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What does UPC++ offer?

Asynchronous behavior
• RMA: 

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication. 

• RPC: Remote Procedure Call: 
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication
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Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes

• Sparse matrices 

• Hash tables and histograms

• Graph analytics

• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data
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Some motivating system trends
The first exascale systems appeared in 2022
• Cores per node is growing

• Accelerators (e.g. GPUs) are becoming more important

• Latency is not improving
Need to reduce communication costs in software
• Overlap communication to hide latency
• Reduce memory using smaller, more frequent messages

• Minimize software overhead 

• Use simple messaging protocols (RDMA)
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Reducing communication overhead
Let each process directly access another’s memory via a global pointer

Communication is one-sided – there is no “receive” operation

• No need to match sends to receives
• No unexpected messages

• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split
between sender and receiver

• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access
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One-sided GASNet-EX vs one- and two-sided MPI
Four distinct network hardware types
The performance of one-sided 
GASNet-EX matches or exceeds that 
of MPI RMA and message-passing:
• 8-byte Put latency 19 - 52% better
• 8-byte Get latency 16 - 49% better
• Better flood bandwidth efficiency: 

often reaching same or better 
peak at ½ or ¼ the transfer size

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory

• Global address space = union of all the shared segments

Partitioned

• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity
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The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008), 
UPC, Titanium, X10
Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays, 
DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence 
Berkeley National Laboratory
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Execution model: SPMD
Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution, 
where a fixed number of processes run the same program
int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}
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Global pointers
Global pointers are used to create logically shared but physically 
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw) 
pointer: e.g. global_ptr<double>, global_ptr<Node>
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Global vs raw pointers and affinity
The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to 
objects in the global address space that have affinity to that process
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How does UPC++ deliver the PGAS model?
UPC++ uses a “compiler-free,” library approach

• UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can 

be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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UPC++ on top of GASNet
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Asynchronous communication (RMA)

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready
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Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an 
optional result 

1.Initiator injects the RPC to the target process 
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency
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Hands-on: 2D heat diffusion
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and 
changed to the cuf23/upcxx directory:

$ make run-heat2d
upcxx heat2d.cpp -Wall  -o heat2d
upcxx-run -N 1 -n 4 ./heat2d
[2] My Neighbors: (1, 3)     My Domain: (2048,3072)
[3] My Neighbors: (2, -1)     My Domain: (3072,4096)
[0] My Neighbors: (-1, 1)     My Domain: (0,1024)
[1] My Neighbors: (0, 2)     My Domain: (1024,2048)
[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

!!,#$%& = !!,#$ + $ !!%&,#$ + !!'&,#$ − 4!!,#$ + !!,#%&$ + !!,#'&$

Command to run 
in the terminal Copy this and add arguments to change the 

problem size, e.g.:
upcxx-run -N 1 -n 4 ./heat2d 8192 8192



Title Slide

UPC++: An Asynchronous RMA/RPC Library 
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/CUF23
pagoda@lbl.gov

Applied Mathematics and Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

https://go.lbl.gov/CUF23


19

What does UPC++ offer?

Asynchronous behavior
• RMA: 

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication. 

• RPC: Remote Procedure Call: 
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication
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Review: Asynchronous communication (RMA)

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready
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Review: Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an 
optional result 

1.Initiator injects the RPC to the target process 
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency
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Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use
Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the appropriate arguments (–I/-L etc).

• We also provide other mechanisms for compiling 
• upcxx-meta

• CMake package

Launch wrapper:
$ upcxx-run -N 1 -n 4 ./hello-world.exe

• Arguments similar to other familiar tools

• Also support launch using platform-specific tools, such as srun, jsrun and aprun.
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Using UPC++ at US DOE Office of Science Centers
UPC++ installations available at ALCF (Polaris, Theta, Sunspot), NERSC 
(Perlmutter), and OLCF (Summit, Frontier, Crusher)
Info and examples for all three centers are available from 

https://upcxx.lbl.gov/site
Also contains links to UPC++ source and build instructions
UPC++ works on laptops, workstations, and clusters too

