
1 
 

What this document is all about 

This document is a companion for the DEMO distribution of the (still under development) LODDY RDF 

Publishing framework. 

The project is still in progress, and much has to be fixed and finalized. However, though with some 

limitations, LODDY can already be used for easily publishing RDF data through descriptive HTML pages. For 

this reason, we have packed up a demo, which is completely configured for working on a local machine, 

exposing data from the Agrovoc [1]  SPARQL endpoint. 

The DEMO can however be fully customized to point to a different SPARQL endpoint, to use different bean 

configurations (or different beans at all, among those offered by the framework) to read and show data, 

and to adopt different web page templates. 

Now, a few words about LODDY, and then more technical details about the demo and the framework. 

LODDY 

Loddy is a simple system for supporting publication of Linked Open Data. The purpose is pretty much 

similar to that of Pubby. So, what changes with respect to Pubby? 

1) A more open system, mostly providing RDF publication facilities over a well known stack of web 

publication technologies (JSF, Facelets) 

2) Clearer separation of concerns: 

a. system administrators may configure existing beans for data access, proper redirections 

etc.. 

b. RDF experts may configure another range of existing beans to obtain the desired 

representation of the data 

c. Web Editors may focus on customizing pretty understandable templates in standard clean 

XHTML for the pages to be published 

d. Optionally, developers may create new bean definitions (java classes extending the Loddy 

system classes, or implementing Loddy interfaces) implementing functionalities (or 

performing some processing of the data) which are not already available through the beans 

provided by the system 

3) Additional possibilities, such as: 

a. More flexible page organization 

b. Different templates for different type of data (the categorization may be done upon very 

different filters, such as the form of the URI, or even by prefetching the data and checking 

the rdf:types of the resource).  

Loddy does not need to be smart, it just need to be easily configurable by people who know well the 

resources they are publishing. For instance, in Agrovoc there is no need to check the rdf:type of a resource: 

if it is a skosxl:Label, then its localname has the form: “xl_<shortUUID>”, so it suffices to apply a bean for 

page orchestration based on a regular expression. In other cases, this bean implementation may be 

replaced with others which perform the same task (page rerouting) but on the basis of different evidences. 

[1]  C. Caracciolo, A. Stellato, A. Morshed, G. Johannsen, S. Rajbhandari, Y. Jaques e J. Keizer, «The 

AGROVOC Linked Dataset,» Semantic Web Journal, vol. 4, n. 3, p. 341–348, 2013.  



2 
 

Demo 

The demo distributed with LODDY, offers a (very simple) web template for representing resources from 

Agrovoc [1], according to a given configuration of web templates (expressed in Facelets) and LODDY beans.  

Agrovoc is a thesaurus modeled according to the SKOS and SKOS-XL vocabularies. skos:Concepts are thus 

linguistically represented through reified labels (skosxl:Label) which have (at least) a lexical representation 

expressed through the property skosxl:iteralForm. 

Here is an example of an Agrovoc concept (and one of its lexicalizations) expressed in SKOS-XL: 

agrovoc:c_1221 rdf:type  skos:Concept 

agrovoc:c_1221 skosxl:prefLabel agrovoc:xl_92349023 

agrovoc:xl_92349023 rdf:type  skosxl:Label 

agrovoc:xl_92349023 skosxl:literalForm “Calyx”@en 

In the demo, we allowed for the possibility to publish pages representing both concepts and labels, and 

have these pages organized according to different templates.  

If the requested resource is a skos:Concept, the description is shown through the web page template 

provided in concept.xhtml: this is a two-tables template (Figure 1) representing the (multilingual) lexical 

information of a concept on the right, and all the other information on the left.  

The left part of the page offers a two-column table containing information obtained through a SPARQL 

DESCRIBE of the requested resource. This table is filtered out (through a dedicated bean) of all the triples 

related to lexical information. The table on the right reassumes the lexical information. Here we can see the 

high customization capabilities that Loddy is offering: the right section (with a separate query) is fetching 

only the skosxl labels and shows them in a readable way, directly showing the literal form for each 

skosxl:Label (thus skipping the URI in the middle). At the same time, each literalform (column “label”) is 

also a link, which links to the URI of the reified label. 

 

Figure 1: skos:Concept description 

The left table is obtained through a SPARQL DESCRIBE of the concept (using a GraphQueryBean), then a filter 

on the label is applied (GraphFilterBean) and finally the statements of the resulting graph are grouped 

(GraphGrouper). 



3 
 

The right table, shows information about skosxl labels of the requested resource. This is obtained with a 

TupleQueryBean which performs the following SELECT query that retrieves: type (pref, alt or hidden), URI, 

literal form and language tag of the required resource. 
 

select ?type ?uri ?lexical ?language where { 

<#{connectionBean.resourceUri}> ?type ?uri. 

