Commits

Benjamin Black committed d517004

Initial commit.

Comments (0)

Files changed (13)

c_src/brg_endian.h

+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software in both source and binary
+ form is allowed (with or without changes) provided that:
+
+   1. distributions of this source code include the above copyright
+      notice, this list of conditions and the following disclaimer;
+
+   2. distributions in binary form include the above copyright
+      notice, this list of conditions and the following disclaimer
+      in the documentation and/or other associated materials;
+
+   3. the copyright holder's name is not used to endorse products
+      built using this software without specific written permission.
+
+ ALTERNATIVELY, provided that this notice is retained in full, this product
+ may be distributed under the terms of the GNU General Public License (GPL),
+ in which case the provisions of the GPL apply INSTEAD OF those given above.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue 20/10/2006
+*/
+
+#ifndef BRG_ENDIAN_H
+#define BRG_ENDIAN_H
+
+#define IS_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */
+#define IS_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
+
+/* Include files where endian defines and byteswap functions may reside */
+#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
+#  include <sys/endian.h>
+#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
+      defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
+#  include <machine/endian.h>
+#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
+#  if !defined( __MINGW32__ ) && !defined(AVR)
+#    include <endian.h>
+#    if !defined( __BEOS__ )
+#      include <byteswap.h>
+#    endif
+#  endif
+#endif
+
+/* Now attempt to set the define for platform byte order using any  */
+/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which  */
+/* seem to encompass most endian symbol definitions                 */
+
+#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
+#  if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#  elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#  endif
+#elif defined( BIG_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#elif defined( LITTLE_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+
+#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
+#  if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#  elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#  endif
+#elif defined( _BIG_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#elif defined( _LITTLE_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+
+#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
+#  if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#  elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#  endif
+#elif defined( __BIG_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#elif defined( __LITTLE_ENDIAN )
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+
+#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
+#  if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#  elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#  endif
+#elif defined( __BIG_ENDIAN__ )
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#elif defined( __LITTLE_ENDIAN__ )
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+
+/*  if the platform byte order could not be determined, then try to */
+/*  set this define using common machine defines                    */
+#if !defined(PLATFORM_BYTE_ORDER)
+
+#if   defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       || \
+      defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    || \
+      defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) || \
+      defined( vax )       || defined( vms )     || defined( VMS )        || \
+      defined( __VMS )     || defined( _M_X64 )  || defined( AVR )
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+
+#elif defined( AMIGA )   || defined( applec )    || defined( __AS400__ )  || \
+      defined( _CRAY )   || defined( __hppa )    || defined( __hp9000 )   || \
+      defined( ibm370 )  || defined( mc68000 )   || defined( m68k )       || \
+      defined( __MRC__ ) || defined( __MVS__ )   || defined( __MWERKS__ ) || \
+      defined( sparc )   || defined( __sparc)    || defined( SYMANTEC_C ) || \
+      defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM )   || \
+      defined( THINK_C ) || defined( __VMCMS__ )
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+
+#elif 0     /* **** EDIT HERE IF NECESSARY **** */
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#elif 0     /* **** EDIT HERE IF NECESSARY **** */
+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#else
+#  error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
+#endif
+#endif
+
+/* special handler for IA64, which may be either endianness (?)  */
+/* here we assume little-endian, but this may need to be changed */
+#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
+#  define PLATFORM_MUST_ALIGN (1)
+#ifndef PLATFORM_BYTE_ORDER
+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+#endif
+
+#ifndef   PLATFORM_MUST_ALIGN
+#  define PLATFORM_MUST_ALIGN (0)
+#endif
+
+#endif  /* ifndef BRG_ENDIAN_H */

c_src/brg_types.h

+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software in both source and binary
+ form is allowed (with or without changes) provided that:
+
+   1. distributions of this source code include the above copyright
+      notice, this list of conditions and the following disclaimer;
+
+   2. distributions in binary form include the above copyright
+      notice, this list of conditions and the following disclaimer
+      in the documentation and/or other associated materials;
+
+   3. the copyright holder's name is not used to endorse products
+      built using this software without specific written permission.
+
+ ALTERNATIVELY, provided that this notice is retained in full, this product
+ may be distributed under the terms of the GNU General Public License (GPL),
+ in which case the provisions of the GPL apply INSTEAD OF those given above.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue 09/09/2006
+
+ The unsigned integer types defined here are of the form uint_<nn>t where
+ <nn> is the length of the type; for example, the unsigned 32-bit type is
+ 'uint_32t'.  These are NOT the same as the 'C99 integer types' that are
+ defined in the inttypes.h and stdint.h headers since attempts to use these
+ types have shown that support for them is still highly variable.  However,
+ since the latter are of the form uint<nn>_t, a regular expression search
+ and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
+ can be used to convert the types used here to the C99 standard types.
+*/
+
+#ifndef BRG_TYPES_H
+#define BRG_TYPES_H
+
+#if defined(__cplusplus)
+extern "C" {
+#endif
+
+#include <limits.h>
+
+#ifndef BRG_UI8
+#  define BRG_UI8
+#  if UCHAR_MAX == 255u
+     typedef unsigned char uint_8t;
+#  else
+#    error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
+#  endif
+#endif
+
+#ifndef BRG_UI16
+#  define BRG_UI16
+#  if USHRT_MAX == 65535u
+     typedef unsigned short uint_16t;
+#  else
+#    error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
+#  endif
+#endif
+
+#ifndef BRG_UI32
+#  define BRG_UI32
+#  if UINT_MAX == 4294967295u
+#    define li_32(h) 0x##h##u
+     typedef unsigned int uint_32t;
+#  elif ULONG_MAX == 4294967295u
+#    define li_32(h) 0x##h##ul
+     typedef unsigned long uint_32t;
+#  elif defined( _CRAY )
+#    error This code needs 32-bit data types, which Cray machines do not provide
+#  else
+#    error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
+#  endif
+#endif
+
+#ifndef BRG_UI64
+#  if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
+#    define BRG_UI64
+#    define li_64(h) 0x##h##ui64
+     typedef unsigned __int64 uint_64t;
+#  elif defined( _MSC_VER ) && ( _MSC_VER < 1300 )    /* 1300 == VC++ 7.0 */
+#    define BRG_UI64
+#    define li_64(h) 0x##h##ui64
+     typedef unsigned __int64 uint_64t;
+#  elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful
+#    define BRG_UI64
+#    define li_64(h) 0x##h##ull
+     typedef unsigned long long uint_64t;
+#  elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
+#    if UINT_MAX == 18446744073709551615u
+#      define BRG_UI64
+#      define li_64(h) 0x##h##u
+       typedef unsigned int uint_64t;
+#    endif
+#  elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
+#    if ULONG_MAX == 18446744073709551615ul
+#      define BRG_UI64
+#      define li_64(h) 0x##h##ul
+       typedef unsigned long uint_64t;
+#    endif
+#  elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
+#    if ULLONG_MAX == 18446744073709551615ull
+#      define BRG_UI64
+#      define li_64(h) 0x##h##ull
+       typedef unsigned long long uint_64t;
+#    endif
+#  elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
+#    if ULONG_LONG_MAX == 18446744073709551615ull
+#      define BRG_UI64
+#      define li_64(h) 0x##h##ull
+       typedef unsigned long long uint_64t;
+#    endif
+#  elif defined(__GNUC__)  /* DLW: avoid mingw problem with -ansi */
+#      define BRG_UI64
+#      define li_64(h) 0x##h##ull
+       typedef unsigned long long uint_64t;
+#  endif
+#endif
+
+#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 )
+#  error Please define uint_64t as an unsigned 64 bit type in brg_types.h
+#endif
+
+#ifndef RETURN_VALUES
+#  define RETURN_VALUES
+#  if defined( DLL_EXPORT )
+#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
+#      define VOID_RETURN    __declspec( dllexport ) void __stdcall
+#      define INT_RETURN     __declspec( dllexport ) int  __stdcall
+#    elif defined( __GNUC__ )
+#      define VOID_RETURN    __declspec( __dllexport__ ) void
+#      define INT_RETURN     __declspec( __dllexport__ ) int
+#    else
+#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
+#    endif
+#  elif defined( DLL_IMPORT )
+#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
+#      define VOID_RETURN    __declspec( dllimport ) void __stdcall
+#      define INT_RETURN     __declspec( dllimport ) int  __stdcall
+#    elif defined( __GNUC__ )
+#      define VOID_RETURN    __declspec( __dllimport__ ) void
+#      define INT_RETURN     __declspec( __dllimport__ ) int
+#    else
+#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
+#    endif
+#  elif defined( __WATCOMC__ )
+#    define VOID_RETURN  void __cdecl
+#    define INT_RETURN   int  __cdecl
+#  else
+#    define VOID_RETURN  void
+#    define INT_RETURN   int
+#  endif
+#endif
+
+/*  These defines are used to declare buffers in a way that allows
+    faster operations on longer variables to be used.  In all these
+    defines 'size' must be a power of 2 and >= 8
+
+    dec_unit_type(size,x)       declares a variable 'x' of length 
+                                'size' bits
+
+    dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize' 
+                                bytes defined as an array of variables
+                                each of 'size' bits (bsize must be a 
