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1 Introduction
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is
designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key
communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call
(RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent
process having access to local memory as it would in C++. The PGAS memory model additionally provides
one-sided RMA communication to a global address space, which is allocated in shared segments that
are distributed over the processes (see Figure 1). UPC++ also features Remote Procedure Call (RPC)
communication, making it easy to move computation to operate on data that resides on remote processes.

UPC++ was designed to support exascale high-performance computing, and the library interfaces and
implementation are focused on maximizing scalability. In UPC++, all communication operations are
syntactically explicit, which encourages programmers to consider the costs associated with communication
and data movement. Moreover, all communication operations are asynchronous by default, encouraging
programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++
provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony
in programs. Together, these design principles are intended to enable programmers to write applications
using UPC++ that perform well even on hundreds of thousands of cores.

Figure 1: PGAS Memory Model.

This guide describes the LBNL implementation of UPC++, which uses GASNet for communication across a
wide variety of platforms, ranging from Ethernet-connected laptops to commodity InfiniBand clusters and
supercomputers with custom high-performance networks. GASNet is a language-independent, networking
middleware layer that provides network-independent, high-performance communication primitives tailored for
implementing parallel global address space languages and libraries such as UPC, UPC++, Fortran coarrays,
Legion, Chapel, and many others. For more information about GASNet, visit https://gasnet.lbl.gov.

Although our implementation of UPC++ uses GASNet, in this guide, only the Getting Started with UPC++
and Advanced Job Launch sections are specific to the implementation. The LBNL implementation of
UPC++ adheres to the implementation-independent UPC++ Specification. Both are available at the UPC++
homepage at https://upcxx.lbl.gov/.

See Additional Resources for links to additional sites that are helpful in learning to use UPC++. For example,
the UPC++ training site at https://upcxx.lbl.gov/training has links to introductory video tutorials that give
overviews of using UPC++ and some hands-on exercises to get started.

UPC++ has been designed with modern object-oriented concepts in mind. Novices to C++ should avail
themselves of good-quality tutorials and documentation to refresh their knowledge of C++ templates, the
C++ standard library (std::), and lambda functions, which are used heavily in this guide.
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2 Getting Started with UPC++
We present a brief description of how to install UPC++ and compile and run UPC++ programs. For more
detail, consult the INSTALL.md and README.md files that come with the distribution.

2.1 Installing UPC++
UPC++ installation follows the same steps as many GNU autotools-based projects: configure, make all,
make install. To install UPC++, extract the library source code to a clean directory, and from the top-level
of this directory, run the following steps (output has been omitted for brevity):

$ ./configure --prefix=<upcxx-install-path>
$ make all
$ make install

This will configure, build and install the UPC++ library in the chosen <upcxx-install-path> directory.
We recommend that users choose an installation path which is a non-existent or empty directory path, so
that uninstallation is as trivial as rm -rf <upcxx-install-path>.

Optionally, make check (after make all) and make test_install (after make install) can be run to
validate the build and installation steps.

2.1.1 General Requirements

The list of compatible versions of compilers for the various platforms can be found in the INSTALL.md that
comes with the distribution, under the section “System Requirements”. The configure script checks that
the compiler is supported and if not, it issues a warning or terminates with an error message indicating that
CXX and CC need to be set to supported and compatible compilers.

2.1.2 Requirements for Cray XC

If a Cray PrgEnv-* environment module is loaded at the time the configure script is run, it will automatically
utilize the cc and CC compiler wrappers of the loaded Cray programming environment. This ensures that
UPC++ installation is built to target the XC compute nodes. It will also configure upcxx-run to use either
the Cray ALPS or SLURM job launcher. If detection of the appropriate job launcher fails, you may need to
pass a --with-cross=... option to the configure command. More details are provided in INSTALL.md.

2.1.3 Requirements for macOS

To install UPC++ on macOS, the Xcode Command Line Tools must be installed before invoking configure,
i.e.:

$ xcode-select --install

2.2 Compiling UPC++ Programs
To compile a program using UPC++, the <upcxx-install-path>/bin/upcxx wrapper can be used. This
works analogously to the familiar mpicxx wrapper, in that it invokes the underlying C++ compiler with the
provided options, and automatically prepends the options necessary for including/linking the UPC++ library.
For example to build the hello world code shown in an upcoming section, one could execute:

<upcxx-install-path>/bin/upcxx -O3 hello-world.cpp

Note that an option starting either with -O (for optimized) or -g (for debug mode) should be specified, which
has a side-effect of selecting the variant of the UPC++ library built with optimization (for production runs)
or with assertions and debugging symbols (for debugging and development). Alternatively, one can effect the
same choice by passing upcxx -codemode={opt,debug} The debug-mode library is highly recommended for
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all application development, as it includes many useful correctness assertions that can help reveal application-
level bugs. Conversely, the opt-mode library should be used for all performance testing or production runs.
Note that most upcxx options are passed straight through to the C++ compiler, which includes options
controlling the optimization level (if any). If no -O options are provided (or only a bare “-O”), the wrapper
provides a compiler-specific default optimization level that might not be ideal for your program (selecting the
best optimization options for your C++ compiler is application-specific and beyond the scope of this guide).

If features from a C++ standard beyond C++11 are required, the C++ standard may also need to be specified
(for example, by passing -std=c++14 or -std=c++17). For a complete example, look at the Makefile in the
<upcxx-source-path>/example/prog-guide/ directory. That directory also has code for all of the examples
given in this guide. To use the Makefile, first set the UPCXX_INSTALL shell variable to the install path.

UPC++ supports multithreading within a process, e.g. using OpenMP. In these cases, to ensure that the
application is compiled against a thread-safe UPC++ library, pass upcxx -threadmode=par. Note that this
option is less efficient than the default, upcxx -threadmode=seq, which enables the use of a UPC++ library
that is synchronization-free in most of its internals; thus, the parallel, thread-safe mode should only be used
when multithreading within processes. For detailed restrictions associated with -threadmode=seq, consult
the docs/implementation-defined.md document provided by the distribution.

UPC++’s communication services are implemented over GASNet, and on a given system there may be several
communication backends available corresponding to different network hardware and/or software stacks. The
communication backend can be selected using upcxx -network=<name>.

For example, to select the debug, thread-safe version of the UDP communication backend:

<upcxx-install-path>/bin/upcxx -g -network=udp -threadmode=par hello-world.cpp

Environment variables are available to establish defaults for several of the common options. The variables
UPCXX_CODEMODE, UPCXX_THREADMODE and UPCXX_NETWORK provide defaults for -codemode, -threadmode and
-network, respectively.

There are several other options that can be passed to upcxx. Execute upcxx --help to get the full list of
options, e.g.:

upcxx is a compiler wrapper that is intended as a drop-in replacement for your
C++ compiler that appends the flags necessary to compile/link with the UPC++ library.
Most arguments are passed through without change to the C++ compiler.

Usage: upcxx [options] file...
upcxx Wrapper Options:

-help This message
-network={ibv|aries|smp|udp|mpi}

Use the indicated GASNet network backend for communication.
The default and availability of backends is system-dependent.

-codemode={opt|debug}
Select the optimized or debugging variant of the UPC++ library.

-threadmode={seq|par}
Select the single-threaded or thread-safe variant of the UPC++ library.

-Wc,<anything> <anything> is passed-through uninterpreted to the underlying compiler
<anything-else> Passed-through uninterpreted to the underlying compiler

C++ compiler --help:
Usage: g++ [options] file...
[...snip...]

More details about compilation can be found in the README.md file that comes with the distribution.
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2.3 Running UPC++ Programs
To run a parallel UPC++ application, use the upcxx-run launcher provided in the installation directory:

<upcxx-install-path>/bin/upcxx-run -n <processes> <exe> <args...>

The launcher will run the executable and arguments <exe> <args...> in a parallel context with <processes>
number of UPC++ processes. For multiple nodes, specify the node count with -N <nodes>.

Upon startup, each UPC++ process creates a fixed-size shared memory heap that will never grow. By default,
this heap is 128 MB per process. This heap size can be set at startup by passing a -shared-heap parameter
to the run script, which takes a suffix of KB, MB or GB; e.g. to reserve 1GB per process, call:

<upcxx-install-path>/bin/upcxx-run -shared-heap 1G -n <processes> <exe> <args...>

One can also specify the shared heap size as a percentage of physical memory, split evenly between processes
sharing the same node, e.g., -shared-heap=50%. There are several other options that can be passed to
upcxx-run. Execute upcxx-run --help to get the full list of options, e.g.:

usage: upcxx-run [-h] [-n NUM] [-N NUM] [-shared-heap HEAPSZ] [-backtrace]
[-show] [-info] [-ssh-servers HOSTS] [-localhost] [-v]
[-E VAR1[,VAR2]]
command ...

A portable parallel job launcher for UPC++ programs

options:
-h, --help show this help message and exit
-n NUM, -np NUM Spawn NUM number of UPC++ processes. Required.
-N NUM Run on NUM of nodes.
-shared-heap HEAPSZ Requests HEAPSZ size of shared memory per process.

HEAPSZ must include a unit suffix matching the pattern
"[KMGT]B?" or be "[0-100]%" (case-insensitive).

-backtrace Enable backtraces. Compile with -g for full debugging
information.

-show Testing: don't start the job, just output the command
line that would have been executed

-info Display useful information about the executable
-ssh-servers HOSTS List of SSH servers, comma separated.
-localhost Run UDP-conduit program on local host only
-v Generate verbose output. Multiple applications increase

verbosity.
-E VAR1[,VAR2] Adds provided arguments to the list of environment

variables to propagate to compute processes.

command to execute:
command UPC++ executable
... arguments

Use of -v, -vv and -vvv provide additional information which may be useful. Among other things, -vv (or
higher) will print job layout and shared-heap usage information.

The upcxx-run utility covers the basic usage cases, but does not have options to cover all possibilities, such
as establishing core and memory affinity. However, upcxx-run is just a wrapper around system-provided job
launch tools with their associated options. For information on use of system-provided job launch tools with
UPC++ applications see Advanced Job Launch.
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2.4 UPC++ preprocessor defines
The header upcxx.hpp defines certain preprocessor macros to reflect the version and compilation environment:

2.4.1 UPCXX_VERSION

An integer literal providing the release version of the implementation, in the format [YYYY][MM][PP]
corresponding to release YYYY.MM.PP.

2.4.2 UPCXX_SPEC_VERSION

An integer literal providing the revision of the UPC++ specification to which this implementation adheres.
See the specification for its corresponding value.

2.4.3 UPCXX_THREADMODE

This is either undefined (for the default “seq” threadmode) or defined to an unspecified non-zero integer
value for the “par” threadmode. Recommended usage is to test using #if, as follows, to identify the need for
thread-safety:

#if UPCXX_THREADMODE
// Obtain a lock or do other thread-safety work

#endif

2.4.4 UPCXX_CODEMODE

This is either undefined (for the “debug” codemode) or defined to an unspecified non-zero integer value for
the “opt” (production) codemode.

2.4.5 UPCXX_NETWORK_*

The network being targeted is indicated by a preprocessor macro with a UPCXX_NETWORK_ prefix followed by
the network name in capitals. The macro for the network being targeted is defined to a non-zero integer
value, while those corresponding to others network are undefined.

Currently supported networks and their macros include:

Network/System Macro
InfiniBand OpenIB/OpenFabrics Verbs UPCXX_NETWORK_IBV
Aries (Cray XC) UPCXX_NETWORK_ARIES
UDP (e.g. for Ethernet) UPCXX_NETWORK_UDP
No network (single node) UPCXX_NETWORK_SMP

3 Hello World in UPC++
The following code implements “Hello World” in UPC++:

#include <iostream>
#include <upcxx/upcxx.hpp>

// we will assume this is always used in all examples
using namespace std;

int main(int argc, char *argv[])
{

// setup UPC++ runtime
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upcxx::init();
cout << "Hello world from process " << upcxx::rank_me()

<< " out of " << upcxx::rank_n() << " processes" << endl;
// close down UPC++ runtime
upcxx::finalize();
return 0;

}

The UPC++ runtime is initialized with a call to upcxx::init(), after which there are multiple processes
running, each executing the same code. The runtime must be closed down with a call to upcxx::finalize().
In this example, the call to upcxx::rank_me() gives the index for the running process, and upcxx::rank_n()
gives the total number of processes. The use of rank in the function names refers to the rank within a team,
which in this case contains all processes, i.e. team upcxx::world. Teams are described in detail in the Teams
section.

When this “hello world” example is run on four processes, it will produce output something like the following
(there is no expected order across the processes):

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

4 Global Memory
A UPC++ program can allocate global memory in shared segments, which are accessible by all processes. A
global pointer points at storage within the global memory, and is declared as follows:

upcxx::global_ptr<int> gptr = upcxx::new_<int>(upcxx::rank_me());

The call to upcxx::new_<int> allocates a new integer in the calling process’s shared segment, and returns a
global pointer (upcxx::global_ptr) to the allocated memory. This is illustrated in Figure 2, which shows
that each process has its own private pointer (gptr) which points to an integer object in its local shared
segment. By contrast, a conventional C++ dynamic allocation (int *mine = new int) allocates an integer
object in private local memory. Note that we use the integer type in this paragraph as an example, but any
type T can be allocated using the upcxx::new_<T>() function call.

Figure 2: Global pointers.

