
Introduction to High-Performance
Parallel Distributed Computing using
Chapel, UPC++, and Coarray Fortran

ECP/NERSC/OLCF 2023 Tutorial
30-minute Intro session

go.lbl.gov/cuf23

https://go.lbl.gov/cuf23

Introduction to High-Performance Parallel Distributed
Computing using Chapel, UPC++ and Coarray Fortran

Other Contributors:

Dan Bonachea, Jeremiah Corrado, Paul H. Hargrove,
Katherine Rasmussen, Sameer Shende, Daniel Waters

2

Dr. Michelle Mills Strout Dr. Damian Rouson Dr. Amir Kamil

Acknowledgements

This work was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the
nation’s exascale computing imperative.
This work used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231, as well as This research used resources of
the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

3

Schedule for Chapel, UPC++ and Fortran Tutorial

Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview
○ including a 20-minute intro to each programming model

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays

4

Audience questions

Slack is preferred:
go.lbl.gov/cuf23-slack

alternatively use Zoom chat

https://go.lbl.gov/cuf23-slack

Motivation

● You have …
○ A lot of data to process and analyze
○ A big simulation to run
○ Or both of the above

● Resources are available
○ Your laptop has multiple cores that can process in parallel
○ Your lab/institution has a cluster
○ Or your lab/institution has a supercomputer

● Writing a parallel program enables you to analyze data and/or perform
simulations significantly faster.

5

6

● PGAS: Partitioned Global Address space
● Chapel, UPC++, and Fortran with coarrays are PGAS programming models
● A programming model provides an interface and code patterns to a

programmer along with a concept of how code will execute at runtime.

PGAS Programming Models

7

Conceptual global address space
Process
w/virtual
address
space

Process
w/virtual
address
space

Process
w/virtual
address
space

Process
w/virtual
address
space

PGAS Programming Models

● Can access variables in global
address space from each node

● Implemented with puts and gets
(RMA: remote memory access)

● Can partition/organize data and
computation to reduce RMA

This tutorial: Chapel, UPC++, Fortran with coarrays

● Shared example shown in all three: 2D heat diffusion
● Then other examples per programming model

○ Chapel: k-mer counting, image analysis, processing files in parallel
○ UPC++: 1-d Jacobi solver, distributed hash table
○ Fortran: 2-d heat equation, hello world variants

● Hands On
○ Providing a cloud instance, Perlmutter, and Frontier instructions for obtaining a tarball

containing all example programs: go.lbl.gov/cuf23
○ You are encouraged to compile, run, and experiment with the examples throughout

● Q&A Protocol
○ Model experts are available to answer questions in Slack: go.lbl.gov/cuf23-slack

■ You should have received an email invite, or can follow the link above

8

https://go.lbl.gov/cuf23
https://go.lbl.gov/cuf23-slack

Production Applications using these Programming Models

MetaHipMer, a genome assembler written in UPC++

ICAR:
Intermediate
Complexity
Atmospheric
Research model
written in
Coarray Fortran

https://github.com/NCAR/icar

9

https://github.com/NCAR/icar

Hands On: Compiling and Running Hello Worlds

● Instructions on how to compile and run a hello world for all three
programming models.

● Hands-on examples and instructions: go.lbl.gov/cuf23
○ Options include:

■ NERSC Perlmutter, OLCF Frontier, AWS Cloud, Docker, …
○ Pause here for attendees to setup their programming environment

10

https://go.lbl.gov/cuf23

11

Shared Problem: 2D Heat Diffusion

● Specifically a 2D heat diffusion problem
○ 2D diffusion equation is above. Mathematical details: wikipedia.org/wiki/Heat_equation
○ Discretization solving for the unknown at time step n+1 and spatial coordinate i,j

● Steps in sample codes
○ Set some initial conditions for u0

○ Estimate u over time and space as shown below
○ Show how to parallelize these computations

12

Simplified form
assume 𝚫x=𝚫y, and let 𝛂=𝛎𝚫t/𝚫x2

https://wikipedia.org/wiki/Heat_equation

Three questions about how you program

● Have you used a cluster or supercomputer before? If so, what were their
characteristics (number of nodes, threads per node, etc)?

● Where do you go when you have programming questions? A colleague, stack
overflow, google search, documentation, …

● For your code, what computations/libraries are most important for your work?
NOTE: The pollEV survey starts on
the next slide, but it won’t show the
above questions. This slide is to
show you what those questions will
be.

13

14

15

Schedule for Chapel, UPC++ and Fortran Tutorial
Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview, 20-minute intro to each programming model
○ Chapel Intro
○ Fortran with co-arrays Intro
○ UPC++ Intro

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays

16

go.lbl.gov/cuf23

https://go.lbl.gov/cuf23

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

INTRODUCTION TO CHAPEL PARALLEL
PROGRAMMING LANGUAGE

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

2

INTRODUCTION TO CHAPEL

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://wikipedia.org/wiki/Heat_equation

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup

5

HIGHLIGHTS OF CHAPEL USAGE

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

6

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

7

INTRODUCTION TO CHAPEL

Four nodes/CPUs

8

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

9

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

hello-dist-node-names.chpl

10

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

‘here’ refers to the locale on
which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

hello-dist-node-names.chpl

11

TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

a 'coforall’ loop executes each
iteration as an independent task

hello-dist-node-names.chpl

12

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

13

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

the array of locales we’re running on
(introduced a few slides back)

Locales array:

Locale 0 Locale 1 Locale 2 Locale 3

hello-dist-node-names.chpl

14

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 1 of 4 on n1034
Hello from task 2 of 4 on n1032
Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035
…

hello-dist-node-names.chpl

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

15

INTRODUCTION TO CHAPEL

• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

16

2D HEAT DIFFUSION EXAMPLE See https://go.lbl.gov/cuf23-repo for more info
and for example code.

• 2D heat diffusion PDE

• Solving for next temperatures at each time step
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all
the values and time to solution

17

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

!$!$%&
Stored in uStored in un

Fixed
boundary

values

Simplified form for below
assume 'x='y, and let

(=)'t/'x2

forall (i, j) in indicesInner do
 u[i, j] = un[i, j] + alpha *
 (un[i, j-1] + un[i-1, j] + un[i+1, j] +

 un[i, j+1] - 4 * un[i, j]);

• Declaring 'u' and 'un' arrays

• Declaring 'u' and 'un' arrays as distributed (e.g.,
2x2 distribution is shown)

• Reads that cross the distribution boundary will
result in a remote get

18

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

!$!$%&
Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
 INDICES = Block.createDomain(indices);
var u: [INDICES] real;

• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

19

PARALLELISM SUPPORTED BY CHAPEL

iterationiteration coforall
iteration

stmt
 beginbegin

begin

stmt

stmt

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

20

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

Coarray Fortran Tutorial
Damian Rouson

Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

1

 Introduction to Coarray Fortran (“CAF”)

 — Why Fortran Matters

 — SPMD parallel execution

 — PGAS data structures & RMA

 Heat Conduction Solver

 — Compiling and running it

 — Understanding it
2

Why Fortran
Matters

Weather &
Climate Nuclear Energy Aerospace

Intermediate Complexity Atmospheric
Research (ICAR) Model

Courtesy of Ethan Gutmann, NCAR

U.S. Nuclear Regulatory Commission
File Photo

FUN3D Mesh Adaptation for Mars Ascent
Vehicle, Courtesy of Eric Nielsen & Ashley

Korzun, NASA Langley

3

CAF
Philosophy

“The underlying philosophy of our design is to
make the smallest number of changes to the
language required to obtain a robust and
efficient parallel language without requiring the
programmer to learn very many new rules.”

Reid, J., & Numrich, R. W. (2007). Co-arrays in the next
Fortran standard. Scientific Programming, 15(1), 9-26.

Seminal paper:

Numrich, R. W., & Reid, J. (1998, August). Co-Array
Fortran for parallel programming. In ACM SIGPLAN
Fortran Forum (Vol. 17, No. 2, pp. 1-31). New York, NY,
USA: ACM.

4

Single Program Multiple Data

Single Program Multiple Data (SPMD) parallel execution
— Synchronized launch of multiple “images” (process/threads/ranks)
— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

cd fortran
make run-hi

5

Compiling and Running hi.f90

6

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program Image
control
statement}

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

Partitioned Global Address Space
(PGAS)

Coarrays:

— Distributed data structures — greeting
— Facilitate Remote Memory Access (RMA) — line 15

cd fortran
make run-hello

8

Compiling & Running hello.f90

9

Compiling and Running the Heat
Equation Solver

10

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

11

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

local objects

pure user-defined operators

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

11

Class Diagram

12

Halo Exchange

116 real(rkind), allocatable :: halo_x(:,:)[:]
117 integer, parameter :: west=1, east=2

134 me = this_image()
135 num_subdomains = num_images()
137 my_nx = nx/num_subdomains + merge(1, 0, me <= mod(nx, num_subdomains))

232 subroutine exchange_halo(self)
233 class(subdomain_2D_t), intent(in) :: self
234 if (me>1) halo_x(east,:)[me-1] = self%s_(1,:)
235 if (me<num_subdomains) halo_x(west,:)[me+1] = self%s_(my_nx,:)
236 end subroutine

x

y
subdomain halo …

13

Loop-Level Parallelism

188 do concurrent(j=2:ny-1)
189 laplacian_rhs%s_(i, j) = &
 (halo_left(j) - 2*rhs%s_(i, j) + rhs%s_(i+1,j))/dx_**2 + &
190 (rhs%s_(i, j-1) - 2*rhs%s_(i, j) + rhs%s_(i ,j+1))/dy_**2
191 end do

line continuation

14

Comments

Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data
Integration with other features:
—Array programming: colon subscripts
—OOP: distributed objects
Minimally invasive:
—Drop brackets when not
 communicating

Communication is explicit:
—Use brackets when
 communicating

15

Acknowledgements

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This presentation includes efforts on the part of contributors to the Caffeine, GASNet-EX. Inference-
Engine, Matcha, Nexport, and OpenCoarrays software libraries and members of the Computer
Languages and Systems Software (CLaSS) Group and our collaborators:

Dan Bonachea, Jeremiah Bailey, Tobias Burnus, Alessandro Fanfarillo, Daniel Ceils Garza, Ethan
Gutmann, Jeff Hammond, Peter Hill, Paul Hargrove, Dominick Martinez, Tan Nguyen, Katherine
Rasmussen, Soren Rasmussen, Brad Richardson, Sameer Shende, David Torres, Andre Vehreschild,
Jordan Welsman, Nathan Weeks, Yunhao Zhang

16

Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

2

Acknowledgements
This presentation includes the efforts of the following past and present members of the
Pagoda group and collaborators:

Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino,
Rob Egan, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin,
Amir Kamil, Colin MacLean, Damian Rouson, Erich Strohmaier, Daniel Waters,
Katherine Yelick

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

3

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

4

Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes
• Sparse matrices
• Hash tables and histograms
• Graph analytics
• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

AMReX

ExaBiome SymPACK
Graph analytics

Seismo,Berkeley

5

Some motivating system trends
The first exascale systems appeared in 2022
• Cores per node is growing

• Accelerators (e.g. GPUs) are becoming more important

• Latency is not improving
Need to reduce communication costs in software
• Overlap communication to hide latency
• Reduce memory using smaller, more frequent messages

• Minimize software overhead

• Use simple messaging protocols (RDMA)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

6

Reducing communication overhead
Let each process directly access another’s memory via a global pointer
Communication is one-sided – there is no “receive” operation

• No need to match sends to receives
• No unexpected messages
• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split
between sender and receiver

• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

address

message id

data payload

data payload

one-sided RMA put

two-sided message

NIC

memory

host
CPU

User buffer

Sys buffer

7

One-sided GASNet-EX vs one- and two-sided MPI
Four distinct network hardware types
The performance of one-sided
GASNet-EX matches or exceeds that
of MPI RMA and message-passing:
• 8-byte Put latency 19 - 52% better
• 8-byte Get latency 16 - 49% better
• Better flood bandwidth efficiency:

often reaching same or better
peak at ½ or ¼ the transfer size

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Summit: IBM Power9, dual-rail EDR InfiniBand, IBM Spectrum MPI