?uri a <http://www.w3.org/2008/05/skos-xl#Label>. 

?uri <http://www.w3.org/2008/05/skos-xl#literalForm> ?literalForm. 

bind (lang(?literalForm) as ?language) 

bind (str(?literalForm) as ?lexical) 

} 

 

The footer contains two links "As RDF/XML" and "As TURTLE" obtained by the DispatcherBean's method 

getLinkForFormat(). 

 

Figure 2: skosxl:Label description 

If the requested resource is a skosxl:Label, the description is organized according to the label.xhtml 

template (Figure 2). This page contains a table obtained through a (non filtered, in this case) DESCRIBE 

query. As for the previous case, the result of the DESCRIBE is grouped using a GraphGrouper bean. 

In order to customize LODDY for your needs, you may start from this demo and edit the file WEB-INF/faces-

config.xml and the page templates concept.xhtml, label.xhtml and error.xhtml (N.B. do not edit 

content_negotiation.xhtml, redirect.xhtml and rdf.xhtml). 

In the following pages, we provide some information about the existing beans. Please notice that this 

section is totally “work in progress”, as we are revising the class organization, and the terminology adopted.  



4 
 

Configuration Beans 

 

ConnectionBean: 

 

Manages the connection. By editing faces-config.xml, you can configure LODDY in order to connect to a 

sparql endpoint. This bean has three configurable managed-properties: 

 sparqlEndpointURL 

 baseURI 

 localBaseURI 

 
<managed-bean> 

 <managed-bean-name>connectionBean</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.beans.ConnectionBean</managed-bean-class> 

 <managed-bean-scope>session</managed-bean-scope> 

 <managed-property> 

  <property-name>baseURI</property-name> 

  <property-class>java.lang.String</property-class> 

  <value>http://aims.fao.org/aos/agrovoc/</value> 

 </managed-property> 

 <managed-property> 

  <property-name>sparqlEndpointURL</property-name> 

  <property-class>java.lang.String</property-class> 

  <value>http://202.45.139.84:10035/catalogs/fao/repositories/agrovoc</value> 

 </managed-property> 

 <managed-property> 

  <property-name>localBaseURI</property-name> 

  <property-class>java.lang.String</property-class> 

  <value>http://localhost:8080/Loddy/</value> 

 </managed-property> 

</managed-bean> 

 

The ConnectionBean, through the getResourceUri() method, allows to get the URI of the resource currently 

being requested. 

DispatcherBean 

This bean manages content negotiation and redirection to the description pages. It has one configurable 

managed-property: 

 pageMapping: a map associating resource types to their respective pages describing the resources. 

 

In the demo, skos:Concept are described through the concept.xhtml page, and skosxl:Labels are described 

through label.xhtml.  

To define a mapping for a generic resource (i.,e. not already specified by the other mappings), you can use 

a map-entry with key "default". 

 
<managed-bean> 

 <managed-bean-name>dispatcherBean</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.beans.DispatcherBean</managed-bean-class> 

 <managed-bean-scope>session</managed-bean-scope> 

 <managed-property> 

  <property-name>pageMapping</property-name> 

  <property-class>java.util.Map</property-class> 

  <map-entries> 

   <key-class>java.lang.String</key-class> 

   <value-class>java.lang.String</value-class> 

   <map-entry> 

    <key>http://www.w3.org/2008/05/skos-xl#Label</key> 

    <value>label.xhtml</value> 

   </map-entry> 



5 
 

   <map-entry> 

    <key>http://www.w3.org/2004/02/skos/core#Concept</key> 

    <value>concept.xhtml</value> 

   </map-entry> 

  </map-entries> 

 </managed-property> 

 <managed-property> 

  <property-name>connectionBean</property-name> 

  <property-class>it.uniroma2.art.loddy.beans.ConnectionBean</property-class> 

  <value>#{connectionBean}</value> 

 </managed-property> 

</managed-bean> 

 

The DispatcherBean also provides the method getLinkForFormat(String format), which returns the address of the 

page that describes the current resource in different serialization format (available: rdf, ttl, n3, nt).  

 

KnownNamespacesBean 

 

A bean that contains some well known mapping namespace-prefixes (currently: rdf, rdfs, owl, skos, skosxl 

and foaf). It has one managed-property: 

 namespacePrefixMapping: allows to add a new entry in the namespace-prefix mapping 

In the following example two entries are added: http://rdfs.org/ns/void# - void and 
http://purl.org/dc/terms/ - dcterms 

<managed-bean> 

 <managed-bean-name>knownNamespaces</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.beans.KnownNamespacesBean</managed-bean-class> 

 <managed-bean-scope>application</managed-bean-scope> 

 <managed-property> 

  <property-name>namespacePrefixMapping</property-name> 

  <property-class>java.util.Map</property-class> 

  <map-entries> 

   <key-class>java.lang.String</key-class> 

   <value-class>java.lang.String</value-class> 

   <map-entry> 

    <key>http://rdfs.org/ns/void#</key> 

    <value>void</value> 

   </map-entry> 

   <map-entry> 

    <key>http://purl.org/dc/terms/</key> 

    <value>dcterms</value> 

   </map-entry> 

  </map-entries> 

 </managed-property> 

</managed-bean> 

 

  



6 
 

Content Beans 

These are beans dealing with querying the connected dataset, filtering results and processing them in 

general. 