A UPC++ global pointer is fundamentally different from a conventional C++ pointer: it cannot be
dereferenced using the * operator; it does not support conversions between pointers to base and derived types;
and it cannot be constructed by the C++ std::addressof operator. However, UPC++ global pointers do
support pointer arithmetic and are trivially copyable.
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The upcxx::new_ function calls the class constructor in addition to allocating memory. Since we are allocating
a scalar, we can pass arguments to the constructor. Thus, we don’t have to invoke the default constructor.
The upcxx::new_ function is paired with upcxx::delete_:

upcxx::global_ptr<int> x = upcxx::new_<int>(42);
// work with x
...
upcxx::delete_(x);

UPC++ provides the function upcxx::new_array for allocating a 1-dimensional array in the shared segment.
This is a non-collective call and the array is NOT distributed across processes. Each call allocates an
independent, contiguous array object in the caller’s shared segment. upcxx::new_array operates analogously
to C++ array new and default-initializes objects (meaning it calls the default constructor for class types,
and leaves other types with indeterminate value). The destruction operation is upcxx::delete_array. For
example, to allocate a shared array of 10 uninitialized integers and then free it:

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);
// work with x_arr ...
upcxx::delete_array(x_arr);

UPC++ also provides functions for allocating and deallocating uninitialized shared storage without calling
constructors and destructors. The upcxx::allocate function allocates enough (uninitialized) space for n
shared objects of type T on the current process, with a specified alignment, and upcxx::deallocate frees
the memory.

4.1 Downcasting global pointers
If the shared memory pointed to by a global pointer has affinity to a local process, UPC++ enables a
programmer to use a global pointer as an ordinary C++ pointer, through downcasting, via the local method
of upcxx::global_ptr, for example:

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);
assert(x_arr.is_local()); // a precondition of global_ptr<T>::local()
int *local_ptr = x_arr.local();
local_ptr[i] = ... // work with local ptr

Using this downcasting feature, we can treat all shared objects allocated by a process as local objects (global
references are needed by remote processes only). Storage with local affinity can be accessed more efficiently
via an ordinary C++ pointer. Note that the local() method is safe only if the global pointer is local. To
this end, UPC++ provides the is_local method for global pointer to check for locality, which will return
true if this global pointer is local and can be downcast. This call can help to avoid catastrophic errors, as it
is incorrect to attempt to downcast a global pointer that is not local to a process. In “debug” codemode,
such attempts are automatically diagnosed with a fatal error at runtime.

5 Using Global Memory with One-sided Communication
We illustrate the use of global shared memory with a simple program that implements a one-dimensional (1D)
stencil. Stencil codes are widely used for modeling physical systems, e.g. for solving differential equations.
Stencil codes are iterative algorithms that operate on a mesh or partition of data, where the value at each
mesh location is computed based on the values at neighboring locations. A trivial example is where at each
iteration the value for each mesh location u[i] is computed as the average of its neighbors:

u[i] = (u[i - 1] + u[i + 1]) / 2;

In many applications, these updates are iterated until the computed solution converges to a desired degree of
accuracy, epsilon.
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One way to parallelize the 1D stencil computation is with red-black updates. The mesh is divided into two
groups: the odd-numbered indexes (red) and the even-numbered indexes (black). When iterating, first all the
red indexes are updated, and then all the black. This enables us to compute the values for all of a color in
any order with only dependencies on the other color, as shown in the following code sketch:

for (int step = 0; step < max_steps; step++) {
for (int i = 1 + step % 2; i < n - 1; i += 2)

u[i] = (u[i - 1] + u[i + 1]) / 2;
if (error(u) <= epsilon) break;

}

Note that the red updates are done on even-numbered steps, and the black updates on odd-numbered.

To implement the parallel algorithm in UPC++, we split the solution into panels, one per process. Each
process can operate independently on its own subset of the mesh, except at the boundaries, where a process
will need to access the neighbors’ values. In order to do this, we can allocate the panels in the shared segment,
using UPC++’s array allocation:

upcxx::global_ptr<double> gptr_panel = upcxx::new_array<double>(n_local);

Here n_local is the number of points assigned to the local panel. Assuming that the total number of
processes divides n evenly, we have n_local = n / upcxx::rank_n() + 2. The final +2 is extra space for
ghost cells to store the neighboring values. For simplicity, we also assume n_local is even.

5.1 Distributed Objects
Processes in UPC++ are not automatically aware of new allocations in another process’s shared segment, so
we must ensure that the processes obtain the global pointers that they require. There are several different
ways of doing this; we will show how to do it using a convenient construct provided by UPC++, called a
distributed object.

A distributed object is a single logical object partitioned over a set of processes (a team), where every process
has the same global name for the object (i.e. a universal name), but its own local value. Distributed objects
are created with the upcxx::dist_object<T> type. For example, in our stencil, we can allocate our panels
and declare a distributed object to hold the global pointers to the panels:

upcxx::dist_object<upcxx::global_ptr<double>> u_g(upcxx::new_array<double>(n_local));

Each process in a given team must call a constructor collectively for upcxx::dist_object<T>, with a value
of type T representing the process’s instance value for the object (a global pointer to an array of doubles in
the example above). Although the constructor for a distributed object is collective, there is no guarantee
that when the constructor returns on a given process it will be complete on any other process. To avoid this
hazard, UPC++ provides an interlock to ensure that accesses to a dist_object are delayed until the local
representative has been constructed.

We can still use global_ptr::local() to downcast the pointer contained in a distributed object, provided
the allocation has affinity to the process doing the downcast. We use this feature to get an ordinary C++
pointer to the panel:

double *u = u_g->local();

To access the remote value of a distributed object, we use the upcxx::dist_object::fetch member function,
which, given a process rank argument, will get the T value from the sibling distributed object representative
on the remote process. For simplicity we will use periodic boundary conditions, so process 0 has process n-1
as its left neighbor, and process n-1 has process 0 as its right neighbor. In our algorithm, we need to fetch
the global pointers for the left (uL) and right (uR) ghost cells:

int l_nbr = (upcxx::rank_me() + upcxx::rank_n() - 1) % upcxx::rank_n();
int r_nbr = (upcxx::rank_me() + 1) % upcxx::rank_n();

11



upcxx::global_ptr<double> uL = u_g.fetch(l_nbr).wait();
upcxx::global_ptr<double> uR = u_g.fetch(r_nbr).wait();

Because the fetch function is asynchronous, we have to synchronize on completion using a call to wait(). In
the Asynchronous Computation section, we will see how to overlap asynchronous operations, that is, when
communication is split-phased. For now, we do not separate the asynchronous initiation from the wait().

5.2 RMA communication
Now, when we execute the red-black iterations, we can use the global pointers to the ghost cells to get the
remote processes’ values. To do this, we invoke a remote get:

if (!(step % 2)) u[0] = upcxx::rget(uL + block).wait();
else u[n_local - 1] = upcxx::rget(uR + 1).wait();

The remote get function is part of the one-sided Remote Memory Access (RMA) communication supported
by UPC++. Also supported is a remote put function, upcxx::rput. These operations initiate transfer of the
value object to (put) or from (get) the remote process; no coordination is needed with the remote process
(this is why it is one-sided). The type T transferred must be TriviallySerializable, generally by satisfying the
C++ TriviallyCopyable concept. Like many asynchronous communication operations, rget and rput default
to returning a future object that becomes ready when the transfer is complete (futures are discussed in more
detail in the Asynchronous Computation section, and completions in general are described in more detail in
the Completions section).

Putting all the components described together, the main function for the red-black solver is:

int main(int argc, char **argv) {
upcxx::init();
// initialize parameters - simple test case
const long N = 1024;
const long MAX_ITER = N * N * 2;
const double EPSILON = 0.1;
const int MAX_VAL = 100;
const double EXPECTED_VAL = MAX_VAL / 2;
// get the bounds for the local panel, assuming num procs divides N into an even block size
long block = N / upcxx::rank_n();
assert(block % 2 == 0); assert(N == block * upcxx::rank_n());
long n_local = block + 2; // plus two for ghost cells
// set up the distributed object
upcxx::dist_object<upcxx::global_ptr<double>> u_g(upcxx::new_array<double>(n_local));
// downcast to a regular C++ pointer
double *u = u_g->local();
// init to uniform pseudo-random distribution, independent of job size
mt19937_64 rgen(1); rgen.discard(upcxx::rank_me() * block);
for (long i = 1; i < n_local - 1; i++)

u[i] = 0.5 + rgen() % MAX_VAL;
// fetch the left and right pointers for the ghost cells
int l_nbr = (upcxx::rank_me() + upcxx::rank_n() - 1) % upcxx::rank_n();
int r_nbr = (upcxx::rank_me() + 1) % upcxx::rank_n();
upcxx::global_ptr<double> uL = u_g.fetch(l_nbr).wait();
upcxx::global_ptr<double> uR = u_g.fetch(r_nbr).wait();
upcxx::barrier(); // optional - wait for all ranks to finish init
// iteratively solve
for (long stepi = 0; stepi < MAX_ITER; stepi++) {

// alternate between red and black
int phase = stepi % 2;
// get the values for the ghost cells
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if (!phase) u[0] = upcxx::rget(uL + block).wait();
else u[n_local - 1] = upcxx::rget(uR + 1).wait();
// compute updates and error
for (long i = phase + 1; i < n_local - 1; i += 2)

u[i] = (u[i - 1] + u[i + 1]) / 2.0;
upcxx::barrier(); // wait until all processes have finished calculations
if (stepi % 10 == 0) { // periodically check convergence

if (check_convergence(u, n_local, EXPECTED_VAL, EPSILON, stepi))
break;

}
}
upcxx::finalize();
return 0;

}

We have one helper function, check_convergence, which determines if the solution has converged. It uses a
UPC++ collective, upcxx::reduce_all, to enable all the processes to obtain the current maximum error:

bool check_convergence(double *u, long n_local, const double EXPECTED_VAL,
const double EPSILON, long stepi)

{
double err = 0;
for (long i = 1; i < n_local - 1; i++)

err = max(err, fabs(EXPECTED_VAL - u[i]));
// upcxx collective to get max error over all processes
double max_err = upcxx::reduce_all(err, upcxx::op_fast_max).wait();
// check for convergence
if (max_err / EXPECTED_VAL <= EPSILON) {

if (!upcxx::rank_me())
cout << "Converged at " << stepi <<", err " << max_err << endl;

return true;
}
return false;

}

Because the collective function is asynchronous, we synchronize on completion, using wait(), to retrieve the
result.

6 Remote Procedure Calls
An RPC enables the calling process to invoke a function at a remote process, using parameters sent to the
remote process via the RPC. For example, to execute a function square on process r, we would call:

int square(int a, int b) { return a * b; }
upcxx::future<int> fut_result = upcxx::rpc(r, square, a, b);

By default, an RPC returns the result in an appropriately typed upcxx::future, and we can obtain the
value using wait, i.e.

int result = fut_result.wait();

(for more on futures, see the Asynchronous Computation section). The function passed in can be a lambda or
another function, but note that currently the function cannot be in a shared library. The arguments to an
RPC must be Serializable, generally either by satisfying the C++ TriviallyCopyable concept (which includes
all builtin types and many class types), or be one of the commonly used types from the C++ standard
template library. See Serialization for details, including interfaces for defining non-trivial serialization of
user-defined types.
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6.1 Implementing a Distributed Hash Table
We illustrate the use of RPCs with a simple distributed hash table, a distributed analog of the C++ unordered
map container. The hash table is implemented in a header file, and provides insert and find operations. It
relies on each process having a local std::unordered_map to store the key-value pairs, and in order for the
local unordered maps to be accessible from the RPCs, we wrap them in a distributed object:

using dobj_map_t = upcxx::dist_object<std::unordered_map<std::string, std::string> >;
dobj_map_t local_map;

This is initialized in the constructor:

DistrMap() : local_map({}) {}

For the insert operation, the target process is determined by a hash function, get_target_rank(key), which
maps the key to one of the processes. The data is inserted using a lambda function, which takes a key and a
value as parameters. The insert operation returns the result of the lambda, which in this case is an empty
future:

upcxx::future<> insert(const std::string &key, const std::string &val) {
return upcxx::rpc(get_target_rank(key),

[](dobj_map_t &lmap, const std::string &key, const std::string &val) {
lmap->insert({key, val});

}, local_map, key, val);
}

Note the dist_object argument local_map to the RPC. As a special case, when a dist_object is passed
as the argument to an RPC, the RPC activation at the target receives a reference to its local representative
of the same dist_object. Also note the use of const-reference for other arguments, to avoid the cost of
copying the RPC arguments upon entry to the callback.

