U.S. DEPARTMENT OF

ENERGY

Office of Science

~~

reereer

H BERKELEY LAB

Bringing Science Solutions to the World

Coarray Fortran Tutorial

Damian Rouson
Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

Day 1

s« Introduction to Coarray Fortran (“CAF”)
— Why Fortran Matters
— SPMD parallel execution
— PGAS data structures & RMA

s Heat Conduction Solver
— Compiling and running it

— Understanding it

Why Fortran
Matters

Intermediate Complexity Atmospheric U.S. Nuclear Requlatory Commission FUN3D Mesh Adaptation for Mars Ascent
Research (ICAR) Model o an Photoy Vehicle, Courtesy of Eric Nielsen & Ashley
Courtesy of Ethan Gutmann, NCAR Korzun, NASA Langley

Weather &

Climate Nuclear Energy Aerospace

CAF
Philosophy

“The underlying philosophy of our design is to
make the smallest number of changes to the
language required to obtain a robust and
efficient parallel language without requiring the
programmer to learn very many new rules.”

Reid, J., & Numrich, R. W. (2007). Co-arrays in the next
Fortran standard. Scientific Programming, 15(1), 9-26.

Seminal paper:

Numrich, R. W., & Reid, J. (1998, August). Co-Array
Fortran for parallel programming. In ACM SIGPLAN
Fortran Forum (Vol. 17, No. 2, pp. 1-31). New York, NY,
USA: ACM.

Bringing Science Solutions to the World

cd fortran
make run-hi

Single Program Multiple Data (SPMD) parallel execution

— Synchronized launch of multiple “images” (process/threads/ranks)

— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

o0 rouson — vim hi.f90 — 67x5
1 Program main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program

eoe®
cuf23-tutorial: |}

Bringing Science Solutions to the World

8 rouson — -zsh — 64x19

SPMD Execution Sequence BERKELEY LAB

Bringing Science Solutions to the World

Image 1
/. e rouson — vim hi.f90 — 67x5
1 Brogram main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program Image 2

‘ece rouson = vim hi.{90 — 67x5
1 Program main
2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program

Time

l print *,"Hello from image ", this_image(), "of", num_images()
print x,"Hello from image ", this_image(), "of", num_images() ¢
* end program
end program Image
statement

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and 7
partially order segments executed by separate images.

Partitioned Global Address Space
(PGAS)

Coarrays:

— Distributed data structures — greeting

Bringing Science Solutions to the World

cd fortran
make run-hello

— Facilitate Remote Memory Access (RMA) — line 15

® [] cuf23-tutorial — vim hello.f90 — 74x21

program main

Il One-sided communication of distributed greetings

1
2
3 implicit none

4 integer, parameter ::
5 integer image

6 character(len=max_greeting_length)
7

8

associate(me => this_image(), ni=>num_images())

:: greeting[*]

max_greeting_length=64, writer = 1

scalar coarray

9

10 write(greeting,*) "Hello from image",me,"of",ni ! local (no "[]")
11 sync all ! image control

12

13 if (me == writer) then

14 do image = 1, ni

15 print *,greetingl[image] ! one-sided communication: "get"

16 end do

17 end if

18

19 end associate
20 end program

Compiling & Running hello. £90
BERKELEY LAB

rrrrrr

Bringing Science Solutions to the World

cuf23-tutorial: ||

Compiling and Running the Heat .
Equation Solver BERKELEY LAB

Bringing Science Solutions to the World

' ® ® 0 cuf23-tutorial — -zsh — 78x23)

cuf23-tutorial: [

10

Heat Equation BERKELEY LAB

||||||||||||||||||||||||||||||||||

cd fortran
make run-heat-equation

OT)
D T
By aV

(TY" L =T\ L At-a - VH{T)"

T = T+ dt * alpha * .laplacian. T

Heat Equation BERKELEY LAB

Bringing Science Solutions to the World

cd fortran
make run-heat-equation

OT)
D T
By aV

(TY" L =T\ L At-a - VH{T)"

§¥E: §¥E+ dt |*|alpha [* .1ap1acian.§¥€

pure user-defined operators

Class Dlag ram BERKELEY LAB

Bringing Science Solutions to the World

@ subdomain_2D t

s_ :reall]

define()

laplacian(rhs: subdomain_2D_t) : subdomain_2D_t

multiply(lhs : subdomain_2D_t, rhs : subdomain_2D_t) : subdomain_2D_t
add(lhs : subdomain_2D_t, rhs : subdomain_2D_t) : subdomain_2D_t
copy(lhs : subdomain_2D_t, rhs : subdomain_2D_t)

dx()

dy()

values()

exchange_halo()

allocate_halo_coarray()

