
Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

https://go.lbl.gov/CUF23

2

Acknowledgements
This presentation includes the efforts of the following past and present members of the
Pagoda group and collaborators:

Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino,
Rob Egan, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin,
Amir Kamil, Colin MacLean, Damian Rouson, Erich Strohmaier, Daniel Waters,
Katherine Yelick

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

3

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

4

Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes

• Sparse matrices

• Hash tables and histograms

• Graph analytics

• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

AMReX

ExaBiome SymPACK
Graph analytics

Seismo,Berkeley

5

Some motivating system trends
The first exascale systems appeared in 2022
• Cores per node is growing

• Accelerators (e.g. GPUs) are becoming more important

• Latency is not improving
Need to reduce communication costs in software
• Overlap communication to hide latency
• Reduce memory using smaller, more frequent messages

• Minimize software overhead

• Use simple messaging protocols (RDMA)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

6

Reducing communication overhead
Let each process directly access another’s memory via a global pointer

Communication is one-sided – there is no “receive” operation

• No need to match sends to receives
• No unexpected messages

• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split
between sender and receiver

• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

address

message id

data payload

data payload

one-sided RMA put

two-sided message

NIC

memory

host
CPU

User buffer

Sys buffer

7

One-sided GASNet-EX vs one- and two-sided MPI
Four distinct network hardware types
The performance of one-sided
GASNet-EX matches or exceeds that
of MPI RMA and message-passing:
• 8-byte Put latency 19 - 52% better
• 8-byte Get latency 16 - 49% better
• Better flood bandwidth efficiency:

often reaching same or better
peak at ½ or ¼ the transfer size

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Summit: IBM Power9, dual-rail EDR InfiniBand, IBM Spectrum MPI

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Frontier: AMD Trento, Slingshot-11, HPE Cray MPICH

0

2

4

6

8

10

12

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Perlmutter Phase-I: AMD Milan, Slingshot-10, HPE Cray MPICH

0
1
2
3
4
5
6
7
8
9
10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Cori Phase-I: Intel Haswell, Cray Aries, Cray MPICH

Uni-directional Flood Bandwidth (many-at-a-time)

Perlmutter Phase-I results collected July 2022, all others collected April 2023.
GASNet-EX tests were run using then-current GASNet library and its tests.
MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.
All tests use two nodes and one process per node.
For details see LCPC’18 doi.org/10.25344/S4QP4W and PAW-ATM’22 doi.org/10.25344/S40C7D
See also: gasnet.lbl.gov/performance0

1

2

3

4

5

6

7

8

Frontier Perlmutter
Phase-I

Summit Cori
Phase-I

R
M
A
O
pe
ra
tio
n
La
te
nc
y
(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)
D

O
W

N
 IS

 G
O

O
D

U
P

IS
 G

O
O

D

8

A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory

• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Rank 0 Rank 1 Rank 2 Rank 3

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
SegmentGlobal address space

Process 0 Process 1 Process 2 Process 3

Private memory

9

The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008),
UPC, Titanium, X10
Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays,
DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence
Berkeley National Laboratory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

10

Execution model: SPMD
Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution,
where a fixed number of processes run the same program
int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

11

Global pointers
Global pointers are used to create logically shared but physically
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw)
pointer: e.g. global_ptr<double>, global_ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

g: g: g:

global_ptr<Node>

12

Global vs raw pointers and affinity
The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to
objects in the global address space that have affinity to that process

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
n:

x: 5
n:

x: 7
n:

l:

g:

l:

g:

l:

g:

global_ptr<Node>

Node*

13

How does UPC++ deliver the PGAS model?
UPC++ uses a “compiler-free,” library approach

• UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can

be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

14

UPC++ on top of GASNet

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
l Cray XC40 system

Two processor partitions:
l Intel Haswell (2 x 16 cores per node)
l Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

U
P

 IS
 G

O
O

D

D
O

W
N

IS
 G

O
O

D

15

Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT
E

16

Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

17

Hands-on: 2D heat diffusion
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

$ make run-heat2d
upcxx heat2d.cpp -Wall -o heat2d
upcxx-run -N 1 -n 4 ./heat2d
[2] My Neighbors: (1, 3) My Domain: (2048,3072)
[3] My Neighbors: (2, -1) My Domain: (3072,4096)
[0] My Neighbors: (-1, 1) My Domain: (0,1024)
[1] My Neighbors: (0, 2) My Domain: (1024,2048)
[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

Command to run
in the terminal Copy this and add arguments to change the

problem size, e.g.:
upcxx-run -N 1 -n 4 ./heat2d 8192 8192

Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

https://go.lbl.gov/CUF23

19

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

20

Review: Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT
E

21

Review: Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

22

Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use
Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the appropriate arguments (–I/-L etc).

