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Schedule for Chapel, UPC++ and Fortran Tutorial

Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview
○ including a 20-minute intro to each programming model

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm 

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays
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Audience questions

Slack is preferred:
go.lbl.gov/cuf23-slack 

alternatively use Zoom chat

https://go.lbl.gov/cuf23-slack


Motivation

● You have …
○ A lot of data to process and analyze
○ A big simulation to run
○ Or both of the above

● Resources are available
○ Your laptop has multiple cores that can process in parallel
○ Your lab/institution has a cluster
○ Or your lab/institution has a supercomputer

● Writing a parallel program enables you to analyze data and/or perform 
simulations significantly faster.
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● PGAS: Partitioned Global Address space
● Chapel, UPC++, and Fortran with coarrays are PGAS programming models
● A programming model provides an interface and code patterns to a 

programmer along with a concept of how code will execute at runtime.

PGAS Programming Models
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Conceptual global address space
Process 
w/virtual 
address 
space

Process 
w/virtual 
address 
space

Process 
w/virtual 
address 
space

Process 
w/virtual 
address 
space

PGAS Programming Models

● Can access variables in global 
address space from each node

● Implemented with puts and gets 
(RMA: remote memory access)

● Can partition/organize data and 
computation to reduce RMA



This tutorial: Chapel, UPC++, Fortran with coarrays

● Shared example shown in all three: 2D heat diffusion
● Then other examples per programming model

○ Chapel: k-mer counting, image analysis, processing files in parallel
○ UPC++: 1-d Jacobi solver, distributed hash table
○ Fortran: 2-d heat equation, hello world variants

● Hands On
○ Providing a cloud instance, Perlmutter, and Frontier instructions for obtaining a tarball 

containing all example programs: go.lbl.gov/cuf23 
○ You are encouraged to compile, run, and experiment with the examples throughout

● Q&A Protocol
○ Model experts are available to answer questions in Slack: go.lbl.gov/cuf23-slack 

■ You should have received an email invite, or can follow the link above
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Production Applications using these Programming Models

MetaHipMer, a genome assembler written in UPC++

ICAR: 
Intermediate 
Complexity 
Atmospheric 
Research model 
written in 
Coarray Fortran 

https://github.com/NCAR/icar
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https://github.com/NCAR/icar


Hands On: Compiling and Running Hello Worlds

● Instructions on how to compile and run a hello world for all three 
programming models.

● Hands-on examples and instructions: go.lbl.gov/cuf23 
○ Options include:

■ NERSC Perlmutter, OLCF Frontier, AWS Cloud, Docker, …
○ Pause here for attendees to setup their programming environment
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Shared Problem: 2D Heat Diffusion

● Specifically a 2D heat diffusion problem 
○ 2D diffusion equation is above. Mathematical details: wikipedia.org/wiki/Heat_equation
○ Discretization solving for the unknown at time step n+1 and spatial coordinate i,j

● Steps in sample codes
○ Set some initial conditions for u0

○ Estimate u over time and space as shown below
○ Show how to parallelize these computations
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Simplified form
assume 𝚫x=𝚫y, and let 𝛂=𝛎𝚫t/𝚫x2 

https://wikipedia.org/wiki/Heat_equation


Three questions about how you program

● Have you used a cluster or supercomputer before?  If so, what were their 
characteristics (number of nodes, threads per node, etc)?

● Where do you go when you have programming questions? A colleague, stack 
overflow, google search, documentation, …

● For your code, what computations/libraries are most important for your work?
NOTE:  The pollEV survey starts on 
the next slide, but it won’t show the 
above questions.  This slide is to 
show you what those questions will 
be.
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Schedule for Chapel, UPC++ and Fortran Tutorial
Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview, 20-minute intro to each programming model
○ Chapel Intro
○ Fortran with co-arrays Intro
○ UPC++ Intro

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm 

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays
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CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

INTRODUCTION TO CHAPEL PARALLEL 
PROGRAMMING LANGUAGE



• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.
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CHAPEL PROGRAMMING LANGUAGE



APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration 
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://wikipedia.org/wiki/Heat_equation


CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in 

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed 

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup

5

HIGHLIGHTS OF CHAPEL USAGE



HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE
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• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



Four nodes/CPUs
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CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4   # or  ‘–nl 4’



9

TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

‘here’ refers to the locale on 
which we’re currently running

how many processing units 
(think “cores”) does my locale have?

what’s my locale’s name?