12

Halo EXChange BERKELEY LAB

Bringing Science Solutions to the World

Asubdomain halo ...
y — —

- =

= 1

gt =

116 real(rkind), allocatable :: halo_x(:,:)I[:]
117 integer, parameter :: west=1, east=2

134 me = this image()
135 num_subdomains = num_images()
137 my_nx = nx/num_subdomains + merge(1l, 0, me <= mod(nx, num_subdomains))

232 subroutine exchange_halo(self)

233 class(subdomain_2D t), intent(in) :: self

234 if (me>1) halo_x(east,:)[me-1] = self%ss_(1,:)

235 if (me<num_subdomains) halo_x(west,:) [me+1] = self%s_(my_nx,:)
236 end subroutine

13

~~

Loop-Level Parallelism Gl crieLey Lap

W Stop Share

Bringing Science Solutions to the World

o} @ (0 X e o ip-172-31-33-230.us-west-2.compute.inter
Applications Places TAU: ParaProf: Statistics for: node 0 - /home/tutorial/SRC/demo/matcha Wed04:13 & o !
TAU: ParaProf: Statistics for: node 0 - /home/tutorial/SRC/demo/matcha - x
File Options Windows Help
ANRNNRNNENRRAE NENNNNNNEENANNNOTAREN RN ENNNNNNNRNNNNNNNANNENAREEEY
- Name Exclu... | Inclu...v Calls |Chil... |
H.TAU application 0 1.516 1 1kl
¢ Otaupreload_main 0.801 1.516 161,499
¢ M[CONTEXT] taupreload_main 0 0811 27 0
¢ D[SUMMARY] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0 }] 0.6 0.6 20 0
O[SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {188}] 0.54 0.54 18 0
BM[SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {183 }] 0.03 0.03 1 0
H([SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {187 }] 0.03 0.03 il 0|
B[SAMPLE] __subdomain_2d_m_MOD_copy [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {217 }] 0.06 0.06 2 0
B[SAMPLE] _ subdomain_2d_m_MOD_add [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {212}] 0.06 0.06 2 0
E[SAMPLE] _ subdomain_2d_m_MOD_multiply [{/home/tutorial/SRC/demo/matcha/example/heat-equation.f90} {207 }] 0.03 0.03 1 0
M[SAMPLE] raw_write [{unix.c} {0}] 0.03 0.03 i 0
M([SAMPLE] __tls_get_addr [{/usr/lib64/1d-2.26.s0} {0}] 0.03 0.03 1 0
=M@MPI_Win_lock() 0363 0.363 20,481 0
>-EMPI_Barrier() 0.21 0.21 12 (Vo
EMPI_Finalize() 0.094 0.094 1 0
EMPI_Win_unlock() 0.018 0.01820,481 0
B MPI_Put() 0.017 0.017 20,480 0
EMPI_Init_thread() 0.01 0.01 1 0
EMPI Collective Sync 0.002 0.002 2 0
EMPI_Comm_dup() 0 0.001 1 1
EMPI_Win_create() 0 0 1 0

188 do concurrent(j=2:ny-1) line continuation
189 laplacian_rhs%s_(1i, j) = 8p""”””

(halo_left(j) - 2#rhs%ss_(i, j) + rhs%ss_(i+1,j))/dx_*k2 + &
190 (rhs%s_(i, j—1) — 2xrhs%s_(i, j) + rhs%s_(i ,j+1))/dy_**2
191 end do 14

Comments BERKELEY LAB

w

Bringing Science Solutions to the World

Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data
Integration with other features:

— Array programming: colon subscripts

—OORP: distributed objects

M | N | mal Iy | nvaS|Ve Desktop — vim pgas.f90 — 56x15

rogram main
implicit none
—Drop brackets when not type foo
integer :: bar=2
. . dt
Communlcat|ng igteggﬁf parameter :: local_size=5

type(foo) :: object(local_size) [*]=foo()

]]] . . associate(me=>this_image(),n=>num_images())
Communication is eXp|ICIt: if (n<3) error stop "Insufficient number of images."
sync all

if (me<n) object(1:2) = object(3:4) [me+1]
—USG braCketS When if (me==1) object(5)[2] = object(5)[3]

end associate

communicating end program

Office of Science
Bringing Science Solutions to the World

Acknowledgements

This presentation includes efforts on the part of contributors to the Caffeine, FEATS, GASNet-EX,
Inference-Engine, Matcha, Nexport, and OpenCoarrays software libraries and members of the
Computer Languages and Systems Software (CLaSS) Group and our collaborators:

Dan Bonachea, Jeremiah Bailey, Tobias Burnus, Alessandro Fanfarillo, Daniel Ceils Garza, Ethan
Gutmann, Jeff Hammond, Paul Hargrove, Peter Hill, Dominick Martinez, Tan Nguyen, Katherine
Rasmussen, Soren Rasmussen, Brad Richardson, Sameer Shende, Robert Singleterry, Harris Snyder,
David Torres, Andre Vehreschild, Jordan Welsman, Nathan Weeks, Yunhao Zhang

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05:000R22725.