• We also provide other mechanisms for compiling
• upcxx-meta

• CMake package

Launch wrapper:
$ upcxx-run -N 1 -n 4 ./hello-world.exe

• Arguments similar to other familiar tools

• Also support launch using platform-specific tools, such as srun, jsrun and aprun.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

23

Using UPC++ at US DOE Office of Science Centers
UPC++ installations available at ALCF (Polaris, Theta, Sunspot), NERSC
(Perlmutter), and OLCF (Summit, Frontier, Crusher)
Info and examples for all three centers are available from

https://upcxx.lbl.gov/site
Also contains links to UPC++ source and build instructions
UPC++ works on laptops, workstations, and clusters too

Instructions for the hands-on activities in this tutorial:
https://go.lbl.gov/CUF23

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/site
https://go.lbl.gov/CUF23

24

Hands-on: Hello world compile and run
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

$ make run-hello-world
upcxx hello-world.cpp -Wall -o hello-world
upcxx-run -N 1 -n 4 ./hello-world
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Command to run
in the terminal Copy this and change the number

after -n to use a different number of
processes, e.g.:

upcxx-run -N 1 -n 8 ./hello-world

https://go.lbl.gov/CUF23

25

Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Set up UPC++
runtime

Close down
UPC++ runtime

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

make run-hello-world

26

Hello world with RPC (synchronous)
We can rewrite hello world by having each process launch an RPC to
process 0
int main() {
upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

C++ lambda function

Wait for RPC to complete
before continuing

Rank number is the
argument to the lambda

Barrier prevents any process from
proceeding until all have reached it

make run-hello-world-rpc-to-0

27

Futures
RPC returns a future object, which represents a computation that may or
may not be complete
Calling wait() on a future causes the current process to wait until the
future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process " << rank << endl;
}, upcxx::rank_me());

fut.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Empty future type that
does not hold a value,

but still tracks readiness

28

What is a future?
A future is a handle to an asynchronous operation, which holds:

• The status/readiness of the operation

• The results (zero or more values) of the completed operation

The future is not the result itself, but a proxy for it
The wait() method blocks until a future is ready and returns the result

upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

future

op

"async_op"

ready true

data 3

29

Overlapping communication
Rather than waiting on each RPC to complete, we can launch every RPC
and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We’ll see better ways to wait on groups of asynchronous operations later

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

30

1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a function of its old value
and those of its immediate neighbors

Out-of-place computation requires two grids
for (long i = 1; i < N - 1; ++i)

new_grid[i] = 0.25 *
(old_grid[i - 1] + 2*old_grid[i] + old_grid[i + 1]);

Sample data distribution of each grid
(12 domain elements, 3 processes, N=12/3+2=6):

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

Local grid size

make run-jac1d

31

Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to keep track of the
grids
double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

* We will generally elide the upcxx:: qualifier from here on out.

32

Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

5 6 7 84 9
Process 1

Initiate
communication

Do interior
computation

Wait for
communication
to complete and

do boundary
computation

33

Race conditions
Since processes are unsynchronized, it is possible that a process can
move on to later iterations while its neighbors are still on previous ones

• One-sided communication decouples data movement from
synchronization for better performance

A straggler in iteration ! could obtain data from a neighbor that is computing
iteration ! + 2, resulting in incorrect values

This behavior is unpredictable and may not be observed in testing

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Iteration ! + 2 Iteration !Iteration !
k k+1process k-1

34

Naïve solution: barriers
Barriers at the end of each iteration provide sufficient synchronization
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Barriers around the swap
ensure that incoming RPCs in
both this iteration and the next

one use the correct grids

35

One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most efficient way to move
large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

36

Jacobi with ghost cells
Each process maintains ghost cells for data from neighboring processes