Instructions for the hands-on activities in this tutorial:
https://go.lbl.gov/CUF23

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Hands-on: Hello world compile and run
Everything needed for the hands-on activities is at:

https://go.lbl.gov/CUF23
Online materials include:

• Module info for NERSC Perlmutter, OLCF Frontier, and other machines
• Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and 
changed to the cuf23/upcxx directory:

$ make run-hello-world
upcxx hello-world.cpp -Wall  -o hello-world
upcxx-run -N 1 -n 4 ./hello-world
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Command to run 
in the terminal Copy this and change the number 

after -n to use a different number of 
processes, e.g.:

upcxx-run -N 1 -n 8 ./hello-world

https://go.lbl.gov/CUF23


25

Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
} 

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Hello world with RPC (synchronous)
We can rewrite hello world by having each process launch an RPC to 
process 0
int main() {
upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

} 
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Futures
RPC returns a future object, which represents a computation that may or 
may not be complete
Calling wait() on a future causes the current process to wait until the 
future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process " << rank << endl;
}, upcxx::rank_me());

fut.wait();
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What is a future?
A future is a handle to an asynchronous operation, which holds:

• The status/readiness of the operation

• The results (zero or more values) of the completed operation

The future is not the result itself, but a proxy for it
The wait() method blocks until a future is ready and returns the result

upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Overlapping communication
Rather than waiting on each RPC to complete, we can launch every RPC 
and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We’ll see better ways to wait on groups of asynchronous operations later
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1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a function of its old value 
and those of its immediate neighbors

Out-of-place computation requires two grids
for (long i = 1; i < N - 1; ++i)

new_grid[i] = 0.25 * 
(old_grid[i - 1] + 2*old_grid[i] + old_grid[i + 1]);

Sample data distribution of each grid 
(12 domain elements, 3 processes, N=12/3+2=6):
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Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to keep track of the 
grids
double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();
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Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Race conditions
Since processes are unsynchronized, it is possible that a process can 
move on to later iterations while its neighbors are still on previous ones

• One-sided communication decouples data movement from 
synchronization for better performance

A straggler in iteration ! could obtain data from a neighbor that is computing 
iteration ! + 2, resulting in incorrect values

This behavior is unpredictable and may not be observed in testing
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Iteration ! + 2 Iteration !Iteration !
k k+1process k-1



34

Naïve solution: barriers
Barriers at the end of each iteration provide sufficient synchronization
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();
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One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most efficient way to move 
large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();
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Jacobi with ghost cells
Each process maintains ghost cells for data from neighboring processes

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();
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Storage management
Memory must be allocated in the shared segment in order to be accessible 
through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls – each process allocates its own memory, 
and there is no synchronization

• Explicit synchronization may be required before retrieving another 
process’s pointers with an RPC

• The pointers must be communicated to other processes before they 
can access the data
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Downcasting global pointers
If a process has direct load/store access to the memory referenced by a global 
pointer, it can downcast the global pointer into a raw pointer with local()
global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Downcasting can also be used to optimize for co-located processes that share 
physical memory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov



39

Jacobi RMA with gets
Each process obtains boundary data from its neighbors with rget()

future<> left_get = rget(left_old_grid + N - 2, old_grid, 1);
future<> right_get = rget(right_old_grid + 1, old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25*(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25*(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);
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Callbacks
The then() method attaches a callback to a future
• The callback will be invoked after the future is ready, with the future’s 

values as its arguments
future<> left_update =
rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + value);

});

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {
return std::log(value);

});
future<> fut3 =
fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, computes its log, and 
then sends it to a different remote location

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Conjoining futures
Multiple futures can be conjoined with when_all() into a single future that 
encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int>    source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int>    fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with rput(), and the 
resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 * (old_grid[0] + 2*old_grid[1] + old_grid[2]);
new_grid[N-2] = 0.25 * (old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed
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2D heat diffusion data layout

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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2D heat diffusion computation
Computation loop:
for (int t = 0; t < num_timesteps; t++) {
// initiate asynchronous puts to neighbors
future<> fut =
when_all(rput(T_old, gptr_down, X),

rput(T_old+offset, gptr_up, X));