Day 2

%1 CAF at Scale

Q‘\
w Teams

Q :
w Image enumeration

Q‘\
s Synchronization

Q\
s Collective Subroutines

Qﬂ
w Coarrays

Qm
w Events

CAF at Scale: Magnetic Fusion

Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on
Ultra-Scale Platforms

Figure 2: GTS field-line following grid & toroidal do-
main decomposition. Colors represent isocontours
of the quasi-two-dimensional electrostatic potential

Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., & Koniges, A. (2011,
November). Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (pp. 1-11).

Bringing Science Solutions to the World

w Application focus:

The shift phase of charged particles in a
tokamak simulation code

Al
Robert Preiss| Nathan Wichmann Bill Lon H H .
w Programming models studied
National Laboratory St. Paul, MN, USA, 55101 St. Paul, MN, USA, 55101 -
Berkeley, CA, USA 94720 wichmann@cray.com longb@cray.com
rpreissl@Ibl.gov
John Shalf Stephane Ethier Alice Koniges AF O M P
Lawrence Berkeley Pnrﬁ:elon Plasma Lawrence Ber%eley C + p e n 0 r
National Laboratory Physics Laboratory National Laboratory
Berkeley, CA, USA 94720 Princeton, NJ, USA, 08543 Berkeley, CA, USA 94720
jshalf@Ibl.gov ethier@pppl.gov aekoniges@Ibl.gov

Two-sided MPI + OpenMP

w Highlights:

Experiments on up to 130,560 processors

58% speed-up of the CAF implementation
over the best multithreaded MPI shifter
algorithm on largest scale

“the complexity required to implement ...
MPI-2 one-sided, in addition to several
other semantic limitations, is prohibitive.”

18

CAF at Scale: CFD, FFTs, Multigrid BERKELEY LAB

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locatel ficp

Comparing Coarray Fortran (CAF) with MPI for several ®cm sssss
structured mesh PDE applications

haw S. Balsara?, John Reid”

Relative efficiency for 7 point stencil

9 0.8
20
2
Y 0.6
£
04
0.2
0

2 N D PR P R PG @ P
R NN A bp%\\g,‘b%w«bg,%

Cores

n CAF Blue Waters m MPI-3 Blue Waters ~ m CAF Darter m MPI-3 Darter

Garain, S., Balsara, D. S., & Reid, J. (2015). Comparing Coarray Fortran (CAF)
with MPI for several structured mesh PDE applications. Journal of Computational
Physics, 297, 237-253.

Bringing Science Solutions to the World

- Applications studied:
— Magnetohydrodynamics (MHD)

— 3D Fast Fourier Transforms (FFTs) used in
infinite-order accurate spectral methods

— Multigrid methods with point-wise
smoothers requiring fine-grained messaging

- Programming models studied:
— CAF or
— One-sided MPI-3

s Highlights:
— Simulations on up to 65,536 cores
— “... CAF either draws level with MPI-3 or
shows a slight advantage over MPI-3.”
— “CAF and MPI-3 are shown to provide
substantial advantages over MPI-2.

— “CAF code is of course much easier to write
and maintain...”

19

CAF at Scale: Weather =

H BERKELEY LAB

Bringing Science Solutions to the World

- Application:
e — European Centre for Medium Range

- Weather Forecasts (ECMWF) operational
weather forecast model

A Partitioned Global Address Space
implementation of the European
Centre for Medium Range Weather
Forecasts Integrated Forecasting
System

- Programming models studied:
— CAF or
— Two-sided MPI

s Highlights:
— Simulations on > 60K cores

George Mozdzynski, Mats Hamrud and Nils Wedi

— performance improvement from switching to
CAF peaks at 21% around 40K cores

Figure 7. EQ_REGIONS partitioning of grid-point space, showing a partition at the poles and then an increasing number of
partitions as we approach the equator. g
£
£
g
2
£
f
E
o
E “
o
o o owe wow 0 s w0 o
Number of Cores
Mozdzynski X G . Hamrud s M . & Wed i s N . (201 5) X A partitioned global add ress (F(I:g,:;;é:) Performance improvement of the T2047 (~ 10 km) model with 137 levels by using Fortran2008 coarrays on HECToR
space implementation of the European centre for medium range weather
forecasts integrated forecasting system. The International Journal of High 20
Performance Computing Applications, 29(3), 261-273.