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

a 'coforall’ loop executes each 
iteration as an independent task

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

So far, this is a shared-memory program

Nothing refers to remote locales, 
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)
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coforall loc in Locales {
  on loc {
    const numTasks = here.maxTaskPar;
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  }  
}

the array of locales we’re running on 
(introduced a few slides back)

Locales array:

Locale 0 Locale 1 Locale 2 Locale 3

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
  on loc {
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  }  
}

create a task per locale 
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 1 of 4 on n1034
Hello from task 2 of 4 on n1032
Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034 
Hello from task 1 of 4 on n1035
…

hello-dist-node-names.chpl



• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos
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2D HEAT DIFFUSION EXAMPLE See https://go.lbl.gov/cuf23-repo for more info 
and for example code.



• 2D heat diffusion PDE

• Solving for next temperatures at each time step 
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all 
the values and time to solution
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PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

!!,#$%& = !!,#$ + $ !!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

!$ !$%&
Stored in uStored in un

Fixed 
boundary 

values

Simplified form for below
assume 'x='y, and let 

(=)'t/'x2

forall (i, j) in indicesInner do
  u[i, j] = un[i, j] + alpha *
   (un[i, j-1] + un[i-1, j] + un[i+1, j] + 

       un[i, j+1] - 4 * un[i, j]);



• Declaring 'u' and 'un' arrays

• Declaring 'u' and 'un' arrays as distributed (e.g., 
2x2 distribution is shown)

• Reads that cross the distribution boundary will 
result in a remote get
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DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

!$ !$%&
Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
      INDICES = Block.createDomain(indices);
var u: [INDICES] real;



• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales 

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

19

PARALLELISM SUPPORTED BY CHAPEL

iterationiteration coforall
iteration

stmt
  beginbegin

begin

stmt

stmt



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

20

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



Coarray Fortran Tutorial
Damian Rouson 

Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023
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 Introduction to Coarray Fortran (“CAF”) 

  — Why Fortran Matters 

  — SPMD parallel execution 

  — PGAS data structures & RMA 

 Heat Conduction Solver 

  — Compiling and running it 

  — Understanding it
2



Why Fortran 
Matters

Weather & 
Climate Nuclear Energy Aerospace

Intermediate Complexity Atmospheric 
Research (ICAR) Model

Courtesy of Ethan Gutmann, NCAR

U.S. Nuclear Regulatory Commission 
File Photo

FUN3D Mesh Adaptation for Mars Ascent 
Vehicle, Courtesy of Eric Nielsen & Ashley 

Korzun, NASA Langley 
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Why Fortran 
Matters

Weather & 
Climate Nuclear Energy Aerospace

Intermediate Complexity Atmospheric 
Research (ICAR) Model

Courtesy of Ethan Gutmann, NCAR

U.S. Nuclear Regulatory Commission 
File Photo

FUN3D Mesh Adaptation for Mars Ascent 
Vehicle, Courtesy of Eric Nielsen & Ashley 

Korzun, NASA Langley 
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CAF 
Philosophy

“The underlying philosophy of our design is to 
make the smallest number of changes to the 
language required to obtain a robust and 
efficient parallel language without requiring the 
programmer to learn very many new rules.” 

Reid, J., & Numrich, R. W. (2007). Co-arrays in the next 
Fortran standard. Scientific Programming, 15(1), 9-26. 

Seminal paper: 

Numrich, R. W., & Reid, J. (1998, August). Co-Array 
Fortran for parallel programming. In ACM SIGPLAN 
Fortran Forum (Vol. 17, No. 2, pp. 1-31). New York, NY, 
USA: ACM. 
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Single Program Multiple Data

Single Program Multiple Data (SPMD) parallel execution
— Synchronized launch of multiple “images” (process/threads/ranks)
— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

cd fortran 
make run-hi 
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Compiling and Running hi.f90
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Compiling and Running hi.f90
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SPMD Execution Sequence
Ti

m
e

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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SPMD Execution Sequence
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SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program Image 
control 
statement}

1. After the creation of a fixed number of images, each image’s first “segment” (sequence 
of statements) executes. 

2. Image control statements totally order segments executed by a single image and 
partially order segments executed by separate images.
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Partitioned Global Address Space 
(PGAS)