+                                multiple of size / 8)
+
+    ptr_cast(x,size)            casts a pointer to a pointer to a 
+                                varaiable of length 'size' bits
+*/
+
+#define ui_type(size)               uint_##size##t
+#define dec_unit_type(size,x)       typedef ui_type(size) x
+#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)]
+#define ptr_cast(x,size)            ((ui_type(size)*)(x))
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif
+/***********************************************************************
+**
+** Implementation of the Skein hash function.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+** 
+************************************************************************/
+
+#define  SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
+
+#include <string.h>      /* get the memcpy/memset functions */
+#include "skein.h"       /* get the Skein API definitions   */
+#include "skein_iv.h"    /* get precomputed IVs */
+
+/*****************************************************************/
+/* External function to process blkCnt (nonzero) full block(s) of data. */
+void    Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void    Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void    Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+
+/*****************************************************************/
+/*     256-bit Skein                                             */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation  */
+int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
+    {
+    union
+        {
+        u08b_t  b[SKEIN_256_STATE_BYTES];
+        u64b_t  w[SKEIN_256_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */
+
+    switch (hashBitLen)
+        {             /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+        case  256: memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X));  break;
+        case  224: memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X));  break;
+        case  160: memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X));  break;
+        case  128: memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X));  break;
+#endif
+        default:
+            /* here if there is no precomputed IV value available */
+            /* build/process the config block, type == CONFIG (could be precomputed) */
+            Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */
+
+            cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */
+            cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+            cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+            memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+            /* compute the initial chaining values from config block */
+            memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */
+            Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+            break;
+        }
+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+    /* Set up to process the data message portion of the hash (default) */
+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */
+
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+    {
+    union
+        {
+        u08b_t  b[SKEIN_256_STATE_BYTES];
+        u64b_t  w[SKEIN_256_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+    /* compute the initial chaining values ctx->X[], based on key */
+    if (keyBytes == 0)                          /* is there a key? */
+        {                                   
+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */
+        }
+    else                                        /* here to pre-process a key */
+        {
+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+        /* do a mini-Init right here */
+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */
+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */
+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */
+        Skein_256_Update(ctx,key,keyBytes);     /* hash the key */
+        Skein_256_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */
+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+        {
+        uint_t i;
+        for (i=0;i<SKEIN_256_STATE_WORDS;i++)   /* convert key bytes to context words */
+            ctx->X[i] = Skein_Swap64(ctx->X[i]);
+        }
+#endif
+        }
+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */
+    Skein_Start_New_Type(ctx,CFG_FINAL);
+
+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */
+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+    Skein_Show_Key(256,&ctx->h,key,keyBytes);
+
+    /* compute the initial chaining values from config block */
+    Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+    /* The chaining vars ctx->X are now initialized */
+    /* Set up to process the data message portion of the hash (default) */
+    ctx->h.bCnt = 0;                            /* buffer b[] starts out empty */
+    Skein_Start_New_Type(ctx,MSG);
+    
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+    {
+    size_t n;
+
+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* process full blocks, if any */
+    if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
+        {
+        if (ctx->h.bCnt)                              /* finish up any buffered message data */
+            {
+            n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */
+            if (n)
+                {
+                Skein_assert(n < msgByteCnt);         /* check on our logic here */
+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+                msgByteCnt  -= n;
+                msg         += n;
+                ctx->h.bCnt += n;
+                }
+            Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
+            Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);
+            ctx->h.bCnt = 0;
+            }
+        /* now process any remaining full blocks, directly from input message data */
+        if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
+            {
+            n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES;   /* number of full blocks to process */
+            Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);
+            msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
+            msg        += n * SKEIN_256_BLOCK_BYTES;
+            }
+        Skein_assert(ctx->h.bCnt == 0);
+        }
+
+    /* copy any remaining source message data bytes into b[] */
+    if (msgByteCnt)
+        {
+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+        ctx->h.bCnt += msgByteCnt;
+        }
+
+    return SKEIN_SUCCESS;
+    }
+   
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN_256_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)            /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+
+    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */
+    
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN_256_BLOCK_BYTES)
+            n  = SKEIN_256_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_256_API_CodeSize(void)
+    {
+    return ((u08b_t *) Skein_256_API_CodeSize) -
+           ((u08b_t *) Skein_256_Init);
+    }
+#endif
+
+/*****************************************************************/
+/*     512-bit Skein                                             */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation  */
+int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
+    {
+    union
+        {
+        u08b_t  b[SKEIN_512_STATE_BYTES];
+        u64b_t  w[SKEIN_512_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */
+
+    switch (hashBitLen)
+        {             /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+        case  512: memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X));  break;
+        case  384: memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X));  break;
+        case  256: memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X));  break;
+        case  224: memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X));  break;
+#endif
+        default:
+            /* here if there is no precomputed IV value available */
+            /* build/process the config block, type == CONFIG (could be precomputed) */
+            Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */
+
+            cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */
+            cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+            cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+            memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+            /* compute the initial chaining values from config block */
+            memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */
+            Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+            break;
+        }
+
+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+    /* Set up to process the data message portion of the hash (default) */
+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */
+
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+    {
+    union
+        {
+        u08b_t  b[SKEIN_512_STATE_BYTES];
+        u64b_t  w[SKEIN_512_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+    /* compute the initial chaining values ctx->X[], based on key */
+    if (keyBytes == 0)                          /* is there a key? */
+        {                                   
+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */
+        }
+    else                                        /* here to pre-process a key */
+        {
+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+        /* do a mini-Init right here */
+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */
+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */
+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */
+        Skein_512_Update(ctx,key,keyBytes);     /* hash the key */
+        Skein_512_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */
+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+        {
+        uint_t i;
+        for (i=0;i<SKEIN_512_STATE_WORDS;i++)   /* convert key bytes to context words */
+            ctx->X[i] = Skein_Swap64(ctx->X[i]);
+        }
+#endif
+        }
+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */
+    Skein_Start_New_Type(ctx,CFG_FINAL);
+
+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */
+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+    Skein_Show_Key(512,&ctx->h,key,keyBytes);
+
+    /* compute the initial chaining values from config block */
+    Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+    /* The chaining vars ctx->X are now initialized */
+    /* Set up to process the data message portion of the hash (default) */
+    ctx->h.bCnt = 0;                            /* buffer b[] starts out empty */
+    Skein_Start_New_Type(ctx,MSG);
+    
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+    {
+    size_t n;
+
+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* process full blocks, if any */
+    if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
+        {