CAF at Scale: Climate

Development and performance comparison of MPI and Fortran
Coarrays within an atmospheric research model
Extended Abstract
Soren Rasmussen', Ethan D Gutmann?, Brian Friesen®, Damian Rouson?, Salvatore Filippone !,

Irene Moulitsas !
I ul

ABSTRACT

Shwubtion tiese |s

(¢) 400 points per process (d) Cray weak scaling

Figure 3: (a-c) Weak scaling results for 25, 100, and 400 points per process (d) weak scaling for Cray.

Rasmussen, S., Gutmann, E. D., Friesen, B., Rouson, D, Filippone, S., &
Moulitsas, I. (2018). Development and performance comparison of MPI and
Fortran Coarrays within an atmospheric research model. Parallel Applications
Workshop - Alternatives to MPI+x (PAW-ATM), Dallas, Texas, USA.

~

rererer

H BERKELEY LAB

Bringing Science Solutions to the World

w Application:
— Intermediate Complexity Atmospheric
Research (ICAR) model

— Regional impacts of global climate change

- Programming models studied:
— CAF over one-sided MPI
— CAF over OpenSHMEM
— Two-sided MPI
— Cray CAF

w Highlights:
— “... we used up to 25,600 processes and

found that at every data point OpenSHMEM
was outperforming MPI.”

— “The coarray Fortran with MPI backend
stopped being usable as we went over
2,000 processes... the initialization time
started to increase exponentially.”

21

New Frontiers: T-Cell Motility

Cell Reports

Environmental Cues

Graphical Abstract

CD8T Cell

Shape /
Motility

d : - & ++
r
IA"Q‘ >+++
— =
.
WT = CD103*
Highlights
o CDB8T cell movement in the small intestine is constrained by
architecture

 Antiviral CD8 T cell motility is dynamic and changes
throughout infection

o Motility is restricted during memory responses and is CD103
independent

e Scif-specific CD8 T cells initially arested with antigen, but
accelerate when tolerant

x Thompson et ol., 2019, Cell Reports 26, 2859-2867
= March 12, 2019 © 2019 The Author{s).
hitps:/doi.org/10.10164.celep.2019.02.034

Interstitial Migration of CD8u«f T Cells in the Small
Intestine Is Dynamic and Is Dictated by

Authors

Emily A. Thompson, Jason S. Mitchell,
Lalit K. Beura, ..., David Masopust,
Brian T. Fife, Vaiva Vezys

Correspondence

. vvezys@umn.edu

In Brief

Using in vivo imaging of pathogen- and
self-specific CD8 T cells in the small

L ine, TI etal I dy i
changes in the speed and volume of
tissue surveyed by CD8 T cells over time
after antigen encounter. Migration was
CD103 independent, and motility was
most limited during the memory
response.

Thompson, E. A., Mitchell, J. S., Beura, L. K., Torres, D. J., Mrass, P., Pierson,
M. J., ... & Vezys, V. (2019). Interstitial migration of CD8af T cells in the small
intestine is dynamic and is dictated by environmental cues. Cell reports, 26(11),

2859-2867.

Bringing Science Solutions to the World

- Application:
— Matcha: Motility Analysis of T Cells in Activation

— Matching the speed & turning angle
distributions to observed T cells, simulations
can explore large spatial volumes and
parameter spaces.

=

w Programming models:

— Coarray halo exchanges in a 3D diffusion PDE
solver.

— Do concurrent for automatic GPU offloading
s Highlights:

— This tutorial’s 2D heat equation solver was the
prototype for the 3D diffusion solver.

https://go.lbl.gov/matcha

22

https://go.lbl.gov/matcha

W scripts

) README.md

https://go.Ibl.gov/inference-engine

Bringing Science Solutions to the World

w Application:
— Inference-Engine
— In situ neural network training and large-
batch inference for HPC applications
w Language-based parallel & GPU programming:

— Extensive use of array statements,
elemental procedures, do concurrent

— Functional programming pattern:

Every procedure is pure except those that
create and consume JSON file objects.

— Coming soon:
Parallel mini-batch training via co_sum

23

https://go.lbl.gov/inference-engine

||||||||||||||||||||||||||||||||||

Bringing Science Solutions to the World

“ LOOp” Stru cture BERKELEY LAB

lterating sequentially across and within mini-batches of
input/output pairs facilitates in situ training at application
runtime, potentially eliminating the export of large training
data sets or at least making it so that the resulting network
can be trained off-line in fewer iterations.