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

get from rightget from left

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

my_grid right_grid_gptrleft_grid_gptr

37

Storage management
Memory must be allocated in the shared segment in order to be accessible
through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls – each process allocates its own memory,
and there is no synchronization

• Explicit synchronization may be required before retrieving another
process’s pointers with an RPC

• The pointers must be communicated to other processes before they
can access the data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

38

Downcasting global pointers
If a process has direct load/store access to the memory referenced by a global
pointer, it can downcast the global pointer into a raw pointer with local()
global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Downcasting can also be used to optimize for co-located processes that share
physical memory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

39

Jacobi RMA with gets
Each process obtains boundary data from its neighbors with rget()

future<> left_get = rget(left_old_grid + N - 2, old_grid, 1);
future<> right_get = rget(right_old_grid + 1, old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25*(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25*(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Begin asynchronous
RMA gets

Wait for communication,
then consume values

Remote source (global_ptr) Local dest ptr

Overlapped computation
on interior cells

40

Callbacks
The then() method attaches a callback to a future
• The callback will be invoked after the future is ready, with the future’s

values as its arguments
future<> left_update =
rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + value);

});

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Vector get does not produce a value

Scalar get produces a value

41

Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {
return std::log(value);

});
future<> fut3 =
fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, computes its log, and
then sends it to a different remote location

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

rget

then({log(value)})

then({rput(value,target)})

42

Conjoining futures
Multiple futures can be conjoined with when_all() into a single future that
encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int> source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

rget

then({rput(a*b,target)})

rget

when_all

43

Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with rput(), and the
resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 * (old_grid[0] + 2*old_grid[1] + old_grid[2]);
new_grid[N-2] = 0.25 * (old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed

44

2D heat diffusion data layout

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!$!$%&

Process 2

Process 0

Process 1 T_old T_new

T_up

T_down

Global (Abstract) View Local (Concrete) View

“Landing zone” for
receiving data from
downward neighbor

Fixed
boundary

values

make run-heat2d

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

45

2D heat diffusion computation
Computation loop:
for (int t = 0; t < num_timesteps; t++) {
// initiate asynchronous puts to neighbors
future<> fut =
when_all(rput(T_old, gptr_down, X),

rput(T_old+offset, gptr_up, X));

// overlapped computation of interior
compute_inner_T_new();

// wait for my puts to complete
fut.wait();
// ensure everyone's puts have completed
barrier();
// compute boundaries using data received from neighbors
compute_surface_T_new();

// set up next timestep
std::swap(T_new, T_old);
barrier();

}
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

T_old T_new

T_up

T_down

T_down

T_up

Global pointer to
neighbor’s landing zone

T_oldT_new

!!,#$%& = !!,#$ + $!!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

make run-heat2d

46

Distributed objects
A distributed object is an object that is partitioned over a set of processes
dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but each has its own
local value
Similar in concept to a co-array, but with advantages

• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

● ● ●
dist_object<int>
all_nums(rand());

Process p

42
all_nums

Process 0

3
all_nums

Process 1

8
all_nums

47

Distributed objects in 2D heat diffusion
Distributed objects can be used to obtain global pointers to other
processes’ landing zones
global_ptr<double> down_in, up_in;
if (lo != 0) {
down_in = new_array<double>(X);
T_down = down_in.local();

}
if (hi != Y) {
up_in = new_array<double>(X);
T_up = up_in.local();

}
dist_object<global_ptr<double>> dist_up{down_in};
dist_object<global_ptr<double>> dist_down{up_in};
if (lo != 0) gptr_down = dist_down.fetch(down).wait();
if (hi != Y) gptr_up = dist_up.fetch(up).wait();
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Construct distributed objects containing
pointers to each process’s landing zones

Fetch landing-zone pointer
from the neighbor below

Ensure that all fetches have completed
before the distributed objects are destroyed

Construct landing zones for
each neighbor (if necessary)

48

Hands-on: Distributed hash table (DHT)
Distributed analog of std::unordered_map (similar to Python dict, Java
HashMap)
• Supports insertion and lookup

• We will assume the key and value types are std::string

• Represented as a collection of individual unordered maps across processes

• We use RPC to move hash-table operations to the owner

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per process

● ● ●

key val

make run-dmap-insert-test

49

DHT data representation
A distributed object represents the directory of unordered maps
class DistrMap {

using dobj_map_t =
dist_object<std::unordered_map<std::string, std::string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank_n();