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Frontier: AMD Trento, Slingshot-11, HPE Cray MPICH

0

2

4

6

8

10

12

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Perlmutter Phase-I: AMD Milan, Slingshot-10, HPE Cray MPICH

0
1
2
3
4
5
6
7
8
9
10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Cori Phase-I: Intel Haswell, Cray Aries, Cray MPICH

Uni-directional Flood Bandwidth (many-at-a-time)

Perlmutter Phase-I results collected July 2022, all others collected April 2023.
GASNet-EX tests were run using then-current GASNet library and its tests.
MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.
All tests use two nodes and one process per node.
For details see LCPC’18 doi.org/10.25344/S4QP4W and PAW-ATM’22 doi.org/10.25344/S40C7D
See also: gasnet.lbl.gov/performance0

1

2

3

4

5

6

7

8

Frontier Perlmutter
Phase-I

Summit Cori
Phase-I

R
M
A
O
pe
ra
tio
n
La
te
nc
y
(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)
D

O
W

N
 IS

 G
O

O
D

U
P

IS
 G

O
O

D

8

A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned
• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Rank 0 Rank 1 Rank 2 Rank 3

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
SegmentGlobal address space

Process 0 Process 1 Process 2 Process 3

Private memory

9

The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008),
UPC, Titanium, X10
Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays,
DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence
Berkeley National Laboratory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

10

Execution model: SPMD
Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution,
where a fixed number of processes run the same program
int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

11

Global pointers
Global pointers are used to create logically shared but physically
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw)
pointer: e.g. global_ptr<double>, global_ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

g: g: g:

global_ptr<Node>

12

Global vs raw pointers and affinity
The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to
objects in the global address space that have affinity to that process

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

l:

g:

l:

g:

l:

g:

global_ptr<Node>

Node*

13

How does UPC++ deliver the PGAS model?
UPC++ uses a “compiler-free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA

• Provides Active Messages on which UPC++ RPCs are built

• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications

• On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can

be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

14

UPC++ on top of GASNet

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
l Cray XC40 system

Two processor partitions:
l Intel Haswell (2 x 16 cores per node)
l Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

U
P

IS
 G

O
O

D

D
O

W
N

IS
 G

O
O

D

15

Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT
E

16

Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

17

Hands-on: 2D heat diffusion
Everything needed for the hands-on activities is at:
https://go.lbl.gov/CUF23

Online materials include:
• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

$ make run-heat2d
upcxx heat2d.cpp -Wall -o heat2d
upcxx-run -N 1 -n 4 ./heat2d
[2] My Neighbors: (1, 3) My Domain: (2048,3072)
[3] My Neighbors: (2, -1) My Domain: (3072,4096)
[0] My Neighbors: (-1, 1) My Domain: (0,1024)
[1] My Neighbors: (0, 2) My Domain: (1024,2048)
[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

Command to run
in the terminal Copy this and add arguments to change the

problem size, e.g.:
upcxx-run -N 1 -n 4 ./heat2d 8192 8192

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

PROGRAMING IN CHAPEL

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

22

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• During the tutorial today and tomorrow (July 26-27, 2023)
• Download the tarball of examples and follow the instructions in the README

curl -LO https://go.lbl.gov/cuf23.tar.gz
tar xzf cuf23.tar.gz
cd cuf23/

• After the tutorial
• The cuf23 tarball will still be available or clone from https://go.lbl.gov/cuf23-repo for Chapel code
• Attempt this Online website for running Chapel code

– Go to main Chapel webpage at https://chapel-lang.org/ and click on the ATO icon on the lower left
• Using a container on your laptop

– First, install docker for your machine and then start it up
– Then, the below commands work with docker
 docker pull docker.io/chapel/chapel-gasnet # takes about 5 minutes
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet chpl hello.chpl
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet ./hello -nl 1

23

HOW TO PARTICIPATE IN THIS TUTORIAL AND AFTERWARDS

Check out the chapel-quickReference.pdf in the cuf23/chapel/ subdirectory

24

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

use Map, IO;

config const infilename = "kmer_large_input.txt";
config const k = 4;

var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is being
declared as a dictionary mapping

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input
file into the string 'sequence'.

• Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 –-k=10 # can change k

./kmer -nl 1 --infilename="kmer.chpl" # changing infilename

./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

• Key concepts
• 'use' command for including modules
• configuration constants, 'config const'
• reading from a file
• 'map' data structure

25

EXPERIMENTING WITH THE K-MER EXAMPLE make run-kmer

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

26

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• Synchronous parallellism
• 'coforall', distributed memory parallelism across

processes/locales with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

27

PARALLELISM SUPPORTED BY CHAPEL
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }

cobegin { doTask0(); doTask1(); ... doTaskN(); }

var x : atomic int = 0, y : sync int = 0;
sync {
 begin x.add(1);
 begin y.writeEF(1);
 begin x.sub(1);
 begin y.writeFF(0);
}
assert(x.read() == 0);
assert(y.readFE() == 0);

var n = [i in 1..10] i*i;
forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

28(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

29

USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

In this tutorial will be working with examples of parallelism from the yellow highlighted columns.

• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

30

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2
config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads
coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

make run-hellopar

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as having one locale run on it

31

LOCALES AND EXECUTION MODEL IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

• Two key built-in variables for referring to locales in Chapel programs:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES AND EXECUTION MODEL IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3

32

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

33

Processor Core

Memory

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
 var B: [1..2, 1..2] real;

 B = 2 * A;
}

basics-on.chpl

34

All Chapel programs begin running
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

basics-for.chpl

35

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

This is also a serial, but distributed computation

MIXING LOCALITY WITH TASK PARALLELISM

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

basics-coforall.chpl

36

The coforall loop creates
a parallel task per iteration

Locale 0 Locale 1 Locale 2 Locale 3

This results in a parallel distributed computation

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

37

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

• Things to try
./run-hellopar -nl 1 --tasksPerLocale=3
./run-hellopar -nl 2 --tasksPerLocale=3

38

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2
config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads
coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

make run-hellopar

• This is a parallel, but local program:

• This is a distributed, but serial program:

• This is a distributed parallel program:

39

PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
 writeln("Hello from locale 2!");
 on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");

coforall i in 1..msgs do
 writeln("Hello from task ", i);

coforall i in 1..msgs do
 on Locales[i%numLocales] do
 writeln("Hello from task ", i, " running on locale ", here.id);

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat di!usion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

40

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

41

PROCESSING FILES IN PARALLEL make run-parfilekmer

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;
var fList = findFiles(dir);
var filenames =
 Block.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

42

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory
parallelism using 'forall'
• in other words, parallelism within

the locale/node and across
locales/nodes

• a distributed array
• command line options to indicate

number of locales

43

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed
across locales

• 'forall' will do parallelism across locales and then
within each locale to take advantage of multicore

Locale 0 Locale 1

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 2

• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall'

over the Block distributed array
• No puts and gets happening yet

44

PROCESSING FILES IN PARALLEL make run-parfilekmer

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

45

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 var x, y, z: int;
 …

}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 x

 y

 z

locale 1

0

0

0

46

Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 if !done {
 if verbose then
 writef("Adding locale 1’s contribution");
 total += computeMyContribution();
 }
}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

locale 1

if !done {
 if verbose then
 writef("Adding…
 total += computi…
}

code runs on locale 1,
but refers to values
stored on locale 0

47

• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Some things to try out with these variants
chpl heat_2D.chpl
./heat_2D -nl 1

--nt 10 --nx=2048 --ny=2048 # decreases the number of time steps
 # and reduces the size of the domain
 # along each dimension from default 4096

48

2D HEAT DIFFUSION EXAMPLE make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_buffers

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

49

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

• 2D heat di!usion PDE

• Solving for next temperatures at each time step
using finite di!erence method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all
the values and time to solution

50

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

!$!$%&
Stored in uStored in un

Fixed
boundary

values

Simplified form for below
assume 'x='y, and let

(=)'t/'x2

forall (i, j) in indicesInner do
 u[i, j] = un[i, j] + alpha *
 (un[i, j-1] + un[i-1, j] + un[i+1, j] +

 un[i, j+1] - 4 * un[i, j]);

• Declaring 'u' array

• Declaring 'u' array as distributed

• Reads that cross the distribution boundary will
result in a remote get

51

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

!$!$%&
Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
 INDICES = Block.createDomain(indices);
var u: [INDICES] real;

• Each locale has own copies
of 'u' and 'un' subdomains
with a one-cell halo

• (1) Array assignment writes
edge values into neighbors'
halo landing pads

• (2) copy into local halo

• (3) compute next u in
parallel locally

52

HALO BUFFER OPTIMIZATION IN HEAT_2D_DIST_BUFFERS.CHPL

!$!$%&

(1) write to neighbor halo

(2) copy into local halo

(3) compute next u in parallel locally

const indices = {0..<nx, 0..<ny},
 indicesInner = indices.expand(-1),
 INDICES = Block.createDomain(indices);
const u: [INDICES] real;
...
var LOCALE_DOM = Block.createDomain(u.targetLocales().domain);
var haloArrays: [LOCALE_DOM][0..<4] haloArray;
param N = 0, S = 1, E = 2, W = 3;
...
for 1..nt {
 haloArrays[tidX, tidY-1][E].v = uLocal2[.., WW+1];
 ...
 b.barrier();
 uLocal1 <=> uLocal2;

 uLocal1[.., WW] = haloArrays[tidX, tidY][W].v;
 ...
 forall (i,j) in localIndicesInner do
 uLocal2[i,j] = uLocal1[i,j] + alpha*(uLocal1[i-1,j] + uLocal1[i+1,j]
 + uLocal1[i,j-1] + uLocal1[i,j+1] - 4*uLocal1[i,j]);
 b.barrier();
}

Declare and distribute 'u' array.

HALO BUFFER OPTIMIZATION CODE

53

Declare North, South, East, and West halo
arrays per locale

Copy local edge results into neighbor's halo
array. 'tidX' and 'tidY' are the locale's task id
X and Y coordinates. Using array slicing in

'uLocal2[..,WW+1]'.

Copy halo array into local halo.

Compute u[I,j] in local subdomain.
Barrier over all locales

• See 'diffusion/heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall'

over the 2D Block distributed array
• 'heat_2D_dist.chpl' version doesn't do any special handling of the halo exchange
• 'heat_2D_dist_buffers.chpl' shows an optimization that explicitly copies

subarrays into buffers

54

2D HEAT DIFFUSION EXAMPLE
make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_dist_buffers

• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it
cd image_analysis
chpl main.chpl --fast
./main -nl 2 --in_name=banda_ai --map_type=benthic --window_size=100000

55

IMAGE PROCESSING EXAMPLE

• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a

neighborhood, i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who

is a visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started

Coral Reef app in Dec 2022, already had
collaborators presenting results in Feb 2023

• Last week with ~5 lines changed, ran on a GPU
• Performance

• Less than 300 lines of Chapel code scales out to
100s of processors on Cheyenne (NCAR)

• Full maps calculated in seconds, rather than days

56

IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY

Distributed Parallelism: Divide the domain into “strips” and allocate a task per strip

Task 1

Task 2

…

Task (n-1)

Task n

• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it

• Concepts illustrated
• User-defined modules
• Reading a single file in parallel
• Sparse domains used to create masks in 'distance_mask.chpl'
• Creating a 1D block distribution by reshaping the 'Locales' array
• Gets to locale 0 will occur for some smaller arrays that live on locale 0

58

IMAGE PROCESSING EXAMPLE

• Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops are converted to kernels
• Arrays declared within GPU sublocale code blocks are

allocated on the GPU
• For more info...