Please, note that this schema is temporary, some methods will be factorized in common interfaces and 

maybe some interfaces will be deleted. It is just a temporary reference. 

 

GraphQueryBean 

This bean performs graph queries (CONSTRUCT or DESCRIBE). It has two managed-properties that should 

be specified: 

 connectionBean: to inject dependency on the ConnectionBean providing the sparql endpoint 

connection. 

 query: specifies the query to perform. If not specified, the bean will perform a DESCRIBE on the 

requested resource. 

 

<managed-bean> 

 <managed-bean-name>graphQueryDescribe</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.query.impl.GraphQueryBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>connectionBean</property-name> 

  <property-class>it.uniroma2.art.loddy.beans.ConnectionBean</property-class> 

  <value>#{connectionBean}</value> 

 </managed-property> 

</managed-bean> 



7 
 

 

TupleQueryBean 

A bean performing tuple queries (SELECT). It has two managed-properties: 

 connectionBean: to inject a dependency on the ConnectionBean providing the sparql endpoint 

connection. 

 query: specifies the query to perform. 

In the following example, the query returns a collection of TupleBindings subject (?s) predicate (?p) 

object (?o), where the subject is the URI of the requested resource. 

 

<managed-bean> 

 <managed-bean-name>tupleQuery</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.query.impl.TupleQueryBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>connectionBean</property-name> 

  <property-class>it.uniroma2.art.loddy.beans.ConnectionBean</property-class> 

  <value>#{connectionBean}</value> 

 </managed-property> 

 <managed-property> 

  <property-name>query</property-name> 

  <property-class>java.lang.String</property-class> 

  <value>select ?s ?p ?o where {bind (&lt;#{connectionBean.resourceUri}&gt; as ?s) ?s 

?p ?o}</value> 

 </managed-property> 

</managed-bean> 

 

Note that the URI of the requested resource is retrieved from the ConnectionBean through the expression  

#{connectionBean.resourceUri} 

GraphFilterBean 

Bean that filters a graph (statement collection). It has three managed-properties: 

 predicates: collection of StatementPredicate. It represents the collection of predicate that should 

be verified by the filter. 

 graphSource: graph to filter. 

 passOnly: specifies if the filter should work in "pass only" mode (true) or "remove only" mode 

(false). In "pass only" mode, the resulting graph will contain all the statements that satisfy the 

StatementPredicate, otherwise, in "remove only" mode, it will contain all the statements of the 

original graph except those that satisfy the predicates. 

 

<managed-bean> 

 <managed-bean-name>graphFilterNoLabel</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.processor.GraphFilterBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>predicates</property-name> 

  <property-class>java.util.List</property-class> 

  <list-entries> 

   <value-class>it.uniroma2.art.loddy.predicate.StatementPredicate</value-class> 

   <value>#{labelStatementPredicate}</value> 

  </list-entries> 

 </managed-property> 

 <managed-property> 



8 
 

  <property-name>graphSource</property-name> 

  <property-class>it.uniroma2.art.loddy.query.GraphSource</property-class> 

  <value>#{graphQueryDescribe}</value> 

 </managed-property> 

 <managed-property> 

  <property-name>passOnly</property-name> 

  <property-class>boolean</property-class> 

  <value>false</value> 

 </managed-property> 

</managed-bean> 

 

ThreeBagsAdmittedValuesStatementPredicate 

A concrete implementation (currently the only one) of StatementPredicate. This bean implements a 

StatementPredicate to apply to a bean implementing the GraphFilterBean interface. It has three managed-

properties: 

 subjectValues: list of admitted values of (rdf) subject. 

 predicateValues: list of admitted values of (rdf) predicate. 

 objectValues: list of admitted values of (rdf) object. 

For each element (subject, predicate, object), the list of values admitted by it are evaluated in OR (i.e. the 

element is “satisfied” if at one of the values is matched). The predicate is satisfied if all of the three 

elements are satisfied. 

If an element has no specified value, than that element is always satisfied (any value of the tested 

statement is accepted). 

In the following example a StatementPredicate is configured so that it accepts triples concerning skos and 

skosxl labels. Note that this StatementPredicate was applied in "remove only" mode (passOnly=false) in the 

previous example about the GraphFilterBean.  