+        if (ctx->h.bCnt)                              /* finish up any buffered message data */
+            {
+            n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */
+            if (n)
+                {
+                Skein_assert(n < msgByteCnt);         /* check on our logic here */
+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+                msgByteCnt  -= n;
+                msg         += n;
+                ctx->h.bCnt += n;
+                }
+            Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
+            Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
+            ctx->h.bCnt = 0;
+            }
+        /* now process any remaining full blocks, directly from input message data */
+        if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
+            {
+            n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES;   /* number of full blocks to process */
+            Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
+            msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
+            msg        += n * SKEIN_512_BLOCK_BYTES;
+            }
+        Skein_assert(ctx->h.bCnt == 0);
+        }
+
+    /* copy any remaining source message data bytes into b[] */
+    if (msgByteCnt)
+        {
+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+        ctx->h.bCnt += msgByteCnt;
+        }
+
+    return SKEIN_SUCCESS;
+    }
+   
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN_512_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)            /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+
+    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */
+    
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN_512_BLOCK_BYTES)
+            n  = SKEIN_512_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_512_API_CodeSize(void)
+    {
+    return ((u08b_t *) Skein_512_API_CodeSize) -
+           ((u08b_t *) Skein_512_Init);
+    }
+#endif
+
+/*****************************************************************/
+/*    1024-bit Skein                                             */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation  */
+int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
+    {
+    union
+        {
+        u08b_t  b[SKEIN1024_STATE_BYTES];
+        u64b_t  w[SKEIN1024_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */
+
+    switch (hashBitLen)
+        {              /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+        case  512: memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X)); break;
+        case  384: memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X)); break;
+        case 1024: memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X)); break;
+#endif
+        default:
+            /* here if there is no precomputed IV value available */
+            /* build/process the config block, type == CONFIG (could be precomputed) */
+            Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */
+
+            cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */
+            cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+            cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+            memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+            /* compute the initial chaining values from config block */
+            memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */
+            Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+            break;
+        }
+
+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+    /* Set up to process the data message portion of the hash (default) */
+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */
+
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+    {
+    union
+        {
+        u08b_t  b[SKEIN1024_STATE_BYTES];
+        u64b_t  w[SKEIN1024_STATE_WORDS];
+        } cfg;                              /* config block */
+        
+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+    /* compute the initial chaining values ctx->X[], based on key */
+    if (keyBytes == 0)                          /* is there a key? */
+        {                                   
+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */
+        }
+    else                                        /* here to pre-process a key */
+        {
+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+        /* do a mini-Init right here */
+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */
+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */
+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */
+        Skein1024_Update(ctx,key,keyBytes);     /* hash the key */
+        Skein1024_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */
+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+        {
+        uint_t i;
+        for (i=0;i<SKEIN1024_STATE_WORDS;i++)   /* convert key bytes to context words */
+            ctx->X[i] = Skein_Swap64(ctx->X[i]);
+        }
+#endif
+        }
+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */
+    Skein_Start_New_Type(ctx,CFG_FINAL);
+
+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */
+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */
+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+    Skein_Show_Key(1024,&ctx->h,key,keyBytes);
+
+    /* compute the initial chaining values from config block */
+    Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+    /* The chaining vars ctx->X are now initialized */
+    /* Set up to process the data message portion of the hash (default) */
+    ctx->h.bCnt = 0;                            /* buffer b[] starts out empty */
+    Skein_Start_New_Type(ctx,MSG);
+    
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+    {
+    size_t n;
+
+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* process full blocks, if any */
+    if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
+        {
+        if (ctx->h.bCnt)                              /* finish up any buffered message data */
+            {
+            n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */
+            if (n)
+                {
+                Skein_assert(n < msgByteCnt);         /* check on our logic here */
+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+                msgByteCnt  -= n;
+                msg         += n;
+                ctx->h.bCnt += n;
+                }
+            Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
+            Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);
+            ctx->h.bCnt = 0;
+            }
+        /* now process any remaining full blocks, directly from input message data */
+        if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
+            {
+            n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES;   /* number of full blocks to process */
+            Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);
+            msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
+            msg        += n * SKEIN1024_BLOCK_BYTES;
+            }
+        Skein_assert(ctx->h.bCnt == 0);
+        }
+
+    /* copy any remaining source message data bytes into b[] */
+    if (msgByteCnt)
+        {
+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+        ctx->h.bCnt += msgByteCnt;
+        }
+
+    return SKEIN_SUCCESS;
+    }
+   
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN1024_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)            /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+
+    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */
+    
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN1024_BLOCK_BYTES)
+            n  = SKEIN1024_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein1024_API_CodeSize(void)
+    {
+    return ((u08b_t *) Skein1024_API_CodeSize) -
+           ((u08b_t *) Skein1024_Init);
+    }
+#endif
+
+/**************** Functions to support MAC/tree hashing ***************/
+/*   (this code is identical for Optimized and Reference versions)    */
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)   /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */
+    
+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES);   /* "output" the state bytes */
+    
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)   /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */
+    
+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES);   /* "output" the state bytes */
+    
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */
+    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)   /* zero pad b[] if necessary */
+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */
+    
+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES);   /* "output" the state bytes */
+    
+    return SKEIN_SUCCESS;
+    }
+
+#if SKEIN_TREE_HASH
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage                                       */
+int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN_256_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN_256_BLOCK_BYTES)
+            n  = SKEIN_256_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage                                       */
+int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN_512_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN_512_BLOCK_BYTES)
+            n  = SKEIN_512_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage                                       */
+int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+    {
+    size_t i,n,byteCnt;
+    u64b_t X[SKEIN1024_STATE_WORDS];
+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */
+
+    /* now output the result */
+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */
+
+    /* run Threefish in "counter mode" to generate output */
+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */
+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */
+    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
+        {
+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+        Skein_Start_New_Type(ctx,OUT_FINAL);
+        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */
+        if (n >= SKEIN1024_BLOCK_BYTES)
+            n  = SKEIN1024_BLOCK_BYTES;
+        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */
+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */
+        }
+    return SKEIN_SUCCESS;
+    }
+#endif
+#ifndef _SKEIN_H_
+#define _SKEIN_H_     1
+/**************************************************************************
+**
+** Interface declarations and internal definitions for Skein hashing.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+***************************************************************************
+** 
+** The following compile-time switches may be defined to control some
+** tradeoffs between speed, code size, error checking, and security.
+**
+** The "default" note explains what happens when the switch is not defined.
+**
+**  SKEIN_DEBUG            -- make callouts from inside Skein code
+**                            to examine/display intermediate values.