• https://chapel-lang.org/docs/technotes/gpu.html

59

GPU SUPPORT IN CHAPEL
use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
if here.gpus.size>0 then here.gpus
 else [here,];

// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {
 var A : [1..10] int;
 foreach a in A do a+=1;
 writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

gpuExample.chpl

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
 }
}

stream-ep.chpl

60

This program uses all CPUs and GPUs
across all of your compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

Performance vs. reference versions has become competitive as of the last release

61

STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

62

Processor Core

Memory

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

63

Processor Core

Memory

config const n = 1_000_000,
 alpha = 0.01;

use BlockDist;

const Dom = Block.createDomain({1..n});
var A, B, C: [Dom] real;

A = B + alpha * C;

STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY

64

These programs are both CPU-only

Nothing refers to GPUs,
explicitly or implicitly

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
}

stream-ep.chpl

stream-glbl.chpl

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {

 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }

}

stream-ep.chpl

65

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently

on each of this locale’s GPUs

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
}

stream-ep.chpl

66

This program uses all CPUs and GPUs
across all of our compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

• Primers
• https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

• Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

• Presentations
• https://chapel-lang.org/presentations.html

67

OTHER CHAPEL EXAMPLES & PRESENTATIONS

• Takeaways
• Chapel is a PGAS programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask the Chapel team and users questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

68

TUTORIAL SUMMARY

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
• GitHub Issues: https://github.com/chapel-lang/chapel/issues

69

CHAPEL RESOURCES

CURRENT CHAPEL TEAM AT HPE

70HPE PROPRIETARY

71

BACKUP SLIDES AND ADDITIONAL CONTENT

• Online documentation is here: https://chapel-lang.org/docs/
• The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html

– These are also available from a Chapel release in ‘$CHPL_HOME/examples/primers/’
or ‘$CHPL_HOME/test/release/examples/primers/’ if you clone from GitHub

• When debugging, almost anything in Chapel can be printed out with ‘writeln(expr1, expr2, expr3);’
• Types can be printed after being cast to strings, e.g. ‘writeln(”Type of “, expr, “ is “, expr.type:string);’
• A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, y, z));’

• Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
• Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
• Then, when you go back to making modifications, be sure to stop using `--fast` in order to turn checks back on

• For vim / emacs users, syntax highlighters are in $CHPL_HOME/highlight
• Imperfect, but typically better than nothing
• Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)

72

GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

• begin / cobegin statements: the two other ways of creating tasks

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

• task intents / task-private variables: control how variables and tasks relate

73

OTHER TASK PARALLEL FEATURES

begin stmt; // fire o! an asynchronous task to run ‘stmt’

cobegin { // fire off a task for each of ‘stmt1’, ‘stmt2’, …
 stmt1;
 stmt2;
 stmt3;
 …
} // wait here for these tasks to complete before proceeding

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(), …
var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readEF(), .writeEF()

coforall i in 1..niters with (ref x, + reduce y, var z: int) { … }

for loop: each iteration is executed serially by the current task
• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

coforall loop: each iteration is executed concurrently by a distinct task
• explicit parallelism; supports synchronization between iterations (tasks)

74

SPECTRUM OF CHAPEL FOR-LOOP STYLES

forall i in 1..n do … // forall loops over ranges use local tasks only
forall (i,j) in {1..n, 1..n} do … // ditto for local domains…
forall elem in myLocArr do … // …and local arrays
forall elem in myDistArr do … // distributed arrays use tasks on each locale owning part of the array
forall i in myParIter(…) do … // you can also write your own iterators that use the policy you want

• Any function or operator that takes scalar arguments can be called with array expressions instead

• Interpretation is similar to that of a zippered forall loop, thus:

 is equivalent to:

 as is:

• So, in the Jacobi computation,
 ==

75

SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

proc foo(x: real, y: real, z: real) {
 return x**y + 10*z;
}

C = foo(A, 2, B);

forall (c, a, b) in zip(C, A, B) do
 c = foo(a, 2, b);

C = A**2 + 10*B;

abs(A[D] - Temp[D]); forall (a,t) in zip(A[D], Temp[D]) do abs(a – t);

Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

19

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

20

Review: Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT
E

21

Review: Remote procedure call (RPC)

Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

22

Compiling and running a UPC++ program

UPC++ provides tools for ease-of-use

Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the appropriate arguments (–I/-L etc).

• We also provide other mechanisms for compiling

• upcxx-meta

• CMake package

Launch wrapper:
$ upcxx-run -N 1 -n 4 ./hello-world.exe

• Arguments similar to other familiar tools

• Also support launch using platform-specific tools, such as srun, jsrun and aprun.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

23

Using UPC++ at US DOE Office of Science Centers

UPC++ installations available at ALCF (Polaris, Theta, Sunspot), NERSC
(Perlmutter), and OLCF (Summit, Frontier, Crusher)
Info and examples for all three centers are available from
https://upcxx.lbl.gov/site

Also contains links to UPC++ source and build instructions
UPC++ works on laptops, workstations, and clusters too

Instructions for the hands-on activities in this tutorial:
https://go.lbl.gov/CUF23

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

24

Hands-on: Hello world compile and run

Everything needed for the hands-on activities is at:
https://go.lbl.gov/CUF23

Online materials include:
• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

$ make run-hello-world
upcxx hello-world.cpp -Wall -o hello-world
upcxx-run -N 1 -n 4 ./hello-world
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Command to run
in the terminal Copy this and change the number

after -n to use a different number of
processes, e.g.:

upcxx-run -N 1 -n 8 ./hello-world

25

Example: Hello world

#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Set up UPC++
runtime

Close down
UPC++ runtime

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

make run-hello-world

26

Hello world with RPC (synchronous)

We can rewrite hello world by having each process launch an RPC to
process 0
int main() {
upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

C++ lambda function

Wait for RPC to complete
before continuing

Rank number is the
argument to the lambda

Barrier prevents any process from
proceeding until all have reached it

make run-hello-world-rpc-to-0

27

Futures

RPC returns a future object, which represents a computation that may or
may not be complete

Calling wait() on a future causes the current process to wait until the
future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process " << rank << endl;
}, upcxx::rank_me());

fut.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Empty future type that
does not hold a value,

but still tracks readiness

28

What is a future?

A future is a handle to an asynchronous operation, which holds:
• The status/readiness of the operation
• The results (zero or more values) of the completed operation

The future is not the result itself, but a proxy for it

The wait() method blocks until a future is ready and returns the result
upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

future

op

"async_op"

ready true

data 3

29

Overlapping communication

Rather than waiting on each RPC to complete, we can launch every RPC
and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We’ll see better ways to wait on groups of asynchronous operations later

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

30

1D 3-point Jacobi in UPC++

Iterative algorithm that updates each grid cell as a function of its old value
and those of its immediate neighbors

Out-of-place computation requires two grids

for (long i = 1; i < N - 1; ++i)
new_grid[i] = 0.25 *

(old_grid[i - 1] + 2*old_grid[i] + old_grid[i + 1]);

Sample data distribution of each grid
(12 domain elements, 3 processes, N=12/3+2=6):

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

Local grid size

make run-jac1d

31

Jacobi boundary exchange (version 1)

RPCs can refer to static variables, so we use them to keep track of the
grids

double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

* We will generally elide the upcxx:: qualifier from here on out.

32

Jacobi computation (version 1)

We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

5 6 7 84 9
Process 1

Initiate
communication

Do interior
computation

Wait for
communication
to complete and

do boundary
computation

33

Race conditions

Since processes are unsynchronized, it is possible that a process can
move on to later iterations while its neighbors are still on previous ones

• One-sided communication decouples data movement from
synchronization for better performance

A straggler in iteration ! could obtain data from a neighbor that is computing
iteration ! + 2, resulting in incorrect values

This behavior is unpredictable and may not be observed in testing

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Iteration ! + 2 Iteration !Iteration !
k k+1process k-1

34

Naïve solution: barriers

Barriers at the end of each iteration provide sufficient synchronization

future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Barriers around the swap
ensure that incoming RPCs in
both this iteration and the next

one use the correct grids

35

One-sided put and get (RMA)

UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most efficient way to move
large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

36

Jacobi with ghost cells

Each process maintains ghost cells for data from neighboring processes

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

get from rightget from left

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

my_grid right_grid_gptrleft_grid_gptr

37

Storage management

Memory must be allocated in the shared segment in order to be accessible
through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls – each process allocates its own memory,
and there is no synchronization

• Explicit synchronization may be required before retrieving another
process’s pointers with an RPC

• The pointers must be communicated to other processes before they
can access the data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

38

Downcasting global pointers

If a process has direct load/store access to the memory referenced by a global
pointer, it can downcast the global pointer into a raw pointer with local()
global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Downcasting can also be used to optimize for co-located processes that share
physical memory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

39

Jacobi RMA with gets

Each process obtains boundary data from its neighbors with rget()

future<> left_get = rget(left_old_grid + N - 2, old_grid, 1);
future<> right_get = rget(right_old_grid + 1, old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25*(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25*(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Begin asynchronous
RMA gets

Wait for communication,
then consume values

Remote source (global_ptr) Local dest ptr

Overlapped computation
on interior cells

40

Callbacks

The then() method attaches a callback to a future

• The callback will be invoked after the future is ready, with the future’s
values as its arguments

future<> left_update =
rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + value);

});

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Vector get does not produce a value

Scalar get produces a value

41

Chaining callbacks

Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {
return std::log(value);

});
future<> fut3 =
fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, computes its log, and
then sends it to a different remote location

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

rget

then({log(value)})

then({rput(value,target)})

42

Conjoining futures

Multiple futures can be conjoined with when_all() into a single future that
encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int> source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

rget

then({rput(a*b,target)})

rget

when_all

43

Jacobi RMA with puts and conjoining

Each process sends boundary data to its neighbors with rput(), and the
resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 * (old_grid[0] + 2*old_grid[1] + old_grid[2]);
new_grid[N-2] = 0.25 * (old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed

44

2D heat diffusion data layout

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!$!$%&

Process 2

Process 0

Process 1 T_old T_new

T_up

T_down

Global (Abstract) View Local (Concrete) View

“Landing zone” for
receiving data from
downward neighbor

Fixed
boundary

values

make run-heat2d

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

45

2D heat diffusion computation

Computation loop:
for (int t = 0; t < num_timesteps; t++) {
// initiate asynchronous puts to neighbors
future<> fut =
when_all(rput(T_old, gptr_down, X),

rput(T_old+offset, gptr_up, X));

// overlapped computation of interior
compute_inner_T_new();

// wait for my puts to complete
fut.wait();
// ensure everyone's puts have completed
barrier();
// compute boundaries using data received from neighbors
compute_surface_T_new();

// set up next timestep
std::swap(T_new, T_old);
barrier();

}
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

T_old T_new

T_up

T_down

T_down

T_up

Global pointer to
neighbor’s landing zone

T_oldT_new

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

make run-heat2d

46

Distributed objects

A distributed object is an object that is partitioned over a set of processes

dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but each has its own
local value

Similar in concept to a co-array, but with advantages
• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

● ● ●
dist_object<int>
all_nums(rand());

Process p

42
all_nums

Process 0

3
all_nums

Process 1

8
all_nums

47

Distributed objects in 2D heat diffusion

Distributed objects can be used to obtain global pointers to other
processes’ landing zones
global_ptr<double> down_in, up_in;
if (lo != 0) {
down_in = new_array<double>(X);
T_down = down_in.local();

}
if (hi != Y) {
up_in = new_array<double>(X);
T_up = up_in.local();

}
dist_object<global_ptr<double>> dist_up{down_in};
dist_object<global_ptr<double>> dist_down{up_in};
if (lo != 0) gptr_down = dist_down.fetch(down).wait();
if (hi != Y) gptr_up = dist_up.fetch(up).wait();
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Construct distributed objects containing
pointers to each process’s landing zones

Fetch landing-zone pointer
from the neighbor below

Ensure that all fetches have completed
before the distributed objects are destroyed

Construct landing zones for
each neighbor (if necessary)

48

Hands-on: Distributed hash table (DHT)

