
Getting Started Using Chapel for Parallel Programming

SC23 Tutorial - Denver

Michelle Strout and the Chapel Team

November 12, 2023

11/3/23 1

November 12, 2023

SC23 Tutorial - Denver
Michelle Strout and the Chapel Team

GETTING STARTED USING CHAPEL FOR
PARALLEL PROGRAMMING

OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

• Chapel Goals, Usage, and Comparison with other Tools
• Hello World (Demo with Example Codes)
• Chapel Execution Model and Parallel Hello World
• Serial programming in Chapel: k-mer counting using file IO, config consts, strings, maps
• Parallelizing a program that processes files
• Distributed parallelism for Heat 2D problem
• GPU programming support

CHAPEL GOALS, USAGE, AND COMPARISON WITH OTHER TOOLS

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

5

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL

6(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

7(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• 9 TB/s for argsort on an HPE EX system

8

HIGHLIGHTS OF CHAPEL USAGE

https://github.com/Bears-R-Us/arkouda

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

CHAPEL IS HIGHLY PERFORMANT AND SCALABLE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

9

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures, in parallel (distributed memory multicore, global-view):

LET'S COMPARE WITH MPI+OPENMP+CUDA USING STREAM TRIAD

A

B

C
·

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

10

11

STREAM TRIAD: IN MPI+OPENMP+CUDA

#define N 2000000

int main() {
 float *d_a, *d_b, *d_c;
 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);
 cudaMalloc((void**)&d_b, sizeof(float)*N);
 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);
 dim3 dimGrid(N/dimBlock.x);
 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;
 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
 cudaThreadSynchronize();

 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

__global__ void set_array(float *a, float value, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) a[idx] = value;
}

__global__ void STREAM_Triad(float *a, float *b, float *c,
 float scalar, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
 int myRank, commSize;
 int rv, errCount;
 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);
 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);
 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
 register int j;
 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);
 b = HPCC_XMALLOC(double, VectorSize);
 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
 if (c) HPCC_free(c);
 if (b) HPCC_free(b);
 if (a) HPCC_free(a);
 if (doIO) {
 fprintf(outFile, "Failed to
 allocate memory (%d).\n",
 VectorSize);
 fclose(outFile);
 }
 return 1;
 }

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 b[j] = 2.0;
 c[j] = 1.0;
 }
 scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++)
 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);
 HPCC_free(b);
 HPCC_free(a);

 return 0; }

HPC suffers from too many distinct notations for expressing parallelism and locality.
This tends to be a result of bottom-up language design.

Given a system and its core capabilities…
…provide features that permit users to access the available performance.

12

BOTTOM UP LANGUAGE DESIGN

benefits: lots of control; decent generality
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP / pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA, ROCm, OpenMP, ... SIMD function/task

#define N 2000000

int main() {
 float *d_a, *d_b, *d_c;
 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);
 cudaMalloc((void**)&d_b, sizeof(float)*N);
 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);
 dim3 dimGrid(N/dimBlock.x);
 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;
 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
 cudaThreadSynchronize();

 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

__global__ void set_array(float *a, float value, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) a[idx] = value;
}

__global__ void STREAM_Triad(float *a, float *b, float *c,
 float scalar, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
 int myRank, commSize;
 int rv, errCount;
 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);
 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);
 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
 register int j;
 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);
 b = HPCC_XMALLOC(double, VectorSize);
 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
 if (c) HPCC_free(c);
 if (b) HPCC_free(b);
 if (a) HPCC_free(a);
 if (doIO) {
 fprintf(outFile, "Failed to
 allocate memory (%d).\n",
 VectorSize);
 fclose(outFile);
 }
 return 1;
 }

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 b[j] = 2.0;
 c[j] = 1.0;
 }
 scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++)
 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);
 HPCC_free(b);
 HPCC_free(a);

 return 0; }

13

STREAM TRIAD: IN CHAPEL

({1..m});

use BlockDist;

config const m = 1000,
 alpha = 3.0;

const ProblemSpace = blockDist.createDomain({1..m});

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

{1..m};