“ LOOp” Stru cture BERKELEY LAB

Bringing Science Solutions to the World

The only other sequential logic is All other logic is implicitly parallel
the (mostly) necessary stepping array statements or do concurrent
through layers: blocks:

_—
\

Fast-GPT

[N J < > [) B @ ondrejcertik.com/blog/2023/03/fastgpt-faster-thar ¢ [TJ + ©

Bringing Science Solutions to the World

Ondrej Certik

FASTGPT: FASTER THAN PYTORCH IN 300 LINES

OF FORTRAN

March 14, 2023
Authors: OndFej Certik, Brian Beckman

In this blog post | am announcing fastGPT, fast GPT-2 inference written in Fortran. In it, | show

-

Fortran has speed at least as good as default PyTorch on Apple M1 Max.
2. Fortran code has statically typed arrays, making maintenance of the code easier than with Python

3. It seems that the bottleneck algorithm in GPT-2 inference is matrix-matrix multiplication. For physicists
like us, matrix-matrix multiplication is very familiar, unlike other aspects of Al and ML. Finding this
familiar ground inspired us to approach GPT-2 like any other numerical computing problem.

4. Fixed an unintentional single-to-double conversion that slowed down the original Python.

5. | am asking others to take over and parallelize fastGPT on CPU and offload to GPU and see how fast
you can make it.

About one month ago, | read the blogpost GPT in 60 Lines of NumPy, and it piqued my curiosity. | looked at
the corresponding code (picoGPT) and was absolutely amazed, for two reasons. First, | hadn't known it could
be so simple to implement the GPT-2 inference. Second, this looks just like a typical computational physics
code, similar to many that | have developed and maintained throughout my career.

Toams
BERKELEY LAB

Bringing Science Solutions to the World

An ordered set of images created by execution of a form team statement, or the initial
ordered set of all images.

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Teams facilitate the execution of an image sets independently from other image sets,
e.g., a sync all statement synchronizes the current team only.

An extensible derived type team type with private components describes a team after
the successful execution of a form team statement.

28

CAF/MPI Rosetta Stone BERKELEY LAB

Bringing Science Solutions to the World

Program execution sequence over time (left axis) in 12 images
(top) initially globally and then within subgroups.

Fortran MPI procedure
statement or or variable
procedure

i

change team(...)

form team(..) MPI_Comm_Split(..)

° I i I Iyt Ay Al A
o [T _ o
1 2 3 — Defaultg:ommunication
team_number (...) color W— mechanisms
end team MPI_Barrier(..) | .iaes
...... Optional communication
------ mechanism

29

~~

Teams Test Code il BERKELEY LaB

Bringing Science Solutions to the World

1 program main
L i . . 2 'l Test team_number intrinsic function
Incremental caffeination of.a terrestrial hydrological modeling 3 use iso fortran env. on -Ly . team type
framework using Fortran 2018 teams — — 4 —
Extended Abstract 4 use assertions_module , only : assertions
Dumin fovson >
. Calit 6 implicit none

ABSTRACT 1 INTRODUCTION 7

e o et AN e oot ot 8 integer , parameter :: standard_initial_value = -1

o s 9 type(team_type), target :: home
10
11 call assert(team_number() == standard_initial_value)
12
13 associate(my_team=>mod(this_image(),2) + 1)
14
15 form team(my_team,home) ! Map even|odd images->teams 1|2
16 change team(home)
17 call assert(team_number() == my_team)
18 end team
19
20 call assert(team_number() == standard_initial_value)
21
22 end associate

Figure 4: WRF-Hydro caffeination via Fortran 2018 teams: 23

example components of fhe National Water Model. Diﬂ.'er- 24 sync a 11

ent MPI colors represent independent teams, each of which

is an ensemble member. 25
26 if (this_image() == 1) print *, "Test passed."
27
28 end program

Rouson, D., McCreight, J. L., & Fanfarillo, A. (2017, November). Incremental
caffeination of a terrestrial hydrological modeling framework using Fortran 2018
teams. In Proceedings of the Second Annual PGAS Applications Workshop (pp.
1-4).

30

Image Enumeration

- Obtaining an image index:

this image([team])

this image(coarray [,team])

Bringing Science Solutions to the World

image index(coarray, sub, team number)

image index(coarray, sub, team)

this image(coarray, dim [,team]) image index(coarray, sub)

- Obtaining an image count:
num images|()
num images (team)

num images (team number)

scripted — vim image-enumeration.f90 — 64x10

program main
implicit none
integer al-1:%], b(10)[-1:1, -1:x]
if (this_image()==num_images()) then
print x, this_image(a)
print *, image_index(a,[3]), image_index(b,
print %, lcobound(a), ucobound(a)
end if
end program

31

Image Enumeration
BERKELEY LAB

b(:)

Bringing Science Solutions to the World

a [[0 | [| (21 | [38] | [4]

[-1,0] | [0,0]

eoe
program main
implicit none

scripted — vim image-enumeration.f90 — 64x10

[-1,-1]1| [0,-1] |[1,-1]

1
2
3 integer al-1:%], b(10)[-1:1, -1:x]
4 if (this_image()==num_images()) then
5 print x, this_image(a)

6 print %, image_index(a,[3]), image_index(b, [90,0])
7 print *, lcobound(a), ucobound(a)

8. cend i f
T scripted — -zsh — 64x10

a8 All
cuf23-tutorial: cafrun -n 5 ./image-enumeration —
3
5 5
-1 3
lcuf23-tutorial: 2571
cafrun -n 1 ./image-enumeration
-1
0 0
-1 -1

32

cuf23-tutorial: [

Synchronization
BERKELEY LAB

Bringing Science Solutions to the World

- Image barriers (“meet-ups”):
sync all(stat, errmsqg)

sync i1lmages (image-set, stat, errmsgqg)

allocate() for coarrays only, including implicit
} (de)allocation at end of a block or procedure

deallocate()

stop stop code (integer or character codes allowed)

end program

call move alloc(from,to) with coarray arguments.