The find operation for our distributed map is similar, and is given in the full header example:

#include <map>
#include <upcxx/upcxx.hpp>

class DistrMap {
private:

// store the local unordered map in a distributed object to access from RPCs
using dobj_map_t = upcxx::dist_object<std::unordered_map<std::string, std::string> >;
dobj_map_t local_map;
// map the key to a target process
int get_target_rank(const std::string &key) {

return std::hash<std::string>{}(key) % upcxx::rank_n();
}

public:
// initialize the local map
DistrMap() : local_map({}) {}
// insert a key-value pair into the hash table
upcxx::future<> insert(const std::string &key, const std::string &val) {

// the RPC returns an empty upcxx::future by default
return upcxx::rpc(get_target_rank(key),

// lambda to insert the key-value pair
[](dobj_map_t &lmap, const std::string &key, const std::string &val) {

// insert into the local map at the target
lmap->insert({key, val});

}, local_map, key, val);
}

14



// find a key and return associated value in a future
upcxx::future<std::string> find(const std::string &key) {

return upcxx::rpc(get_target_rank(key),
// lambda to find the key in the local map
[](dobj_map_t &lmap, const std::string &key) -> std::string {

auto elem = lmap->find(key);
if (elem == lmap->end()) return std::string(); // not found
else return elem->second; // key found: return value

}, local_map, key);
}

};

A test example of using the distributed hash table is shown below. Each process generates a set of N key-value
pairs, guaranteed to be unique, inserts them all into the hash table, and then retrieves the set of keys for the
next process over, asserting that each one was found and correct. The insertion phase is followed by a barrier,
to ensure all insertions have completed:

#include <iostream>
#include "dmap.hpp"

using namespace std;

int main(int argc, char *argv[])
{

upcxx::init();
const long N = 1000;
DistrMap dmap;
// insert set of unique key, value pairs into hash map, wait for completion
for (long i = 0; i < N; i++) {

string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
dmap.insert(key, val).wait();

}
// barrier to ensure all insertions have completed
upcxx::barrier();
// now try to fetch keys inserted by neighbor
for (long i = 0; i < N; i++) {

string key = to_string((upcxx::rank_me() + 1) % upcxx::rank_n()) + ":" + to_string(i);
string val = dmap.find(key).wait();
// check that value is correct
assert(val == key);

}
upcxx::barrier(); // wait for finds to complete globally
if (!upcxx::rank_me()) cout << "SUCCESS" << endl;
upcxx::finalize();
return 0;

}

In the previous example, the rpc operations are synchronous because of the call to the wait method. To
achieve maximum performance, UPC++ programs should always take advantage of asynchrony when possible.

6.2 RPC and Lambda Captures
We’ve seen several RPC examples that specify a remote callback by passing a C++ lambda expression, which
is concise and convenient for small blocks of code. RPC actually accepts any form of C++ FunctionObject for
the callback, which includes global and file-scope functions, class static functions, function pointers, lambda
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expressions and even user-defined objects implementing operator(). However it’s important to understand
that RPC assumes the provided FunctionObject is trivially copyable, as it will byte-copied when transmitted
to the target process. This property is usually satisfied for the FunctionObjects described here, but special
care needs to be taken when using lambda captures for RPC.

In particular:

When passing a C++ lambda expression to an RPC for execution on another process, by-reference
lambda captures should never be used.

This is because the C++ compiler implements reference captures using raw virtual memory addresses, which
are generally not meaningful at the remote process that executes the RPC callback. Note this rule does not
apply to LPC and future::then() callbacks (discussed in upcoming sections), which always execute in the
same process, but the normal C++ precautions regarding reference captures and object lifetimes still apply.

Our examples thus far have used lambda expressions with an empty capture list, i.e.: [/*empty*/](...) {
... }, which trivially avoids this pitfall. It is possible to safely use value captures (also known as capture
by-copy) of trivial types in a lambda expression passed to RPC, however keep in mind the lambda object
(including any captures) are still assumed to be trivially copyable:

When passing a C++ lambda expression to an RPC, lambda value captures (capture by-copy)
should only include objects which are trivially copyable.

When in doubt, it’s always safer to pass data to an RPC callback (lambda or otherwise) using explicit RPC
callback arguments as we’ve done in our examples so far, instead of relying upon lambda captures or data
otherwise embedded in the FunctionObject. In section Serialization we’ll learn about the UPC++ machinery
that enables RPC callback arguments to transmit rich data types.

7 Asynchronous Computation
Most communication operations in UPC++ are asynchronous. So, in our red-black solver example, when we
made the call to upcxx::rget, we explicitly waited for it to complete using wait(). However, in split-phase
algorithms, we can perform the wait at a later point, allowing us to overlap computation and communication.

The return type for upcxx::rget is dependent on the UPC++ completion object passed to the UPC++ call.
The default completion is a UPC++ future, which holds a value (or tuple of values) and a state (ready or not
ready). We will use this default completion here, and will return to the subject in detail in the Completions
section. When the rget completes, the future becomes ready and can be used to access the results of the
operation. The call to wait() can be replaced by the following equivalent polling loop, which exits when
communication has completed:

upcxx::future<double> fut = upcxx::rget(uR + 1);
while (!fut.ready()) upcxx::progress();
u[n_local - 1] = fut.result();

First, we get the future object, and then we loop on it until it becomes ready. This loop must include a
call to the upcxx::progress function, which progresses the library and transitions futures to a ready state
when their corresponding operation completes (see the Progress section for more details on progress). This
common idiom is embodied in the wait() method of upcxx::future.

Using futures, the process waiting for a result can do computation while waiting, effectively overlapping
computation and communication. For example, in our distributed hash table, we can do the generation of
the key-value pair asynchronously as follows:

// initialize key and value for first insertion
string key = to_string(upcxx::rank_me()) + ":" + to_string(0);
string val = key;
for (long i = 0; i < N; i++) {

upcxx::future<> fut = dmap.insert(key, val);
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// compute new key while waiting for RPC to complete
if (i < N - 1) {

key = to_string(upcxx::rank_me()) + ":" + to_string(i + 1);
val = key;

}
// wait for operation to complete before next insert
fut.wait();

}

UPC++ also provides callbacks or completion handlers that can be attached to futures. These are functions
that are executed by the local process when the future is ready (this is sometimes also referred to as “future
chaining”). In our distributed hash table example, we want to check the value once the find operation returns.
To do this asynchronously, we can attach a callback to the future using the .then method of upcxx::future.
The callback is executed on the initiating process when the find completes, and is passed the result of the
future as a parameter. In this example, the callback is a lambda, which checks the returned value:

for (long i = 0; i < N; i++) {
string key = to_string((upcxx::rank_me() + 1) % upcxx::rank_n()) + ":" + to_string(i);
// attach callback, which itself returns a future
upcxx::future<> fut = dmap.find(key).then(

// lambda to check the return value
[key](const string &val) {

assert(val == key);
});

// wait for future and its callback to complete
fut.wait();

}

An important feature of UPC++ is that there are no implicit ordering guarantees with respect to asynchronous
operations. In particular, there is no guarantee that operations will complete in the order they were initiated.
This allows for more efficient implementations, but the programmer must not assume any ordering that is not
enforced by explicit synchronization.

7.1 Conjoining Futures
When many asynchronous operations are launched, it can be cumbersome to individually track the futures,
and wait on all of them for completion. In the previous example of asynchronous finds, we might have
preferred to issue all the finds asynchronously and wait on all of them to complete at the end. UPC++
provides an elegant solution to do this, allowing futures to be conjoined (i.e. aggregated), so that the results
of one future are dependent on others, and we need only wait for completion explicitly on one future. The
example below illustrates how the hash table lookups can be performed asynchronously using this technique:

// the start of the conjoined future
upcxx::future<> fut_all = upcxx::make_future();
for (long i = 0; i < N; i++) {

string key = to_string((upcxx::rank_me() + 1) % upcxx::rank_n()) + ":" + to_string(i);
// attach callback, which itself returns a future
upcxx::future<> fut = dmap.find(key).then(

// lambda to check the return value
[key](const string &val) {

assert(val == key);
});

// conjoin the futures
fut_all = upcxx::when_all(fut_all, fut);
// periodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();
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}
// wait for all the conjoined futures to complete
fut_all.wait();

The future conjoining begins by invoking upcxx::make_future to construct a trivially ready future fut_all.
We then loop through each iteration, calling DistrMap::find asynchronously, and obtaining the future fut
returned by the .then callback attached to the find operation. This future is passed to the upcxx::when_all
function, in combination with the previous future, fut_all. The upcxx::when_all constructs a new future
representing readiness of all its arguments (in this case fut and fut_all), and returns a future with a
concatenated results tuple of the arguments. By setting fut_all to the future returned by when_all, we
can extend the conjoined futures. Once all the processes are linked into the conjoined futures, we simply
wait on the final future, i.e. the fut_all.wait() call. Figure 3 depicts the dependency graph of operations
constructed when this code executes, with each blue box conceptually corresponding to a future constructed
synchronously at runtime. The boxes are labeled with a fragment of the code that activates after any/all
incoming dependencies (depicted by arrows) are readied, and eventually leads to readying of the future
associated with this box. For instance, the callback passed to each then will execute at some time after its
preceding dmap.find() has completed asynchronously. Note that within the loop, we have a periodic call
to upcxx::progress, which gives the UPC++ runtime an opportunity to process incoming RPCs and run
completion callbacks (progress is described in more detail in the Progress section).

Figure 3: Graph of future conjoining.

It is also possible to keep track of futures with an array or some other container, such as a vector. However,
conjoining futures has several advantages:

• Only a single future handle is needed to manage an entire logical operation and associated storage.
This simplifies composition by enabling an encapsulated communication initiation function to return a
single future to the caller rather than, for instance, an array of futures.

• Conjoined futures minimize the number of synchronous calls to .wait() needed to complete a group of
operations. Without conjoined futures, the code must loop through multiple .wait calls, potentially
adding overhead.

• Conjoined futures do not leave intermediate futures explicitly instantiated in the application-level
memory, thus potentially allowing the storage holding them to be reclaimed as soon as the futures are
ready.
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8 Quiescence
Quiescence is a state in which no process is performing computation that will result in communication
injection, and no communication operations are currently in-flight in the network or queues on any process.
Quiescence is of particular importance for applications using anonymous asynchronous operations on which
no synchronization is possible on the sender’s side. For example, quiescence may need to be achieved before
destructing resources and/or exiting a UPC++ computational phase. It’s important to note that quiescence
is also a precondition for calling upcxx::finalize() during an orderly exit of the parallel job.

To illustrate a simple approach to quiescence, we use the distributed hash table again. In this case, we use a
variant of RPC that does not return a future, whose simplest overload looks like this:

template<typename Func, typename ...Args>
void upcxx::rpc_ff(upcxx::intrank_t recipient, Func &&func, Args &&...args);

The _ff stands for “fire-and-forget”. From a performance standpoint, upcxx::rpc_ff has the advantage
that it does not send a response message to satisfy a future back to the process which has issued the RPC.
However, because no acknowledgment is returned to the initiator, the caller does not get a future to indicate
when the upcxx::rpc_ff invocation has completed execution of func at the target. We can modify the
distributed hash table insert operation to use upcxx::rpc_ff as follows:

// insert a key-value pair into the hash table
void insert(const std::string &key, const std::string &val) {

// this RPC does not return anything
upcxx::rpc_ff(get_target_rank(key),

// lambda to insert the key-value pair
[](dobj_map_t &lmap, const std::string &key, const std::string &val) {

assert(lmap->count(key) == 0); // assume no duplicate keys
// insert into the local map at the target
lmap->insert({key, val});

}, local_map, key, val);
}

The only way to establish quiescence is to use additional code. For example, assuming the number of inserts
performed by each rank is unpredictable, we could change the distributed hash table insert loop as follows:

// keep track of how many inserts this rank has injected
long n_inserts_injected = 0;
// insert all key-value pairs into the hash map
for (long i = 0; i < N; i++) {

string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
if (should_perform_insert(i)) { // unpredictable condition

// insert mapping from key to value in our distributed map.
// insert has no return because it uses rpc_ff.
dmap.insert(key, val);
// increment the local count
n_inserts_injected++;

}
// periodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();

}

bool done;
do { // Loop while not all insert rpc_ff have completed.

// On each rank, capture the counts of inserts injected and completed
long local[2] = {n_inserts_injected, dmap.local_size()};
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// Globally count the number of inserts injected and completed by completing
// an element-wise sum reduction of each of the two counters in the local
// array, delivering the results in the global array.
long global[2];
upcxx::reduce_all(local, global, 2, upcxx::op_fast_add).wait();
// Test if all inserts have now completed
assert(global[0] >= global[1]);
done = (global[0] == global[1]);

} while (!done);

To track completion, each process tracks how many inserts it has injected in the local variable
n_inserts_injected. The number of inserts that have arrived and completed on each process is tracked
implicitly by the local size of the distributed map which is defined in DistrMap simply as:

int local_size() { return local_map->size(); }

Once all processes have finished injecting their inserts, a global sum reduction (upcxx::reduce_all) is used
to simultaneously compute the total number of inserts injected and completed across all processes. The call
to upcxx::reduce_all computes an element-wise sum reduction of each of the two counters in the local
array, storing the results in the global array. Reductions are discussed in more detail in the Reduction
section. This reduction is repeated until the two values are equal, indicating that all inserts (i.e., rpc_ff)
have executed.

Note that to safely perform repeated rpc_ff quiescence (e.g. in a loop) using the above method requires
double buffering of the counters for injected and executed rpc_ff – a more complete example of this is
provided in the UPC++ Extras repository under examples/rpc_ff_quiescence.

This counting algorithm is one mechanism to achieve quiescence, which relies on counting the number of
one-way messages injected and received and establishing global consensus for when they match. There are
many alternative ways to establish quiescence. For example, when the number of messages to be received by
each rank is known beforehand or can be efficiently computed, one can deploy a simpler quiescence algorithm
that skips the communication step to establish consensus and has each rank simply await the arrival of the
expected number of messages.