Distributed analog of std::unordered_map (similar to Python dict, Java
HashMap)
• Supports insertion and lookup

• We will assume the key and value types are std::string

• Represented as a collection of individual unordered maps across processes

• We use RPC to move hash-table operations to the owner

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per process

● ● ●

key val

make run-dmap-insert-test

49

DHT data representation

A distributed object represents the directory of unordered maps
class DistrMap {

using dobj_map_t =
dist_object<std::unordered_map<std::string, std::string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank_n();

}
};

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Computes owner for the given key

Define an abbreviation for a helper type

50

DHT insertion

Insertion initiates an RPC to the owner and returns a future that represents
completion of the insert
future<> insert(const string &key,

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key, const string &val) {
(*lmap)[key] = val;

}, local_map, key, val);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Key and value passed
as arguments to the

remote function

UPC++ uses the
distributed object’s
universal name to
look it up on the
remote process

Process 0 Process p

● ● ●

key val

Send RPC to the process
determined by key hash

51

DHT find

Find also uses RPC and returns a future

future<string> find(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
if (lmap->count(key) == 0)

return string("NOT FOUND");
else

return (*lmap)[key];
}, local_map, key);

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Key passed as
argument to the
remote function

UPC++ uses the
distributed object’s
universal name to
look it up on the
remote process

Send RPC to the process
determined by key hash

Check whether key
exists in local map

Retrieve corresponding
value from the local

map and return it

Process 0 Process p

● ● ●

key val

52

Additional DHT operations
// Erases the given key from the DHT.
future<> erase(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
lmap->erase(key);

}, local_map, key);
}

// Replaces the value associated with the given key and returns the old
// value with which it was previously associated.
future<string> update(const string &key,

const string &value) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key,
const string &value) {
return local_update(*lmap, key, value);

}, local_map, key, value);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Lambda to remove
the key from the local

map at the target

Lambda to
update the key

in the local map
at the target

Helper function to update local map

make run-dmap-erase-update-test

53

Optimized DHT scales well

Excellent weak scaling up to 32K cores [IPDPS19]
• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
• Key insertion and storage allocation handled at target

• Without RPC, complex updates would require explicit synchronization and two-

sided coordination

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL)

Cray XC40

make run-drmap-insert-test

54

UPC++ advanced features

UPC++ has many advanced features that enable further optimizations

• Team-based barrier, reduction, and broadcast collectives

• Remote atomic operations that utilize hardware offload capabilities of
modern networks

• Serialization of complex standard-library and user types in RPC’s

• Shared-memory bypass for co-located processes on many-core nodes

• Additional forms of communication completion notification such as
promises and “signaling put”

• Non-contiguous RMA with automated packing and aggregation of strided
or sparse data

• Memory kinds for data transfer between remote or local host (CPU) and
device (e.g. GPU) memory

• … Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

55

Memory kinds: Accelerated RMA to/from GPU memory

Modern GPUs and NICs can support
peer-to-peer data transfers

Example: Put with source on GPU

• In the absence of necessary
hardware and OS support:
1. Data must be copied from GPU

memory to host memory
2. RDMA from host memory’s copy

• With support:
1. RDMA directly from GPU

memory (no copies)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

GPU

GPU
Memory

Host
Memory

Network
Interface

Data movement

with

acceleration

GPU

GPU
Memory

Host
Memory

Network
Interface

Data movement

without

acceleration

56

Memory kinds: Accelerated RMA to/from GPU memory
Measurements of flood bandwidth of
upcxx::copy() on OLCF’s Summit
Difference between two consecutive
releases shows benefit of GASNet-
EX’s support for accelerated
transfers via Nvidia’s “GDR”.
• No longer staging through host

memory
• Large xfers: 2x better bandwidth
• Small xfers: up to 30x better

bandwidth
Get operations to/from GPU memory
now perform comparably to host
memory
Comparisons to MPI RMA in GDR-
enabled IBM MPI show UPC++
saturating more quickly to the peak

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

4

16

64

256

1024

4096

16384

16 B 64 B 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

S
in

gl
e-

ra
il

F
lo

od
 B

an
dw

id
th

 (
M

iB
/s

)

Transfer Size

RMA Get Bandwidth (remote GPU to local host memory)
UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit

12.5 GB/s (limiting wire speed)
upcxx::copy (GDR, v2020.11.0)
upcxx::copy (Reference, v2020.10.0)
MPI_Get

U
P

IS
 G

O
O

D 2x better
bandwidth

for large
transfers

30x better
bandwidth
for small
transfers

UPC++ results were collecting using the version of the cuda_benchmark test that appears in the 2020.11.0 release.
MPI results are from osu_get_bw test in a CUDA-enabled build of OSU Micro-Benchmarks 5.6.3.
All tests were run on OLCF Summit, between two nodes with one process per node, over its EDR InfiniBand network.

57

UPC++ applications

UPC++ has been used successfully in several applications to improve
programmer productivity and runtime performance, including:
• symPack, a sparse symmetric matrix solver
• SIMCoV, agent-based simulation of lungs with COVID
• MetaHipMer, a genome assembler
• Actor-UPCXX, used in the Pond tsunami simulator
• A UPC++ backend for NWChemEx/TAMM
• UPC++ DepSpawn, a library for data-flow computing
• Mel-UPX, half-approximate graph matching solver

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

58

symPACK: UPC++ provides productivity + performance

Productivity
• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API

Reduced communication costs
• Low overhead reduces the cost of fine-grained

communication

• Overlap communication via asynchrony/futures

• Increased efficiency in the extend-add operation

• Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Processes
32 64 12

8
25
6

51
2

10
24

4

6

8

10

12

14

16

18

Ti
m

e
(s

)

Run times for audikw_1
(NERSC Cori Haswell Cray XC Aries)

D
ow

n
is

 g
oo

d

pastix_5_2_3
symPACK_1D
symPACK_2D

59

Model the entire lung at the cellular level:
• 100 billion epithelial cells

• 100s of millions of T cells

• Complex branching fractal structure

• Time resolution in seconds for 20 to 30 days

SIMCoV in UPC++
• Distributed 3D spatial grid

• Particles move over time, but computation is

localized

• Load balancing is tricky: active near infections

UPC++ benefits:
• Heavily uses RPCs

• Easy to develop first prototype

• Good distributed performance and avoids

explicit locking

• Extensive support for asynchrony improves

computation/communication overlap

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

SIMCoV: Spatial Model of Immune Response to Viral Lung Infection

https://github.com/AdaptiveComputationLab/simcov

60

ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a
wildfire? (1.5TB)

What at the seasonal fluctuations
in a wetland mangrove? (1.6 TB)

How do microbes affect disease and
growth of switchgrass for biofuels (4TB)

What are the microbial dynamics
of soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved
functional understanding (8TB)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

61

Co-Assembly improves quality and is an HPC problem

Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt,
Andrew Tritt, Aydın Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
• Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta
• Previously assembled 1 lane at a time (multiassembly)
• MetaHipMer coassembled together – higher quality assembly, in 3.5 hours on 16K cores

Multiassembly
1 lane at a time

Coassembly all assembled
together – more new genomes
at higher completeness

This was the largest, high-quality de novo metagenome assembly completed at the time
More recently: new record 30TB metagenome assembly on 1500 nodes (63K cores and 9K GPUs) of
OLCF Summit in 2022

Metagenome Data Size (GB)

N
od

e
H

ou
rs

10

100

1000

10000

100 500 1000 5000 10000 50000

Cori KNL MHM1 Cori KNL MHM2 Summit MHM2 Summit MHM2 GPU

62

MetaHipMer utilized UPC++ features
C++ templates – efficient code reuse
dist_object – as a templated functor
& data store
Asynchronous all-to-all exchange – not
batch synchronous
• 5x improvement at scale relative to

previous MPI implementation
Future-chained workflow
• Multi-level RPC messages
• Send by node, then by process
Promise & fulfill (advanced UPC++ feature) – for a fixed-size memory footprint
• Issue promise when full, fulfill when available

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Work and results by Rob Egan,
funded by ECP ExaBiome Group https://sites.google.com/lbl.gov/exabiome/downloads

63

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information and support forum

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

“We found UPC++ to be a very powerful and
flexible tool for the development of parallel

applications in distributed memory
environments that enabled us to reach the high
level of performance required by our DepSpawn
project, so that we could outperform the state-

of-the-art approaches. It is also particularly
important in our opinion that, while supporting a
really wide range of mechanisms, it is very well

documented and supported.”
-- Basilio Bernardo Fraguela Rodríguez,

Universidade da Coruña, Spain

“If your code is already written in a one-sided
fashion, moving from MPI RMA or SHMEM
to UPC++ RMA is quite straightforward and

intuitive; it took me about 30 minutes to
convert MPI RMA functions in my application

to UPC++ RMA, and I am getting similar
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

Coarray Fortran Tutorial
Damian Rouson

Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

1

 CAF at Scale

 Teams

 Image enumeration

 Synchronization

 Collective Subroutines

 Coarrays

 Events

Day 2

Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on

Ultra-Scale Platforms

Robert Preissl
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
rpreissl@lbl.gov

Nathan Wichmann
CRAY Inc.

St. Paul, MN, USA, 55101
wichmann@cray.com

Bill Long
CRAY Inc.

St. Paul, MN, USA, 55101
longb@cray.com

John Shalf
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
jshalf@lbl.gov

Stephane Ethier
Princeton Plasma

Physics Laboratory
Princeton, NJ, USA, 08543

ethier@pppl.gov

Alice Koniges
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
aekoniges@lbl.gov

ABSTRACT
We present novel parallel language constructs for the com-
munication intensive part of a magnetic fusion simulation
code. The focus of this work is the shift phase of charged
particles of a tokamak simulation code in toroidal geometry.
We introduce new hybrid PGAS/OpenMP implementations
of highly optimized hybrid MPI/OpenMP based commu-
nication kernels. The hybrid PGAS/OpenMP implemen-
tations use an extension of standard hybrid programming
techniques, enabling the distribution of high communica-
tion work loads of the underlying kernel among OpenMP
threads. Building upon lightweight one-sided CAF (Fortran
2008) communication techniques, we also show the benefits
of spreading out the communication over a longer period of
time, resulting in a reduction of bandwidth requirements and
a more sustained communication and computation overlap.
Experiments on up to 130560 processors are conducted on
the NERSC Hopper system, which is currently the largest
HPC platform with hardware support for one-sided com-
munication and show performance improvements of 52% at
highest concurrency.

Keywords: Particle-In-Cell, Fortran 2008, Coarrays, Hy-
brid MPI/OpenMP & PGAS/OpenMP computing

1. INTRODUCTION
Scaling highly parallel scientific applications and algorithms

strongly depends upon the successful adaptation to con-
stantly evolving HPC platforms with unprecedented num-
bers of processors and advanced interconnect technologies.
Hence, innovative algorithms and parallel computing lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

guages exploiting modern achievements in HPC interconnect
fabrics are essential to prevent costs for large scale communi-
cation becoming a dominating factor. One such innovation
in communication technology is the development of one-
sided messaging methods and Partitioned Global Address
Space (PGAS) languages such as Unified Parallel C (UPC)
and Fortran 2008, which incorporates parallel features his-
torically identified as Coarray Fortran (CAF). PGAS lan-
guages are able to directly reference remote memory as a
first order construct, which reduces subroutine call overhead
and enables the compiler to participate in optimization of
the communication. The one-sided messaging abstractions
of PGAS languages also open the possibility of expressing
new algorithms and communications approaches that would
otherwise be impossible, or unmaintainable using the two-
sided messaging semantics of communication libraries like
MPI1. The expression of the one-sided messaging semantics
as language constructs (Coarrays in Fortran and shared ar-
rays in UPC) improves the legibility of the code and allows
the compiler to apply communication optimizations. Hard-
ware support for PGAS constructs and one-sided messaging,
such as that provided by the Cray XE6 Gemini interconnect,
is essential to realize the performance potential of these new
approaches.