Any statement causing an implicit coarray deallocation by completing a block or procedure.
w Deprecated by Metcalf, Reid & Cohen (2018):

sync memory(stat, errmsgqg)

33

Other Image Control Statements
BERKELEY LAB

Bringing Science Solutions to the World

)]
w Locks: A lock variable is a

: coarray object of the
ltock(lock-variable, errmsg) } extens)i/blejintrinsic type
lock_ type with private

components.

unlock(lock-variable, stat, errmsqg)

w Critical blocks:
critical(stat, errmsgqg)
end critical
w Teams
form team(team number, team variable)

change team(team value, ..)

end team

)
w Events An event variable is a

event post(event-variable, stat, errmsg) coarray object of the
extensible intrinsic type

event type with
private components.

event wait(event-variable, stat, errmsqg)

34

Collective Subroutines
BERKELEY LAB

Bringing Science Solutions to the World

w Behavior:

— Successful execution of a collective subroutine performs a calculation on all the
images of the current team and assigns a computed value on one or all of them.

— If it is invoked by one image, it shall be invoked by the same statement on all
active images of its current team in segments that are not ordered with respect
to each other

— Corresponding references participate in the same collective computation.
w Complete list:

—co _sum(a, result_image, stat, errmsg)

—co_max(a, result_image, stat, errmsg)

—co_min(a, result_image, stat, errmsg)

—co broadcast(a, source image, stat, errmsg)

—co_reduce(a, operation, result_image, stat, errmsg)

35

co_sum BERKELEY LAB

Bringing Science Solutions to the World

co sum(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

36

co_sum BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)(2] a(1:4)[6]

e[] i[ol:]

Time

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[5] a(1:4)[6]

|9 12| 8 |u |8]9 f12]8 [u]
74

37

co_max BERKELEY LAB

Bringing Science Solutions to the World

co max(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

38

co_max BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[2] a(1:4)[4]

lefs]1] Sfs]1)

Time

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[2]

el

39

co_min BERKELEY LAB

Bringing Science Solutions to the World

co min(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

40

co_min BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 5 Image 6
a(1:4)[1] a(1:4)[3] a(1:4)[6]

1[5[3[e] B0aq| Jefol1]

Time

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[2] a(1:4)[3] a(1:4)[6]

2]4/0[1
I/

41

CO_broadcaSt BERKELEY LAB

Bringing Science Solutions to the World

co broadcast(a, source image, stat, errmsqg)

w Argument a

— shall have the same shape, dynamic type, & type parameter values, in corresponding
references.

— shall not be a coindexed object
—is an intent (inout) argument

— successful execution causes a to become defined as if by intrinsic assignment on all
images in the current team with the value of a on the source_image

w Argument source image
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

42

Co_brOadcaSt BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

a(1:4)[6]

Jafol1]

Time

co broadcast(a,l)

Image 1 Image 2 Image 3

a(1:4)[1] a(1:4)[2] a(1:4)[3]

Image 4 Image 5 Image 6
a(1:4)[6]

3[4/t

AGE0 | EEn | neEn

43

co_reduce BERKELEY LAB

Bringing Science Solutions to the World

co reduce(a, operation, result image, stat, errmsgqg)

w Argument a

— shall be intent (inout), non-polymorphic and not coindexed

— shall have the same shape, dynamic type, & type parameter values, in corresponding
references.

— becomes the result of applying the reduction operation to values of a in the
corresponding references, and likewise on an element-wise basis if a is an array

s« Argument operation

—shall implement an associative operation via a pure function with two arguments
w Argument result image

—shall be of scalar integer, intent(in) argument

—if present, it shall have the same value on all images of the current team and shall be an
image index of the current team

44

Hands-on co _reduce BERKELEY LAB

Bringing Science Solutions to the World

module co_all_m
implicit none

interface
module subroutine co_all(a)
implicit none
logical, intent(inout) :: a
end subroutine
end interface

CoOoONOULTAWN -

11 end module

13 submodule(co_all_m) co_all_s
14 implicit none

15 contains

16 module procedure co_all

17 call co_reduce(a, and)

18 contains

19 pure function and(lhs, rhs) result(lhs_and_rhs)
20 logical, intent(in) :: lhs, rhs

21 logical lhs_and_rhs

22 lhs_and_rhs = 1lhs .and. rhs

23 end function

24 end procedure
25 end submodule

27 program main
28 use co_all_m, only : co_all
29 implicit none

30 logical :: operand = .true.