#define N 2000000

int main() {
 float *d_a, *d_b, *d_c;
 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);
 cudaMalloc((void**)&d_b, sizeof(float)*N);
 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);
 dim3 dimGrid(N/dimBlock.x);
 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;
 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
 cudaThreadSynchronize();

 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

__global__ void set_array(float *a, float value, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) a[idx] = value;
}

__global__ void STREAM_Triad(float *a, float *b, float *c,
 float scalar, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
 int myRank, commSize;
 int rv, errCount;
 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);
 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);
 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
 register int j;
 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);
 b = HPCC_XMALLOC(double, VectorSize);
 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
 if (c) HPCC_free(c);
 if (b) HPCC_free(b);
 if (a) HPCC_free(a);
 if (doIO) {
 fprintf(outFile, "Failed to
 allocate memory (%d).\n",
 VectorSize);
 fclose(outFile);
 }
 return 1;
 }

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 b[j] = 2.0;
 c[j] = 1.0;
 }
 scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++)
 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);
 HPCC_free(b);
 HPCC_free(a);

 return 0; }

14

STREAM TRIAD: IN CHAPEL

({1..m});

Philosophy: Top-down language design can tease system-specific implementation
details away from an algorithm, permitting the compiler, runtime, applied scientist, and
HPC expert to each focus on their strengths.

use BlockDist;

config const m = 1000,
 alpha = 3.0;

const ProblemSpace = blockDist.createDomain({1..m});

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

The special sauce:
Indicate how this index set—
and any arrays and
computations over it—should
be mapped to the system.

• Familiarity with the Chapel execution model including how to run codes in parallel on a single
node and across nodes

• Learn some Chapel programming concepts
• Parallelism and locality in Chapel
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem)
• GPU support in Chapel

• Where to get help and how you can participate in the Chapel community

15

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

HELLO WORLD (DEMO WITH EXAMPLE CODES)

Tarball with example codes and slides
curl -LO https://go.lbl.gov/sc23.tar.gz
tar xzf sc23.tar.gz
cd sc23/

Using a container on your laptop
• First, install docker for your machine and start it up (see the README.md for more info)
• Then, use the chapel-gasnet docker container connected to the 'sc23/chapel/' directory

 docker pull docker.io/chapel/chapel-gasnet # takes about 5+ minutes
 cd chapel/
 docker run --rm -it -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet /bin/bash
 root@xxxxxxxxx:/myapp# chpl hello.chpl
 root@xxxxxxxxx:/myapp# ./hello -nl 1

Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

17

DEMO OF HOW TO USE EXAMPLE CODES IN DOCKER

Check out the chapel-quickReference.pdf in the sc23/chapel/ subdirectory

make run-hello

https://go.lbl.gov/sc23.tar.gz
https://ato.pxeger.com/run?1=m70sOSOxIDVnwYKlpSVpuhY7y4syS1Jz8jSUPFJzcvJ1FMrzi3JSFJU0rSHyUGUw5QA
https://chapel-lang.org/

• Fast prototyping

• “Production-grade”

18

"HELLO WORLD" IN CHAPEL: TWO VERSIONS

writeln("Hello, world!");

module Hello {

 proc main() {
 writeln("Hello, world!");
 }

}

16

COMPILING CHAPEL

Chapel
Source
Code

Chapel
Executable

Standard
Modules

(in Chapel)

chpl

root@xxxxxxxxx:/myapp# chpl hello.chpl

root@xxxxxxxxx:/myapp# ./hello -nl 1

make run-hello

CHAPEL EXECUTION MODEL AND PARALLEL HELLO WORLD

Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

21

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

locale 0 locale 1 locale 2 locale 3

Locales array:

System has many nodes

. . .