9 Atomics
UPC++ provides atomic operations on shared objects. These operations are handled differently from C++
atomics and rely on the notion of an atomic domain, a concept inherited from UPC. In UPC++, all atomic
operations are associated with an atomic domain, an abstraction that encapsulates a supported type and set of
operations. Currently, the supported types include: float, double, and any signed or unsigned integral type
with a 32-bit or 64-bit representation. The full list of operations can be found in the UPC++ specification.

Each atomic domain is a collective object comprised of instances of the atomic_domain class, and the
operations are defined as methods on that class. The use of atomic domains permits selection (at construction)
of the most efficient available implementation which can provide correct results for the given set of operations
on the given data type. This implementation may be hardware-dependent and vary for different platforms.
To get the best possible performance from atomics, the user should be aware of which atomics are supported
in hardware on their platform, and set up the domains accordingly.

Similar to a mutex, an atomic domain exists independently of the data it applies to. User code is responsible
for ensuring that data accessed via a given atomic domain is only accessed via that domain, never via a
different domain or without use of a domain. Users may create as many domains as needed to describe their
uses of atomic operations, so long as there is at most one domain per atomic datum. If distinct data of the
same type are accessed using differing sets of operations, then creation of distinct domains for each operation
set is recommended to achieve the best performance on each set.
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We illustrate atomics by showing how they can be used to solve the quiescence counting problem for the
distributed hash table, discussed in the previous section. The code is as follows:

// keep track of how many inserts have been made to each target process
std::unique_ptr<int64_t[]> inserts_per_rank(new int64_t[upcxx::rank_n()]());
// insert all key-value pairs into the hash map
for (long i = 0; i < N; i++) {

string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
if (should_perform_insert(i)) { // unpredictable condition

dmap.insert(key, val);
inserts_per_rank[dmap.get_target_rank(key)]++;

}
// periodically call progress to allow incoming RPCs to be processed

if (i % 10 == 0) upcxx::progress();
}
// setup atomic domain with only the operations needed
upcxx::atomic_domain<int64_t> ad({upcxx::atomic_op::load, upcxx::atomic_op::add});
// distributed object to keep track of number of inserts expected at every process
upcxx::dist_object<upcxx::global_ptr<int64_t> > n_inserts(upcxx::new_<int64_t>(0));
// get pointers for all other processes and use atomics to update remote counters
for (long i = 0; i < upcxx::rank_n(); i++) {

if (inserts_per_rank[i]) {
upcxx::global_ptr<int64_t> remote_n_inserts = n_inserts.fetch(i).wait();
// use atomics to increment the remote process's expected count of inserts
ad.add(remote_n_inserts, inserts_per_rank[i], memory_order_relaxed).wait();

}
}
upcxx::barrier();
// Note: once a memory location is accessed with atomics, it should only be
// subsequently accessed using atomics to prevent unexpected results
int64_t expected_inserts = ad.load(*n_inserts, memory_order_relaxed).wait();
// wait until we have received all the expected updates, spinning on progress
while (dmap.local_size() < expected_inserts) upcxx::progress();

This quiescence algorithm is likely to be slower and less scalable than the example in the Quiescence section,
but it’s used here to demonstrate the use of remote atomic memory operations. Each rank allocates an
int64_t counter in the shared space and shares the global pointer to this location with other ranks using a
dist_object. This is the location that remote ranks will atomically update, which must be an object of one
of the supported scalar types that lives in the shared segment. Next we declare an atomic domain, which
includes only the two operations we will actually use:

upcxx::atomic_domain<int64_t> ad({upcxx::atomic_op::load, upcxx::atomic_op::add});

Each process maintains an array, inserts_per_rank, of the expected counts for all other processes. Once it
has finished all its inserts, it loops over all the remote processes, and for each one it first obtains the remote
global pointer using fetch, and then atomically updates the target process’s counter. Finally, each process
spins, waiting for the size of the local unordered map to match its expected number of inserts.

Like all atomic operations (and indeed, nearly all UPC++ communication operations), the atomic load and add
operations are asynchronous. The load operation returns a completion object, which defaults to a future. In
the example in this section, we synchronously wait for each dist_object::fetch and atomic_domain::add
operation to complete to simplify the presentation. However we could easily use future chaining and conjoining
or promises to track completion of both operations and achieve full communication/communication overlap
for all the operations in the loop; the details are left as an exercise for the reader.

Note that an atomic domain must be explicitly destroyed via a collective call to the atomic_domain::destroy()

21



method, before the allocated atomic_domain object goes out of scope or is deleted (this action meets
the precondition of the object’s destructor, that the object has been destroyed). If the atomic_domain
object hasn’t been destroyed appropriately, the program will crash with an error message that
upcxx::atomic_domain::destroy() must be called collectively before the destructor, which has been
invoked implicitly.

10 Completions
In the previous examples in this guide, we have relied on futures to inform us about the completion
of asynchronous operations. However, UPC++ provides several additional mechanisms for determining
completion, including promises, remote procedure calls (RPCs) and local procedure calls (LPCs). Further
on in this section, we give examples of completions using promises and RPCs, and a subsequent section
demonstrates LPC completions.

A completion object is constructed by a call to a static member function of one of the completion classes:
upcxx::source_cx, upcxx::remote_cx or upcxx::operation_cx. These classes correspond to the different
stages of completion of an asynchronous operation: source completion indicates that the source memory
resources needed for the operation are no longer in use by UPC++ at the source process, whereas operation
and remote completion indicate that the operation is fully complete from the perspective of the initiating
process and remote target process, respectively. As we have seen in the previous examples in this guide, most
operations default to notification of operation completion using a future, e.g.:

template <typename T, typename Cx=/*unspecified*/>
RType upcxx::rput(T const *src, upcxx::global_ptr<T> dest, std::size_t count,

Cx &&completions=upcxx::operation_cx::as_future());

As shown above, the completion object is constructed as a completion stage combined with a mechanism
of completion notification. There are restrictions on which completion notifications can be associated with
which stages: futures, promises and LPCs are only valid for source and operation completions, whereas RPCs
are only valid for remote completions.

It is possible to request multiple completion notifications from one operation using the pipe (|) operator
to combine completion objects. For example, future completion can be combined with RPC completion as
follows:

auto cxs = (upcxx::remote_cx::as_rpc(some_func) | upcxx::operation_cx::as_future());

The completion argument passed to an asynchronous communication initiation function influences the
polymorphic return type of that function (abbreviated as RType in prototypes). In particular, if one future
completion is requested (as with the default completion), then the return type RType is an appropriately typed
future (as we’ve seen in prior examples). If a completion argument is passed that requests no future-based
completions, then the return type RType is void. If more than one future completion is requested (for
example, source and operation completions) then the return type RType is a std::tuple of the requested
futures:

upcxx::future<> fut_src, fut_op;
std::tie(fut_src, fut_op) = upcxx::rput(p_src, gptr_dst, 1,

upcxx::source_cx::as_future() | upcxx::operation_cx::as_future());
fut_src.wait();
// ... source memory now safe to overwrite
fut_op.wait(); // wait for the rput operation to be fully complete

10.1 Promise Completion
Every asynchronous communication operation has an associated promise object, which is either created
explicitly by the user or implicitly by the runtime when a non-blocking operation is invoked requesting the
default future-based completion. A promise represents the producer side of an asynchronous operation, and
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it is through the promise that the results of the operation are supplied and its dependencies fulfilled. A
future is the interface through which the status of the operation can be queried and the results retrieved, and
multiple future objects may be associated with the same promise. A future thus represents the consumer side
of a non-blocking operation.

Promises are particularly efficient at keeping track of multiple asynchronous operations, essentially acting as
a dependency counter. Here is an example using RMA:

upcxx::promise<> p;
upcxx::global_ptr<int> gps[10] = /* . . . */;
for (int i = 0; i < 10; ++i) // register some RMA operations on p:

upcxx::rput(i, gps[i], upcxx::operation_cx::as_promise(p));
upcxx::future<> f = p.finalize(); // end registration on p, obtain future
f.wait(); // await completion of all RMAs above

The first line explicitly constructs a promise, where the empty template arguments indicate it will only track
readiness status and not contain/produce a value (an “empty promise”). The default promise constructor
initializes its encapsulated dependency counter to 1, placing it in a non-readied state (the promise is ready
when the counter reaches zero). Member functions on promise allow direct manipulation of the dependency
counter, but those are unnecessary for many simple use cases.

Next we issue a series of RMA put operations, overriding the default future-based completion by instead
passing operation_cx::as_promise(p) to request promise-based completion notification on the supplied
promise. Each communication operation has a side-effect of incrementing the dependency counter of the
supplied promise at injection time, in a process known as “registering” the communication operation with the
promise. When each asynchronous operation later completes, the dependency counter of the same promise
will be decremented to provide completion notification. After registering our communication on the promise,
we invoke p.finalize() which decrements the counter once, matching the counter initialization, and ending
the registration stage of the promise. finalize() returns the upcxx::future<> handle corresponding to
our promise, which will be readied once the encapsulated dependency counter reaches zero, indicating that
all of the registered asynchronous operations have reached operation completion.

In the following example, we show how promises can be used to track completion of the distributed hash
table inserts. First, we modify the insert operation to use a promise instead of return a future:

// insert a key, value pair into the hash table, track completion with promises
void insert(const std::string &key, const std::string &val, upcxx::promise<> &prom) {

upcxx::rpc(get_target_rank(key),
// completion is a promise
upcxx::operation_cx::as_promise(prom),
// lambda to insert the key, value pair
[](dobj_map_t &lmap, const std::string &key, const std::string &val) {

// insert into the local map at the target
lmap->insert({key, val});

}, local_map, key, val);
}

Now we modify the insert loop to use promises instead of futures for tracking completion:

// create an empty promise, to be used for tracking operations
upcxx::promise<> prom;
// insert all key, value pairs into the hash map
for (long i = 0; i < N; i++) {

string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
// pass the promise to the dmap insert operation
dmap.insert(key, val, prom);
// periodically call progress to allow incoming RPCs to be processed
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if (i % 10 == 0) upcxx::progress();
}
upcxx::future<> fut = prom.finalize(); // finalize the promise
fut.wait(); // wait for the operations to complete

In our distributed hash table example, we create an empty promise, prom, which has a dependency count of
one. Then we register each insert operation in turn on the promise, incrementing the dependency count each
time, representing the unfulfilled results of the RPC operation used in the insert. Finally, when registration
is complete, the original dependency is fulfilled to signal the end of the registration, with the prom.finalize
call. This call returns the future associated with the promise, so we can now wait on that future for all the
operations to complete.

It’s instructive to compare this example with the similar example shown in the earlier section on Conjoining
Futures. In that prior example, we used future conjoining to dynamically construct a dependency graph of
futures. In that graph each asynchronous find operation led to asynchronous execution of a local callback to
process the resulting value, and completion of that callback was subsequently conjoined into the graph of
dependencies, all leading to one future representing completion of the entire set of operations.

In the example above, we use a single promise object to track all of the outstanding asynchronous dependencies
generated by the asynchronous insert operations, and the single corresponding future it produces to represent
overall completion of the entire set of operations. We could have applied the future conjoining approach to
this example, but that would have dynamically constructed many futures (each with a corresponding implicit
promise), instead of a single promise object. Because the promise-based approach shown here constructs
fewer objects at runtime, it leads to fewer CPU overheads and should generally be favored in situations where
it applies; namely, when launching many asynchronous operations and the dependency graph is a trivial
aggregation of all the completions, with no ordering constraints or asynchronous callbacks for individually
processing results. This general recommendation applies not only to RPC-based communication, but to all
forms of asynchrony (e.g. RMA, LPC and even collective communication), all of which support promise-based
completion as an alternative to the default future-based completion.

10.2 Remote Completions
Alternatively, the completion object provided to an RMA put can specify a remote procedure call. While the
data payload involved can be of any size and the RPC body can be as simple as modifying a variable on the
target process, use of upcxx::rput(remote_cx::as_rpc) requires that the payload be TriviallySerializable
and the destination address be known to the initiator. Satisfying these requirements enables use of zero-copy
RMA (via zero-copy RDMA where appropriate). For large payloads, this can yield a performance advantage
over alternatives like upcxx::rpc_ff() that rely on copying the payload. By querying the value of a variable
modified by the callback, RPC completion objects can be used to mimic the coupling of data transfer with
synchronization found in message-passing programming models.

As an example, consider a heat transfer simulation in a 3D domain with a 1D decomposition. During each
timestep, each process needs to update its interior cells, exchange halos with neighboring ranks, and update
boundary cells once the necessary halos are received. RPC completion objects can be used to determine
when these halos have arrived. The body of the RPC simply consists of incrementing a counter variable,
which is later compared to the number of neighboring processes. As was the case in the last example,
upcxx::progress (discussed later) must be called to allocate resources to incoming RPCs. The execution of
the RPC callback guarantees that the data contained in the rput has been delivered. For this example, this
means ghost cells from neighboring processes have arrived and can be used for calculation of the process’
boundary cells.