31

32 associate(me=>this_image())

33 call co_all(operand)

34 if (me==1) print *, operand

35 if (me==num_images()) operand = .false.

36 call co_all(operand)

37 if (me==1) print %, operand

38 end associate

39 end program 45

https://github.com/sourceryinstitute/sourcery

https://github.com/sourceryinstitute/sourcery

~~

Heat Equation Solver §(il BERKELEY LAB

Bringing Science Solutions to the World

cuf23-tutorial — vim heat-equation.f90 — 110x39

240 program heat_equation

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277 flnd program

Il Parallel finite difference solver for the 2D, unsteady heat conduction partial differential equation
use subdomain_2D_m, only : subdomain_2D_t

use iso_fortran_env, only : inté4

use kind_parameters_m, only : rkind

implicit none

type(subdomain_2D_t) T

integer, parameter :: nx = 4096, ny = nx, steps = 50
real(rkind), parameter :: alpha = 1._rkind
real(rkind) T_sum

integer(inté4) t_start, t_finish, clock_rate

integer step

call T%define(side=1._rkind, boundary_val=1._rkind, internal_val=2._rkind, n=nx)! Initial/boundary cond.
call T%allocate_halo_coarray ! implicit synchronization

associate(dt => T%dx()*T%dy()/(4xalpha)) ! set time step
call system_clock(t_start)

do step = 1, steps
call T%exchange_halo ! put subdomain boundary values on neighboring images
sync all
T = T+ dt * alpha * .laplacian. T ! asynchronous parallel user-defined operators
sync all
end do

end associate

T_sum = sum(T%values()) ! local sum
call co_sum(T_sum, result_image=1) ! distributed collective sum

call system_clock(t_finish, clock_rate)

if (this_image()==1) then
print %, "walltime: ", real(t_finish - t_start, rkind) / real(clock_rate, rkind)
print *,"T_avg = ", T_sum/(nxxny)

end if

46

~

Hands-On Heat Equation SRl cerKELEY LAB

Bringing Science Solutions to the World

eoe < 0 & github.comjrouson/cuf23-tutoriali#heat-equation-exercise © M + O

‘= README.md V4

Heat Equation Exercise

In addition to demonstrating parallel features of Fortran 2018, this example shows an object-
oriented, functional programming style based on Fortran's user-defined operators such as the

.laplacian. operator defined in this example. To demonstrate the expressive power and
flexibility of this approach, try modifying the modifying the main program to use 2nd-order Runge-
Kutta time advancement:

T_half = T + 0.5%dtxalphax .laplacian. T
call T%exchange_halo

sync all

T = T + dtxalpha* .laplacian. T_half
call T%exchange_halo

sync all

You'llneed to append , T_half tothe declaration type(subdomain_2D_t) T .With some
care, you could modify the main program to use any desired order of Runge-Kutta algorithm
without changing any of the supporting code.

This example also demonstrates a benefit of Fortran's facility for declaring a procedure to be

pure : the semantics of pure procedures essentially guarantees that the above right-hand-side
expressions can be evaluated fully asynchronously across all images. No operator can modify
state that would be observable by another operator other than via the first operator's result. This
would be true even if an operator executing on one image performs communication to get data
from another image via a coarray. To reduce communication waiting times, however, each image in
our example proactively puts data onto neighboring images. Puts generally outperform gets
because the data can be shipped off as soon the data are ready. With the exception of one
coarray allocationinthe define procedure, all procedures are asynchronous and all image
control is exposed in the main program.

47

Coarrays

w Non-allocatable (static):
character(len=max_greeting_length) :: greetingl[x*]
- Dynamically allocatable:
real(rkind), allocatable :: halo_x(:,:)[:]
w Derived type components:
type global_field_t

real, allocatable ::
end type

values_(:)[:]

b |
w | ocal coarrays:

subroutine gather_image_numbers
integer, allocatable :: images(:)[:]
allocate(images(num_images()) [*])
end subroutine

s Derived type coarrays:

type payload_list_t
type(payload_t), allocatable ::
end type

payloads(:)

type(payload_1list_t), allocatable :: mailbox[:]

Bringing Science Solutions to the World

A coarray is a data entity that has nonzero
corank; it can be directly referenced or
defined by other images. It may be a
scalar or an array.