+**                            [default: no callouts (no overhead)]
+**
+**  SKEIN_ERR_CHECK        -- how error checking is handled inside Skein
+**                            code. If not defined, most error checking 
+**                            is disabled (for performance). Otherwise, 
+**                            the switch value is interpreted as:
+**                                0: use assert()      to flag errors
+**                                1: return SKEIN_FAIL to flag errors
+**
+***************************************************************************/
+
+#include <stddef.h>                          /* get size_t definition */
+#include "skein_port.h"                      /* get platform-specific definitions */
+
+enum
+    {
+    SKEIN_SUCCESS         =      0,          /* return codes from Skein calls */
+    SKEIN_FAIL            =      1,
+    SKEIN_BAD_HASHLEN     =      2
+    };
+
+#define  SKEIN_MODIFIER_WORDS  ( 2)          /* number of modifier (tweak) words */
+
+#define  SKEIN_256_STATE_WORDS ( 4)
+#define  SKEIN_512_STATE_WORDS ( 8)
+#define  SKEIN1024_STATE_WORDS (16)
+#define  SKEIN_MAX_STATE_WORDS (16)
+
+#define  SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)
+#define  SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
+#define  SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)
+
+#define  SKEIN_256_STATE_BITS  (64*SKEIN_256_STATE_WORDS)
+#define  SKEIN_512_STATE_BITS  (64*SKEIN_512_STATE_WORDS)
+#define  SKEIN1024_STATE_BITS  (64*SKEIN1024_STATE_WORDS)
+
+#define  SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
+#define  SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
+#define  SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
+
+typedef struct
+    {
+    size_t  hashBitLen;                      /* size of hash result, in bits */
+    size_t  bCnt;                            /* current byte count in buffer b[] */
+    u64b_t  T[SKEIN_MODIFIER_WORDS];         /* tweak words: T[0]=byte cnt, T[1]=flags */
+    } Skein_Ctxt_Hdr_t;
+
+typedef struct                               /*  256-bit Skein hash context structure */
+    {
+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */
+    u64b_t  X[SKEIN_256_STATE_WORDS];        /* chaining variables */
+    u08b_t  b[SKEIN_256_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */
+    } Skein_256_Ctxt_t;
+
+typedef struct                               /*  512-bit Skein hash context structure */
+    {
+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */
+    u64b_t  X[SKEIN_512_STATE_WORDS];        /* chaining variables */
+    u08b_t  b[SKEIN_512_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */
+    } Skein_512_Ctxt_t;
+
+typedef struct                               /* 1024-bit Skein hash context structure */
+    {
+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */
+    u64b_t  X[SKEIN1024_STATE_WORDS];        /* chaining variables */
+    u08b_t  b[SKEIN1024_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */
+    } Skein1024_Ctxt_t;
+
+/*   Skein APIs for (incremental) "straight hashing" */
+int  Skein_256_Init  (Skein_256_Ctxt_t *ctx, size_t hashBitLen);
+int  Skein_512_Init  (Skein_512_Ctxt_t *ctx, size_t hashBitLen);
+int  Skein1024_Init  (Skein1024_Ctxt_t *ctx, size_t hashBitLen);
+
+int  Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+int  Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+int  Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+
+int  Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+
+/*
+**   Skein APIs for "extended" initialization: MAC keys, tree hashing.
+**   After an InitExt() call, just use Update/Final calls as with Init().
+**
+**   Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.
+**          When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL, 
+**              the results of InitExt() are identical to calling Init().
+**          The function Init() may be called once to "precompute" the IV for
+**              a given hashBitLen value, then by saving a copy of the context
+**              the IV computation may be avoided in later calls.
+**          Similarly, the function InitExt() may be called once per MAC key 
+**              to precompute the MAC IV, then a copy of the context saved and
+**              reused for each new MAC computation.
+**/
+int  Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+int  Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+int  Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+
+/*
+**   Skein APIs for MAC and tree hash:
+**      Final_Pad:  pad, do final block, but no OUTPUT type
+**      Output:     do just the output stage
+*/
+int  Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+
+#ifndef SKEIN_TREE_HASH
+#define SKEIN_TREE_HASH (1)
+#endif
+#if  SKEIN_TREE_HASH
+int  Skein_256_Output   (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein_512_Output   (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int  Skein1024_Output   (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+#endif
+
+/*****************************************************************
+** "Internal" Skein definitions
+**    -- not needed for sequential hashing API, but will be 
+**           helpful for other uses of Skein (e.g., tree hash mode).
+**    -- included here so that they can be shared between
+**           reference and optimized code.
+******************************************************************/
+
+/* tweak word T[1]: bit field starting positions */
+#define SKEIN_T1_BIT(BIT)       ((BIT) - 64)            /* offset 64 because it's the second word  */
+                                
+#define SKEIN_T1_POS_TREE_LVL   SKEIN_T1_BIT(112)       /* bits 112..118: level in hash tree       */
+#define SKEIN_T1_POS_BIT_PAD    SKEIN_T1_BIT(119)       /* bit  119     : partial final input byte */
+#define SKEIN_T1_POS_BLK_TYPE   SKEIN_T1_BIT(120)       /* bits 120..125: type field               */
+#define SKEIN_T1_POS_FIRST      SKEIN_T1_BIT(126)       /* bits 126     : first block flag         */
+#define SKEIN_T1_POS_FINAL      SKEIN_T1_BIT(127)       /* bit  127     : final block flag         */
+                                
+/* tweak word T[1]: flag bit definition(s) */
+#define SKEIN_T1_FLAG_FIRST     (((u64b_t)  1 ) << SKEIN_T1_POS_FIRST)
+#define SKEIN_T1_FLAG_FINAL     (((u64b_t)  1 ) << SKEIN_T1_POS_FINAL)
+#define SKEIN_T1_FLAG_BIT_PAD   (((u64b_t)  1 ) << SKEIN_T1_POS_BIT_PAD)
+                                
+/* tweak word T[1]: tree level bit field mask */
+#define SKEIN_T1_TREE_LVL_MASK  (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
+#define SKEIN_T1_TREE_LEVEL(n)  (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)
+
+/* tweak word T[1]: block type field */
+#define SKEIN_BLK_TYPE_KEY      ( 0)                    /* key, for MAC and KDF */
+#define SKEIN_BLK_TYPE_CFG      ( 4)                    /* configuration block */
+#define SKEIN_BLK_TYPE_PERS     ( 8)                    /* personalization string */
+#define SKEIN_BLK_TYPE_PK       (12)                    /* public key (for digital signature hashing) */
+#define SKEIN_BLK_TYPE_KDF      (16)                    /* key identifier for KDF */
+#define SKEIN_BLK_TYPE_NONCE    (20)                    /* nonce for PRNG */
+#define SKEIN_BLK_TYPE_MSG      (48)                    /* message processing */
+#define SKEIN_BLK_TYPE_OUT      (63)                    /* output stage */
+#define SKEIN_BLK_TYPE_MASK     (63)                    /* bit field mask */
+
+#define SKEIN_T1_BLK_TYPE(T)   (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
+#define SKEIN_T1_BLK_TYPE_KEY   SKEIN_T1_BLK_TYPE(KEY)  /* key, for MAC and KDF */
+#define SKEIN_T1_BLK_TYPE_CFG   SKEIN_T1_BLK_TYPE(CFG)  /* configuration block */
+#define SKEIN_T1_BLK_TYPE_PERS  SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
+#define SKEIN_T1_BLK_TYPE_PK    SKEIN_T1_BLK_TYPE(PK)   /* public key (for digital signature hashing) */
+#define SKEIN_T1_BLK_TYPE_KDF   SKEIN_T1_BLK_TYPE(KDF)  /* key identifier for KDF */
+#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
+#define SKEIN_T1_BLK_TYPE_MSG   SKEIN_T1_BLK_TYPE(MSG)  /* message processing */
+#define SKEIN_T1_BLK_TYPE_OUT   SKEIN_T1_BLK_TYPE(OUT)  /* output stage */
+#define SKEIN_T1_BLK_TYPE_MASK  SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
+
+#define SKEIN_T1_BLK_TYPE_CFG_FINAL       (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
+#define SKEIN_T1_BLK_TYPE_OUT_FINAL       (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
+
+#define SKEIN_VERSION           (1)
+
+#ifndef SKEIN_ID_STRING_LE      /* allow compile-time personalization */
+#define SKEIN_ID_STRING_LE      (0x33414853)            /* "SHA3" (little-endian)*/
+#endif
+
+#define SKEIN_MK_64(hi32,lo32)  ((lo32) + (((u64b_t) (hi32)) << 32))
+#define SKEIN_SCHEMA_VER        SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
+#define SKEIN_KS_PARITY         SKEIN_MK_64(0x55555555,0x55555555)
+
+#define SKEIN_CFG_STR_LEN       (4*8)
+
+/* bit field definitions in config block treeInfo word */
+#define SKEIN_CFG_TREE_LEAF_SIZE_POS  ( 0)
+#define SKEIN_CFG_TREE_NODE_SIZE_POS  ( 8)
+#define SKEIN_CFG_TREE_MAX_LEVEL_POS  (16)
+
+#define SKEIN_CFG_TREE_LEAF_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
+#define SKEIN_CFG_TREE_NODE_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
+#define SKEIN_CFG_TREE_MAX_LEVEL_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
+
+#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl)                   \
+    ( (((u64b_t)(leaf  )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) |    \
+      (((u64b_t)(node  )) << SKEIN_CFG_TREE_NODE_SIZE_POS) |    \
+      (((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
+
+#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
+
+/*
+**   Skein macros for getting/setting tweak words, etc.