Building upon previous e↵orts [15] on exploring one-sided
PGAS communication as a replacement for two-sided mes-
sage passing mechanisms in an existing MPI based commu-
nication kernel in the GTS application, we introduce novel
hybrid PGAS/OpenMP and MPI/OpenMP communication
algorithms extending the flat PGAS & MPI model intro-
duced in our previous work. GTS (Gyrokinetic Tokamak
Simulation) [17] is a global three-dimensional Particle-In-
Cell (PIC) code to study the microturbulence and associ-
ated transport in magnetically confined fusion plasmas of
tokamak toroidal devices. In our work we focus on Fortran
2008’s CAF extensions because Fortran is the language used
to implement the bulk of the GTS code base.

1For the rest of the paper we use the term MPI when MPI-1
is intended. If we refer to the MPI one-sided extension, we
use the term MPI-2 explicitly.

CAF at Scale: Magnetic Fusion

18

Figure 2: GTS field-line following grid & toroidal do-
main decomposition. Colors represent isocontours
of the quasi-two-dimensional electrostatic potential

mas [9], so understanding its characteristics is of utmost im-
portance for the development of practical fusion energy. In
plasma physics, the PIC approach amounts to following the
trajectories of charged particles in both self-consistent and
externally-applied electromagnetic fields. First, the charge
density is computed at each point of a grid by accumulating
the charge of neighboring particles. This is called the scatter
phase. Prior to the calculation of the forces on each particle
from the electric field (gather phase) — we solve Poisson’s

equation to determine the electrostatic potential everywhere
on the grid, which only requires a two-dimensional solve on
each poloidal plane (cross-section of the torus geometry) due
to the quasi-two-dimensional structure of the potential. This
information is then used for moving the particles in time
according to the equations of motion (push phase), which
denotes the fourth step of the algorithm.

2.1 The GTS Parallel Model
The parallel model in the GTS application consists of

three levels: (1) GTS implements a one-dimensional domain
decomposition in the toroidal direction (the long way around
the torus). MPI is used for performing communication be-
tween the toroidal domains. Particles move from one domain
to another while they travel around the torus — which adds
another, a fifth, step to our PIC algorithm, the shift phase.
This phase is the focus of this work. It is worth mentioning
that the toroidal grid, and hence the decomposition, is lim-
ited to about 128 planes due to the long-wavelength physics
being studied. A higher toroidal resolution would only intro-
duce waves of shorter parallel wavelengths that are quickly
damped by a collisionless physical process known as Lan-
dau damping, leaving the results unchanged [9]. (2) Within
each toroidal domain we divide the particle work between
several MPI processes. All the processes within a common
toroidal domain of the one-dimensional domain decompo-
sition are linked via an intradomain MPI communicator,
while a toroidal MPI communicator links the MPI processes
with the same intradomain rank in a ringlike fashion. (3)
OpenMP compiler directives are added to most loop regions
in the code for further acceleration and for reducing the GTS
memory footprint per compute node. Hence, GTS produc-
tion runs will be conducted in a hybrid MPI/OpenMP mode,
which motivates the design of multithreaded particle shift
algorithms.
Figure 2 shows the GTS grid, which follows the field lines

of the externally applied magnetic field as they twist around
the torus2. In the following we focus on the advantages of

2The two cross sections demonstrate contour plots of poten-

Figure 3: Hybrid parallel programming models as
used in the particle shift algorithms

using CAF instead of MPI in a communication intensive
part of GTS, the shift algorithm, and present two optimized
MPI implementations as well as our new CAF algorithm.

3. PARTICLE SHIFT ALGORITHMS IN GTS
The shift phase is the most communication intensive step

of a GTS simulation. At each time step, about 10% of the
particles inside of a toroidal domain move out through the
”left” and ”right” boundaries in approximately equal num-
bers. A 1-billion particle simulation translates to about
100GB of data having to be communicated each time shift
is called. In terms of wall clock time, the particle shift
contributes to approximately 20% of the overall GTS run-
time and is expected to play an even more significant role
at higher scales — as observed in scaling experiments on
Hopper. After the push phase, i.e., once the equations of
motion for the charged particles are solved, updated coor-
dinates of a significant portion of particles are outside the
local toroidal domain. Consequently a↵ected particles have
to be sent to neighboring — or in rare cases to even further
— toroidal domains. The amount of shifted particles as well
as the number of traversed toroidal domains depend on the
toroidal domain decomposition coarsening (mzetamax), the
time step (tstep), the background temperature profile influ-
encing the particle’s initial thermal velocity (umax) and the
number of particles per cell (micell). The distance parti-
cles can travel along the toroidal direction in each time-step
is restricted by the spatial resolution of physical dynamics
in the parallel direction. For a valid simulation, particles
do not travel more than 4 ranks per time-step (realized by
choosing an appropriate time step-size).
In the following sections we will introduce two optimized

algorithms for MPI two-sided messaging and a PGAS one-
sided implementation for the particle shift phase in GTS.
The first MPI implementation extends the classical hybrid
MPI/OpenMP programming model (Figure 3(a)) as used
in GTS where MPI processes create OpenMP thread teams
for work distribution and join the team for serialized ex-
ecution such as MPI communication calls and enables the
main OpenMP thread to make collective MPI function calls
while other threads perform computation (Figure 3(b)). The
hybrid PGAS/OpenMP algorithm builds on this strategy of
communicating threads, but allows all OpenMP threads per

tial fluctuations driven by Ion Temperature Gradient-Driven
Turbulence (ITGDT) [10], which is believed to cause the ex-
perimentally observed anomalous loss of particles and heat
in the core of magnetic fusion devices such as tokamaks.

Application focus:
— The shift phase of charged particles in a

tokamak simulation code

Programming models studied:
— CAF + OpenMP or
— Two-sided MPI + OpenMP

Highlights:
— Experiments on up to 130,560 processors
— 58% speed-up of the CAF implementation

over the best multithreaded MPI shifter
algorithm on largest scale

— “the complexity required to implement …
MPI-2 one-sided, in addition to several
other semantic limitations, is prohibitive.”

Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., & Koniges, A. (2011,
November). Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (pp. 1-11).

CAF at Scale: CFD, FFTs, Multigrid

19

Applications studied:
— Magnetohydrodynamics (MHD)
— 3D Fast Fourier Transforms (FFTs) used in

infinite-order accurate spectral methods
— Multigrid methods with point-wise

smoothers requiring fine-grained messaging

Programming models studied:
— CAF or
— One-sided MPI-3

Highlights:
— Simulations on up to 65,536 cores
— “… CAF either draws level with MPI-3 or

shows a slight advantage over MPI-3.”

— “CAF and MPI-3 are shown to provide
substantial advantages over MPI-2.

— “CAF code is of course much easier to write
and maintain…”Garain, S., Balsara, D. S., & Reid, J. (2015). Comparing Coarray Fortran (CAF)

with MPI for several structured mesh PDE applications. Journal of Computational
Physics, 297, 237-253.

Journal of Computational Physics 297 (2015) 237–253

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Comparing Coarray Fortran (CAF) with MPI for several
structured mesh PDE applications

Sudip Garain a,∗, Dinshaw S. Balsara a, John Reid b

a Physics Department, University of Notre Dame, USA
b Rutherford Appleton Laboratory, Oxfordshire, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2014
Received in revised form 6 April 2015
Accepted 14 May 2015
Available online 21 May 2015

Keywords:
PDEs
MultiGrid
CFD
FFT
Parallel computing
PetaScale

Language-based approaches to parallelism have been incorporated into the Fortran
standard. These Fortran extensions go under the name of Coarray Fortran (CAF) and
full-featured compilers that support CAF have become available from Cray and Intel;
the GNU implementation is expected in 2015. CAF combines elegance of expression
with simplicity of implementation to yield an efficient parallel programming language.
Elegance of expression results in very compact parallel code. The existence of a standard
helps with portability and maintainability. CAF was designed to excel at one-sided
communication and similar functions that support one-sided communication are also
available in the recent MPI-3 standard. One-sided communication is expected to be very
valuable for structured mesh applications involving partial differential equations, amongst
other possible applications. This paper focuses on a comparison of CAF and MPI for a
few very useful applications areas that are routinely used for solving partial differential
equations on structured meshes. The three specific areas are Fast Fourier Techniques,
Computational Fluid Dynamics, and Multigrid Methods.
For each of those applications areas, we have developed optimized CAF code and optimized
MPI code that is based on the one-sided messaging capabilities of MPI-3. Weak scalability
studies that compare CAF and MPI-3 are presented on up to 65,536 processors. Both
paradigms scale well, showing that they are well-suited for Petascale-class applications.
Some of the applications shown (like Fast Fourier Techniques and Computational Fluid
Dynamics) require large, coarse-grained messaging. Such applications emphasize high
bandwidth. Our other application (Multigrid Methods) uses pointwise smoothers which
require a large amount of fine-grained messaging. In such applications, a premium is placed
on low latency. Our studies show that both CAF and MPI-3 offer the twin advantages
of high bandwidth and low latency for messages of all sizes. Even for large numbers of
processors, CAF either draws level with MPI-3 or shows a slight advantage over MPI-3.
Both CAF and MPI-3 are shown to provide substantial advantages over MPI-2.
In addition to the weak scalability studies, we also catalogue some of the best-usage
strategies that we have found for our successful implementations of one-sided messaging
in CAF and MPI-3. We show that CAF code is of course much easier to write and maintain,
and the simpler syntax makes the parallelism easier to understand.

 2015 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: sgarain@nd.edu (S. Garain), dbalsara@nd.edu (D.S. Balsara), John.Reid@stfc.ac.uk (J. Reid).

http://dx.doi.org/10.1016/j.jcp.2015.05.020
0021-9991/ 2015 Elsevier Inc. All rights reserved.

250 S. Garain et al. / Journal of Computational Physics 297 (2015) 237–253

(a)

(b)

Fig. 4. Shows the parallel efficiency measured relative to every doubling of processors for CAF and one-sided MPI-3. The results are based on 3-level
Multigrid simulations from Table 2. Results for a 27 point stencil are shown in (a); results for a 7 point stencil are shown in (b). We see that the stencil
width only has a modest impact on parallel efficiency.

numbers of processors. By scanning the messaging times in Table 3a we see that the one-sided messaging in CAF is slightly
more efficient that the one-sided messaging from MPI-3 for all numbers of cores that we tested. The same simulations were
also run with MPI-2 and the results are shown in Table 3b. We see that CAF and MPI-3 show a significant improvement
over MPI-2.

5. Conclusions

CAF and MPI-3 represent new paradigms for one-sided messaging that are especially well-adapted to advanced PetaScale
and future ExaScale architectures. This style of messaging has the potential of reducing messaging time and enhancing per-
formance on those architectures. CAF is a language-based approach and MPI-3 is a library-based approach; both approaches
to parallelism have their unique advantages. CAF has become available via several compiler vendors and the MPI-3 library,
with some of the newer one-sided messaging features, has also become available. It is, therefore, interesting to compare
CAF and MPI-3 for a few algorithms that are routinely used to solve partial differential equations on structured meshes. We
have compared the performance CAF with MPI-3 for spectral techniques, multigrid techniques and for applications drawn
from computational fluid dynamics.

