false;
                    m_new_args.push_back(n_child);
                }
                expr_ref np(m_manager);
                if (rewrite1(f, m_new_args, np)) {
                    rewrite_cache(e, np, false);
                    // No pop.
                } else {
                    if(all_untouched) {
                        rewrite_cache(e, actual, true);                        
                    } 
                    else {
                        expr_ref na(m_manager);
                        if (f->get_family_id() != m_manager.get_basic_family_id())
                            na = m_manager.mk_app(f, m_new_args.size(), m_new_args.c_ptr());                            
                        else
                            m_bsimp.reduce(f, m_new_args.size(), m_new_args.c_ptr(), na);
                        TRACE("demodulator_bug", tout << "e:\n" << mk_pp(e, m_manager) << "\nnew_args: \n";
                              for (unsigned i = 0; i < m_new_args.size(); i++) { tout << mk_pp(m_new_args[i], m_manager) << "\n"; }
                              tout << "=====>\n";
                              tout << "na:\n " << mk_pp(na, m_manager) << "\n";);
                        rewrite_cache(e, na, true);
                    }
                    m_rewrite_todo.pop_back();
                }
            }            
            break;
        case AST_QUANTIFIER: {            
            expr * body = to_quantifier(actual)->get_expr();
            if (m_rewrite_cache.contains(body)) {
                const expr_bool_pair ebp = m_rewrite_cache.get(body);
                SASSERT(ebp.second);
                expr * new_body = ebp.first;
                quantifier_ref q(m_manager);
                q = m_manager.update_quantifier(to_quantifier(actual), new_body);
                m_new_exprs.push_back(q);
                expr_ref new_q(m_manager);
                elim_unused_vars(m_manager, q, new_q);
                m_new_exprs.push_back(new_q);
                rewrite_cache(e, new_q, true);                
                m_rewrite_todo.pop_back();
            } else {
                m_rewrite_todo.push_back(body);
            }            
            break;
        }
        default:
            UNREACHABLE();
        }
    }

    SASSERT(m_rewrite_cache.contains(n));
    const expr_bool_pair & ebp = m_rewrite_cache.get(n);
    SASSERT(ebp.second);
    expr * r = ebp.first;

    TRACE("demodulator", tout << "rewrite result: " << mk_pp(r, m_manager) << std::endl; );
    
    return r;
}

class ufbv_rewriter::add_back_idx_proc {
    ast_manager &  m_manager;
    back_idx_map & m_back_idx;
    expr *         m_expr;
public:
    add_back_idx_proc(ast_manager & m, back_idx_map & bi, expr * e):m_manager(m),m_back_idx(bi),m_expr(e) {}
    void operator()(var * n) {}
    void operator()(quantifier * n) {}
    void operator()(app * n) {        
        // We track only uninterpreted and constant functions.
        if (n->get_num_args()==0) return;
        SASSERT(m_expr && m_expr != (expr*) 0x00000003);
        func_decl * d=n->get_decl();
        if (d->get_family_id() == null_family_id) {
            back_idx_map::iterator it = m_back_idx.find_iterator(d);
            if (it != m_back_idx.end()) {
                SASSERT(it->m_value);
                it->m_value->insert(m_expr);
            } else {
                expr_set * e = alloc(expr_set);
                e->insert(m_expr);
                m_back_idx.insert(d, e);
            }
        }
    }    
};

class ufbv_rewriter::remove_back_idx_proc {
    ast_manager &  m_manager;
    back_idx_map & m_back_idx;
    expr *         m_expr;
public:
    remove_back_idx_proc(ast_manager & m, back_idx_map & bi, expr * e):m_manager(m),m_back_idx(bi),m_expr(e) {}
    void operator()(var * n) {}
    void operator()(quantifier * n) {}    
    void operator()(app * n) {        
        // We track only uninterpreted and constant functions.
        if (n->get_num_args()==0) return;
        func_decl * d=n->get_decl();
        if (d->get_family_id() == null_family_id) {            
            back_idx_map::iterator it = m_back_idx.find_iterator(d);
            if (it != m_back_idx.end()) {
                SASSERT(it->m_value);                
                it->m_value->remove(m_expr);
            }
        }
    }
};

void ufbv_rewriter::reschedule_processed(func_decl * f) {
    //use m_back_idx to find all formulas p in m_processed that contains f {    
    back_idx_map::iterator it = m_back_idx.find_iterator(f);
    if (it != m_back_idx.end()) {
        SASSERT(it->m_value);
        expr_set temp;
        