+**   These are useful for partial input bytes, hash tree init/update, etc.
+**/
+#define Skein_Get_Tweak(ctxPtr,TWK_NUM)         ((ctxPtr)->h.T[TWK_NUM])
+#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal)    {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
+
+#define Skein_Get_T0(ctxPtr)    Skein_Get_Tweak(ctxPtr,0)
+#define Skein_Get_T1(ctxPtr)    Skein_Get_Tweak(ctxPtr,1)
+#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
+#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
+
+/* set both tweak words at once */
+#define Skein_Set_T0_T1(ctxPtr,T0,T1)           \
+    {                                           \
+    Skein_Set_T0(ctxPtr,(T0));                  \
+    Skein_Set_T1(ctxPtr,(T1));                  \
+    }
+
+#define Skein_Set_Type(ctxPtr,BLK_TYPE)         \
+    Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
+
+/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
+#define Skein_Start_New_Type(ctxPtr,BLK_TYPE)   \
+    { Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
+
+#define Skein_Clear_First_Flag(hdr)      { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST;       }
+#define Skein_Set_Bit_Pad_Flag(hdr)      { (hdr).T[1] |=  SKEIN_T1_FLAG_BIT_PAD;     }
+
+#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
+
+/*****************************************************************
+** "Internal" Skein definitions for debugging and error checking
+******************************************************************/
+#ifdef  SKEIN_DEBUG             /* examine/display intermediate values? */
+#include "skein_debug.h"
+#else                           /* default is no callouts */
+#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
+#define Skein_Show_Round(bits,ctx,r,X)
+#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
+#define Skein_Show_Final(bits,ctx,cnt,outPtr)
+#define Skein_Show_Key(bits,ctx,key,keyBytes)
+#endif
+
+#ifndef SKEIN_ERR_CHECK        /* run-time checks (e.g., bad params, uninitialized context)? */
+#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
+#define Skein_assert(x)
+#elif   defined(SKEIN_ASSERT)
+#include <assert.h>     
+#define Skein_Assert(x,retCode) assert(x) 
+#define Skein_assert(x)         assert(x) 
+#else
+#include <assert.h>     
+#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /*  caller  error */
+#define Skein_assert(x)         assert(x)                     /* internal error */
+#endif
+
+/*****************************************************************
+** Skein block function constants (shared across Ref and Opt code)
+******************************************************************/
+enum    
+    {   
+        /* Skein_256 round rotation constants */
+    R_256_0_0=14, R_256_0_1=16,
+    R_256_1_0=52, R_256_1_1=57,
+    R_256_2_0=23, R_256_2_1=40,
+    R_256_3_0= 5, R_256_3_1=37,
+    R_256_4_0=25, R_256_4_1=33,
+    R_256_5_0=46, R_256_5_1=12,
+    R_256_6_0=58, R_256_6_1=22,
+    R_256_7_0=32, R_256_7_1=32,
+
+        /* Skein_512 round rotation constants */
+    R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
+    R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
+    R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
+    R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
+    R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
+    R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
+    R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
+    R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
+
+        /* Skein1024 round rotation constants */
+    R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,
+    R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,
+    R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,
+    R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,
+    R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,
+    R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,
+    R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,
+    R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20
+    };
+
+#ifndef SKEIN_ROUNDS
+#define SKEIN_256_ROUNDS_TOTAL (72)          /* number of rounds for the different block sizes */
+#define SKEIN_512_ROUNDS_TOTAL (72)
+#define SKEIN1024_ROUNDS_TOTAL (80)
+#else                                        /* allow command-line define in range 8*(5..14)   */
+#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
+#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
+#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS    ) + 5) % 10) + 5))
+#endif
+
+#endif  /* ifndef _SKEIN_H_ */

c_src/skein_api.c

+/***********************************************************************
+**
+** Implementation of the AHS API using the Skein hash function.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+** 
+************************************************************************/
+
+#include <string.h>     /* get the memcpy/memset functions */
+#include "skein.h"      /* get the Skein API definitions   */
+#include "skein_api.h"/* get the  AHS  API definitions   */
+
+/******************************************************************/
+/*     AHS API code                                               */
+/******************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* select the context size and init the context */
+HashReturn Init(hashState *state, int hashbitlen)
+    {
+    if (hashbitlen <= SKEIN_256_NIST_MAX_HASHBITS)
+        {
+        Skein_Assert(hashbitlen > 0,BAD_HASHLEN);
+        state->statebits = 64*SKEIN_256_STATE_WORDS;
+        return Skein_256_Init(&state->u.ctx_256,(size_t) hashbitlen);
+        }
+    if (hashbitlen <= SKEIN_512_NIST_MAX_HASHBITS)
+        {
+        state->statebits = 64*SKEIN_512_STATE_WORDS;
+        return Skein_512_Init(&state->u.ctx_512,(size_t) hashbitlen);
+        }
+    else
+        {
+        state->statebits = 64*SKEIN1024_STATE_WORDS;
+        return Skein1024_Init(&state->u.ctx1024,(size_t) hashbitlen);
+        }
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process data to be hashed */
+HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen)
+    {
+    /* only the final Update() call is allowed do partial bytes, else assert an error */
+    Skein_Assert((state->u.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || databitlen == 0, FAIL);
+
+    Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
+    if ((databitlen & 7) == 0)  /* partial bytes? */
+        {
+        switch ((state->statebits >> 8) & 3)
+            {
+            case 2:  return Skein_512_Update(&state->u.ctx_512,data,databitlen >> 3);
+            case 1:  return Skein_256_Update(&state->u.ctx_256,data,databitlen >> 3);
+            case 0:  return Skein1024_Update(&state->u.ctx1024,data,databitlen >> 3);
+            default: return FAIL;
+            }
+        }
+    else
+        {   /* handle partial final byte */
+        size_t bCnt = (databitlen >> 3) + 1;                  /* number of bytes to handle (nonzero here!) */
+        u08b_t b,mask;
+
+        mask = (u08b_t) (1u << (7 - (databitlen & 7)));       /* partial byte bit mask */
+        b    = (u08b_t) ((data[bCnt-1] & (0-mask)) | mask);   /* apply bit padding on final byte */
+
+        switch ((state->statebits >> 8) & 3)
+            {
+            case 2:  Skein_512_Update(&state->u.ctx_512,data,bCnt-1); /* process all but the final byte    */
+                     Skein_512_Update(&state->u.ctx_512,&b  ,  1   ); /* process the (masked) partial byte */
+                     break;
+            case 1:  Skein_256_Update(&state->u.ctx_256,data,bCnt-1); /* process all but the final byte    */
+                     Skein_256_Update(&state->u.ctx_256,&b  ,  1   ); /* process the (masked) partial byte */