Pseudocode for this technique is shown below. A complete compilable code for the heat transfer example is
available in the example/prog-guide directory of the implementation.

int count = 0; // declared as a file-scope global variable
for (n in neighbors) {

// RMA put halo to remote process
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upcxx::rput(n.outbuf, n.inbuf, n.outbuf.size(),
remote_cx::as_rpc([](){ count++; }));

}
// await incoming copies
while (count < neighbors.size())

upcxx::progress();
count = 0; // reset for next timestep

11 Progress
Progress is a key concept of the UPC++ execution model that programmers must understand to make most
effective use of asynchrony. The UPC++ framework does not spawn any hidden OS threads to perform
asynchronous work such as delivering completion notifications, invoking user callbacks, or advancing its
internal state. All such work is performed synchronously inside application calls to the library. The rationale
is this keeps the performance characteristics of the UPC++ runtime as lightweight and configurable as
possible, and simplifies synchronization. Without its own threads, UPC++ is reliant on each application
process to periodically grant it access to a thread so that it may make “progress” on its internals. Progress
is divided into two levels: internal progress and user-level progress. With internal progress, UPC++ may
advance its internal state, but no notifications will be delivered to the application. Thus the application
cannot easily track or be influenced by this level of progress. With user-level progress, UPC++ may advance
its internal state as well as signal completion of user-initiated operations. This could include many things:
readying futures, running callbacks dependent on those futures, or invoking inbound RPCs.

The upcxx::progress function, as already used in our examples, is the primary means by which the
application performs the crucial task of temporarily granting UPC++ a thread:

upcxx::progress(upcxx::progress_level lev = upcxx::progress_level::user)

A call to upcxx::progress() with its default arguments will invoke user-level progress. These calls make for
the idiomatic points in the program where the user should expect locally registered callbacks and remotely
injected RPCs to execute. There are also other UPC++ functions which invoke user-progress, notably
including upcxx::barrier and upcxx::future::wait. For the programmer, understanding where these
functions are called is crucial, since any invocation of user-level progress may execute RPCs or callbacks, and
the application code run by those will typically expect certain invariants of the process’s local state to be in
place.

11.1 Discharge
Many UPC++ operations have a mechanism to signal completion to the application. However, for
performance-oriented applications, UPC++ provides an additional asynchronous operation status indi-
cator called progress_required. This status indicates that further advancements of the current process or
thread’s internal-level progress are necessary so that completion of outstanding operations on remote entities
(e.g. notification of delivery) can be reached. Once the progress_required state has been left, UPC++
guarantees that remote processes will see their side of the completions without any further progress by the
current process. The programmer can query UPC++ to determine whether all operations initiated by this
process have reached a state at which they no longer require progress using the following function:

bool upcxx::progress_required();

UPC++ provides a function called upcxx::discharge() which polls on upcxx::progress_required() and
asks for internal progress until progress is not required anymore. upcxx::discharge() is equivalent to the
following code:

while(upcxx::progress_required())
upcxx::progress(upcxx::progress_level::internal);
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Any application entering a long lapse of inattentiveness (e.g. to perform expensive computations) is highly
encouraged to call upcxx::discharge() first.

Thought exercise:

The red-black example in an earlier section has a barrier marked “optional”. Is this barrier required for
correctness? Why or why not? Are there any potential negative consequences to its removal?

12 Personas
As mentioned earlier, UPC++ does not spawn background threads for progressing asynchronous operations,
but rather leaves control of when such progress is permissible to the user. To help the user in managing
the coordination of internal state and threads, UPC++ introduces the concept of personas. An object of
type upcxx::persona represents a collection of UPC++’s internal state. Each persona may be active with
at most one thread at any time. The active personas of a thread are organized in a stack, with the top
persona denoted the current persona of that thread. When a thread enters progress, UPC++ will advance
the progress of all personas it holds active. When a thread initiates an asynchronous operation, it is registered
in the internal state managed by the current (top) persona.

When a thread is created, it is assigned a default persona. This persona is always at the bottom of the
persona stack, and cannot be pushed onto the persona stack of another thread. The default persona can be
retrieved using:

upcxx::persona& upcxx::default_persona();

Additional personas can also be created by the application and pushed onto a thread’s persona stack, as
described below.

For any UPC++ operation issued by the current persona, the completion notification (e.g. future readying)
will be sent to that same persona. This is still the case even if that upcxx::persona object has been
transferred to a different thread by the time the asynchronous operation completes. The key takeaway here
is that a upcxx::persona can be used by one thread to issue operations, then passed to another thread
(together with the futures corresponding to these operations). That second thread will be then be notified of
the completion of these operations via their respective futures. This can be used, for instance, to build a
progress thread — a thread dedicated to progressing asynchronous operations. Another possibility is to use
completion objects (see Completions) to execute a callback (more precisely a local procedure call, or LPC) on
another persona when the operation is complete. We recommend using this second option as upcxx::future
and upcxx::promise objects are not thread-safe and thus can only be safely referenced by a thread holding
the persona used to create these objects.

12.1 Persona management
UPC++ provides a upcxx::persona_scope class for modifying the current thread’s active stack of personas.
The application is responsible for ensuring that a given persona is only ever on one thread’s active stack
at any given time. Pushing and popping personas from the stack (hence changing the current persona) is
accomplished via RAII semantics using the upcxx::persona_scope constructor/destructor.
Here are the constructors:

upcxx::persona_scope(upcxx::persona &p);

template<typename Lock>
upcxx::persona_scope(Lock &lock, upcxx::persona &p);

The upcxx::persona_scope constructor takes the upcxx::persona that needs to be pushed. Only one
thread is permitted to use a given persona at a time. To assist in maintaining this invariant, the
upcxx::persona_scope constructor accepts an optional thread locking mechanism to acquire during con-
struction and release during destruction (the Lock template argument can be any type of lock, such as C++
std::mutex).
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12.2 Multithreading and LPC completion
The following toy example introduces several of these concepts, using two threads to exchange an integer con-
taining a rank id fetched from a neighbor process (defined as (upcxx::rank_me() + 1)%upcxx::rank_n()).
A upcxx::persona object progress_persona is first created. This persona object is used by a thread called
submit_thread to construct a completion object which will execute an LPC on the progress_persona as
the completion notification for the subsequently issued rget operation (the value fetched by the rget is
passed as an argument to the LPC callback that is eventually queued for execution by progress_persona).
The submit_thread thread then waits and makes progress until the atomic variable thread_barrier is
set to 1. Meanwhile, another thread called progress_thread pushes progress_persona onto its persona
stack by constructing an appropriate upcxx::persona_scope (in this case we know by construction that
only one thread will push this persona, so we can safely use the lock-free constructor). This thread then
calls upcxx::progress() repeatedly until the done boolean is set to true within the LPC attached to the
completion object.

int main () {
upcxx::init();
// create a landing zone, and share it through a dist_object
// allocate and initialize with local rank
upcxx::dist_object<upcxx::global_ptr<int>> dptrs(upcxx::new_<int>(upcxx::rank_me()));
upcxx::global_ptr<int> my_ptr = *dptrs;
// fetch my neighbor's pointer to its landing zone
upcxx::intrank_t neigh_rank = (upcxx::rank_me() + 1)%upcxx::rank_n();
upcxx::global_ptr<int> neigh_ptr = dptrs.fetch(neigh_rank).wait();
// declare an agreed upon persona for the progress thread
upcxx::persona progress_persona;
atomic<int> thread_barrier(0);
bool done = false;
// create the progress thread
thread progress_thread( [&]() {

// push progress_persona onto this thread's persona stack
upcxx::persona_scope scope(progress_persona);
// progress thread drains progress until work is done
while (!done)

upcxx::progress();
cout<<"Progress thread on process "<<upcxx::rank_me()<<" is done"<<endl;
//unlock the other threads
thread_barrier += 1;

});
// create another thread to issue the rget
thread submit_thread( [&]() {

// create a completion object to execute a LPC on the progress_thread
// which verifies that the value we got was the rank of our neighbor
auto cx = upcxx::operation_cx::as_lpc( progress_persona, [&done, neigh_rank](int got) {

assert(got == neigh_rank);
//signal that work is complete
done = true;

});
// use this completion object on the rget
upcxx::rget(neigh_ptr, cx);
// block here until the progress thread has executed all LPCs
while(thread_barrier.load(memory_order_acquire) != 1){

sched_yield();
upcxx::progress();

}
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});
// wait until all threads finish their work
submit_thread.join();
progress_thread.join();
// wait until all processes are done
upcxx::barrier();
if ( upcxx::rank_me()==0 )

cout<<"SUCCESS"<<endl;
// delete my landing zone
upcxx::delete_(my_ptr);
upcxx::finalize();

}

12.3 Master Persona and Progress Threads
The thread initializing UPC++ via a call to upcxx::init() (this is usually done in the main function) is
also assigned the master persona in addition to its default persona. The master persona is special in that
it is the only persona in each process that can execute RPCs destined for this process or initiate collective
operations. A thread can access this persona object by calling:

upcxx::persona& upcxx::master_persona();

This persona can also be transferred between threads using upcxx::persona_scope objects. However, due
to its special nature, the thread which was initially assigned the master persona must first release it before
other threads can push it. This is done using the upcxx::liberate_master_persona() function. This is
of particular importance if one desires to implement a progress thread which will execute RPCs issued by
remote processes.

As an example, we show how to implement such a progress thread in the distributed hash table example.
We first modify the DistrMap class so that a completion object is used to track the completion of the RPC
issued by the find function. When the RPC completes, a function func provided by the caller is executed as
an LPC on the persona provided by the caller as well:

// find a key and return associated value in a future
template <typename Func>
void find(const std::string &key, upcxx::persona & persona, Func func) {

// the value returned by the RPC is passed as an argument to the LPC
// used in the completion object
auto cx = upcxx::operation_cx::as_lpc(persona,func);
upcxx::rpc(get_target_rank(key), cx,

// lambda to find the key in the local map
[](dobj_map_t &lmap, const std::string &key) -> std::string {

auto elem = lmap->find(key);
if (elem == lmap->end()) return std::string(); // not found
else return elem->second; // key found: return value

},local_map,key);
}

Let’s now review how this can be used to implement a progress thread. A thread progress_thread is created
to execute incoming RPCs issued to this process, as well as operations submitted to a progress_persona
(in this example, this thread will execute N LPCs). The master persona is therefore first released before
the creation of the progress_thread. Both the master persona and progress_persona are pushed onto
progress_thread’s persona stack by constructing two upcxx::persona_scope objects. The progress thread
then calls upcxx::progress until lpc_count reaches 0,

Concurrently, ten threads are created to perform a total of N find operations, using the progress_persona
to handle the completion of these operations. This completion notification enqueues an LPC to the
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progress_persona which verifies that the received value corresponds to what was expected and decre-
ments the lpc_count counter by one. It’s noteworthy that although the LPC’s were triggered/enqueued by
several worker threads, the LPC callbacks are all executed (serially) on the progress thread; for this reason
no synchronization is necessary when accessing the lpc_count variable.

In the last few lines of the example, the primordial thread awaits completion of the progress thread and
worker threads by calling std::thread::join. When the progress thread exits, the upcxx::persona_scope
objects it declared are destructed, releasing the progress_persona and master persona, and destroying its
default persona (which was not used). The master persona is required for all collective operations, including
upcxx::barrier() and upcxx::finalize(), but it was liberated upon exit of the progress thread. Therefore
the primordial thread must re-acquire the master persona using a new upcxx::persona_scope in order to
coordinate an orderly job teardown,

// try to fetch keys inserted by neighbor
// note that in this example, keys and values are assumed to be the same
const int num_threads = 10;
thread * threads[num_threads];
// declare an agreed upon persona for the progress thread
upcxx::persona progress_persona;
int lpc_count = N;
// liberate the master persona to allow the progress thread to use it
upcxx::liberate_master_persona();
// create a thread to execute the assertions while lpc_count is greater than 0
thread progress_thread( [&]() {

// push the master persona onto this thread's stack
upcxx::persona_scope scope(upcxx::master_persona());
// push the progress_persona as well
upcxx::persona_scope progress_scope(progress_persona);
// wait until all assertions in LPCs are complete
while(lpc_count > 0) {

sched_yield();
upcxx::progress();

}
cout<<"Progress thread on process "<<upcxx::rank_me()<<" is done"<<endl;
});

// launch multiple threads to perform find operations
for (int tid=0; tid<num_threads; tid++) {

threads[tid] = new thread( [&,tid] () {
// split the work across threads
long num_asserts = N / num_threads;
long i_beg = tid * num_asserts;
long i_end = tid==num_threads-1?N:(tid+1)*num_asserts;
for (long i = i_beg; i < i_end; i++) {

string key = to_string((upcxx::rank_me() + 1) % upcxx::rank_n()) + ":" + to_string(i);
// attach callback, which itself runs a LPC on progress_persona on completion
dmap.find(key, progress_persona,

[key,&lpc_count](const string &val) {
assert(val == key);
lpc_count--;

});
}
// discharge outgoing find operations before thread exit:
upcxx::discharge();

});
}
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// wait until all threads are done
progress_thread.join();
for (int tid=0; tid<num_threads; tid++) {

threads[tid]->join();
delete threads[tid];

}
{

// push the master persona onto the initial thread's persona stack
// before calling barrier and finalize
upcxx::persona_scope scope(upcxx::master_persona());
// wait until all processes are done
upcxx::barrier();
if (upcxx::rank_me() == 0 )

cout<<"SUCCESS"<<endl;
upcxx::finalize();

}

12.3.1 Personas and Thread Exit

In the first example of this section, the submit_thread waited in a progress loop until the progress_thread
completed its operations. However this stall was not necessary in the algorithm, because the submit thread
was not waiting to receive any callbacks or perform any additional tasks; the stall loop just incurred wasted
CPU overhead.