22

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

hello-dist-node-names.chpl

23

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

‘here’ refers to the locale on
which we’re currently running

how many concurrent tasks does
this node support (typically the

number of processor cores)?

what’s my locale’s name?

hello-dist-node-names.chpl

24

TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl 1
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

a 'coforall’ loop executes each
iteration as an independent task

hello-dist-node-names.chpl

25

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl 1
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

26

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

the array of locales we’re running on

hello-dist-node-names.chpl

locale 0 locale 1 locale 2 locale 3

Locales array:

27

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034

Hello from task 1 of 4 on n1035

…

hello-dist-node-names.chpl

In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

For now, think of each compute node as having one locale run on it

28

LOCALES AND EXECUTION MODEL IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

Two key built-in variables for referring to locales in Chapel programs:

•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES AND EXECUTION MODEL IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3

29

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

30

Processor Core

Memory

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
 var B: [1..2, 1..2] real;

 B = 2 * A;
}

basics-on.chpl

31

All Chapel programs begin running
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation

A B

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

basics-for.chpl

32

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

This is also a serial, but distributed computation

A

B

B B B

MIXING LOCALITY WITH TASK PARALLELISM

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

basics-coforall.chpl

33

The coforall loop creates
a parallel task per iteration

Locale 0 Locale 1 Locale 2 Locale 3

This results in a parallel distributed computation

A

B

B B B

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = blockDist.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

34

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

A

B[1,1]

B[1,2] B[2,1] B[2,2]

• This is a parallel, but local program:

• This is a distributed, but serial program:

• This is a distributed parallel program:

35

PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
 writeln("Hello from locale 2!");
 on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");

coforall i in 1..msgs do
 writeln("Hello from task ", i);

coforall i in 1..msgs do
 on Locales[i%numLocales] do
 writeln("Hello from task ", i, " running on locale ", here.id);

OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

• Chapel Goals, Usage, and Comparison with other Tools
• Hello World (Demo with Example Codes)
• Chapel Execution Model and Parallel Hello World
• Serial programming in Chapel: k-mer counting using file IO, config consts, strings, maps
• Parallelizing a program that processes files
• Distributed parallelism for Heat 2D problem
• GPU programming support

K-MER COUNTING USING FILE IO, CONFIG CONSTS, AND STRINGS

38

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

use Map, IO;

config const infilename = "kmer_large_input.txt";
config const k = 4;

var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is
being declared as a dictionary

mapping strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the
input file into the string 'sequence'.

Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 –-k=10 # can change k

./kmer -nl 1 --infilename="kmer.chpl" # changing infilename

./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

Key concepts
• 'use' command for including modules
• configuration constants, 'config const'
• reading from a file
• 'map' data structure

39

EXERCISES: EXPERIMENTING WITH THE K-MER EXAMPLE

PARALLELIZING A PROGRAM THAT PROCESSES FILES

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem, BlockDist;
config const dir = "DataDir";
var fList = findFiles(dir);
var filenames =
 blockDist.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

41

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory
parallelism using 'forall'
• in other words, parallelism within

the locale/node and across
locales/nodes

• a distributed array
• command line options to indicate

number of locales

42

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed
across locales

• 'forall' will do parallelism across locales and then
within each locale to take advantage of multicore

Locale 0 Locale 1

Some things to try out with 'parfilekmer.chpl’

chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

Concepts illustrated
• 'forall' over a block distributed array provides distributed and shared memory

parallelism
• No remote writes/puts and reads/gets

43

EXERCISES: PROCESSING FILES IN PARALLEL

IMPLICIT COMMUNICATION:
REMOTE WRITES/PUTS AND READS/GETS

Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 var x, y, z: int;
 …

}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 x

 y

 z

locale 1

0

0

0

45

Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 if !done {
 if verbose then
 writef("Adding locale 1’s contribution");
 total += computeMyContribution();
 }
}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

locale 1

if !done {
 if verbose then
 writef("Adding…
 total += computi…
}

code runs on locale 1,
but refers to values
stored on locale 0

46

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = blockDist.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

47

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

A

B[1,1]

B[1,2] B[2,1] B[2,2]

HEAT 2D EXAMPLE

2D heat / diffusion PDE:

Discretized (finite-difference) form:

49

2D HEAT EQUATION EXAMPLE

𝜕𝑢
𝜕𝑡 = 𝛼∆𝑢 = 𝛼

𝜕!𝑢
𝜕𝑥! +

𝜕!𝑢
𝜕𝑦!