+                     break;
+            case 0:  Skein1024_Update(&state->u.ctx1024,data,bCnt-1); /* process all but the final byte    */
+                     Skein1024_Update(&state->u.ctx1024,&b  ,  1   ); /* process the (masked) partial byte */
+                     break;
+            default: return FAIL;
+            }
+        Skein_Set_Bit_Pad_Flag(state->u.h);                    /* set tweak flag for the final call */
+        
+        return SUCCESS;
+        }
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize hash computation and output the result (hashbitlen bits) */
+HashReturn Final(hashState *state, BitSequence *hashval)
+    {
+    Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
+    switch ((state->statebits >> 8) & 3)
+        {
+        case 2:  return Skein_512_Final(&state->u.ctx_512,hashval);
+        case 1:  return Skein_256_Final(&state->u.ctx_256,hashval);
+        case 0:  return Skein1024_Final(&state->u.ctx1024,hashval);
+        default: return FAIL;
+        }
+    }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* all-in-one hash function */
+HashReturn Hash(int hashbitlen, const BitSequence *data, /* all-in-one call */
+                DataLength databitlen, BitSequence *hashval)
+    {
+    hashState  state;
+    HashReturn r = Init(&state,hashbitlen);
+    if (r == SUCCESS)
+        { /* these calls do not fail when called properly */
+        r = Update(&state,data,databitlen);
+        Final(&state,hashval);
+        }
+    return r;
+    }

c_src/skein_api.h

+#ifndef _AHS_API_H_
+#define _AHS_API_H_
+
+/***********************************************************************
+**
+** Interface declarations of the AHS API using the Skein hash function.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+** 
+************************************************************************/
+
+#include "skein.h"
+
+typedef enum
+    {
+    SUCCESS     = SKEIN_SUCCESS,
+    FAIL        = SKEIN_FAIL,
+    BAD_HASHLEN = SKEIN_BAD_HASHLEN
+    }
+    HashReturn;
+
+typedef size_t   DataLength;                /* bit count  type */
+typedef u08b_t   BitSequence;               /* bit stream type */
+
+typedef struct
+    {
+    uint_t  statebits;                      /* 256, 512, or 1024 */
+    union
+        {
+        Skein_Ctxt_Hdr_t h;                 /* common header "overlay" */
+        Skein_256_Ctxt_t ctx_256;
+        Skein_512_Ctxt_t ctx_512;
+        Skein1024_Ctxt_t ctx1024;
+        } u;
+    }
+    hashState;
+
+/* "incremental" hashing API */
+HashReturn Init  (hashState *state, int hashbitlen);
+HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen);
+HashReturn Final (hashState *state,       BitSequence *hashval);
+
+/* "all-in-one" call */
+HashReturn Hash  (int hashbitlen,   const BitSequence *data, 
+                  DataLength databitlen,  BitSequence *hashval);
+
+
+/*
+** Re-define the compile-time constants below to change the selection
+** of the Skein state size in the Init() function in SHA3api_ref.c.
+**
+** That is, the NIST API does not allow for explicit selection of the
+** Skein block size, so it must be done implicitly in the Init() function.
+** The selection is controlled by these constants.
+*/
+#ifndef SKEIN_256_NIST_MAX_HASHBITS
+#define SKEIN_256_NIST_MAX_HASHBITS (256)
+#endif
+
+#ifndef SKEIN_512_NIST_MAX_HASHBITS
+#define SKEIN_512_NIST_MAX_HASHBITS (512)
+#endif
+
+#endif  /* ifdef _AHS_API_H_ */

c_src/skein_block.c

+/***********************************************************************
+**
+** Implementation of the Skein block functions.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+** Compile-time switches:
+**
+**  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
+**                    versions use ASM code for block processing
+**                    [default: use C for all block sizes]
+**
+************************************************************************/
+
+#include <string.h>
+#include "skein.h"
+
+#ifndef SKEIN_USE_ASM
+#define SKEIN_USE_ASM   (0)                     /* default is all C code (no ASM) */
+#endif
+
+#ifndef SKEIN_LOOP
+#define SKEIN_LOOP 001                          /* default: unroll 256 and 512, but not 1024 */
+#endif
+
+#define BLK_BITS        (WCNT*64)               /* some useful definitions for code here */
+#define KW_TWK_BASE     (0)
+#define KW_KEY_BASE     (3)
+#define ks              (kw + KW_KEY_BASE)                
+#define ts              (kw + KW_TWK_BASE)
+
+#ifdef SKEIN_DEBUG
+#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
+#else
+#define DebugSaveTweak(ctx)
+#endif
+
+/*****************************  Skein_256 ******************************/
+#if !(SKEIN_USE_ASM & 256)
+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+    { /* do it in C */
+    enum
+        {
+        WCNT = SKEIN_256_STATE_WORDS
+        };
+#undef  RCNT
+#define RCNT  (SKEIN_256_ROUNDS_TOTAL/8)
+
+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
+#else
+#define SKEIN_UNROLL_256 (0)
+#endif
+
+#if SKEIN_UNROLL_256
+#if (RCNT % SKEIN_UNROLL_256)
+#error "Invalid SKEIN_UNROLL_256"               /* sanity check on unroll count */
+#endif
+    size_t  r;
+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */
+#endif
+    u64b_t  X0,X1,X2,X3;                        /* local copy of context vars, for speed */
+    u64b_t  w [WCNT];                           /* local copy of input block */
+#ifdef SKEIN_DEBUG
+    const u64b_t *Xptr[4];                      /* use for debugging (help compiler put Xn in registers) */
+    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;
+#endif
+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */
+    ts[0] = ctx->h.T[0];
+    ts[1] = ctx->h.T[1];
+    do  {
+        /* this implementation only supports 2**64 input bytes (no carry out here) */
+        ts[0] += byteCntAdd;                    /* update processed length */
+
+        /* precompute the key schedule for this block */
+        ks[0] = ctx->X[0];     
+        ks[1] = ctx->X[1];
+        ks[2] = ctx->X[2];
+        ks[3] = ctx->X[3];
+        ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
+
+        ts[2] = ts[0] ^ ts[1];
+
+        Skein_Get64_LSB_First(w,blkPtr,WCNT);   /* get input block in little-endian format */
+		DebugSaveTweak(ctx);
+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+        X0 = w[0] + ks[0];                      /* do the first full key injection */
+        X1 = w[1] + ks[1] + ts[0];
+        X2 = w[2] + ks[2] + ts[1];
+        X3 = w[3] + ks[3];
+
+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);    /* show starting state values */
+
+        blkPtr += SKEIN_256_BLOCK_BYTES;
+
+        /* run the rounds */
+
+#define Round256(p0,p1,p2,p3,ROT,rNum)                              \
+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
+
+#if SKEIN_UNROLL_256 == 0                       
+#define R256(p0,p1,p2,p3,ROT,rNum)           /* fully unrolled */   \
+    Round256(p0,p1,p2,p3,ROT,rNum)                                  \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
+
+#define I256(R)                                                     \
+    X0   += ks[((R)+1) % 5];    /* inject the key schedule value */ \
+    X1   += ks[((R)+2) % 5] + ts[((R)+1) % 3];                      \
+    X2   += ks[((R)+3) % 5] + ts[((R)+2) % 3];                      \
+    X3   += ks[((R)+4) % 5] +     (R)+1;                            \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+#else                                       /* looping version */
+#define R256(p0,p1,p2,p3,ROT,rNum)                                  \
+    Round256(p0,p1,p2,p3,ROT,rNum)                                  \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