In the second example, we instead allow the worker threads to exit once they’ve completed injecting their
find operations. However because each worker thread has launched asynchronous operations (using its
default persona) that might remain in-flight, it is critical that we call upcxx::discharge() before allowing
the thread to exit. As described in the section on Discharge, this instructs the runtime to ensure that outgoing
operations initiated by this thread’s personas no longer need further internal progress by this thread to reach
completion. Once discharge returns, each worker thread may safely terminate, implicitly destroying its
default persona.

As a general rule, application threads which have launched UPC++ asynchronous operations may
not exit, destroying their default persona, until they have:

1. reaped any completion notifications scheduled for that persona (e.g. future readying), AND
2. completed a upcxx::discharge() call to ensure any outgoing operations initiated by thread

personas no longer require internal progress.

12.3.2 Compatiblity with Threading Models

The examples in this section use C++ std::thread for simplicitly of presentation, but UPC++ is interoperable
with other threading mechanisms such as OpenMP or pthreads, where the same concepts and techniques
apply. The details are left as an exercise for the reader.

13 Teams
A UPC++ team is an ordered set of processes and is represented by a upcxx::team object. For readers
familiar with MPI, teams are similar to MPI_Communicators and MPI_Groups. The default team for most
operations is upcxx::world() which includes all processes. Creating a team is a collective operation and
may be expensive. It is therefore best to do it in the set-up phase of a calculation.
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13.1 team::split

New upcxx::team objects can be created by collectively splitting another team using the upcxx::team::split()
member function. This is demonstrated in the following example, which creates teams consisting of the
processes having odd and even ranks in upcxx:world() by using (upcxx::rank_me() % 2) as the color
argument to split(). It is worth noting that the key argument is used to sort the members of the newly
created teams, and need not be precisely the new rank as in this example.

upcxx::team & world_team = upcxx::world();
int color = upcxx::rank_me() % 2;
int key = upcxx::rank_me() / 2;
upcxx::team new_team = world_team.split(color, key);

A team object has several member functions. The local rank of the calling process within a team is given by
the rank_me() function, while rank_n() returns the number of processes in the team.

The team::split() function is a very powerful and convenient means for subdividing teams into smaller
teams, and/or creating a new team that renumbers process ranks in an existing team. However this function
semantically requires collective communication across the parent team to establish new team boundaries, and
thus can entail non-trivial cost when the parent team is large.

13.2 team::create

In cases where processes can cheaply/locally compute the membership of a new team they wish to construct,
the team::create() member function enables team construction with lower communication overheads than
team::split(). Here is an example that further partitions the new_team created in the prior example,
assigning processes into pair-wise teams:

upcxx::intrank_t group = new_team.rank_me() / 2; // rounds-down
upcxx::intrank_t left = group * 2;
upcxx::intrank_t right = left + 1;
std::vector<upcxx::intrank_t> members({left});
if (right != new_team.rank_n()) // right member exists

members.push_back(right);
upcxx::team sub_team = new_team.create(members);

As with team::split(), the team::create() function is collective over a parent team, in this case new_team.
Each caller passes an ordered sequence of ranks in that parent team, enumerating the participants of the
new sub team it will join. Here we see each process uses new_team.rank_me() to query its rank in the
parent team and uses that to construct a std::vector of rank indexes selecting members for the team it will
construct. team::create() accepts any ordered C++ Container, or alternatively a pair of InputIterators
delimiting the rank sequence. Either way, the sequence passed is required to match across all callers joining
the same team, and (as with team::split()) each process joins (at most) one team per call.

13.3 Team Accessors
As previously mentioned, the team member functions rank_me() and rank_n() can be used to respectively
retrieve the rank of the calling process in that team and the number of ranks in the team. There is also an
id() function that returns a trivially copyable team_id object representing a universal name identifying the
team.

The global rank (in the world() team) of any team member can be retrieved using the [] operator. The
upcxx::team::from_world() function converts a global rank from the world() team into a local rank within
a given team. This function takes either one or two arguments:

upcxx::intrank_t upcxx::team::from_world(intrank_t world_index) const;
upcxx::intrank_t upcxx::team::from_world(upcxx::intrank_t world_index,

upcxx::intrank_t otherwise) const;
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In the first case, the process with rank world_index in world() MUST be part of the team, while in the
second overload, the otherwise value will be returned if that process is not part of the team. We can
therefore modify the first example of this section to do the following (for simplicity, we assume an even
number of processes):

upcxx::team & world_team = upcxx::world();
int color = upcxx::rank_me() % 2;
int key = upcxx::rank_me() / 2;
upcxx::team new_team = world_team.split(color, key);

upcxx::intrank_t local_rank = new_team.rank_me();
upcxx::intrank_t local_count = new_team.rank_n();

upcxx::intrank_t world_rank = new_team[(local_rank+1)%local_count];
upcxx::intrank_t expected_world_rank = (upcxx::rank_me() + 2) % upcxx::rank_n();
assert(world_rank == expected_world_rank);

upcxx::intrank_t other_local_rank = new_team.from_world(world_rank);
assert(other_local_rank == (local_rank+1)%local_count);
upcxx::intrank_t non_member_rank =

new_team.from_world((upcxx::rank_me()+1)%upcxx::rank_n(),-1);
assert(non_member_rank == -1);

new_team.destroy(); // collectively release the sub-team

13.4 Local Team
In addition to the upcxx::world() team, another special team is available that represents all the processes
sharing the same physical shared-memory node. This team is obtained by calling the upcxx::local_team()
function, and has the following very useful property:

All members of local_team() with a upcxx::global_ptr<T> gptr referencing shared memory
allocated by any member of that team are guaranteed to see gptr.is_local() == true, and
gptr.local() will return a valid raw C++ pointer to the memory.

This is particularly important if one wants to optimize for shared-memory bypass. For example, it means
that one can apply the techniques described in the section Downcasting global pointers to obtain direct
C++ pointers to shared objects owned by other processes who are members of local_team(). This works
because at startup the UPC++ runtime ensures that all processes in the local_team() automatically map
each other’s shared host memory segments into virtual memory, allowing for direct load/store access to that
memory by the CPU.

14 Collectives
Collectives are intimately tied to the notion of Teams. Collectives in UPC++ all operate on the
upcxx::world() team by default, and always have to be initiated by a thread holding the master persona on
each process (See Personas). As in other programming models, such as MPI, each collective call in a UPC++
program must be initiated in the same order (with compatible arguments) in every participating process.

14.1 Barrier
One of the most useful and basic collective operations in parallel programming is the barrier operation.
UPC++ provides two flavors of barrier synchronization:

void upcxx::barrier(upcxx::team &team = upcxx::world());
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template<typename Cx=/*unspecified*/>
RType upcxx::barrier_async(upcxx::team &team = upcxx::world(),

Cx &&completions=upcxx::operation_cx::as_future());

The first variant is a blocking barrier on team and will return only after all processes in the team have entered
the call.

The second variant is an asynchronous barrier which by default returns a future (See Completions). This
future is signaled when all processes in the team have initiated the asynchronous barrier.

14.1.1 Interaction of collectives and operation completion

It is important to note that although collectives must be issued in the same order by all participants,
asynchronous operations (collective or otherwise) are not guaranteed to complete in any particular order
relative to other in-flight operations. In particular:

Neither barrier nor barrier_async act as a “flush” of outstanding asynchronous operations.
UPC++ does not provide any calls that implicitly “fence” or “flush” outstanding asynchronous
operations; all operations are synchronized explicitly via completions.

In other words, issuing and completing a barrier does NOT guarantee completion of asynchronous operations
issued before the barrier and not yet explicitly synchronized.

This property may seem counter-intuitive, but it enables the communication layer to maximize utilization of
the network fabric, which is often fundamentally unordered at the lowest levels. As discussed in Asynchronous
Computation, relaxed ordering guarantees for asynchronous operations enable more efficient implementations,
but the programmer must not assume any ordering of asynchronous operation completion that is not enforced
by explicit synchronization. As discussed in Quiescence, issuing an asynchronous operation and failing to
later synchronize its completion is an error. A corollary of these properties:

Discarding a upcxx::future returned from a UPC++ call is almost always a bug.

In fact, the implementation uses compiler annotations (where supported) to encourage a compiler warning
for this type of potential defect.

14.2 Broadcast
Another fundamental collective operation is the broadcast operation, which is always an asynchronous
operation in UPC++ and defaults to returning a upcxx::future. There are two variants:

template <typename T, typename Cx=/*unspecified*/>
RType upcxx::broadcast(T &&value, upcxx::intrank_t root,

upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

template <typename T, typename Cx=/*unspecified*/>
RType upcxx::broadcast(T *buffer, std::size_t count, upcxx::intrank_t root,

upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

The first variant transfers an object of type T from the process with (team-relative) rank root to all processes
in team. The return value is a upcxx::future<T> containing the broadcast value. The second variant
transfers count objects of type T stored in an array referenced by buffer, and its default return value is
an object of type upcxx::future<>. All participants in a broadcast collective must “agree” on which team
member is the source of the broadcast, and in particular all callers must pass the same value for the root
argument. This is referred to as a single-valued constraint in a collective operation; in the second broadcast
variant the count argument is also required to be single-valued.

These functions can be used in the following way:
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int my_rank = upcxx::rank_me();
// launch a first broadcast operation from rank 0
upcxx::future<int> fut = upcxx::broadcast(my_rank, 0);

// do some overlapped work like preparing a buffer for another broadcast
std::vector<int> buffer(10);
if ( upcxx::rank_me() == 0 )

for (int i = 0; i< buffer.size(); i++)
buffer[i] = i;

// launch a second broadcast operation from rank 0
upcxx::future<> fut_bulk = upcxx::broadcast( buffer.data(), buffer.size(), 0);

// wait for the result from the first broadcast
int bcast_rank = fut.wait();
assert(bcast_rank == 0);

// wait until the second broadcast is complete
fut_bulk.wait();
for (int i = 0; i< buffer.size(); i++)

assert(buffer[i] == i);

14.3 Reduction
UPC++ also provides collectives to perform reductions. Each of these variants applies a binary operator op
to the input data. This operator can either be one of the built-in operators provided by the library, or can be
a user-defined function (for instance a lambda).

template <typename T, typename BinaryOp , Cx=/*unspecified*/>
RType upcxx::reduce_one(T &&value, BinaryOp &&op, upcxx::intrank_t root,

upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

template <typename T, typename BinaryOp, Cx=/*unspecified*/>
RType upcxx::reduce_all(T &&value, BinaryOp &&op,

upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

template <typename T, typename BinaryOp, Cx=/*unspecified*/>
RType upcxx::reduce_one(const T *src, T *dst, size_t count, BinaryOp &&op,

upcxx::intrank_t root, upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

template <typename T, typename BinaryOp, Cx=/*unspecified*/>
RType upcxx::reduce_all(const T *src, T *dst, size_t count, BinaryOp &&op,

upcxx::team &team = upcxx::world(),
Cx &&completions=upcxx::operation_cx::as_future());

Similar to upcxx::broadcast, the first two variants reduce an object value of type T and by default return
a upcxx::future<T> containing the resulting value. The second set of variants perform a “multi-field”
element-wise reduction on on contiguous buffers of count objects of type T pointed by src (where count
must be single-valued). They place the reduced values in a contiguous buffer pointed by dst, and default to
returning a upcxx::future<> for tracking completion.

When using the upcxx::reduce_one functions, the reduction result will be available only at the root
process (which must be single-valued), and the result is undefined on other processes. When using the
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upcxx::reduce_all functions, a reduction result will be provided to all processes belonging to team.

UPC++ provides built-in reduction operators (op_fast_add, op_fast_mul, op_fast_min, op_fast_max,
op_fast_bit_and, op_fast_bit_or, and op_fast_bit_xor) which may be hardware-accelerated on systems
with collectives offload support.

15 Non-Contiguous One-Sided Communication
The rput and rget operations assume a contiguous buffer of data at the source and destination processes.
There are specialized forms of these RMA functions for moving non-contiguous groups of buffers in a single
UPC++ call. These functions are denoted by a suffix [rput,rget]_[irregular,regular,strided]. The
rput_irregular operation is the most general: it takes a set of buffers at the source and destination where
the total data size of the combined buffers and their element data type need to match on both ends. The
rput_regular operation is a specialization of rput_irregular, where every buffer in the collection is the
same size. The rput_strided operation is even more specialized: there is just one base address specified for
each of the source and destination regions, together with stride vectors describing a dense multi-dimensional
array transfer.

