
Introduction to High-Performance
Parallel Distributed Computing using
Chapel, UPC++, and Coarray Fortran

ECP/NERSC/OLCF 2023 Tutorial
30-minute Intro session

go.lbl.gov/cuf23

https://go.lbl.gov/cuf23

Introduction to High-Performance Parallel Distributed
Computing using Chapel, UPC++ and Coarray Fortran

Other Contributors:

Dan Bonachea, Jeremiah Corrado, Paul H. Hargrove,
Katherine Rasmussen, Sameer Shende, Daniel Waters

2

Dr. Michelle Mills Strout Dr. Damian Rouson Dr. Amir Kamil

Acknowledgements

This work was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the
nation’s exascale computing imperative.
This work used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231, as well as This research used resources of
the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

3

Schedule for Chapel, UPC++ and Fortran Tutorial

Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview
○ including a 20-minute intro to each programming model

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays

4

Audience questions

Slack is preferred:
go.lbl.gov/cuf23-slack

alternatively use Zoom chat

https://go.lbl.gov/cuf23-slack

Motivation

● You have …
○ A lot of data to process and analyze
○ A big simulation to run
○ Or both of the above

● Resources are available
○ Your laptop has multiple cores that can process in parallel
○ Your lab/institution has a cluster
○ Or your lab/institution has a supercomputer

● Writing a parallel program enables you to analyze data and/or perform
simulations significantly faster.

5

6

● PGAS: Partitioned Global Address space
● Chapel, UPC++, and Fortran with coarrays are PGAS programming models
● A programming model provides an interface and code patterns to a

programmer along with a concept of how code will execute at runtime.

PGAS Programming Models

7

Conceptual global address space
Process
w/virtual
address
space

Process
w/virtual
address
space

Process
w/virtual
address
space

Process
w/virtual
address
space

PGAS Programming Models

● Can access variables in global
address space from each node

● Implemented with puts and gets
(RMA: remote memory access)

● Can partition/organize data and
computation to reduce RMA

This tutorial: Chapel, UPC++, Fortran with coarrays

● Shared example shown in all three: 2D heat diffusion
● Then other examples per programming model

○ Chapel: k-mer counting, image analysis, processing files in parallel
○ UPC++: 1-d Jacobi solver, distributed hash table
○ Fortran: 2-d heat equation, hello world variants

● Hands On
○ Providing a cloud instance, Perlmutter, and Frontier instructions for obtaining a tarball

containing all example programs: go.lbl.gov/cuf23
○ You are encouraged to compile, run, and experiment with the examples throughout

● Q&A Protocol
○ Model experts are available to answer questions in Slack: go.lbl.gov/cuf23-slack

■ You should have received an email invite, or can follow the link above

8

https://go.lbl.gov/cuf23
https://go.lbl.gov/cuf23-slack

Production Applications using these Programming Models

MetaHipMer, a genome assembler written in UPC++

ICAR:
Intermediate
Complexity
Atmospheric
Research model
written in
Coarray Fortran

https://github.com/NCAR/icar

9

https://github.com/NCAR/icar

Hands On: Compiling and Running Hello Worlds

● Instructions on how to compile and run a hello world for all three
programming models.

● Hands-on examples and instructions: go.lbl.gov/cuf23
○ Options include:

■ NERSC Perlmutter, OLCF Frontier, AWS Cloud, Docker, …
○ Pause here for attendees to setup their programming environment

10

https://go.lbl.gov/cuf23

11

Shared Problem: 2D Heat Diffusion

● Specifically a 2D heat diffusion problem
○ 2D diffusion equation is above. Mathematical details: wikipedia.org/wiki/Heat_equation
○ Discretization solving for the unknown at time step n+1 and spatial coordinate i,j

● Steps in sample codes
○ Set some initial conditions for u0

○ Estimate u over time and space as shown below
○ Show how to parallelize these computations

12

Simplified form
assume 𝚫x=𝚫y, and let 𝛂=𝛎𝚫t/𝚫x2

https://wikipedia.org/wiki/Heat_equation

Three questions about how you program

● Have you used a cluster or supercomputer before? If so, what were their
characteristics (number of nodes, threads per node, etc)?

● Where do you go when you have programming questions? A colleague, stack
overflow, google search, documentation, …

● For your code, what computations/libraries are most important for your work?
NOTE: The pollEV survey starts on
the next slide, but it won’t show the
above questions. This slide is to
show you what those questions will
be.