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!%&,#$ + 𝑢!'&,#$ − 4𝑢!,#$ + 𝑢!,#%&$ + 𝑢!,#'&$

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const omega = {0..<nx, 0..<ny},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

𝑛 = 0 𝑛 = 𝑁

heat-2D.chpl

2D heat / diffusion PDE in Chapel:

• This computation uses a 5-point stencil
• Each point in 'u' can be computed in parallel

• this is accomplished using a 'forall' loop

50

PARALLEL 2D HEAT EQUATION

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!'&,#$ + 𝑢!,#'&$ + 𝑢!%&,#$ + 𝑢!,#%&$ − 4𝑢!,#$

𝑢$ 𝑢$%&

Stored in uStored in un

Fixed
boundary

values

7
 8
 9
10
11
12
13

...
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

...

heat-2D.chpl

• Declaring distributed domains with the block distribution

• Distributed & Parallel loop over 'OmegaHat'

51

BLOCK DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢$ 𝑢$%&
Stored in uStored in un

heat-2D-block.chpl

const Omega = blockDist.createDomain(0..<nx, 0..<ny),
 OmegaHat = Omega.expand(-1);

for 1..nt {
 u <=> un;

 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

Array access across locale
boundaries automatically
invokes communication

un[i-1, j]

• Declaring distributed domains with the stencil distribution

• Distributed & Parallel loop including buffer updates

52

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢$ 𝑢$%&
Stored in uStored in un

heat-2D-stencil.chpl

const Omega = stencilDist.createDomain(
 {0..<nx, 0..<ny}, fluff=(1,1)),
 OmegaHat = Omega.expand(-1);

Array access across locale
boundaries (within the fluff

region) results in a local
buffer access — no

communication is required

The buffers must be updated
explicitly during each time

step by calling 'updateFluff'

for 1..nt {
 u <=> un;

un.updateFluff();
 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

• Each locale owns a region of the array
surrounded by a "fluff" (buffer) region

• Calling 'updateFluff' copies values from
neighboring regions of the array into
the local buffered region

• Subsequent accesses of those values
result in a local memory access, rather
than a remote communication

53

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢$ 𝑢$%&

heat-2D-stencil.chpl

GPU PROGRAMMING SUPPORT

Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops are converted to kernels
• Arrays declared within GPU sublocale code blocks are

allocated on the GPU

Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

For more info...
– https://chapel-lang.org/docs/technotes/gpu.html

55

GPU SUPPORT IN CHAPEL

use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
if here.gpus.size>0 then here.gpus
 else [here,];

// Same code can run on GPU or CPU

coforall loc in operateOn do on loc {
 var A : [1..10] int;
 forall a in A do a+=1;
 writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

gpuExample.chpl

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

TUTORIAL SUMMARY

OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

• Chapel Goals, Usage, and Comparison with other Tools
• Hello World (Demo with Example Codes)
• Chapel Execution Model and Parallel Hello World
• Serial programming in Chapel: k-mer counting using file IO, config consts, strings, maps
• Parallelizing a program that processes files
• Distributed parallelism for Heat 2D problem
• GPU programming support

Primers
• https://chapel-lang.org/docs/primers/index.html

Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

Presentations
• https://chapel-lang.org/presentations.html

58

OTHER CHAPEL EXAMPLES & PRESENTATIONS

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://chapel-lang.org/presentations.html

• Takeaways
• Chapel is a PGAS programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask the Chapel team and users questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

59

TUTORIAL SUMMARY

https://chapel-lang.org/CHIUW.html

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Blog: https://chapel-lang.org/blog/
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: @ChapelLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

CHAPEL RESOURCES

60HPE PROPRIETARY

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/@ChapelLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

ADDITIONAL CONTENT

ADDITIONAL CONTENT

• Parallelism supported in Chapel
• Parallelism and locality in the context of GPUs

PARALLELISM SUPPORTED BY CHAPEL

Synchronous task parallellism
• 'coforall', parallel task per iteration
• 'cobegin', executes all statements in block in parallel

Asynchronous task parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination

Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

64

PARALLELISM SUPPORTED BY CHAPEL

begin

begin

stmt
 begin

stmt stmt

iteration
iteration

coforall
iteration

...

stmt

stmt

cobegin

for loop: each iteration is executed serially by the current task
• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

coforall loop: each iteration is executed concurrently by a distinct task
• explicit parallelism; supports synchronization between iterations (tasks)

65

SPECTRUM OF CHAPEL FOR-LOOP STYLES

forall i in 1..n do … // forall loops over ranges use local tasks only
forall (i,j) in {1..n, 1..n} do … // ditto for local domains…
forall elem in myLocArr do … // …and local arrays
forall elem in myDistArr do … // distributed arrays use tasks on each locale owning part of the array
forall i in myParIter(…) do … // you can also write your own iterators that use the policy you want

See https://chapel-lang.org/docs/primers/loops.html
for more details on loops.

https://chapel-lang.org/docs/primers/loops.html

• Any function or operator that takes scalar arguments can be called with array expressions instead

• Interpretation is similar to that of a zippered forall loop, thus:

 is equivalent to:

 as is:

66

IMPLICIT LOOPS: PROMOTION OF SCALAR SUBROUTINES & ARRAY OPS

proc foo(x: real, y: real, z: real) {
 return x**y + 10*z;
}

C = foo(A, 2, B);

forall (c, a, b) in zip(C, A, B) do
 c = foo(a, 2, b);

C = A**2 + 10*B;

• Variables can have 'reduce' intent within tasks:

• Reductions can reduce arbitrary iterable expressions:

• Standard reductions supported by default:

const total = + reduce Arr,
factN = * reduce 1..n,

biggest = max reduce (forall i in myIter() do foo(i));

+, *, min, max, &, |, &&, ||, minloc, maxloc, …

67

REDUCE INTENT AND REDUCTIONS IN CHAPEL

var bucketCount : [0..<m] real;
forall i in 1..n with (+ reduce bucketCount) do
 bucketCount[i % m] += 1;

will result in each task having its
own copy, but then on loop exit,

tasks combine their results into the
original 'bucketCount' variable

Synchronous task parallellism
• 'coforall', parallel task per iteration
• 'cobegin', executes all statements in block in parallel

Asynchronous task parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination

Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

68

PARALLELISM SUPPORTED BY CHAPEL
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }

cobegin { doTask0(); doTask1(); ... doTaskN(); }

var x : atomic int = 0, y : sync int;
sync {
 begin x.add(1);
 begin y.writeEF(1);
 begin x.sub(1);
 begin { y.readFE(); y.writeEF(0); }
}
assert(x.read() == 0);
assert(y.readFE() == 0);

var n = [i in 1..10] i*i;
forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

• task intents / task-private variables: control how variables and tasks relate

69

OTHER TASK PARALLEL FEATURES

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(), …

var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readFE(), .writeEF()

coforall i in 1..niters with (ref x, + reduce y, var z: int) { … }

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

71

CPU Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

72

CPU Core

Memory

GPU Core

73

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

Execution/allocation
moves to the sublocale

A

x

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }

writeln(x);

GPU Core MemoryCPU Core

74

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

75

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

A
H
os
t

GPU 0

GPU 1

var x = 10;
var AHost = [1, 2, 3, 4, 5, ...];

 on here.gpus[0] {
 var A = AHost;
 forall a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

76

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

77

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }

writeln(x);

A

A

coforall across local GPUs

GPU Core MemoryCPU Core

78

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;
coforall l in Locales do on l {

 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }

}
writeln(x);

A

A

Locale 1

GPU 0

GPU 1

A

A

coforall across 'Locales'

inner
coforall

GPU Core MemoryCPU Core

var x = 10;
coforall l in Locales do on l {
 cobegin {
 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }
 {
 var A = [1, 2, 3, 4, 5, ...];
 forall a in A do a += 1;
 }
 }
}
writeln(x);

79

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

GPU Core Memory

A

A

Locale 1

GPU 0

GPU 1

A

A

A A

CPU Core

parallel statements
with cobegin

outer coforall

inner
coforall