// overlapped computation of interior
compute_inner_T_new();

// wait for my puts to complete
fut.wait();
// ensure everyone's puts have completed
barrier();
// compute boundaries using data received from neighbors
compute_surface_T_new();

// set up next timestep
std::swap(T_new, T_old);
barrier();

}
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Distributed objects
A distributed object is an object that is partitioned over a set of processes
dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but each has its own 
local value
Similar in concept to a co-array, but with advantages

• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Distributed objects in 2D heat diffusion
Distributed objects can be used to obtain global pointers to other 
processes’ landing zones
global_ptr<double> down_in, up_in;
if (lo != 0) {
down_in = new_array<double>(X);
T_down = down_in.local();

}
if (hi != Y) {
up_in = new_array<double>(X);
T_up = up_in.local();

}
dist_object<global_ptr<double>> dist_up{down_in}; 
dist_object<global_ptr<double>> dist_down{up_in}; 
if (lo != 0) gptr_down = dist_down.fetch(down).wait();
if (hi != Y) gptr_up = dist_up.fetch(up).wait();
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Hands-on: Distributed hash table (DHT)
Distributed analog of std::unordered_map (similar to Python dict, Java 
HashMap)
• Supports insertion and lookup

• We will assume the key and value types are std::string

• Represented as a collection of individual unordered maps across processes

• We use RPC to move hash-table operations to the owner

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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DHT data representation
A distributed object represents the directory of unordered maps
class DistrMap {

using dobj_map_t =
dist_object<std::unordered_map<std::string, std::string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank_n();

} 
};

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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DHT insertion
Insertion initiates an RPC to the owner and returns a future that represents 
completion of the insert
future<> insert(const string &key, 

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key, const string &val) {
(*lmap)[key] = val;

}, local_map, key, val);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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DHT find
Find also uses RPC and returns a future
future<string> find(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

if (lmap->count(key) == 0)
return string("NOT FOUND");

else
return (*lmap)[key];

}, local_map, key);
}

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Key passed as 
argument to the 
remote function

UPC++ uses the 
distributed object’s 
universal name to 
look it up on the 
remote process

Send RPC to the process 
determined by key hash

Check whether key 
exists in local map

Retrieve corresponding 
value from the local 

map and return it

Process 0 Process p

● ● ●

key val



52

Additional DHT operations
// Erases the given key from the DHT.
future<> erase(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
lmap->erase(key);

}, local_map, key);
}

// Replaces the value associated with the given key and returns the old
// value with which it was previously associated.
future<string> update(const string &key,

const string &value) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key,
const string &value) {
return local_update(*lmap, key, value);

}, local_map, key, value);
}
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Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design

• Key insertion and storage allocation handled at target

• Without RPC, complex updates would require explicit synchronization and two-
sided coordination

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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UPC++ advanced features
UPC++ has many advanced features that enable further optimizations
• Team-based barrier, reduction, and broadcast collectives

• Remote atomic operations that utilize hardware offload capabilities of 
modern networks

• Serialization of complex standard-library and user types in RPC’s

• Shared-memory bypass for co-located processes on many-core nodes

• Additional forms of communication completion notification such as 
promises and “signaling put”

• Non-contiguous RMA with automated packing and aggregation of strided
or sparse data

• Memory kinds for data transfer between remote or local host (CPU) and 
device (e.g. GPU) memory

• … Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Memory kinds: Accelerated RMA to/from GPU memory
Modern GPUs and NICs can support 
peer-to-peer data transfers 

Example: Put with source on GPU

• In the absence of necessary 
hardware and OS support:
1. Data must be copied from GPU 

memory to host memory
2. RDMA from host memory’s copy

• With support:
1. RDMA directly from GPU 

memory (no copies)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Memory kinds: Accelerated RMA to/from GPU memory
Measurements of flood bandwidth of 
upcxx::copy() on OLCF’s Summit
Difference between two consecutive 
releases shows benefit of GASNet-
EX’s support for accelerated 
transfers via Nvidia’s “GDR”.
• No longer staging through host 

memory
• Large xfers: 2x better bandwidth
• Small xfers: up to 30x better 

bandwidth
Get operations to/from GPU memory 
now perform comparably to host 
memory
Comparisons to MPI RMA in GDR-
enabled IBM MPI show UPC++ 
saturating more quickly to the peak