}
};

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Computes owner for the given key

Define an abbreviation for a helper type

50

DHT insertion
Insertion initiates an RPC to the owner and returns a future that represents
completion of the insert
future<> insert(const string &key,

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key, const string &val) {
(*lmap)[key] = val;

}, local_map, key, val);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Key and value passed
as arguments to the

remote function

UPC++ uses the
distributed object’s
universal name to
look it up on the
remote process

Process 0 Process p

● ● ●

key val

Send RPC to the process
determined by key hash

51

DHT find
Find also uses RPC and returns a future
future<string> find(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

if (lmap->count(key) == 0)
return string("NOT FOUND");

else
return (*lmap)[key];

}, local_map, key);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Key passed as
argument to the
remote function

UPC++ uses the
distributed object’s
universal name to
look it up on the
remote process

Send RPC to the process
determined by key hash

Check whether key
exists in local map

Retrieve corresponding
value from the local

map and return it

Process 0 Process p

● ● ●

key val

52

Additional DHT operations
// Erases the given key from the DHT.
future<> erase(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
lmap->erase(key);

}, local_map, key);
}

// Replaces the value associated with the given key and returns the old
// value with which it was previously associated.
future<string> update(const string &key,

const string &value) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key,
const string &value) {
return local_update(*lmap, key, value);

}, local_map, key, value);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Lambda to remove
the key from the local

map at the target

Lambda to
update the key
in the local map

at the target

Helper function to update local map

make run-dmap-erase-update-test

53

Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design

• Key insertion and storage allocation handled at target

• Without RPC, complex updates would require explicit synchronization and two-
sided coordination

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL)

Cray XC40

make run-drmap-insert-test

54

UPC++ advanced features
UPC++ has many advanced features that enable further optimizations
• Team-based barrier, reduction, and broadcast collectives

• Remote atomic operations that utilize hardware offload capabilities of
modern networks

• Serialization of complex standard-library and user types in RPC’s

• Shared-memory bypass for co-located processes on many-core nodes

• Additional forms of communication completion notification such as
promises and “signaling put”

• Non-contiguous RMA with automated packing and aggregation of strided
or sparse data

• Memory kinds for data transfer between remote or local host (CPU) and
device (e.g. GPU) memory

• … Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

55

Memory kinds: Accelerated RMA to/from GPU memory
Modern GPUs and NICs can support
peer-to-peer data transfers

Example: Put with source on GPU

• In the absence of necessary
hardware and OS support:
1. Data must be copied from GPU

memory to host memory
2. RDMA from host memory’s copy

• With support:
1. RDMA directly from GPU

memory (no copies)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

GPU

GPU
Memory

Host
Memory

Network
Interface

Data movement
with

acceleration

GPU

GPU
Memory

Host
Memory

Network
Interface

Data movement
without

acceleration

56

Memory kinds: Accelerated RMA to/from GPU memory
Measurements of flood bandwidth of
upcxx::copy() on OLCF’s Summit
Difference between two consecutive
releases shows benefit of GASNet-
EX’s support for accelerated
transfers via Nvidia’s “GDR”.
• No longer staging through host

memory
• Large xfers: 2x better bandwidth
• Small xfers: up to 30x better

bandwidth
Get operations to/from GPU memory
now perform comparably to host
memory
Comparisons to MPI RMA in GDR-
enabled IBM MPI show UPC++
saturating more quickly to the peak

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

4

16

64

256

1024

4096

16384

16 B 64 B 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

S
in

gl
e-

ra
il

F
lo

od
 B

an
dw

id
th

 (
M

iB
/s

)

Transfer Size

RMA Get Bandwidth (remote GPU to local host memory)
UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit

12.5 GB/s (limiting wire speed)
upcxx::copy (GDR, v2020.11.0)
upcxx::copy (Reference, v2020.10.0)
MPI_Get

U
P

 IS
 G

O
O

D

2x better
bandwidth

for large
transfers

30x better
bandwidth
for small
transfers

UPC++ results were collecting using the version of the cuda_benchmark test that appears in the 2020.11.0 release.
MPI results are from osu_get_bw test in a CUDA-enabled build of OSU Micro-Benchmarks 5.6.3.
All tests were run on OLCF Summit, between two nodes with one process per node, over its EDR InfiniBand network.