By using code that is identical on all counts except for the messaging, we are able to focus on the messaging capabilities
of these two parallel programming paradigms. Weak scalability studies are presented on up to 65,536 processors. Both
paradigms show excellent scalability that is sustained on large numbers of processors, showing them to be well-suited for
PetaScale applications. On some applications, CAF outperformed MPI-3 by a small margin. On other applications, they drew

Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(3) 261–273
! The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015576773
hpc.sagepub.com

A Partitioned Global Address Space
implementation of the European
Centre for Medium Range Weather
Forecasts Integrated Forecasting
System

George Mozdzynski, Mats Hamrud and Nils Wedi

Abstract
Today the European Centre for Medium Range Weather Forecasts (ECMWF) runs a 16 km global T1279 operational
weather forecast model using 1536 cores of an IBM Power7. Following the historical evolution in resolution
upgrades, the ECMWF could expect to be running a 2.5 km global forecast model by 2030 on an exascale system
that should be available and hopefully affordable by then. To achieve this would require the Integrated Forecasting
System (IFS) to run efficiently on about 1000 times the number of cores it uses today. In a step towards this goal, the
ECMWF have demonstrated the IFS running a 10 km global model efficiently on over 40,000 cores of HECToR a
Cray XE6 at the Edinburgh Parallel Computing Centre. However, getting to over a million cores remains a formid-
able challenge, and many scalability improvements have yet to be implemented. The ECMWF is exploring the use of
Fortran2008 coarrays; in particular, it is possibly the first time that coarrays have been used in a world-leading pro-
duction application within the context of OpenMP parallel regions. The purpose of these optimisations is primarily
to allow the overlap of computation and communication, and further, in the semi-Lagrangian advection scheme, to
reduce the volume of data communicated. The importance of this research is such that if these and other planned
developments are successful, the IFS model may continue to use the spectral transform method to 2030 and beyond
on an exascale-sized system. The current status of the coarray scalability developments within the IFS are described
together with a brief outline of future developments.

Keywords
PGAS, Fortran2008, Coarrays

1. Introduction

The Integrated Forecasting System (IFS) is the
European Centre for Medium Range Weather
Forecasts’ (ECMWF’s) production application used to
provide medium-range weather forecast products up to
10 or 15 days ahead to its Member States and Co-oper-
ating States. At shorter range, national weather services
use products from the ECMWF to provide boundary
data for their own regional and local short-range fore-
cast models. Figure 1 shows the evolution of the IFS
model from the mid-1980s to the current T1279 opera-
tional model and extrapolated out to 2030. Figure 1
shows that halving the horizontal grid spacing has
occurred about every 8 years, and provides an estimate
for the dates when the T3999 (35 km) and T7999
(32.5 km) models could be introduced into operation.

It is clear that this simplistic extrapolation (given the
number of grid columns and slope from T106 to
T1279) does not take into account the many architec-
tural and technology changes that are needed to get to
the exascale.

The ECMWF is an application partner in a
European Union (EU)-funded project called CRESTA
(Collaborative Research into Exascale Systemware,
Tools and Applications) bringing the IFS numerical
weather prediction application to the project. For the

European Centre for Medium Range Weather Forecasts (ECMWF), UK

Corresponding author:
George Mozdzynski, European Centre for Medium Range Weather
Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, UK.
Email: George.Mozdzynski@ecmwf.int

CAF at Scale: Weather

20

Application:
— European Centre for Medium Range

Weather Forecasts (ECMWF) operational
weather forecast model

Programming models studied:
— CAF or
— Two-sided MPI

Highlights:
— Simulations on > 60K cores
— performance improvement from switching to

CAF peaks at 21% around 40K cores

Mozdzynski, G., Hamrud, M., & Wedi, N. (2015). A partitioned global address
space implementation of the European centre for medium range weather
forecasts integrated forecasting system. The International Journal of High
Performance Computing Applications, 29(3), 261-273.

partition. To address this non-scaling issue, the SL
scheme has been optimised to use Fortran2008 coarrays
to only get grid columns from neighbouring tasks as
and when they are required in the iterative scheme to
compute the departure-point and mid-point of the tra-
jectory (using an eight-point stencil), and also for any
other grid columns needed for the subsequent interpo-
lations (using a 32-point stencil).

Figure 9 highlights (in black) the grid points owned
by the MPI task that encountered the highest wind
speed (120 m/s) during a 10-day forecast starting 15
October 2005. Figure 9 shows a halo of grid points
(marked blue-lighter shade) whose width is determined
by a maximum wind speed of 400 m/s 3 the time step
(720 s in this case), resulting in a halo distance of 288

kilometres. Only the three wind vector variables u, v, w
are obtained from neighbouring tasks for computing
the trajectory. The rest of the variables (26) are
obtained in the locality of each task, but only for the
grid points (grey-lightest shaded area in Figure 10) that
have been identified as needed during the process of
computing the trajectory, which may be called the on-
demand scheme. The SL interpolations can now be
performed.

Figure 7. EQ_REGIONS partitioning of grid-point space, showing a partition at the poles and then an increasing number of
partitions as we approach the equator.

Figure 9. Original semi-Lagrangian transport, showing the max
wind halo (blue-lighter shaded area), which is filled with data
(wind vector variables u, v, w) from neighbouring MPI tasks.
This data is used in the process to compute the departure and
mid-points of air particles arriving at task 11’s grid points (black-
darker shaded area).

Figure 8. Semi-Lagrangian transport, where the Integrated
Forecasting System requires each grid point in a MPI task
partition (the arrival point) to determine where that particle of
air came from (the departure point) backwards in time .
Interpolations are performed at the departure point and the
mid-point of the trajectory and data quantities updated at the
arrival point.

266 The International Journal of High Performance Computing Applications 29(3)

by inspecting the gstats counters that timed sections of
code where MPI calls have been replaced by coarray
transfers. The relative slowdown of the coarray version
was reproducible and at several nearby core counts (the
group of three core counts in Figure 13). It will be inter-
esting to see how the coarray optimisations perform
when we run a larger T3999 case (1Q2013/RAPS13/
38R2) where there will be greater opportunity for over-
lap between computation and communication at that
resolution, as shown in Figure 5. In Figure 15 we pres-
ent the efficiency of the T2047L137 IFS model as run
on HECToR for the runs described earlier. The effi-
ciency is derived relative to the performance of a single
core, which is assumed to be 100% efficient. The single
core performance is itself extrapolated from a least
squares fit (Excel’s LINEST function) of FD/D perfor-
mance in the 8–36K core range where the fit is good for
all three sets of runs. This figure shows overall effi-
ciency gains of 10% at 8K cores to about 20% at 40–
50K cores.

4.2. T2047L137 non-hydrostatic model

The performance of a T2047/L137 NH case is shown in
Figure 16. As this case was a 10-km model it did not
require NH dynamics but was run solely to observe the
effect of the coarray optimisations. Analysis of the per-
formance statistics showed that the relatively expensive
NH spectral space computations were scaling poorly.
This was due to the fact that the OpenMP parallelism
in the spectral computations was limited to 2048 (waves

0–2047) spread across all MPI tasks. In spectral space
data is distributed over MPI tasks in a two-dimensional
scheme over spectral waves and atmospheric levels.
However, the spectral space semi-implicit calculations
require access to all atmospheric levels, which require
additional data transpositions called TRMTOS and
TRSTOM. The scaling issue was resolved by moving
the OpenMP parallelisation down one level, where
the parallelism would now be min(tasks, 2048) 3
min(threads, atmospheric levels) or practically
2048 3 8 = 16K, so an eight-fold increase in paralle-
lism. Of course, in the future we could increase the
number of threads to 16 and beyond to exploit more
parallelism in the spectral computations. This optimisa-
tion (50+ OpenMP loops parallelised) resulted in an
overall 10% improvement at 45K cores. In the limit the
thread-level parallelism in the spectral computations
is the product of the number of spectral waves by the
number of atmospheric levels, which for a T7999L400
model would be 3.2 million. The performance advan-
tage of using coarrays in this NH dynamics case is now
26%. At resolution T2047 we do not need to run with
NH dynamics, but it confirms that the IFS with NH
dynamics works with coarrays and prepares for the
larger T3999 NH case.

5. Summary and future work

The ECMWF IFS model has been enhanced to use
Fortran2008 coarrays to overlap computation and com-
munication in the context of OpenMP parallel regions.

Figure 14. Performance improvement of the T2047 (;10 km) model with 137 levels by using Fortran2008 coarrays on HECToR
(Cray XE6).

Mozdzynski et al. 269

Development and performance comparison of MPI and Fortran
Coarrays within an atmospheric research model

Extended Abstract

Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4, Salvatore Filippone 1,
Irene Moulitsas 1

1Cran�eld University, UK
2National Center for Atmospheric Research, USA
3Lawrence Berkeley National Laboratory, USA

4Sourcery Institute, USA

ABSTRACT
Amini-application of The Intermediate Complexity Research (ICAR)
Model o�ers an opportunity to compare the costs and performance
of the Message Passing Interface (MPI) versus coarray Fortran, two
methods of communication across processes. The application re-
quires repeated communication of halo regions, which is performed
with either MPI or coarrays. The MPI communication is done using
non-blocking two-sided communication, while the coarray library
is implemented using a one-sided MPI or OpenSHMEM communi-
cation backend. We examine the development cost in addition to
strong and weak scalability analysis to understand the performance
costs.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing → Environmental sciences;

KEYWORDS
coarray Fortran, message passing interface, computational hydrom-
eteorology

ACM Reference Format:
Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4,

Salvatore Filippone 1, IreneMoulitsas 1 1Cran�eld University, UK 2National
Center for Atmospheric Research, USA 3Lawrence Berkeley Na-
tional Laboratory, USA 4Sourcery Institute, USA . 2018. Develop-

ment and performance comparison of MPI and Fortran Coarrays
within an atmospheric research model. In Proceedings of PAW-ATM
18: Parallel Applications Workshop, Alternatives to MPI, Dallas, TX,
USA, November 11–16, 2018 (PAW18), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PAW18, November 11–16, 2018, Dallas, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 Motivation and Background
In high performance computing MPI has been the de facto method
for memory communication across a system’s nodes for many
years. MPI 1.0 was released in 1994 and research and development
has continued across academia and industry. A method in Fortran
2008, known as coarray Fortran, was introduced to express the
communication within the language [5]. This work was based on
an extension to Fortran that was introduced by Robert W. Numrich
and John Reid in 1998 [7]. Coarray Fortran, like MPI, is a single-
program, multiple-data (SPMD) programming technique. Coarray
Fortran’s single program is replicated across multiple processes,
which are called "images". Unlike MPI, it is based on the Partitioned
Global Address Space (PGAS) parallel programming model. This
allows the Fortran syntax to easily express communication while
maintaining the transparency of the underlying algorithm concept.
This will be further discussed in the programmability section.

The application used to examine the di�erent programming mod-
ules is a mini-application of The Intermediate Complexity Atmo-
spheric Research (ICAR) model. This simpli�ed atmospheric model
was developed at the National Center for Atmospheric Research
(NCAR) to predict aspects of weather such as precipitation, tem-
perature, and humidity [3]. The main impetus of the investigation
is to understand the scalability and performance of the di�erent
coarray and MPI programming models. The ICAR mini-app was
originally developed using coarrays to communicate halo regions.
For this paper we modi�ed the existing code to use MPI, instead of
coarrays, for communication between processes.

We used Open Coarrays, a library implementation of coarray
Fortran, for our runtime comparisons. The Open Coarrays commu-
nication backend can be implemented with either an OpenSHMEM
layer or MPI. Open Coarrays’ MPI implementation uses one-sided
communication with passive synchronization [2]. This has allowed
us to do performance comparisons between three versions of the
ICAR mini-app: the OpenSHMEM backend, the coarray one-sided
MPI, and the two-sided MPI implementation.

Past work has been done on the scalability and performance
di�erences between coarrays and MPI in the past [1, 4] . Past exper-
iments using this speci�c mini-app have looked at the comparisons
between the OpenSHMEM communication and the MPI commu-
nication backend [8]. To our knowledge the work done here is

CAF at Scale: Climate

21

Application:
— Intermediate Complexity Atmospheric

Research (ICAR) model
— Regional impacts of global climate change

Programming models studied:
— CAF over one-sided MPI
— CAF over OpenSHMEM
— Two-sided MPI
— Cray CAF

Highlights:
— “… we used up to 25,600 processes and

found that at every data point OpenSHMEM
was outperforming MPI.”

— “The coarray Fortran with MPI backend
stopped being usable as we went over
2,000 processes… the initialization time
started to increase exponentially.”Rasmussen, S., Gutmann, E. D., Friesen, B., Rouson, D., Filippone, S., &

Moulitsas, I. (2018). Development and performance comparison of MPI and
Fortran Coarrays within an atmospheric research model. Parallel Applications
Workshop - Alternatives to MPI+x (PAW-ATM), Dallas, Texas, USA.