13

14

15

Schedule for Chapel, UPC++ and Fortran Tutorial
Wed July 26, noon - 3:15pm (all times US Eastern)

● noon - 1:30: Tutorial Overview, 20-minute intro to each programming model
○ Chapel Intro
○ Fortran with co-arrays Intro
○ UPC++ Intro

● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming in Chapel

Thu July 27, noon - 3:15pm

● noon - 1:30: Parallel programming with UPC++
● 1:30 - 1:45: Coffee Break
● 1:45 - 3:15: Parallel programming with Fortran Coarrays

16

go.lbl.gov/cuf23

https://go.lbl.gov/cuf23

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

INTRODUCTION TO CHAPEL PARALLEL
PROGRAMMING LANGUAGE

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

2

INTRODUCTION TO CHAPEL

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://wikipedia.org/wiki/Heat_equation

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup

5

HIGHLIGHTS OF CHAPEL USAGE

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

6

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

7

INTRODUCTION TO CHAPEL

Four nodes/CPUs

8

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

9

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

hello-dist-node-names.chpl

10

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

‘here’ refers to the locale on
which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

hello-dist-node-names.chpl

11

TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

a 'coforall’ loop executes each
iteration as an independent task

hello-dist-node-names.chpl

12

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

13

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

the array of locales we’re running on
(introduced a few slides back)

Locales array:

Locale 0 Locale 1 Locale 2 Locale 3

hello-dist-node-names.chpl

14

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 1 of 4 on n1034
Hello from task 2 of 4 on n1032
Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035
…

hello-dist-node-names.chpl

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

15

INTRODUCTION TO CHAPEL

• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

16

2D HEAT DIFFUSION EXAMPLE See https://go.lbl.gov/cuf23-repo for more info
and for example code.

• 2D heat diffusion PDE

• Solving for next temperatures at each time step
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all
the values and time to solution

17

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

!$!$%&
Stored in uStored in un

Fixed
boundary

values

Simplified form for below
assume 'x='y, and let

(=)'t/'x2

forall (i, j) in indicesInner do
 u[i, j] = un[i, j] + alpha *
 (un[i, j-1] + un[i-1, j] + un[i+1, j] +

 un[i, j+1] - 4 * un[i, j]);

• Declaring 'u' and 'un' arrays

• Declaring 'u' and 'un' arrays as distributed (e.g.,
2x2 distribution is shown)

• Reads that cross the distribution boundary will
result in a remote get

18

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

!$!$%&
Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
 INDICES = Block.createDomain(indices);
var u: [INDICES] real;

• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

19

PARALLELISM SUPPORTED BY CHAPEL

iterationiteration coforall
iteration

stmt
 beginbegin

begin

stmt

stmt

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

20

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

Coarray Fortran Tutorial
Damian Rouson

Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

1

 Introduction to Coarray Fortran (“CAF”)

 — Why Fortran Matters

 — SPMD parallel execution

 — PGAS data structures & RMA

 Heat Conduction Solver

 — Compiling and running it

 — Understanding it
2

Why Fortran
Matters

Weather &
Climate Nuclear Energy Aerospace

Intermediate Complexity Atmospheric
Research (ICAR) Model

Courtesy of Ethan Gutmann, NCAR

U.S. Nuclear Regulatory Commission
File Photo

FUN3D Mesh Adaptation for Mars Ascent
Vehicle, Courtesy of Eric Nielsen & Ashley

Korzun, NASA Langley

3

Why Fortran
Matters

Weather &
Climate Nuclear Energy Aerospace

Intermediate Complexity Atmospheric
Research (ICAR) Model

Courtesy of Ethan Gutmann, NCAR

U.S. Nuclear Regulatory Commission
File Photo

FUN3D Mesh Adaptation for Mars Ascent
Vehicle, Courtesy of Eric Nielsen & Ashley

Korzun, NASA Langley

3

CAF
Philosophy

“The underlying philosophy of our design is to
make the smallest number of changes to the
language required to obtain a robust and
efficient parallel language without requiring the
programmer to learn very many new rules.”

Reid, J., & Numrich, R. W. (2007). Co-arrays in the next
Fortran standard. Scientific Programming, 15(1), 9-26.

Seminal paper:

Numrich, R. W., & Reid, J. (1998, August). Co-Array
Fortran for parallel programming. In ACM SIGPLAN
Fortran Forum (Vol. 17, No. 2, pp. 1-31). New York, NY,
USA: ACM.

4

Single Program Multiple Data

Single Program Multiple Data (SPMD) parallel execution
— Synchronized launch of multiple “images” (process/threads/ranks)
— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

cd fortran
make run-hi

5

Compiling and Running hi.f90

6

Compiling and Running hi.f90

6

SPMD Execution Sequence
Ti

m
e

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

SPMD Execution Sequence
Ti

m
e

Image 2

Image 1

print *,"Hello from image ", this_image(), "of", num_images()

print *,"Hello from image ", this_image(), "of", num_images()

end program

end program Image
control
statement}

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and
partially order segments executed by separate images.