+
+#define I256(R)                                                     \
+    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \
+    X1   += ks[r+(R)+1] + ts[r+(R)+0];                              \
+    X2   += ks[r+(R)+2] + ts[r+(R)+1];                              \
+    X3   += ks[r+(R)+3] +    r+(R)   ;                              \
+    ks[r + (R)+4    ]   = ks[r+(R)-1];     /* rotate key schedule */\
+    ts[r + (R)+2    ]   = ts[r+(R)-1];                              \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+
+    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256)  /* loop thru it */
+#endif  
+        {    
+#define R256_8_rounds(R)                  \
+        R256(0,1,2,3,R_256_0,8*(R) + 1);  \
+        R256(0,3,2,1,R_256_1,8*(R) + 2);  \
+        R256(0,1,2,3,R_256_2,8*(R) + 3);  \
+        R256(0,3,2,1,R_256_3,8*(R) + 4);  \
+        I256(2*(R));                      \
+        R256(0,1,2,3,R_256_4,8*(R) + 5);  \
+        R256(0,3,2,1,R_256_5,8*(R) + 6);  \
+        R256(0,1,2,3,R_256_6,8*(R) + 7);  \
+        R256(0,3,2,1,R_256_7,8*(R) + 8);  \
+        I256(2*(R)+1);
+
+        R256_8_rounds( 0);
+
+#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
+
+  #if   R256_Unroll_R( 1)
+        R256_8_rounds( 1);
+  #endif
+  #if   R256_Unroll_R( 2)
+        R256_8_rounds( 2);
+  #endif
+  #if   R256_Unroll_R( 3)
+        R256_8_rounds( 3);
+  #endif
+  #if   R256_Unroll_R( 4)
+        R256_8_rounds( 4);
+  #endif
+  #if   R256_Unroll_R( 5)
+        R256_8_rounds( 5);
+  #endif
+  #if   R256_Unroll_R( 6)
+        R256_8_rounds( 6);
+  #endif
+  #if   R256_Unroll_R( 7)
+        R256_8_rounds( 7);
+  #endif
+  #if   R256_Unroll_R( 8)
+        R256_8_rounds( 8);
+  #endif
+  #if   R256_Unroll_R( 9)
+        R256_8_rounds( 9);
+  #endif
+  #if   R256_Unroll_R(10)
+        R256_8_rounds(10);
+  #endif
+  #if   R256_Unroll_R(11)
+        R256_8_rounds(11);
+  #endif
+  #if   R256_Unroll_R(12)
+        R256_8_rounds(12);
+  #endif
+  #if   R256_Unroll_R(13)
+        R256_8_rounds(13);
+  #endif
+  #if   R256_Unroll_R(14)
+        R256_8_rounds(14);
+  #endif
+  #if  (SKEIN_UNROLL_256 > 14)
+#error  "need more unrolling in Skein_256_Process_Block"
+  #endif
+        }
+        /* do the final "feedforward" xor, update context chaining vars */
+        ctx->X[0] = X0 ^ w[0];
+        ctx->X[1] = X1 ^ w[1];
+        ctx->X[2] = X2 ^ w[2];
+        ctx->X[3] = X3 ^ w[3];
+
+        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
+
+        ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+        }
+    while (--blkCnt);
+    ctx->h.T[0] = ts[0];
+    ctx->h.T[1] = ts[1];
+    }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_256_Process_Block_CodeSize(void)
+    {
+    return ((u08b_t *) Skein_256_Process_Block_CodeSize) -
+           ((u08b_t *) Skein_256_Process_Block);
+    }
+uint_t Skein_256_Unroll_Cnt(void)
+    {
+    return SKEIN_UNROLL_256;
+    }
+#endif
+#endif
+
+/*****************************  Skein_512 ******************************/
+#if !(SKEIN_USE_ASM & 512)
+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+    { /* do it in C */
+    enum
+        {
+        WCNT = SKEIN_512_STATE_WORDS
+        };
+#undef  RCNT
+#define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)
+
+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
+#else
+#define SKEIN_UNROLL_512 (0)
+#endif
+
+#if SKEIN_UNROLL_512
+#if (RCNT % SKEIN_UNROLL_512)
+#error "Invalid SKEIN_UNROLL_512"               /* sanity check on unroll count */
+#endif
+    size_t  r;
+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */
+#endif
+    u64b_t  X0,X1,X2,X3,X4,X5,X6,X7;            /* local copy of vars, for speed */
+    u64b_t  w [WCNT];                           /* local copy of input block */
+#ifdef SKEIN_DEBUG
+    const u64b_t *Xptr[8];                      /* use for debugging (help compiler put Xn in registers) */
+    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;
+    Xptr[4] = &X4;  Xptr[5] = &X5;  Xptr[6] = &X6;  Xptr[7] = &X7;
+#endif
+
+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */
+	ts[0] = ctx->h.T[0];
+	ts[1] = ctx->h.T[1];
+    do  {
+        /* this implementation only supports 2**64 input bytes (no carry out here) */
+        ts[0] += byteCntAdd;                    /* update processed length */
+
+        /* precompute the key schedule for this block */
+        ks[0] = ctx->X[0];
+        ks[1] = ctx->X[1];
+        ks[2] = ctx->X[2];
+        ks[3] = ctx->X[3];
+        ks[4] = ctx->X[4];
+        ks[5] = ctx->X[5];
+        ks[6] = ctx->X[6];
+        ks[7] = ctx->X[7];
+        ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ 
+                ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
+
+        ts[2] = ts[0] ^ ts[1];
+
+        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
+		DebugSaveTweak(ctx);
+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+        X0   = w[0] + ks[0];                    /* do the first full key injection */
+        X1   = w[1] + ks[1];
+        X2   = w[2] + ks[2];
+        X3   = w[3] + ks[3];
+        X4   = w[4] + ks[4];
+        X5   = w[5] + ks[5] + ts[0];
+        X6   = w[6] + ks[6] + ts[1];
+        X7   = w[7] + ks[7];
+
+        blkPtr += SKEIN_512_BLOCK_BYTES;
+
+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
+        /* run the rounds */
+#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                  \
+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
+    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
+    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
+
+#if SKEIN_UNROLL_512 == 0                       
+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)      /* unrolled */  \
+    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
+
+#define I512(R)                                                     \
+    X0   += ks[((R)+1) % 9];   /* inject the key schedule value */  \
+    X1   += ks[((R)+2) % 9];                                        \
+    X2   += ks[((R)+3) % 9];                                        \
+    X3   += ks[((R)+4) % 9];                                        \
+    X4   += ks[((R)+5) % 9];                                        \
+    X5   += ks[((R)+6) % 9] + ts[((R)+1) % 3];                      \
+    X6   += ks[((R)+7) % 9] + ts[((R)+2) % 3];                      \
+    X7   += ks[((R)+8) % 9] +     (R)+1;                            \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+#else                                       /* looping version */
+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \
+    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
+
+#define I512(R)                                                     \
+    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \
+    X1   += ks[r+(R)+1];                                            \
+    X2   += ks[r+(R)+2];                                            \
+    X3   += ks[r+(R)+3];                                            \
+    X4   += ks[r+(R)+4];                                            \
+    X5   += ks[r+(R)+5] + ts[r+(R)+0];                              \
+    X6   += ks[r+(R)+6] + ts[r+(R)+1];                              \
+    X7   += ks[r+(R)+7] +    r+(R)   ;                              \
+    ks[r +       (R)+8] = ks[r+(R)-1];  /* rotate key schedule */   \
+    ts[r +       (R)+2] = ts[r+(R)-1];                              \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+
+    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512)   /* loop thru it */
+#endif                         /* end of looped code definitions */
+        {
+#define R512_8_rounds(R)  /* do 8 full rounds */  \