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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UPC++ results were collecting using the version of the cuda_benchmark test that appears in the 2020.11.0 release.
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All tests were run on OLCF Summit, between two nodes with one process per node, over its EDR InfiniBand network.
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UPC++ applications
UPC++ has been used successfully in several applications to improve 
programmer productivity and runtime performance, including:
• symPack, a sparse symmetric matrix solver
• SIMCoV, agent-based simulation of lungs with COVID
• MetaHipMer, a genome assembler
• Actor-UPCXX, used in the Pond tsunami simulator
• A UPC++ backend for NWChemEx/TAMM
• UPC++ DepSpawn, a library for data-flow computing
• Mel-UPX, half-approximate graph matching solver

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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symPACK: UPC++ provides productivity + performance
Productivity
• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API
Reduced communication costs
• Low overhead reduces the cost of fine-grained

communication

• Overlap communication via asynchrony/futures

• Increased efficiency in the extend-add operation
• Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Model the entire lung at the cellular level:
• 100 billion epithelial cells
• 100s of millions of T cells
• Complex branching fractal structure
• Time resolution in seconds for 20 to 30 days
SIMCoV in UPC++
• Distributed 3D spatial grid
• Particles move over time, but computation is 

localized 
• Load balancing is tricky: active near infections
UPC++ benefits:
• Heavily uses RPCs
• Easy to develop first prototype
• Good distributed performance and avoids 

explicit locking
• Extensive support for asynchrony improves 

computation/communication overlap

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

SIMCoV: Spatial Model of Immune Response to Viral Lung Infection

https://github.com/AdaptiveComputationLab/simcov

https://github.com/AdaptiveComputationLab/simcov
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ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a 
wildfire? (1.5TB)

What at the seasonal fluctuations 
in a wetland mangrove? (1.6 TB)

How do microbes affect disease and 
growth of switchgrass for biofuels (4TB)

What are the microbial dynamics 
of soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved 
functional understanding (8TB)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov
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Co-Assembly improves quality and is an HPC problem

Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, 
Andrew Tritt, Aydın Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
• Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta
• Previously assembled 1 lane at a time (multiassembly)
• MetaHipMer coassembled together – higher quality assembly, in 3.5 hours on 16K cores

Multiassembly
1 lane at a time

Coassembly all assembled 
together – more new genomes 
at higher completeness

This was the largest, high-quality de novo metagenome assembly completed at the time
More recently: new record 30TB metagenome assembly on 1500 nodes (63K cores and 9K GPUs) of 
OLCF Summit in 2022
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MetaHipMer utilized UPC++ features
C++ templates – efficient code reuse

dist_object – as a templated functor
& data store

Asynchronous all-to-all exchange – not
batch synchronous

• 5x improvement at scale relative to
previous MPI implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill (advanced UPC++ feature) – for a fixed-size memory footprint

• Issue promise when full, fulfill when available

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Work and results by Rob Egan,
funded by ECP ExaBiome Group https://sites.google.com/lbl.gov/exabiome/downloads

https://sites.google.com/lbl.gov/exabiome/downloads
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UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications
• Links to optional extensions and partner projects

• Contact information and support forum

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

“We found UPC++ to be a very powerful and 
flexible tool for the development of parallel 

applications in distributed memory 
environments that enabled us to reach the high 
level of performance required by our DepSpawn
project, so that we could outperform the state-

of-the-art approaches. It is also particularly 
important in our opinion that, while supporting a 
really wide range of mechanisms, it is very well 

documented and supported.”
-- Basilio Bernardo Fraguela Rodríguez, 

Universidade da Coruña, Spain

“If your code is already written in a one-sided 
fashion, moving from MPI RMA or SHMEM 
to UPC++ RMA is quite straightforward and 

intuitive; it took me about 30 minutes to 
convert MPI RMA functions in my application 

to UPC++ RMA, and I am getting similar 
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