Figure 4: Example of strided one-sided communication.

constexpr int sdim[] = {32, 64, 32};
constexpr int ddim[] = {16, 32, 64};

constexpr ptrdiff_t elem_sz = (ptrdiff_t)sizeof(float);

upcxx::future<> rput_strided_example(float* src_base, upcxx::global_ptr<float> dst_base)
{

return upcxx::rput_strided<3>(
src_base, {{elem_sz, sdim[0]*elem_sz, sdim[0]*sdim[1]*elem_sz}},
dst_base, {{elem_sz, ddim[0]*elem_sz, ddim[0]*ddim[1]*elem_sz}},
{{4, 3, 2}});

}
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upcxx::future<> rget_strided_example(upcxx::global_ptr<float> src_base, float* dst_base)
{

return upcxx::rget_strided<3>(
src_base, {{elem_sz, sdim[0]*elem_sz, sdim[0]*sdim[1]*elem_sz}},
dst_base, {{elem_sz, ddim[0]*elem_sz, ddim[0]*ddim[1]*elem_sz}},
{{4, 3, 2}});

}

The strided example code snippet above corresponds to the translation data motion shown in Figure 4. By
altering the arguments to the _strided functions a user can implement various transpose and reflection
operations in an N-dimensional space within their non-contiguous RMA operation. Another common use case
is performing RMA on a non-contiguous boundary plane of a dense multi-dimensional array, for example as
part of a rectangular halo exchange in a simulation with a multi-dimensional domain decomposition. Note the
strides are expressed in units of bytes; this enables users to work with data structures that include padding.

For more general data structures a user can use the _irregular functions:

pair<particle_t*, size_t> src[]={{srcP+12, 22}, {srcP+66, 12}, {srcP, 4}};
pair<upcxx::global_ptr<particle_t>, size_t> dest[]={{destP, 38}};
auto f = upcxx::rput_irregular(src, end(src), dest, end(dest));
f.wait();

The user here is taking subsections of a source array with particle_t element type pointed to by srcP and
copying them to the location pointed to by destP. This example also shows how data can be shuffled in a
non-contiguous RMA operation; the user is responsible for ensuring their source and destination areas specify
equivalent amounts of data. As with all RMA operations, all variants of rput and rget assume the element
type is TriviallySerializable (byte-copyable).

16 Serialization
RPC’s transmit their arguments across process boundaries using the mechanism of serialization, which is
type-specific logic responsible for encoding potentially rich C++ objects to and from raw byte streams.
UPC++ provides built-in support for serializing trivially copyable types (e.g. primitive types, and C-like
structs or other classes which report as std::is_trivially_copyable). It also supports serialization for
most STL containers (e.g. std::vector, std::list) when the elements they contain are trivially copyable (or
otherwise Serializable). However, in many cases it may be necessary to add application-specific serialization
for application-specific objects. Common motivations for this include:

1. Sending objects that are not trivially copyable through RPC (e.g. some application-specific object that
uses custom data structures).

2. Transforming trivially copyable objects into a meaningful representation on the target process of the
RPC. For example, while raw C++ pointer members of classes are trivially copyable, the addresses
they contain are usually not meaningful on a remote process.

3. Limiting the attributes of an object that are serialized and transmitted. This may be useful if a large
object is being transmitted with an RPC, but only a small subset of its members are used in the remote
logic.

4. Reducing overheads from serializing and deserializing container objects. Deserializing byte streams
into C++ objects adds computational overheads that may not be useful if the application logic could
be implemented to directly consume elements from the byte stream representation (e.g., without
constructing a new container around those elements at the target process).

16.1 Serialization Concepts
UPC++ defines the concepts TriviallySerializable and Serializable that describe what form of serialization a
C++ type supports. Figure 5 helps summarize the relationship of these concepts.
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Figure 5: Serialization Concepts.

A type T is TriviallySerializable if it is semantically valid to copy an object by copying its underlying bytes,
and UPC++ serializes such types by making a byte copy. A type T is considered to be TriviallySerializable if
either of the following holds:

• T is TriviallyCopyable (i.e. std::is_trivially_copyable<T>::value is true), and does not implement
any of the class serialization interfaces described in the following sections.

• upcxx::is_trivially_serializable<T> is specialized to provide a member constant value that is
true.

In the latter case, UPC++ treats the type T as if it were TriviallyCopyable for the purposes of serializa-
tion. Thus, UPC++ will serialize an object of type T by making a byte copy, and it will assume T is
TriviallyDestructible when destroying a deserialized object of type T.

Certain UPC++-provided types such as upcxx::global_ptr<T> and upcxx::team_id are also defined as
TriviallySerializable.

A type T is Serializable (the more general concept) if one of the following holds:

• T is TriviallySerializable
• T is of class type and implements one of the class serialization interfaces described in the following

sections.
• T is explicitly defined as Serializable by the UPC++ specification. This includes STL containers

(std::vector, std::tuple, std::array, std::map etc.) where the elements are Serializable, and
certain other types including std::string and upcxx::view<T>.

The type trait upcxx::is_trivially_serializable<T> provides a member constant value that is true if
T is TriviallySerializable and false otherwise. This trait may be specialized for user types (types that are
not defined by the C++ or UPC++ standards).

The type trait upcxx::is_serializable<T> provides a member constant value that is true if T is Serializable
and false otherwise. This trait may not be specialized by the user for any types.

Many UPC++ communication operations (notably RMA and collectives) assert that the objects to be
transferred are of TriviallySerializable type. This is to ensure these operations are amenable to hardware
acceleration, such as the use of RDMA network hardware to accelerate rput and rget operations. UPC++
RPC operations are inherently two-sided (they semantically require CPU interaction on both sides), and thus
arguments to RPC are only required to be Serializable (not restricted to TriviallySerializable).

Note that serializability of a type T does not imply that objects of type T are meaningful on another process.
In particular, C++ pointer-to-object and pointer-to-function types are TriviallySerializable, but it is generally
invalid to dereference a local pointer that originated from another process. More generally, objects that
represent local process resources (e.g., file descriptors) are usually not meaningful on other processes, whether
their types are Serializable or not.

The following sections discuss three ways in which UPC++ programmers can implement application-specific
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serialization logic: field/value-based serialization, custom serialization, and view-based serialization. Each
method offers different tradeoffs on productivity, flexibility, and performance.

16.2 Field- and Value-Based Serialization
The simplest and easiest-to-use mechanisms for defining serialization of application-specific class types in
UPC++ are the UPCXX_SERIALIZED_FIELDS and UPCXX_SERIALIZED_VALUES macros, which specify a set of
member fields or values to comprise the serialized representation of a given type.

In UPCXX_SERIALIZED_FIELDS the programmer passes a list of non-static member field names in a class, and
the UPC++ library automatically generates the needed serialization logic to transmit those fields (and only
those fields) whenever an instance of that class is sent as part of an RPC. These fields themselves must be
Serializable. For UPCXX_SERIALIZED_FIELDS to be applied to a class, that class must also have a default
constructor.

In UPCXX_SERIALIZED_VALUES the programmer passes a list of expressions to be evaluated every time an
object of the given class type is serialized. The results of these expressions are then transmitted, and must
themselves be Serializable. For a class to use UPCXX_SERIALIZED_VALUES it must also declare a constructor
that accepts the values resulting from the expressions passed to UPCXX_SERIALIZED_VALUES.

The example below illustrates using UPCXX_SERIALIZED_FIELDS to serialize a large object contain-
ing a large nested array. While this object is Serializable without UPCXX_SERIALIZED_FIELDS, using
UPCXX_SERIALIZED_FIELDS allows us to significantly reduce the number of bytes transmitted each time an
instance of this class is serialized (assuming only the partial_sum_reduction field is needed in the remote
logic, and not values).

class dist_reduction {
public:

// The values to perform a sum reduction across
double values[N];
// Used to store a local sum reduction result on each rank
double partial_sum_reduction;

// Default constructor used by UPC++ deserialization
dist_reduction() {

for (int i = 0; i < N; i++) { values[i] = 1.; }
}

void calculate_partial_sum_reduction() {
partial_sum_reduction = 0.0;
for (int i = 0; i < N; i++) { partial_sum_reduction += values[i]; }

}

UPCXX_SERIALIZED_FIELDS(partial_sum_reduction)
};

The following example implements similar semantics to the previous example code, but using
UPCXX_SERIALIZED_VALUES. Note the addition of a constructor that accepts the single double value
that comprises the serialized representation. This constructor is invoked at the target process to instantiate
the deserialized object.

class dist_reduction {
public:

// The values to perform a sum reduction across
double values[N];
// Used to store a local sum reduction result on each rank
double partial_sum_reduction;
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// Constructor used by UPC++ deserialization
dist_reduction(double _partial_sum_reduction) {

partial_sum_reduction = _partial_sum_reduction;
}

dist_reduction() {
for (int i = 0; i < N; i++) { values[i] = 1.; }

}

double calculate_partial_sum_reduction() const {
double partial_sum_reduction = 0.0;
for (int i = 0; i < N; i++) { partial_sum_reduction += values[i]; }
return partial_sum_reduction;

}

UPCXX_SERIALIZED_VALUES(calculate_partial_sum_reduction())
};

16.3 Custom Serialization
While UPCXX_SERIALIZED_FIELDS and UPCXX_SERIALIZED_VALUES are powerful in their simplicity, there are
many use cases that require more complex serialization logic than can be expressed in a simple expression.
One common example is deep copying pointers in member fields. While the pointer itself is trivially copyable,
it is not useful on a remote process. Usually, the desired behavior is that the object referenced by the pointer
is itself serialized into the same byte stream as the object pointing to it so that they can both be reconstructed
on the remote rank. However in other cases, we may want such a pointer to be cleared or set to reference a
pre-existing object at the target.

For this and other complex logic, UPC++ offers custom serialization. In custom serialization, the programmer
is responsible for manually serializing and deserializing a C++ object to/from a byte stream using Writer
and Reader objects to push and pull values into and out of that stream. The programmer implements (1) a
serialize method that accepts a Writer and the object to be serialized., and (2) a deserialize method
that accepts a Reader and a pointer to a block of memory the same size as the type being deserialized.

There are two ways in which these serialize and deserialize methods can be declared. First, they can
be declared as member methods in a public, nested member type named upcxx_serialization of the class
to be serialized/deserialized. Second, they can be declared in a specialization of upcxx::serialization<T>
where T is the type to be serialized/deserialized, with public serialize and deserialize methods. These
two mechanisms are respectively intended to serve the separate use cases of (1) serialization implemented by
the class author, and (2) serialization added to a pre-existing class.

The example below illustrates custom serialization using a public, nested upcxx_serialization class for an
application-defined vertex class which stores a list of neighbor vertices. The serialize method writes the ID
of the vertex, the number of neighbors it has, and then the ID of each of those neighbors. The deserialize
method then extracts this information on the remote rank and uses it to reconstruct an instance of vertex.

class vertex {
private:

int id;
std::vector<vertex *> neighbors;

public:
vertex(int _id) : id(_id) { }
int get_id() const { return id; }
bool has_edge(int other) const;
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void add_neighbor(int neighbor_id);

/*
* An example of using a member struct upcxx_serialization to implement
* custom serialization for the vertex class.
*/

struct upcxx_serialization {
template<typename Writer>
static void serialize (Writer& writer, vertex const & object) {

writer.write(object.get_id());
writer.write(object.neighbors.size());
for (vertex *neighbor : object.neighbors) {

writer.write(neighbor->get_id());
}

}

template<typename Reader>
static vertex* deserialize(Reader& reader, void* storage) {

int id = reader.template read<int>();
size_t n_neighbors = reader.template read<size_t>();

vertex *v = new(storage) vertex(id);
for (size_t n = 0; n < n_neighbors; n++) {

v->add_neighbor(reader.template read<int>());
}
return v;

}
};

};

Note that custom serialization can also be applied to classes that are not defined by the application, which in-
stead might be defined by a library the application is using. A specialization of upcxx::serialization<T> can
be created to (de)serialize the accessible state of T, where T is the type to be serialized/deserialized, regardless of
where T is defined. A more complete version of the above example is available in the examples/serialization
directory of the implementation repository, which also demonstrates this technique.

16.3.1 Recursive Serialization

It is often the case that an application-defined class requiring custom serialization itself contains member
fields which are also of application-defined types. While a programmer could implement the serializa-
tion/deserialization of the wrapping class by extracting data from those member fields and then re-initializing
them during deserialization, this logic would have to be duplicated in every place where instances of those
classes were also being serialized/deserialized. Instead, UPC++ supports recursive serialization wherein the
serialization logic for one class may implicitly call the serialization logic for another.

The example below illustrates how this looks in the case of UPCXX_SERIALIZED_FIELDS. custom_class_1 is
Serializable because it uses UPCXX_SERIALIZED_FIELDS to serialize its only member field (msg) which is itself
of a Serializable type (std::string). custom_class_2 then uses UPCXX_SERIALIZED_FIELDS to serialize
its member field std::vector<custom_class_1> msgs. msgs is Serializable thanks to UPC++’s built-in
support for std::vector, and because custom_class_1 has already used UPCXX_SERIALIZED_FIELDS to
declare how it should be serialized.

This enables a separation of concerns, wherein programmers do not need to recursively and manually serialize
deep object hierarchies themselves so long as the nested objects are themselves Serializable.

class custom_class_1 {
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public:
std::string msg;
custom_class_1() { }
custom_class_1(const std::string &_msg) : msg(_msg) { }

UPCXX_SERIALIZED_FIELDS(msg)
};

class custom_class_2 {
public:

std::vector<custom_class_1> msgs;
custom_class_2() { }
void add_msg(const std::string &m) { msgs.push_back(custom_class_1(m)); }

UPCXX_SERIALIZED_FIELDS(msgs)
};

16.4 View-Based Serialization
For substantially large objects, deserializing them from UPC++’s internal network buffers can have non-trivial
performance cost, and, if the object was built up only to be consumed and immediately torn down within the
RPC, then it’s likely that performance can be regained by eliminating the superfluous build-up/tear-down.
Notably this can happen with containers: Suppose process A would like to send a collection of values to
process B which will assimilate them into its local state. If process A were to transmit these values by
RPC’ing them in a std::vector<T> (which along with many other std:: container types, is supported as
Serializable in the UPC++ implementation) then upon receipt of the RPC, the UPC++ program would
enact the following steps during deserialization:

1. UPC++ would construct and populate a vector by visiting each T element in the network buffer and
copying it into the vector container.