        expr_set::iterator sit  = it->m_value->begin();
        expr_set::iterator send = it->m_value->end();
        for ( ; sit != send ; sit++ ) {
            expr * p = *sit;
            if (m_processed.contains(p))
              temp.insert(p);
        }
        
        sit  = temp.begin();
        send = temp.end();
        for ( ; sit != send; sit++) {
            expr * p = *sit;
            // remove p from m_processed and m_back_idx
            m_processed.remove(p);
            remove_back_idx_proc proc(m_manager, m_back_idx, p); // this could change it->m_value, thus we need the `temp' set.
            for_each_expr(proc, p);
            // insert p into m_todo                
            m_todo.push_back(p);
        }
    }
}

bool ufbv_rewriter::can_rewrite(expr * n, expr * lhs) {
    // this is a quick check, we just traverse d and check if there is an expression in d that is an instance of lhs of n'.
    // we cannot use the trick used for m_processed, since the main loop would not terminate.

    ptr_vector<expr> stack;
    expr *           curr;
    expr_mark        visited;

    stack.push_back(n);

    while (!stack.empty()) {
        curr = stack.back();
        
        if (visited.is_marked(curr)) {
            stack.pop_back();
            continue;
        }

        switch(curr->get_kind()) {
        case AST_VAR:            
            visited.mark(curr, true);
            stack.pop_back();
            break;

        case AST_APP:
            if (for_each_expr_args(stack, visited, to_app(curr)->get_num_args(), to_app(curr)->get_args())) {                
                if (m_match_subst(lhs, curr))
                    return true;
                visited.mark(curr, true);
                stack.pop_back();
            }
            break;
            
        case AST_QUANTIFIER:
            if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_patterns(), 
                                    to_quantifier(curr)->get_patterns())) {
                break;
            }
            if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_no_patterns(), 
                                    to_quantifier(curr)->get_no_patterns())) {
                break;
            }
            if (!visited.is_marked(to_quantifier(curr)->get_expr())) {
                stack.push_back(to_quantifier(curr)->get_expr());
                break;
            }            

            stack.pop_back();
            break;
        default:
            UNREACHABLE();
        }
    }

    return false;
}

void ufbv_rewriter::reschedule_demodulators(func_decl * f, expr * lhs) {
    // use m_back_idx to find all demodulators d in m_fwd_idx that contains f {

    //ptr_vector<expr> to_remove;

    back_idx_map::iterator it = m_back_idx.find_iterator(f);
    if (it != m_back_idx.end()) {
        SASSERT(it->m_value);
        expr_set all_occurrences;
        expr_ref l(m_manager);

        expr_set::iterator esit = it->m_value->begin();
        expr_set::iterator esend = it->m_value->end();
        for ( ; esit != esend ; esit++)
          all_occurrences.insert(*esit);

        // Run over all f-demodulators
        esit = all_occurrences.begin();
        esend = all_occurrences.end();
        for ( ; esit != esend ; esit++ ) {
            expr * occ = *esit;

            if (!is_quantifier(occ))
                continue; 

            // Use the fwd idx to find out whether this is a demodulator.
            demodulator2lhs_rhs::iterator d2lr_it = m_demodulator2lhs_rhs.find_iterator(to_quantifier(occ));
            if (d2lr_it != m_demodulator2lhs_rhs.end()) {
                l = d2lr_it->m_value.first;
                quantifier_ref d(m_manager);
                func_decl_ref df(m_manager);
                d = to_quantifier(occ);                
                df = to_app(l)->get_decl();

                // Now we know there is an occurrence of f in d
                //   if n' can rewrite d { 
                if (can_rewrite(d, lhs)) {
                    TRACE("demodulator", tout << "Rescheduling: " << std::endl << mk_pp(d, m_manager) << std::endl; );
                    //     remove d from m_fwd_idx
                    remove_fwd_idx(df, d);
                    //     remove d from m_back_idx                    
                    // just remember it here, because otherwise it and/or esit might become invalid?
                    // to_remove.insert(d); 
                    remove_back_idx_proc proc(m_manager, m_back_idx, d);
                    for_each_expr(proc, d);
                    //     insert d into m_todo
                    m_todo.push_back(d);                    
                }
            }
        }
    }

    //for (ptr_vector<expr>::iterator it = to_remove.begin(); it != to_remove.end(); it++) {
    //    expr * d = *it;
    //    remove_back_idx_proc proc(m_manager, m_back_idx, d);
    //    for_each_expr(proc, d);                    
    //}
}
    
void ufbv_rewriter::operator()(unsigned n, expr * const * exprs, proof * const * prs, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) {
    if (m_manager.proofs_enabled()) {
        // Let us not waste time with proof production
        warning_msg("PRE_DEMODULATOR=true is not supported when proofs are enabled.");
        new_exprs.append(n, exprs);
        new_prs.append(n, prs);
        return;
    }