 
<managed-bean> 

 <managed-bean-name>labelStatementPredicate</managed-bean-name> 

 <managed-bean-

class>it.uniroma2.art.loddy.predicate.impl.ThreeBagsAdmittedValuesStatementPredicate</managed-bean-

class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>predicateValues</property-name> 

  <property-class>java.util.List</property-class> 

  <list-entries> 

   <value-class>java.lang.String</value-class> 

   <value>http://www.w3.org/2004/02/skos/core#prefLabel</value> 

   <value>http://www.w3.org/2004/02/skos/core#altLabel</value> 

   <value>http://www.w3.org/2004/02/skos/core#hiddenLabel</value> 

   <value>http://www.w3.org/2008/05/skos-xl#prefLabel</value> 

   <value>http://www.w3.org/2008/05/skos-xl#altLabel</value> 

   <value>http://www.w3.org/2008/05/skos-xl#hiddenLabel</value> 

  </list-entries> 

 </managed-property> 

</managed-bean> 

 

Thus, in practice, all the triples having their predicate equal to any of the listed properties, are filtered out 

from the results. 

 

 

 

 

 



9 
 

TupleFilterBean  (planned but not yet available) 

 

A bean that filters a collection of tuple bindings. It has three properties: 

 predicates: collection of TuplePredicate. It represents a collection of predicate that should be 

verified by the filter. 

 tupleSource: tuple collection to filter. 

 passOnly: specifies if the filter should work in "pass only" mode (true) or "remove only" mode 

(false). In "pass only" mode, the resulting tuple collection will contain all the tuples that satisfiy the 

TuplePredicate, otherwise, in "remove only" mode, it will contain the all the tuples of the original 

collection except those that satisfy the predicates. 

 

SimpleTuplePredicate (planned but not yet available) 

A bean that represents a predicate to be appled to a TupleSource. It has one property: 

 filterMap: map that associates all admitted values to a binding. 

 

GraphIntegratorBean 

Merges two graphs. It has two managed-property: 

 graphSource: source graph. 

 graphSourceToIntegrate: graph to merge with the source graph. 

 
<managed-bean> 

 <managed-bean-name>graphIntegratorBean</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.processor.GraphIntegratorBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>graphSource</property-name> 

  <property-class>it.uniroma2.art.loddy.query.GraphSource</property-class> 

  <value>#{graphSourceName1}</value> 

 </managed-property> 

 <managed-property> 

  <property-name>graphSourceToIntegrate</property-name> 

  <property-class>it.uniroma2.art.loddy.query.GraphSource</property-class> 

  <value>#{graphSourceName2}</value> 

 </managed-property> 

</managed-bean> 

 

GraphGrouperBean 

A bean that groups statements in a graph by subject and then by predicate. Given a collection of 

statements it returns a collection of GroupedStatement. A GroupedStatement is a custom object that has two 

properties: "subject" (subject of statement) and "predObj", a map that contains predicate-objectList 

entries. GraphGrouperBean has one property: 

 graphSource: source graph to group. 

 

<managed-bean> 

 <managed-bean-name>graphGrouper</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.processor.GraphGrouperBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>graphSource</property-name> 

  <property-class>it.uniroma2.art.loddy.query.GraphSource</property-class> 

  <value>#{graphSourceName}</value> 



10 
 

 </managed-property> 

</managed-bean> 

 

RdfWriterBean 

A bean that serializes a graph according to different formats (rdf, n3, nt, ttl etc..). It has one property: 

 graphQuery: graph to serialize. 
 

<managed-bean> 

 <managed-bean-name>rdfWriterBean</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.beans.RdfWriterBean</managed-bean-class> 

 <managed-bean-scope>request</managed-bean-scope> 

 <managed-property> 

  <property-name>graphQuery</property-name> 

  <property-class>it.uniroma2.art.loddy.query.GraphQuery</property-class> 

  <value>#{graphQueryDescribe}</value> 

 </managed-property> 

</managed-bean>  



11 
 

Bean do not change 

FormatterBean 

This bean allows for URI rewriting. For instance, it rewrites the predicates of a statement in prefixed form 

(qnames). The sole existing implementation for qames has one property: 

 knownNamespaces: reference to a KnownNamespacesBean from which namaespace-prefix mappings 

are obtained. 
 

<managed-bean> 

 <managed-bean-name>formatterBean</managed-bean-name> 

 <managed-bean-class>it.uniroma2.art.loddy.beans.FormatterBean</managed-bean-class> 

 <managed-bean-scope>session</managed-bean-scope> 

 <managed-property> 

  <property-name>knownNamespaces</property-name> 

  <property-class>it.uniroma2.art.loddy.beans.KnownNamespacesBean</property-class> 

  <value>#{knownNamespaces}</value> 

 </managed-property> 

</managed-bean> 