+        R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1);   \
+        R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2);   \
+        R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3);   \
+        R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4);   \
+        I512(2*(R));                              \
+        R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5);   \
+        R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6);   \
+        R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7);   \
+        R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8);   \
+        I512(2*(R)+1);        /* and key injection */
+
+        R512_8_rounds( 0);
+
+#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
+
+  #if   R512_Unroll_R( 1)
+        R512_8_rounds( 1);
+  #endif
+  #if   R512_Unroll_R( 2)
+        R512_8_rounds( 2);
+  #endif
+  #if   R512_Unroll_R( 3)
+        R512_8_rounds( 3);
+  #endif
+  #if   R512_Unroll_R( 4)
+        R512_8_rounds( 4);
+  #endif
+  #if   R512_Unroll_R( 5)
+        R512_8_rounds( 5);
+  #endif
+  #if   R512_Unroll_R( 6)
+        R512_8_rounds( 6);
+  #endif
+  #if   R512_Unroll_R( 7)
+        R512_8_rounds( 7);
+  #endif
+  #if   R512_Unroll_R( 8)
+        R512_8_rounds( 8);
+  #endif
+  #if   R512_Unroll_R( 9)
+        R512_8_rounds( 9);
+  #endif
+  #if   R512_Unroll_R(10)
+        R512_8_rounds(10);
+  #endif
+  #if   R512_Unroll_R(11)
+        R512_8_rounds(11);
+  #endif
+  #if   R512_Unroll_R(12)
+        R512_8_rounds(12);
+  #endif
+  #if   R512_Unroll_R(13)
+        R512_8_rounds(13);
+  #endif
+  #if   R512_Unroll_R(14)
+        R512_8_rounds(14);
+  #endif
+  #if  (SKEIN_UNROLL_512 > 14)
+#error  "need more unrolling in Skein_512_Process_Block"
+  #endif
+        }
+
+        /* do the final "feedforward" xor, update context chaining vars */
+        ctx->X[0] = X0 ^ w[0];
+        ctx->X[1] = X1 ^ w[1];
+        ctx->X[2] = X2 ^ w[2];
+        ctx->X[3] = X3 ^ w[3];
+        ctx->X[4] = X4 ^ w[4];
+        ctx->X[5] = X5 ^ w[5];
+        ctx->X[6] = X6 ^ w[6];
+        ctx->X[7] = X7 ^ w[7];
+        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
+
+        ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+        }
+    while (--blkCnt);
+    ctx->h.T[0] = ts[0];
+    ctx->h.T[1] = ts[1];
+    }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_512_Process_Block_CodeSize(void)
+    {
+    return ((u08b_t *) Skein_512_Process_Block_CodeSize) -
+           ((u08b_t *) Skein_512_Process_Block);
+    }
+uint_t Skein_512_Unroll_Cnt(void)
+    {
+    return SKEIN_UNROLL_512;
+    }
+#endif
+#endif
+
+/*****************************  Skein1024 ******************************/
+#if !(SKEIN_USE_ASM & 1024)
+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+    { /* do it in C, always looping (unrolled is bigger AND slower!) */
+    enum
+        {
+        WCNT = SKEIN1024_STATE_WORDS
+        };
+#undef  RCNT
+#define RCNT  (SKEIN1024_ROUNDS_TOTAL/8)
+
+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
+#else
+#define SKEIN_UNROLL_1024 (0)
+#endif
+
+#if (SKEIN_UNROLL_1024 != 0)
+#if (RCNT % SKEIN_UNROLL_1024)
+#error "Invalid SKEIN_UNROLL_1024"              /* sanity check on unroll count */
+#endif
+    size_t  r;
+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */
+#endif
+
+    u64b_t  X00,X01,X02,X03,X04,X05,X06,X07,    /* local copy of vars, for speed */
+            X08,X09,X10,X11,X12,X13,X14,X15;
+    u64b_t  w [WCNT];                           /* local copy of input block */
+#ifdef SKEIN_DEBUG
+    const u64b_t *Xptr[16];                     /* use for debugging (help compiler put Xn in registers) */
+    Xptr[ 0] = &X00;  Xptr[ 1] = &X01;  Xptr[ 2] = &X02;  Xptr[ 3] = &X03;
+    Xptr[ 4] = &X04;  Xptr[ 5] = &X05;  Xptr[ 6] = &X06;  Xptr[ 7] = &X07;
+    Xptr[ 8] = &X08;  Xptr[ 9] = &X09;  Xptr[10] = &X10;  Xptr[11] = &X11;
+    Xptr[12] = &X12;  Xptr[13] = &X13;  Xptr[14] = &X14;  Xptr[15] = &X15;
+#endif
+
+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */
+    ts[0] = ctx->h.T[0];
+    ts[1] = ctx->h.T[1];
+    do  {
+        /* this implementation only supports 2**64 input bytes (no carry out here) */
+        ts[0] += byteCntAdd;                    /* update processed length */
+
+        /* precompute the key schedule for this block */
+        ks[ 0] = ctx->X[ 0];
+        ks[ 1] = ctx->X[ 1];
+        ks[ 2] = ctx->X[ 2];
+        ks[ 3] = ctx->X[ 3];
+        ks[ 4] = ctx->X[ 4];
+        ks[ 5] = ctx->X[ 5];
+        ks[ 6] = ctx->X[ 6];
+        ks[ 7] = ctx->X[ 7];
+        ks[ 8] = ctx->X[ 8];
+        ks[ 9] = ctx->X[ 9];
+        ks[10] = ctx->X[10];
+        ks[11] = ctx->X[11];
+        ks[12] = ctx->X[12];
+        ks[13] = ctx->X[13];
+        ks[14] = ctx->X[14];
+        ks[15] = ctx->X[15];
+        ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
+                 ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
+                 ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
+                 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
+
+        ts[2]  = ts[0] ^ ts[1];
+
+        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
+		DebugSaveTweak(ctx);
+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+        X00    = w[ 0] + ks[ 0];                 /* do the first full key injection */
+        X01    = w[ 1] + ks[ 1];
+        X02    = w[ 2] + ks[ 2];
+        X03    = w[ 3] + ks[ 3];
+        X04    = w[ 4] + ks[ 4];
+        X05    = w[ 5] + ks[ 5];
+        X06    = w[ 6] + ks[ 6];
+        X07    = w[ 7] + ks[ 7];
+        X08    = w[ 8] + ks[ 8];
+        X09    = w[ 9] + ks[ 9];
+        X10    = w[10] + ks[10];
+        X11    = w[11] + ks[11];
+        X12    = w[12] + ks[12];
+        X13    = w[13] + ks[13] + ts[0];
+        X14    = w[14] + ks[14] + ts[1];
+        X15    = w[15] + ks[15];
+
+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
+
+#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0;   \
+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2;   \
+    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4;   \
+    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6;   \
+    X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8;   \
+    X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA;   \
+    X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC;   \
+    X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE;   \
+
+#if SKEIN_UNROLL_1024 == 0                      
+#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+    Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
+
+#define I1024(R)                                                      \
+    X00   += ks[((R)+ 1) % 17]; /* inject the key schedule value */   \
+    X01   += ks[((R)+ 2) % 17];                                       \
+    X02   += ks[((R)+ 3) % 17];                                       \
+    X03   += ks[((R)+ 4) % 17];                                       \
+    X04   += ks[((R)+ 5) % 17];                                       \
+    X05   += ks[((R)+ 6) % 17];                                       \
+    X06   += ks[((R)+ 7) % 17];                                       \
+    X07   += ks[((R)+ 8) % 17];                                       \
+    X08   += ks[((R)+ 9) % 17];                                       \
+    X09   += ks[((R)+10) % 17];                                       \
+    X10   += ks[((R)+11) % 17];                                       \
+    X11   += ks[((R)+12) % 17];                                       \
+    X12   += ks[((R)+13) % 17];                                       \
+    X13   += ks[((R)+14) % 17] + ts[((R)+1) % 3];                     \