    TRACE("demodulator", tout << "before demodulator:\n";
                         for ( unsigned i = 0 ; i < n ; i++ )
                            tout << mk_pp(exprs[i], m_manager) << std::endl; );

    // Initially, m_todo contains all formulas. That is, it contains the argument exprs. m_fwd_idx, m_processed, m_back_idx are empty.
    unsigned max_vid = 0;
    for ( unsigned i = 0 ; i < n ; i++ ) {
        m_todo.push_back(exprs[i]);
        max_vid = std::max(max_vid, max_var_id(exprs[i]));
    }

    m_match_subst.reserve(max_vid);

    while (!m_todo.empty()) {    
        // let n be the next formula in m_todo.
        expr_ref cur(m_manager);
        cur = m_todo.back();
        m_todo.pop_back();

        // rewrite cur using m_fwd_idx, and let n' be the result.
        expr * np = rewrite(cur);
        // at this point, it should be the case that there is no demodulator in m_fwd_idx that can rewrite n'.
        SASSERT(rewrite(np)==np);

        //    if (n' is not a demodulator) {
        expr_ref large(m_manager), small(m_manager);
        if (!is_demodulator(np, large, small)) {
            // insert n' into m_processed
            m_processed.insert(np);            
            // update m_back_idx (traverse n' and for each uninterpreted function declaration f in n' add the entry f->n' to m_back_idx)            
            add_back_idx_proc proc(m_manager, m_back_idx, np);
            for_each_expr(proc, np);
        } else {            
            // np is a demodulator that allows us to replace 'large' with 'small'.
            TRACE("demodulator", tout << "Found demodulator: " << std::endl;
                                 tout << mk_pp(large.get(), m_manager) << std::endl << " ---> " << 
                                      std::endl << mk_pp(small.get(), m_manager) << std::endl; );

            TRACE("demodulator_s", tout << "Found demodulator: " << std::endl;
                                   tout << to_app(large)->get_decl()->get_name() << 
                                        "[" << to_app(large)->get_depth() << "]" << " ---> ";
                                   if (is_app(small))
                                       tout << to_app(small)->get_decl()->get_name() << 
                                        "[" << to_app(small)->get_depth() << "]" << std::endl;
                                   else
                                       tout << mk_pp(small.get(), m_manager) << std::endl; );

            // let f be the top symbol of n'
            SASSERT(is_app(large));
            func_decl * f = to_app(large)->get_decl();

            reschedule_processed(f);
            reschedule_demodulators(f, large);
           
            // insert n' into m_fwd_idx
            insert_fwd_idx(large, small, to_quantifier(np));

            // update m_back_idx
            add_back_idx_proc proc(m_manager, m_back_idx, np);
            for_each_expr(proc, np);
        }        
    }

    // the result is the contents of m_processed + all demodulators in m_fwd_idx.
    obj_hashtable<expr>::iterator pit = m_processed.begin();
    obj_hashtable<expr>::iterator pend = m_processed.end();
    for ( ; pit != pend ; pit++ ) {
        new_exprs.push_back(*pit);
        TRACE("demodulator", tout << mk_pp(*pit, m_manager) << std::endl; );
    }

    fwd_idx_map::iterator fit = m_fwd_idx.begin();
    fwd_idx_map::iterator fend = m_fwd_idx.end();
    for ( ; fit != fend ; fit++ ) {
        if (fit->m_value) {
            quantifier_set::iterator dit = fit->m_value->begin();
            quantifier_set::iterator dend = fit->m_value->end();
            for ( ; dit != dend ; dit++ ) {
                expr * e = *dit;
                new_exprs.push_back(e);
                TRACE("demodulator", tout << mk_pp(*dit, m_manager) << std::endl; );
            }
        }
    }

    TRACE("demodulator", tout << "after demodulator:\n";
                         for ( unsigned i = 0 ; i < new_exprs.size() ; i++ )
                            tout << mk_pp(new_exprs[i].get(), m_manager) << std::endl; );
}


ufbv_rewriter::match_subst::match_subst(ast_manager & m):
    m_manager(m),
    m_subst(m) {
}