Development and performance comparison of MPI and Fortran Coarrays PAW18, November 11–16, 2018, Dallas, TX, USA

2 DISCUSSION OF RESULTS

(a) 25 points per process (b) 100 points per process

(c) 400 points per process (d) Cray weak scaling

Figure 3: (a-c) Weak scaling results for 25, 100, and 400 points per process (d) weak scaling for Cray.

The second system used was Lawrence Berkeley National Labo-
ratory’s (LBNL) Cori, a Cray XC40 with 12,076 total compute nodes
[8]. Of those nodes, 9688 of them are single-socket, 68-core Intel
Xeon Phi Processor 7250 ("Knight’s Landing") at 1.4 GHz. We used
Knight’s Landing with the Cray Compiling Environment (CCE)
8.7.1. The Cray compiler uses Cray’s proprietary PGAS runtime
for implementing coarrays within Fortran. It was run with 2 MiB
hugepages enabled, rather than the default 4 KiB pages, because
huge pages often gives better performance for PGAS codes. For the
runs done on both Cheyenne and Cori a single core was used per
MPI rank or coarray image.

4 RESULTS
In �gures 3a, 3b, and 3c respectively, the results are presented for
weak scaling at 25, 100, and 400 points per process. These runs
were all done on the SGI cluster Cheyenne. At each problem size
we gathered multiple timing samples of the coarray version with
the OpenSHMEM communication backend, the coarray version
with the MPI backend, and the plain MPI implementation. At lower
numbers of points per process the OpenSHMEM communication
backend performs better. As the number of points per process
increases, OpenSHMEM continues to perform better but the pure
MPI version keeps pace. For theweak scaling runs done using Cray’s

proprietary PGAS runtime on Cori 3d, the results are good. There
is no noticeable deterioration in e�ciency, meaning the parallel
overhead is not slowing down the runs.

It is interesting to note that the MPI implementation had the
largest amount of variance for any one run. For the OpenSHMEM
runs the variance was always under 0.4 seconds while for the pure
MPI runs the smallest was 0.63 seconds and the largest 1.2. For 25,
100, and 400 points per process the variance was 39%, 19%, and 8%
for OpenSHMEM and 34%, 31%, 22% for the pure MPI. A data trend
that was unclear is the decrease in simulation time for the the �rst
few weak scaling runs for 400 points per processor. This occurred
in all three of the di�erent implementations.

For strong scaling 4 we used up to 25,600 processes and found
that at every data point OpenSchmem was outperforming MPI. At
high number of processes we were unable to get the the coarray
Fortran MPI communication backend to work.

The coarray Fortran with MPI backend stopped being usable
as we went over 2,000 processes; strictly speaking it did not stop
working, but the initialization time started to increase exponentially.
At 2,000 processes it would take about an hour to start the process
and at 3,000 processes it exceeded the 12 hour wall clock limit.
Further investigation will be needed to understand why this is
occurring and �x it.

New Frontiers: T-Cell Motility

22

Application:
— Matcha: Motility Analysis of T Cells in Activation
— Matching the speed & turning angle

distributions to observed T cells, simulations
can explore large spatial volumes and
parameter spaces.

Programming models:
— Coarray halo exchanges in a 3D diffusion PDE

solver.
— Do concurrent for automatic GPU offloading

Highlights:
— This tutorial’s 2D heat equation solver was the

prototype for the 3D diffusion solver.

Thompson, E. A., Mitchell, J. S., Beura, L. K., Torres, D. J., Mrass, P., Pierson,
M. J., ... & Vezys, V. (2019). Interstitial migration of CD8αβ T cells in the small
intestine is dynamic and is dictated by environmental cues. Cell reports, 26(11),
2859-2867.

https://go.lbl.gov/matcha

New Frontiers: Deep Learning

23

Application:
— Inference-Engine
— In situ neural network training and large-

batch inference for HPC applications

Language-based parallel & GPU programming:
— Extensive use of array statements,

elemental procedures, do concurrent
— Functional programming pattern:

Every procedure is pure except those that
create and consume JSON file objects.

— Coming soon:
Parallel mini-batch training via co_sumhttps://go.lbl.gov/inference-engine

Implicitly Parallel Training

“Loop” Structure

Iterating sequentially across and within mini-batches of
input/output pairs facilitates in situ training at application
runtime, potentially eliminating the export of large training
data sets or at least making it so that the resulting network
can be trained off-line in fewer iterations.

The only other sequential logic is
the (mostly) necessary stepping
through layers:

All other logic is implicitly parallel
array statements or do concurrent
blocks:

“Loop” Structure

Fast-GPT

https://tinyurl.com/fastgpt-by-certik

Teams

An ordered set of images created by execution of a form team statement, or the initial
ordered set of all images.

Teams facilitate the execution of an image sets independently from other image sets,
e.g., a sync all statement synchronizes the current team only.

An extensible derived type team_type with private components describes a team after
the successful execution of a form team statement.

28

Team 1

Image 1 Image 3Image 2
a(1:4)[1] a(1:4)[2] a(1:4)[3]

Image 4 Image 6Image 5
a(1:4)[4] a(1:4)[5] a(1:4)[6]

Team 2

CAF/MPI Rosetta Stone

Program execution sequence over time (left axis) in 12 images
(top) initially globally and then within subgroups.

29

Legend
Default communication
mechanisms

Optional communication
mechanism

 1 program main
 2 !! Test team_number intrinsic function
 3 use iso_fortran_env, only : team_type
 4 use assertions_module , only : assertions
 5
 6 implicit none
 7
 8 integer , parameter :: standard_initial_value = −1
 9 type(team_type), target :: home
 10
 11 call assert(team_number() == standard_initial_value)
 12
 13 associate(my_team=>mod(this_image(),2) + 1)
 14
 15 form team(my_team,home) ! Map even|odd images->teams 1|2
 16 change team(home)
 17 call assert(team_number() == my_team)
 18 end team
 19
 20 call assert(team_number() == standard_initial_value)
 21
 22 end associate
 23
 24 sync all
 25
 26 if (this_image() == 1) print *, "Test passed."
 27
 28 end program

Teams Test Code

30

Rouson, D., McCreight, J. L., & Fanfarillo, A. (2017, November). Incremental
caffeination of a terrestrial hydrological modeling framework using Fortran 2018
teams. In Proceedings of the Second Annual PGAS Applications Workshop (pp.
1-4).

Incremental ca�eination of a terrestrial hydrological modeling
framework using Fortran 2018 teams

Extended Abstract

Damian Rouson
Sourcery Institute
Oakland, California

damian@sourceryinstitute.org

James L. McCreight
National Center for Atmospheric Research

Boulder, Colorado
jamesmcc@ucar.edu

Alessandro Fanfarillo
National Center for Atmospheric Research

Boulder, Colorado
elfanfa@ucar.edu

ABSTRACT
We present Fortran 2018 teams (grouped processes) running a par-
allel ensemble of simulations built from a pre-existing Message
Passing Interface (MPI) application. A challenge arises around the
Fortran standard’s eschewing any direct reference to lower-level
communication substrates, such as MPI, leaving any interoperabil-
ity between Fortran’s parallel programmingmodel, Coarray Fortran
(CAF), and the supporting substrate to the quality of the compiler
implmentation. Our approach introduces CAF incrementally, a pro-
cess we term “ca�eination.” By letting CAF initiate execution and
exposing the underlying MPI communicator to the original ap-
plication code, we create a one-to-one correspondence between
MPI group colors and Fortran teams. We apply our approach to
the National Center for Atmospheric Research (NCAR)’s Weather
Research and Forcecasting Hydrological Model (WRF-Hydro). The
newly ca�einated main program replaces batch job submission
scripts and forms teams that each execute one ensemble member.
To support this work, we developed the �rst compiler front-end
and parallel runtime library support for teams. This paper describes
the required modi�cations to a public GNU Compiler Collection
(GCC) fork, an OpenCoarrays [1] application binary interface (ABI)
branch, and a WRF-Hydro branch.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing → Environmental sciences;

KEYWORDS
coarray Fortran, computational hydrology, parallel programming

ACM Reference Format:
Damian Rouson, James L. McCreight, and Alessandro Fanfarillo. 2017. In-
cremental ca�eination of a terrestrial hydrological modeling framework
using Fortran 2018 teams. In Proceedings of PAW17: Second Annual PGAS
Applications Workshop, Denver, CO, USA, November 12–17, 2017 (PAW17),
5 pages.
https://doi.org/10.1145/3144779.3169110

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
PAW17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5123-2/17/11. . . $15.00
https://doi.org/10.1145/3144779.3169110

1 INTRODUCTION
1.1 Motivation and Background
Since the publication of the Fortran 2008 standard in 2010 [4], For-
tran supports a Single-Program Multiple-Data (SPMD) program-
ming style that facilitates the creation of a �xed number of repli-
cas of a compiled program, wherein each replica executes asyn-
chronously after creation. Fortran refers to each replica as an image.
The primary mechanism for distributing and communicating data
between images involves de�ning coarrays, entities that may be
referenced or de�ned on one image by statements executing on
other images. As such, a coarray de�nes a partitioned global address
space (PGAS) in which one image referencing or de�ning a coarray
on another image causes inter-image communication.

The seminal role that coarrays played in the development of For-
tran’s intrinsic parallel programming model have made it common
to refer to all of modern Fortran’s parallel programming features
under the rubric of CAF. To date, most published CAF applications
involve scenarios wherein the parallelization itself poses one of
the chief challenges and necessitates the custom development of
parallel algorithms. These include ordinary and partial di�eren-
tial equation solvers in domains ranging from nuclear fusion [7]
and weather [5] to multidimensional fast Fourier transforms and
multigrid numerical methods [2]. Much of the e�ort involved in
expressing parallel algorithms for these domains centers on design-
ing and using various coarray data structures. In such settings, the
moniker CAF seems appropriate.

Less widely appreciated are the ways Fortran’s intrinsic parallel
programming model supports embarrassingly parallel applications,
wherein the division into independent sub-problems requires little
coordination between the sub-problems. To support such appli-
cations, a parallel programming model might provide for explicit
sub-problem disaggregation and independent sub-problem execu-
tion without any need for PGAS data structures such as coarrays.
The draft Fortran 2018 standard (previously named “Fortran 2015”1)
o�ers several features that enable a considerable amount of paral-
lel computation, coordination, and communication even without
coarrays. A working de�nition of “embarrassingly parallel” Fortran
might denote the class of use cases for which parallel algorithmic
needs are met by the non-coarray parallel features, including
• Forming teams of images that communicate only with each
other by default,
• Image synchronization: a mechanism for ordering the exe-
cution of program segments in di�ering images,

1A Committee Draft is at https://bit.ly/fortran-2015-draft.