For each coarray on an image, there is
a corresponding coarray with the same
type, type parameters, and bounds on

every other image of a team in which it
is established

=> Symmetric memory
if intrinsic-type coarray

} Allow for asymmetric memory

48

User-defined, purely functional operators

PARR RSN

ut = -(.grad.p)/rho + nu*(.laplacian.u) -(u.dot. (.grad.u))

\\ ///

Distributed objects

Burgers Eq. Solver

U

1.00 P& < 4
* ®
g
0.80
3480.714 —T/
3480.714 7 2610.536 —
& 0.60 £ 1740.357
5 g_ 870.179
‘S § 7
o
& os0 l§
0.20 0 et
T o*® <
Weak Scaling k:i e
0.00 =, o e E o
0 5000 10000 15000 See. TR
Number of Images 2% %

Burgers, J. M. (1948). A mathematical
model illustrating the theory of
turbulence. Adv. Appl. Mech. (1), 25-27.

Platform: Cray XE6 (Hopper
at NERSC)

Rouson, Xia, & Xu (2011). Scientific
Software Design: The Object-Oriented
Way. Cambridge University Press.

http://www.nersc.gov

Events
Hello, world!

Performance-oriented constraints:
— Query and wait must be local.

— Post and wait are disallowed in do concurrent constructs.

-
Pro tips:
- — Overlap communication and computation. -
| i~ Wherever safety permits, query without waltlr)g. i
e _ A" N~ N0 4 P
e Baag

Events

An intrinsic module provides the derived type event type,
which encapsulates an atomic int kind integer
component default-initialized to zero.

prografl main
implicit none
use iso_fortran_env, only : event_type
type(event_type), allocatable :: greeting_ready(:)[:]
type(event_type) :: ok_to_overwrite[x]
|

An image increments the event count on a rouson — vim events.f90 — 56x7

remote image by executing event post.

The remote image obtains the post count
by executing event query.

Image Side Effect
Control
: -
defines count

Bringing Science Solutions to the World

< 0 5 & github.com/rouson/cuf23-tutorial#t (@ @ [1_] o [a

README.md V4

Asynchronous Hello World Exercise

Try adjusting the delay_magnitude constant to larger or smaller
non-negative values. For each new value, recompile once and rerun
the program multiple times. Explain the resulting program output.

53

FEATS:

Framework for
Extensible
Asynchronous Task
Scheduling

Execution:
4- In each team, establish one scheduler image and

one or more compute images.
4- Schedulers post task_assigned events to compute
images in an order that respects dependencies in a

directed acyclic graph (DAG).

4- Compute images post ready_for_next_task events to
scheduler.

4 Atask_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox

coarray.

Initial target applications:
4- NASA's Online Tool for the Assessment of Radiation
in Space (OLTARIS)
4 NCAR'’s Intermediate Complexity Atmospheric
Research (ICAR) model: work-sharing/work-stealing.
4- Fortran Package Manager: parallel builds.

FEATS:

Framework for
Extensible
Asynchronous Task

Scheduling

Execution:
4- In each team, establish one scheduler image and

one or more compute images.

4- Schedulers post task_assigned events to compute
images in an order that respects dependencies in a
directed acyclic graph (DAG).

4- Compute images post ready_for_next_task events to
scheduler.

4 Atask_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox

coarray.

Initial target applications:
4- NASA’s Online Tool for the Assessment of Radiation
in Space (OLTARIS)
4 NCAR'’s Intermediate Complexity Atmospheric

Research (ICAR) model: work-sharing/work-stealing.

4- Fortran Package Manager: parallel builds.

/

Define Tasks

Partition Tasks and Form Teamsl

o

\

T XXX

scheL?uIer computel ..‘. cnmputeN

loop /) lover all(ompnle‘images] '

\ task_assign/notify)
—

| task _assign/notify) |
'—)‘
(ask _assign/notify | |

Ioog /" [while any muss.gned Iasks]

| ready_for_task
.47\
| task_assign/notify _ |
.—x
|_ ready_for_task

| task_assign/notify |

_ ready_for_task

! task_assign/notify |

scheduler computel .. computeN

Team 1

T 113

schequler computel

(ompuleN

Iooe / lover all :ompule‘im)ges] '
| task_assign/notify _| |
——

| task_assign/notify |

‘(ask _assign/notify |

e e e

| ready_for_task
‘7‘
| task_assign/notify _|
‘4»
| ready_for_task

Ioog /" [while any unassngn«t nsks]

| task_assign/notify |

_ ready_for_task

! task_assign/notify |

scheduler computel

computeN

Team N

Demo

veo T feats — -tah — 17134

[rouson:~/Repositories/sourceryinstitute/feats] main+x 395 130 = |

Coming Soon to a Computer Screen Near You

L Fortran 2023
— Reductions in do concurrent
— Notified access for remote coarray data

L Fortran 202Y (Y ~ 8)
— Type-safe generic programming
— Task-based parallel programming