/**
   \brief Auxiliary functor used to implement optimization in match_args. See comment there.
*/
struct match_args_aux_proc {
    substitution &                               m_subst;
    struct no_match {}; 
    
    match_args_aux_proc(substitution & s):m_subst(s) {}
    
    void operator()(var * n) {
        expr_offset r;
        if (m_subst.find(n, 0, r)) {
            if (r.get_expr() != n) {
                SASSERT(r.get_offset() == 1);
                throw no_match();
            }
            else {
                m_subst.insert(n, 0, expr_offset(n, 1));
            }
        }
    }
    void operator()(quantifier * n) { throw no_match(); }
    void operator()(app * n) {}
};

bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
    m_cache.reset();
    m_todo.reset();
    
    // fill todo-list, and perform quick success/failure tests
    m_all_args_eq = true;
    unsigned num_args = lhs->get_num_args();
    for (unsigned i = 0; i < num_args; i++) {
        expr * t_arg = lhs->get_arg(i);
        expr * i_arg = args[i];
        if (t_arg != i_arg)
            m_all_args_eq = false;
        if (is_app(t_arg) && is_app(i_arg) && to_app(t_arg)->get_decl() != to_app(i_arg)->get_decl()) {
            // quick failure...
            return false; 
        }
        m_todo.push_back(expr_pair(t_arg, i_arg));
    }
    
    if (m_all_args_eq) { 
        // quick success worked...
        return true;
    }

    m_subst.reset();
    
    while (!m_todo.empty()) {
        expr_pair const & p = m_todo.back();
        
        if (is_var(p.first)) {
            expr_offset r;
            if (m_subst.find(to_var(p.first), 0, r)) {
                if (r.get_expr() != p.second)
                    return false;
            }
            else {
                m_subst.insert(to_var(p.first), 0, expr_offset(p.second, 1));
            }
            m_todo.pop_back();
            continue;
        }

        if (is_var(p.second))
            return false;

        // we may have nested quantifiers.
        if (is_quantifier(p.first) || is_quantifier(p.second))
            return false;

        SASSERT(is_app(p.first) && is_app(p.second));

        if (to_app(p.first)->is_ground() && !to_app(p.second)->is_ground()) 
            return false;

        if (p.first == p.second && to_app(p.first)->is_ground()) {
            SASSERT(to_app(p.second)->is_ground());
            m_todo.pop_back();
            continue;
        }

        if (m_cache.contains(p)) {
            m_todo.pop_back();
            continue;
        }
        
        if (p.first == p.second) {
            // p.first and p.second is not ground...

            // Traverse p.first and check whether every variable X:0 in p.first
            //       1) is unbounded (then we bind X:0 -> X:1)
            //       2) or, is already bounded to X:1
            // If that is, the case, we execute:
            //     m_todo.pop_back();
            //     m_cache.insert(p);
            //     continue;
            // Otherwise
            //     return false;
            match_args_aux_proc proc(m_subst);
            try {
                for_each_expr(proc, p.first);
                // succeeded
                m_todo.pop_back();
                m_cache.insert(p);
                continue;
            }
            catch (match_args_aux_proc::no_match) {
                return false;
            }
        }

        app * n1 = to_app(p.first);
        app * n2 = to_app(p.second);
        
        if (n1->get_decl() != n2->get_decl())
            return false;
        
        unsigned num_args1 = n1->get_num_args();
        if (num_args1 != n2->get_num_args())
            return false;

        m_todo.pop_back();

        if (num_args1 == 0)
            continue;
        
        m_cache.insert(p);
        unsigned j = num_args1;
        while (j > 0) {
            --j;
            m_todo.push_back(expr_pair(n1->get_arg(j), n2->get_arg(j)));
        }
    }
    return true;
}


bool ufbv_rewriter::match_subst::operator()(app * lhs, expr * rhs, expr * const * args, expr_ref & new_rhs) {
    if (match_args(lhs, args)) {
        if (m_all_args_eq) {
            // quick success...
            new_rhs = rhs;
            return true;
        }
        unsigned deltas[2] = { 0, 0 };                
        m_subst.apply(2, deltas, expr_offset(rhs, 0), new_rhs);
        return true;
    }
    return false;
}

bool ufbv_rewriter::match_subst::operator()(expr * t, expr * i) {
    m_cache.reset();
    m_todo.reset();
    if (is_var(t))
        return true;
    if (is_app(t) && is_app(i) && to_app(t)->get_decl() == to_app(i)->get_decl() && to_app(t)->get_num_args() == to_app(i)->get_num_args()) {
        return match_args(to_app(t), to_app(i)->get_args());
    }
    return false;
}
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.