Incremental ca�eination of a terrestrial hydrological modeling framework using Fortran 2018 teamsPAW17, November 12–17, 2017, Denver, CO, USA

1 program main !! Test get_communicator language extension
2 use opencoar rays , only : ge t_communicator
3 use a s s e r t i on s_modu l e , only : a s s e r t
4 use iso_fortran_env , only : team_type
5 type (team_type) : : l e a gue
6 integer , parameter : : num_teams=2 !! number of child teams to form
7 implicit none
8 call mpi_matches_ca f (ge t_communicator ()) !! verify rank & image numbering
9 associate (i n i t i a l _ i m a g e =>this_image () , i n i t i a l _ num_ image s =>num_images () , new_team=>mod (this_image () +1 , num_teams) +1)
10 form team (new_team , l e ague) !! create mapping
11 change team (l e ague) !! join child team
12 call mpi_matches_ca f (ge t_communicator ()) !! verify new rank/image numbers
13 associate (my_team=>team_number ())
14 call a s s e r t (my_team==new_team , �assigned team matches chosen team�)
15 associate (new_num_images=> i n i t i a l _ num_ image s / num_teams+merge (1 , 0 , my_team<=mod (i n i t i a l _num_ image s , num_teams)))
16 call a s s e r t (num_images () ==new_num_images , �block distribution of images�)
17 end associate ; end associate
18 end team
19 call a s s e r t ([i n i t i a l _ i m a g e ==this_image () , i n i t i a l _ num_ image s ==num_images ()] , �correct rank/image remapping�)
20 end associate
21 sync all ; if (this_image () ==1) print ∗ , �Test passed.�
22 contains
23 subroutine mpi_matches_ca f (comm) !! verify num. ranks = num. images & image num. = rank num. + 1
24 use i s o _ c _b i nd i ng , only : c _ i n t
25 use mpi , only : MPI_COMM_SIZE , MPI_COMM_RANK
26 integer (c _ i n t) , intent (in) : : comm !! MPI communicator
27 integer (c _ i n t) : : i s i z e , i e r r o r , i r a nk
28 call MPI_COMM_SIZE (comm , i s i z e , i e r r o r)
29 call a s s e r t ([i e r r o r ==0 , i s i z e ==num_images ()] , �correct rank/image cardinality�)
30 call MPI_COMM_RANK(comm , i rank , i e r r o r)
31 call a s s e r t ([i e r r o r ==0 , i r ank ==this_image () �1 ,�correct rank/image numbering correspondence�)
32 end subroutine
33 end program

Figure 2: A unit test for the get_communicator function.

form team(…)

end team

team_number(…)
1 2 3

color

MPI_Barrier(…)
MPI_Comm_Split(…)

MPI_Barrier(…)

Fortran
statement or
procedure

MPI procedure
or variable

tim
e

1 2 3

change team(…)

Figure 3: Schematic of program execution over time (left
axis) in 12 images (top) communicating globally and then
within subgroups. Horizontal lines show communication
mechanisms (default=solid, optional=dashed). Fortran con-
cepts (left). Underlying MPI concepts (right).

Figure 3 depicts schematically an initial team of images (black
arrows) executing over time (progressing downward) and able to
coordinate and communicate through a global mechanism (black
horizontal line). At the point of executing form team and change
team statements, the compiler inserts references to the OpenCoar-
rays ABI into the executable program. Those references cause invo-
cations of MPI_Split, which in turn creates the colored groupings
that correspond to teams in Fortran 2018.

The teams unit tests in Figures 1–2 use a block distribution of
images, dividing the initial team into three new teams, each with

Figure 4: WRF-Hydro ca�eination via Fortran 2018 teams:
example components of the National Water Model. Di�er-
ent MPI colors represent independent teams, each of which
is an ensemble member.

the same number of images except some teams with one extra.
The number of teams with an extra image equals the remainder of
integer division of the total number images by the number of teams.
In Figure 2, an assertion procedure terminates across all images
if assertion is false. The optional second argument in assert
describes the checks performed.

2.3 A language extension
Line 2 in Figure 2 imports a get_communicator() function via
Fortran’s use-association mechanism for accesing entities in For-
tran modules: an opencoarrays module that provides language

Image Enumeration

Obtaining an image index:

this_image([team])

this_image(coarray [,team])

this_image(coarray, dim [,team])

Obtaining an image count:

num_images()

num_images(team)

num_images(team_number)

31

image_index(coarray, sub, team_number)

image_index(coarray, sub, team)

image_index(coarray, sub)

Image Enumeration

32

[-1,-1] [0,-1] [1,-1]

[-1,0] [0,0] [1,0]

[-1,1] [0,1] [1,1]

b(:)

a [0] [1] [2] [3] [4]

Synchronization

Image barriers (“meet-ups”):

sync all(stat, errmsg)

sync images(image-set, stat, errmsg)

allocate()

deallocate()

stop stop_code (integer or character codes allowed)

end program

call move_alloc(from,to) with coarray arguments.

Any statement causing an implicit coarray deallocation by completing a block or procedure.

Deprecated by Metcalf, Reid & Cohen (2018):

sync memory(stat, errmsg)

33

for coarrays only, including implicit
(de)allocation at end of a block or procedure}

Other Image Control Statements

Locks:

lock(lock-variable, errmsg)

unlock(lock-variable, stat, errmsg)

Critical blocks:

critical(stat, errmsg)

end critical

Teams

form team(team_number, team_variable)

change team(team_value, …)

end team

Events

event post(event-variable, stat, errmsg)

event wait(event-variable, stat, errmsg)
34

A lock variable is a
coarray object of the
extensible intrinsic type
lock_type with private
components.

}

An event variable is a
coarray object of the
extensible intrinsic type
event_type with
private components.

}

Collective Subroutines

35

Behavior:
— Successful execution of a collective subroutine performs a calculation on all the

images of the current team and assigns a computed value on one or all of them.
— If it is invoked by one image, it shall be invoked by the same statement on all

active images of its current team in segments that are not ordered with respect
to each other

— Corresponding references participate in the same collective computation.

Complete list:

—co_sum(a, result_image, stat, errmsg)

—co_max(a, result_image, stat, errmsg)

—co_min(a, result_image, stat, errmsg)

—co_broadcast(a, source_image, stat, errmsg)

—co_reduce(a, operation, result_image, stat, errmsg)

co_sum

36

Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent(inout) argument

Argument result_image (optional)

—shall be of scalar type integer

—is an intent(in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

co_sum(a, result_image, stat, errmsg)

co_sum

37

co_sum(a)Ti
m

e

Team 2Team 1

co_sum(a)

co_max

38

Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent(inout) argument

Argument result_image (optional)

—shall be of scalar type integer

—is an intent(in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

co_max(a, result_image, stat, errmsg)

co_max

39

Ti
m

e

co_max(a) co_max(a)

Team 1 Team 2

co_min

40

Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent(inout) argument

Argument result_image (optional)

—shall be of scalar type integer

—is an intent(in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

co_min(a, result_image, stat, errmsg)

co_min

41

Ti
m

e

co_min(a) co_min(a)

Team 1 Team 2

co_broadcast

42

Argument a
— shall have the same shape, dynamic type, & type parameter values, in corresponding

references.
— shall not be a coindexed object
— is an intent(inout) argument
— successful execution causes a to become defined as if by intrinsic assignment on all

images in the current team with the value of a on the source_image

Argument source_image

—shall be of scalar type integer

—is an intent(in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

co_broadcast(a, source_image, stat, errmsg)

co_broadcast

43

Ti
m

e

co_broadcast(a,1) co_broadcast(a,1)

Team 1 Team 2

co_reduce

44

Argument a
— shall be intent(inout), non-polymorphic and not coindexed
— shall have the same shape, dynamic type, & type parameter values, in corresponding

references.
— becomes the result of applying the reduction operation to values of a in the

corresponding references, and likewise on an element-wise basis if a is an array

Argument operation

—shall implement an associative operation via a pure function with two arguments

Argument result_image

—shall be of scalar integer, intent(in) argument

—if present, it shall have the same value on all images of the current team and shall be an
image index of the current team

co_reduce(a, operation, result_image, stat, errmsg)

Hands-on co_reduce

45

https://github.com/sourceryinstitute/sourcery

 1 module co_all_m
 2 implicit none
 3
 4 interface
 5 module subroutine co_all(a)
 6 implicit none
 7 logical, intent(inout) :: a
 8 end subroutine
 9 end interface
 10
 11 end module
 12
 13 submodule(co_all_m) co_all_s
 14 implicit none
 15 contains
 16 module procedure co_all
 17 call co_reduce(a, and)
 18 contains
 19 pure function and(lhs, rhs) result(lhs_and_rhs)
 20 logical, intent(in) :: lhs, rhs
 21 logical lhs_and_rhs
 22 lhs_and_rhs = lhs .and. rhs
 23 end function
 24 end procedure
 25 end submodule
 26
 27 program main
 28 use co_all_m, only : co_all
 29 implicit none
 30 logical :: operand = .true.
 31
 32 associate(me=>this_image())
 33 call co_all(operand)
 34 if (me==1) print *, operand
 35 if (me==num_images()) operand = .false.
 36 call co_all(operand)
 37 if (me==1) print *, operand
 38 end associate
 39 end program

Heat Equation Solver

46

Hands-On Heat Equation

47

Coarrays

48

Non-allocatable (static):

character(len=max_greeting_length) :: greeting[*]

Dynamically allocatable:

 real(rkind), allocatable :: halo_x(:,:)[:]

Derived type components:

 type global_field_t
 real, allocatable :: values_(:)[:]
 end type

Local coarrays:
 subroutine gather_image_numbers
 integer, allocatable :: images(:)[:]
 allocate(images(num_images())[*])
 end subroutine

Derived type coarrays:
 type payload_list_t
 type(payload_t), allocatable :: payloads(:)
 end type

 type(payload_list_t), allocatable :: mailbox[:]

A coarray is a data entity that has nonzero
corank; it can be directly referenced or
defined by other images. It may be a
scalar or an array.

For each coarray on an image, there is
a corresponding coarray with the same
type, type parameters, and bounds on
every other image of a team in which it
is established

=> Symmetric memory
if intrinsic-type coarray

Allow for asymmetric memory}

www.yourwebsite.com

~ut = �1

⇢
rp+ ⌫r2~u� ~u ·r~u

u_t = -(.grad.p)/rho + nu*(.laplacian.u) -(u.dot.(.grad.u))	

Abstract Calculus Pattern

User-defined, purely functional operators

Distributed objects

Burgers Eq. Solver

Platform: Cray XE6 (Hopper
at NERSC)

Burgers, J. M. (1948). A mathematical
model illustrating the theory of
turbulence. Adv. Appl. Mech. (1), 25–27.

Rouson, Xia, & Xu (2011). Scientific
Software Design: The Object-Oriented
Way. Cambridge University Press.

Performance-oriented constraints:
— Query and wait must be local.
— Post and wait are disallowed in do concurrent constructs.

Events
Hello, world!

post
query

wait
greeting_ready(2:n)[1] ok_to_overwrite[3]

post...

Pro tips:
— Overlap communication and computation.
— Wherever safety permits, query without waiting.

Segment Ordering:
Events

An intrinsic module provides the derived type event_type,
which encapsulates an atomic_int_kind integer
component default-initialized to zero.

An image increments the event count on a
remote image by executing event post.

The remote image obtains the post count
by executing event_query.

Image
Control

Side Effect

event post x atomic_add 1

event_query defines count

event wait x atomic_add -1

 Hands-On Asynchronous “Hello, World!”

53

www.yourwebsite.com

FEATS:
Framework for
Extensible
Asynchronous Task
Scheduling

Execution:
In each team, establish one scheduler image and
one or more compute images.
Schedulers post task_assigned events to compute
images in an order that respects dependencies in a
directed acyclic graph (DAG).
Compute images post ready_for_next_task events to
scheduler.
A task_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox
coarray.

Initial target applications:
NASA’s Online Tool for the Assessment of Radiation
in Space (OLTARIS)
NCAR’s Intermediate Complexity Atmospheric
Research (ICAR) model: work-sharing/work-stealing.
Fortran Package Manager: parallel builds.

www.yourwebsite.com

FEATS:
Framework for
Extensible
Asynchronous Task
Scheduling

Execution:
In each team, establish one scheduler image and
one or more compute images.
Schedulers post task_assigned events to compute
images in an order that respects dependencies in a
directed acyclic graph (DAG).
Compute images post ready_for_next_task events to
scheduler.
A task_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox
coarray.

Initial target applications:
NASA’s Online Tool for the Assessment of Radiation
in Space (OLTARIS)
NCAR’s Intermediate Complexity Atmospheric
Research (ICAR) model: work-sharing/work-stealing.
Fortran Package Manager: parallel builds.

Demo

Fortran 2023
— Reductions in do concurrent
— Notified access for remote coarray data

Coming Soon to a Computer Screen Near You

Fortran 202Y (Y ~ 8)
— Type-safe generic programming
— Task-based parallel programming