57

UPC++ applications
UPC++ has been used successfully in several applications to improve
programmer productivity and runtime performance, including:
• symPack, a sparse symmetric matrix solver
• SIMCoV, agent-based simulation of lungs with COVID
• MetaHipMer, a genome assembler
• Actor-UPCXX, used in the Pond tsunami simulator
• A UPC++ backend for NWChemEx/TAMM
• UPC++ DepSpawn, a library for data-flow computing
• Mel-UPX, half-approximate graph matching solver

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

58

symPACK: UPC++ provides productivity + performance
Productivity
• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API
Reduced communication costs
• Low overhead reduces the cost of fine-grained

communication

• Overlap communication via asynchrony/futures

• Increased efficiency in the extend-add operation
• Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Processes
32 64

128
256

512
1024

4

6

8

10

12

14

16

18

Ti
m

e
(s

)

Run times for audikw_1
(NERSC Cori Haswell Cray XC Aries)

D
ow

n
is

 g
oo

d

pastix_5_2_3
symPACK_1D
symPACK_2D

https://upcxx.lbl.gov/sympack

59

Model the entire lung at the cellular level:
• 100 billion epithelial cells
• 100s of millions of T cells
• Complex branching fractal structure
• Time resolution in seconds for 20 to 30 days
SIMCoV in UPC++
• Distributed 3D spatial grid
• Particles move over time, but computation is

localized
• Load balancing is tricky: active near infections
UPC++ benefits:
• Heavily uses RPCs
• Easy to develop first prototype
• Good distributed performance and avoids

explicit locking
• Extensive support for asynchrony improves

computation/communication overlap

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

SIMCoV: Spatial Model of Immune Response to Viral Lung Infection

https://github.com/AdaptiveComputationLab/simcov

https://github.com/AdaptiveComputationLab/simcov

60

ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a
wildfire? (1.5TB)

What at the seasonal fluctuations
in a wetland mangrove? (1.6 TB)

How do microbes affect disease and
growth of switchgrass for biofuels (4TB)

What are the microbial dynamics
of soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved
functional understanding (8TB)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

61

Co-Assembly improves quality and is an HPC problem

Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt,
Andrew Tritt, Aydın Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
• Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta
• Previously assembled 1 lane at a time (multiassembly)
• MetaHipMer coassembled together – higher quality assembly, in 3.5 hours on 16K cores

Multiassembly
1 lane at a time

Coassembly all assembled
together – more new genomes
at higher completeness

This was the largest, high-quality de novo metagenome assembly completed at the time
More recently: new record 30TB metagenome assembly on 1500 nodes (63K cores and 9K GPUs) of
OLCF Summit in 2022

Metagenome Data Size (GB)

N
od

e
H

ou
rs

10

100

1000

10000

100 500 1000 5000 10000 50000

Cori KNL MHM1 Cori KNL MHM2 Summit MHM2 Summit MHM2 GPU

62

MetaHipMer utilized UPC++ features
C++ templates – efficient code reuse

dist_object – as a templated functor
& data store

Asynchronous all-to-all exchange – not
batch synchronous

• 5x improvement at scale relative to
previous MPI implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill (advanced UPC++ feature) – for a fixed-size memory footprint

• Issue promise when full, fulfill when available

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Work and results by Rob Egan,
funded by ECP ExaBiome Group https://sites.google.com/lbl.gov/exabiome/downloads

https://sites.google.com/lbl.gov/exabiome/downloads

63

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications
• Links to optional extensions and partner projects

• Contact information and support forum

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

“We found UPC++ to be a very powerful and
flexible tool for the development of parallel

applications in distributed memory
environments that enabled us to reach the high
level of performance required by our DepSpawn
project, so that we could outperform the state-

of-the-art approaches. It is also particularly
important in our opinion that, while supporting a
really wide range of mechanisms, it is very well

documented and supported.”
-- Basilio Bernardo Fraguela Rodríguez,

Universidade da Coruña, Spain

“If your code is already written in a one-sided
fashion, moving from MPI RMA or SHMEM
to UPC++ RMA is quite straightforward and

intuitive; it took me about 30 minutes to
convert MPI RMA functions in my application

to UPC++ RMA, and I am getting similar
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