7

Partitioned Global Address Space
(PGAS)

Coarrays:
— Distributed data structures — greeting
— Facilitate Remote Memory Access (RMA) — line 15

cd fortran
make run-hello

8

Compiling & Running hello.f90

9

Compiling & Running hello.f90

9

Compiling and Running the Heat
Equation Solver

10

Compiling and Running the Heat
Equation Solver

10

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

11

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

local objects

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

11

Heat Equation

<latexit sha1_base64="jZZKy2kYhWG7FyzDqvbXmuSdi8k=">AAACLXicbVDLSgMxFM3UV62vqks3wSIIhTJTfG2Eol24VLAqdNpyJ03b0ExmSO4IZegPufFXRHChiFt/w/QhqPVAwrnnnktyTxBLYdB1X53M3PzC4lJ2Obeyura+kd/cujFRohmvsUhG+i4Aw6VQvIYCJb+LNYcwkPw26J+P+rf3XBsRqWscxLwRQleJjmCAVmrlq3567Q+bqSp6Q3pKJ5WiRepXuUSgSH3WjuwNMu7Bd6EgkNAsf9tb+YJbcsegs8SbkgKZ4rKVf/bbEUtCrpBJMKbuuTE2UtAomOTDnJ8YHgPrQ5fXLVUQctNIx9sO6Z5V2rQTaXsU0rH6cyKF0JhBGFhnCNgzf3sj8b9ePcHOSSMVKk6QKzZ5qJNIihEdRUfbQnOGcmAJMC3sXynrgQaGNuCcDcH7u/IsuSmXvKPS4dVBoXI2jSNLdsgu2SceOSYVckEuSY0w8kCeyCt5cx6dF+fd+ZhYM850Zpv8gvP5BRBupts=</latexit>

{T}n+1 = {T}n +�t · ↵ ·r2{T}n

T = T + dt * alpha * .laplacian. T

local objects

pure user-defined operators

cd fortran
make run-heat-equation

<latexit sha1_base64="3a/AC/Yvj+HUGGp7yUrJJF8ttDY=">AAACGnicbVDLSgMxFM3UV62vqks3wSK4KjPF10YounFZoS/ojOVOmmlDM5khyQhl6He48VfcuFDEnbjxb0zbAbX1QOBwzr3cnOPHnClt219Wbml5ZXUtv17Y2Nza3inu7jVVlEhCGyTikWz7oChngjY005y2Y0kh9Dlt+cPrid+6p1KxSNT1KKZeCH3BAkZAG6lbdNxAAkndGKRmwHF9/MP1GF9iF3g8AOwK8DncVXC9WyzZZXsKvEicjJRQhlq3+OH2IpKEVGjCQamOY8faSydHCKfjgpsoGgMZQp92DBUQUuWl02hjfGSUHg4iaZ7QeKr+3kghVGoU+mYyBD1Q895E/M/rJDq48FIm4kRTQWaHgsSEjvCkJ9xjkhLNR4YAkcz8FZMBmK60abNgSnDmIy+SZqXsnJVPb09K1ausjjw6QIfoGDnoHFXRDaqhBiLoAT2hF/RqPVrP1pv1PhvNWdnOPvoD6/Mbfiigfg==</latexit>

@T

@t
= ↵r2T

11

Class Diagram

12

Halo Exchange

116 real(rkind), allocatable :: halo_x(:,:)[:]
117 integer, parameter :: west=1, east=2

134 me = this_image()
135 num_subdomains = num_images()
137 my_nx = nx/num_subdomains + merge(1, 0, me <= mod(nx, num_subdomains))

232 subroutine exchange_halo(self)
233 class(subdomain_2D_t), intent(in) :: self
234 if (me>1) halo_x(east,:)[me-1] = self%s_(1,:)
235 if (me<num_subdomains) halo_x(west,:)[me+1] = self%s_(my_nx,:)
236 end subroutine

x

y
subdomain halo …

13

Loop-Level Parallelism

188 do concurrent(j=2:ny-1)
189 laplacian_rhs%s_(i, j) = &
 (halo_left(j) - 2*rhs%s_(i, j) + rhs%s_(i+1,j))/dx_**2 + &
190 (rhs%s_(i, j-1) - 2*rhs%s_(i, j) + rhs%s_(i ,j+1))/dy_**2
191 end do

line continuation

14

Comments

Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data
Integration with other features:
—Array programming: colon subscripts
—OOP: distributed objects
Minimally invasive:
—Drop brackets when not
 communicating

Communication is explicit:
—Use brackets when
 communicating

15

Acknowledgements

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This presentation includes efforts on the part of contributors to the Caffeine, GASNet-EX. Inference-
Engine, Matcha, Nexport, and OpenCoarrays software libraries and members of the Computer
Languages and Systems Software (CLaSS) Group and our collaborators:

Dan Bonachea, Jeremiah Bailey, Tobias Burnus, Alessandro Fanfarillo, Daniel Ceils Garza, Ethan
Gutmann, Jeff Hammond, Peter Hill, Paul Hargrove, Dominick Martinez, Tan Nguyen, Katherine
Rasmussen, Soren Rasmussen, Brad Richardson, Sameer Shende, David Torres, Andre Vehreschild,
Jordan Welsman, Nathan Weeks, Yunhao Zhang

16

Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

2

Acknowledgements
This presentation includes the efforts of the following past and present members of the
Pagoda group and collaborators:

Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino,
Rob Egan, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin,
Amir Kamil, Colin MacLean, Damian Rouson, Erich Strohmaier, Daniel Waters,
Katherine Yelick

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

3

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

4

Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes

• Sparse matrices

• Hash tables and histograms

• Graph analytics

• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

AMReX

ExaBiome SymPACK
Graph analytics

Seismo,Berkeley

5

Some motivating system trends
The first exascale systems appeared in 2022
• Cores per node is growing

• Accelerators (e.g. GPUs) are becoming more important

• Latency is not improving
Need to reduce communication costs in software
• Overlap communication to hide latency
• Reduce memory using smaller, more frequent messages

• Minimize software overhead

• Use simple messaging protocols (RDMA)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

6

Reducing communication overhead
Let each process directly access another’s memory via a global pointer

Communication is one-sided – there is no “receive” operation

• No need to match sends to receives
• No unexpected messages

• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split
between sender and receiver

• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

address

message id

data payload

data payload

one-sided RMA put

two-sided message

NIC

memory

host
CPU

User buffer

Sys buffer

7

One-sided GASNet-EX vs one- and two-sided MPI
Four distinct network hardware types
The performance of one-sided
GASNet-EX matches or exceeds that
of MPI RMA and message-passing:
• 8-byte Put latency 19 - 52% better
• 8-byte Get latency 16 - 49% better
• Better flood bandwidth efficiency:

often reaching same or better
peak at ½ or ¼ the transfer size

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Summit: IBM Power9, dual-rail EDR InfiniBand, IBM Spectrum MPI

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Frontier: AMD Trento, Slingshot-11, HPE Cray MPICH

0

2

4

6

8

10

12

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Perlmutter Phase-I: AMD Milan, Slingshot-10, HPE Cray MPICH

0
1
2
3
4
5
6
7
8
9
10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Cori Phase-I: Intel Haswell, Cray Aries, Cray MPICH

Uni-directional Flood Bandwidth (many-at-a-time)

Perlmutter Phase-I results collected July 2022, all others collected April 2023.
GASNet-EX tests were run using then-current GASNet library and its tests.
MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.
All tests use two nodes and one process per node.
For details see LCPC’18 doi.org/10.25344/S4QP4W and PAW-ATM’22 doi.org/10.25344/S40C7D
See also: gasnet.lbl.gov/performance0

1

2

3

4

5

6

7

8

Frontier Perlmutter
Phase-I

Summit Cori
Phase-I

R
M
A
O
pe
ra
tio
n
La
te
nc
y
(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)
D

O
W

N
 IS

 G
O

O
D

U
P

IS
 G

O
O

D

8

A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory

• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Rank 0 Rank 1 Rank 2 Rank 3

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
SegmentGlobal address space

Process 0 Process 1 Process 2 Process 3

Private memory

9

The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008),
UPC, Titanium, X10
Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays,
DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence
Berkeley National Laboratory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

10

Execution model: SPMD
Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution,
where a fixed number of processes run the same program
int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

11

Global pointers
Global pointers are used to create logically shared but physically
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw)
pointer: e.g. global_ptr<double>, global_ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

g: g: g:

global_ptr<Node>

12

Global vs raw pointers and affinity
The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to
objects in the global address space that have affinity to that process

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

l:

g:

l:

g:

l:

g:

global_ptr<Node>

Node*

13

How does UPC++ deliver the PGAS model?
UPC++ uses a “compiler-free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can

be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

14

UPC++ on top of GASNet

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
l Cray XC40 system

Two processor partitions:
l Intel Haswell (2 x 16 cores per node)
l Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

U
P

IS
 G

O
O

D

D
O

W
N

IS
 G

O
O

D

15

Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT
E

16

Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

17

Hands-on: 2D heat diffusion
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

$ make run-heat2d
upcxx heat2d.cpp -Wall -o heat2d
upcxx-run -N 1 -n 4 ./heat2d
[2] My Neighbors: (1, 3) My Domain: (2048,3072)
[3] My Neighbors: (2, -1) My Domain: (3072,4096)
[0] My Neighbors: (-1, 1) My Domain: (0,1024)
[1] My Neighbors: (0, 2) My Domain: (1024,2048)
[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

Command to run
in the terminal Copy this and add arguments to change the

problem size, e.g.:
upcxx-run -N 1 -n 4 ./heat2d 8192 8192