Coarrays:
— Distributed data structures — greeting
— Facilitate Remote Memory Access (RMA) — line 15

cd fortran 
make run-hello 
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Compiling & Running hello.f90
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Compiling & Running hello.f90
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Compiling and Running the Heat 
Equation Solver
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Compiling and Running the Heat 
Equation Solver
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Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T =  T + dt * alpha * .laplacian. T

cd fortran 
make run-heat-equation 

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T
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Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T =  T + dt * alpha * .laplacian. T

local objects 

cd fortran 
make run-heat-equation 

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T
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Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T =  T + dt * alpha * .laplacian. T

local objects 

pure user-defined operators 

cd fortran 
make run-heat-equation 

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T
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Class Diagram
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Halo Exchange

116 real(rkind), allocatable :: halo_x(:,:)[:] 
117 integer, parameter :: west=1, east=2 

134 me = this_image() 
135 num_subdomains = num_images() 
137 my_nx = nx/num_subdomains + merge(1, 0, me <= mod(nx, num_subdomains)) 

232 subroutine exchange_halo(self) 
233   class(subdomain_2D_t), intent(in) :: self 
234   if (me>1) halo_x(east,:)[me-1] = self%s_(1,:) 
235   if (me<num_subdomains) halo_x(west,:)[me+1] = self%s_(my_nx,:) 
236 end subroutine

x

y
subdomain halo …
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Loop-Level Parallelism

188 do concurrent(j=2:ny-1) 
189   laplacian_rhs%s_(i, j) = & 
      (halo_left(j)   - 2*rhs%s_(i, j) + rhs%s_(i+1,j  ))/dx_**2 + & 
190   (rhs%s_(i, j-1) - 2*rhs%s_(i, j) + rhs%s_(i  ,j+1))/dy_**2 
191 end do

line continuation
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Comments

Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data
Integration with other features:
—Array programming: colon subscripts
—OOP: distributed objects 
Minimally invasive:
—Drop brackets when not   
    communicating

Communication is explicit:
—Use brackets when 
    communicating

15
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What does UPC++ offer?

Asynchronous behavior
• RMA: 

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication. 

• RPC: Remote Procedure Call: 
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes

• Sparse matrices 

• Hash tables and histograms

• Graph analytics

• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Some motivating system trends
The first exascale systems appeared in 2022
• Cores per node is growing

• Accelerators (e.g. GPUs) are becoming more important

• Latency is not improving
Need to reduce communication costs in software
• Overlap communication to hide latency
• Reduce memory using smaller, more frequent messages

• Minimize software overhead 

• Use simple messaging protocols (RDMA)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Reducing communication overhead
Let each process directly access another’s memory via a global pointer

Communication is one-sided – there is no “receive” operation

• No need to match sends to receives
• No unexpected messages

• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split
between sender and receiver

• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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One-sided GASNet-EX vs one- and two-sided MPI
Four distinct network hardware types
The performance of one-sided 
GASNet-EX matches or exceeds that 
of MPI RMA and message-passing:
• 8-byte Put latency 19 - 52% better
• 8-byte Get latency 16 - 49% better
• Better flood bandwidth efficiency: 

often reaching same or better 
peak at ½ or ¼ the transfer size

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory

• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008), 
UPC, Titanium, X10
Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays, 
DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence 
Berkeley National Laboratory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Execution model: SPMD
Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution, 
where a fixed number of processes run the same program
int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Global pointers
Global pointers are used to create logically shared but physically 
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw) 
pointer: e.g. global_ptr<double>, global_ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Global vs raw pointers and affinity
The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to 
objects in the global address space that have affinity to that process

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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How does UPC++ deliver the PGAS model?
UPC++ uses a “compiler-free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can 

be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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UPC++ on top of GASNet

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Asynchronous communication (RMA)

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an 
optional result 

1.Initiator injects the RPC to the target process 
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Hands-on: 2D heat diffusion
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and 
changed to the cuf23/upcxx directory:

$ make run-heat2d
upcxx heat2d.cpp -Wall  -o heat2d
upcxx-run -N 1 -n 4 ./heat2d
[2] My Neighbors: (1, 3)     My Domain: (2048,3072)
[3] My Neighbors: (2, -1)     My Domain: (3072,4096)
[0] My Neighbors: (-1, 1)     My Domain: (0,1024)
[1] My Neighbors: (0, 2)     My Domain: (1024,2048)
[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Command to run 
in the terminal Copy this and add arguments to change the 

problem size, e.g.:
upcxx-run -N 1 -n 4 ./heat2d 8192 8192