2. UPC++ would invoke the RPC callback function, passing it the vector.
3. The RPC callback function would traverse the T’s in the vector and consume them, likely by copying

them out to the process’s private state.
4. The RPC function would return control to the UPC++ progress engine which would destruct the

vector.

This process works, but can entail considerable unnecessary overhead that might be problematic in performance-
critical communication. The remedy to eliminating the overheads associated with steps 1 and 4 is to allow the
application direct access to the T elements in the internal network buffer. UPC++ grants such access with
the upcxx::view<T> type. A view is little more than a pair of iterators delimiting the beginning and end of
an ordered sequence of T values. Since a view only stores iterators, it is not responsible for managing the
resources supporting those iterators. Most importantly, when being serialized, a view will serialize each T it
encounters in the sequence, and when deserialized, the view will “remember” special network buffer iterators
delimiting its contents directly in the incoming buffer. The RPC can then ask the view for its begin/end
iterators and traverse the T sequence in-place.

16.4.1 Reducing Overheads with Views

The following example demonstrates how a user could easily employ views to implement a remote vector
accumulate, i.e., adding the values contained in a local buffer to the values in a remote shared array. Views
enable the transmission of the local array of double’s with minimal intermediate copies. On the sender side,
the user acquires begin and end iterators to the value sequence they wish to send (in this case double* acts
as the iterator type) and calls upcxx::make_view(beg,end) to construct the view. That view is bound to an
rpc whose lambda accepts a upcxx::view<double> on the receiver side, and traverses the view to consume
the sequence, adding each element to the corresponding element in a shared array on the target rank.
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upcxx::future<> add_accumulate(upcxx::global_ptr<double> remote_dst,
double *buf, std::size_t buf_len) {

return upcxx::rpc(remote_dst.where(),
[](const upcxx::global_ptr<double>& dst, const upcxx::view<double>& buf_in_rpc) {

// Traverse `buf_in_rpc` like a container, adding each element to the
// corresponding element in dst. Views fulfill most of the container
// contract: begin, end, size, and if the element type is trivial, even operator[].
double *local_dst = dst.local();
std::size_t index = 0;
for(double x : buf_in_rpc) {

local_dst[index++] += x;
}

},
remote_dst, upcxx::make_view(buf, buf + buf_len));

}

Beyond just simple pointers to contiguous data, arbitrary iterator types can be used to make a
view. This allows the user to build views from the sequence of elements within std containers using
upcxx::make_view(container), or, given any compliant ForwardIterator, upcxx::make_view(begin_iter,
end_iter).

For a more involved example, we will demonstrate one process contributing histogram values to a histogram
distributed over all the processes. We will use std::string as the key-type for naming histogram buckets,
double for the accumulated bucket value, and std::unordered_map as the container type for mapping
the keys to the values. Assignment of bucket keys to owning process is done by a hash function. We will
demonstrate transmission of the histogram update with and without views, illustrating the performance
advantages that views enable.

// Hash a key to its owning rank.
upcxx::intrank_t owner_of(std::string const &key) {

std::uint64_t h = 0x1234abcd5678cdef;
for(char c: key) h = 63*h + std::uint64_t(c);
return h % upcxx::rank_n();

}

using histogram1 = std::unordered_map<std::string, double>;
// The target rank's histogram which is updated by incoming rpc's.
histogram1 my_histo1;

// Sending histogram updates by value.
upcxx::future<> send_histo1_byval(histogram1 const &histo) {

std::unordered_map<upcxx::intrank_t, histogram1> clusters;
// Cluster histogram elements by owning rank.
for(auto const &kv: histo) clusters[owner_of(kv.first)].insert(kv);

upcxx::promise<> all_done;
// Send per-owner histogram clusters.
for(auto const &cluster: clusters) {

upcxx::rpc(cluster.first, upcxx::operation_cx::as_promise(all_done),
[](histogram1 const &histo) {

// Pain point: UPC++ already traversed the key-values once to build the
// `histo` container. Now we traverse again within the RPC body.

for(auto const &kv: histo)
my_histo1[kv.first] += kv.second;
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// Pain point: UPC++ will now destroy the container.
},
cluster.second

);
}
return all_done.finalize();

}

// Sending histogram updates by view.
upcxx::future<> send_histo1_byview(histogram1 const &histo) {

std::unordered_map<upcxx::intrank_t, histogram1> clusters;
// Cluster histogram elements by owning rank.
for(auto const &kv: histo) clusters[owner_of(kv.first)].insert(kv);

upcxx::promise<> all_done;
// Send per-owner histogram clusters.
for(auto const &cluster: clusters) {

upcxx::rpc(cluster.first, upcxx::operation_cx::as_promise(all_done),
[](upcxx::view<std::pair<const std::string, double>> const &histo_view) {

// Pain point from `send_histo1_byval`: Eliminated.

// Traverse key-values directly from network buffer.
for(auto const &kv: histo_view)

my_histo1[kv.first] += kv.second;

// Pain point from `send_histo1_byval`: Eliminated.
},
upcxx::make_view(cluster.second) // build view from container's begin()/end()

);
}
return all_done.finalize();

}

16.4.2 Subset Serialization with Views

There is a further benefit to using view-based serialization: the ability for the sender to serialize a subset of
elements directly out of a container without preprocessing it (as is done in the two examples above). This is
most efficient if we take care to use a container that natively stores its elements in an order grouped according
to the destination process. The following example demonstrates the same histogram update as before, but
with a data structure that permits sender-side subset serialization.

// Hash a key to its owning rank.
upcxx::intrank_t owner_of(std::string const &key) {

std::uint64_t h = 0x1234abcd5678cdef;
for(char c: key) h = 63*h + std::uint64_t(c);
return h % upcxx::rank_n();

}

// This comparison functor orders keys such that they are sorted by
// owning rank at the expense of rehashing the keys in each invocation.
// A better strategy would be modify the map's key type to compute this
// information once and store it in the map.
struct histogram2_compare {

bool operator()(std::string const &a, std::string const &b) const {
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using augmented = std::pair<upcxx::intrank_t, std::string const&>;
return augmented(owner_of(a), a) < augmented(owner_of(b), b);

}
};

using histogram2 = std::map<std::string, double, histogram2_compare>;
// The target rank's histogram which is updated by incoming rpc's.
histogram2 my_histo2;

// Sending histogram updates by view.
upcxx::future<> send_histo2_byview(histogram2 const &histo) {

histogram2::const_iterator run_begin = histo.begin();

upcxx::promise<> all_done;
while(run_begin != histo.end()) {

histogram2::const_iterator run_end = run_begin;
upcxx::intrank_t owner = owner_of(run_begin->first);

// Compute the end of this run as the beginning of the next run.
while(run_end != histo.end() && owner_of(run_end->first) == owner) run_end++;

upcxx::rpc(owner, upcxx::operation_cx::as_promise(all_done),
[](upcxx::view<std::pair<const std::string, double>> const &histo_view) {

// Traverse key-values directly from network buffer.
for(auto const &kv: histo_view)

my_histo2[kv.first] += kv.second;
},
// Serialize from a subset of `histo` in-place.
upcxx::make_view(run_begin, run_end)

);

run_begin = run_end;
}
return all_done.finalize();

}

16.4.3 The view’s Iterator Type

The above text presented correct and functional code, but it oversimplified the C++ type of the UPC++
view by relying on some of its default characteristics and type inference. The full type signature for view is:

upcxx::view<T, Iter=/*internal buffer iterator*/>

Notably, the view type has a second type parameter which is the type of its underlying iterator. If omitted,
this parameter defaults to a special UPC++ provided iterator that deserializes from a network buffer,
hence this is the correct type to use when specifying the incoming bound-argument in the RPC function.
But this will almost never be the correct type for the view on the sender side of the RPC. For instance,
upcxx::make_view(...) deduces the iterator type provided in its arguments as the Iter type to use in the
returned view. If you were to attempt to assign that to an temporary variable you might be surprised:

std::vector<T> vec = /*...*/;
upcxx::view<T> tmp = upcxx::make_view(vec); // Type error: mismatched Iter types
auto tmp = upcxx::make_view(vec); // OK: deduced upcxx::view<T,std::vector<T>::const_iterator>
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16.4.4 Buffer Lifetime Extension

Given that the lifetime of a view does not influence the lifetime of its underlying data, UPC++ must make
guarantees to the application about the lifetime of the network buffer when referenced by a view. From the
examples above, it should be clear that UPC++ will ensure the buffer will live for at least as long as the
RPC callback function is executing. In fact, UPC++ will actually extend this lifetime until the future (if
any) returned by the RPC callback is ready. This gives the application a convenient means to dispatch the
processing of the incoming view to another concurrent execution agent (e.g. a thread), thereby returning
from the RPC callback nearly immediately and allowing the UPC++ runtime to resume servicing additional
user progress events.

The following example demonstrates how a process can send sparse updates to a remote matrix via rpc. The
updates are not done in the execution context of the rpc itself, instead the rpc uses lpc’s to designated
worker personas (backed by dedicated threads) to dispatch the arithmetic update of the matrix element
depending on which worker owns it. Views and futures are used to extend the lifetime of the network buffer
until all lpc’s have completed, thus allowing those lpc’s to use the elements directly from the buffer.

double my_matrix[1000][1000] = {/*0...*/}; // Rank's local matrix.
constexpr int worker_n = 8; // Number of worker threads/personas.

// Each persona has a dedicated thread spinning on its progress engine.
upcxx::persona workers[worker_n];

struct element {
int row, col;
double value;

};

upcxx::future<> update_remote_matrix(upcxx::intrank_t rank,
element const *elts, int elt_n) {

return upcxx::rpc(rank,
[](upcxx::view<element> const &elts_in_rpc) {

upcxx::future<> all_done = upcxx::make_future();
for(int w=0; w < worker_n; w++) {

// Launch task on respective worker.
auto task_done = workers[w].lpc(

[w, elts_in_rpc]() {
// Sum subset of elements into `my_matrix` according to a
// round-robin mapping of matrix rows to workers.
for(element const &elt: elts_in_rpc) {

if(w == elt.row % worker_n)
my_matrix[elt.row][elt.col] += elt.value;

}
}

);
// Conjoin task completion into `all_done`.
all_done = upcxx::when_all(all_done, task_done);

}
// Returned future has a dependency on each task lpc so the network
// buffer (thus `elts_in_rpc` view) will remain valid until all tasks
// have completed.
return all_done;

},
upcxx::make_view(elts, elts + elt_n)

);
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}

These lifetime extension semantics for RPC callback arguments actually apply not only to upcxx::view (as
demonstrated above), but also to all deserialized arguments that an RPC callback accepts by const reference.

17 Memory Kinds
The memory kinds interface enables the UPC++ programmer to identify regions of memory requiring
different access methods or having different performance properties, and subsequently rely on the UPC++
communication services to perform transfers among such regions (both local and remote) in a manner
transparent to the programmer. With GPU devices, HBM, scratch-pad memories, NVRAM and various types
of storage-class and fabric-attached memory technologies featured in vendors’ public road maps, UPC++
must be prepared to deal efficiently with data transfers among all the memory technologies in any given
system. UPC++ currently handles one new memory kind – GPU memory in NVIDIA-branded CUDA devices
– but in the future it will be extended to handle other kinds of accelerator memory.

We demonstrate how to use memory kinds to transfer data between device and host memories, and then
between host and device residing on different nodes. For simplicity our examples assume a single device per
node, but UPC++ can also handle nodes with heterogeneous device counts. See the UPC++ Specification
for the details.

17.1 Data Movement between Host and GPU memory
In our first example, we allocate a block of storage in device and host memories and then move the data from
host to GPU.

To allocate storage, we first open a device. CUDA Device IDs start at 0; since we have only one device in
this example, we open device 0:

upcxx::init();
auto gpu_device = upcxx::cuda_device( 0 ); // Open device 0

The next step is to construct an allocator, which we then use to allocate the actual storage. Of note, we pass
the segment size to the allocator, in our case 4 MiB. This variant both creates the CUDA memory segment
and constructs a device_allocator to manage it. Another variant (not shown) can be used to construct a
device_allocator to manage a previously allocated range of CUDA memory.

std::size_t segsize = 4*1024*1024; // 4 MiB
// Allocate GPU memory segment
auto gpu_alloc = upcxx::device_allocator<upcxx::cuda_device>(gpu_device, segsize);

If we need a larger segment, we need to specify that at the time we construct the allocator. Currently, there
is no way to dynamically extend the segment.

These two construction calls must both be invoked collectively across all the ranks. However different ranks
are permitted to pass different arguments, for example some ranks may open a different device (or no device),
or specify a different segment size. Once the device_allocator is constructed, allocation and deallocation
of device memory in the managed segment is non-collective.

The next step is to allocate an array of 1024 doubles on the GPU, by calling the allocate function of the
allocator we have just created.

// Allocate an array of 1024 doubles on GPU
global_ptr<double,memory_kind::cuda_device> gpu_array = gpu_alloc.allocate<double>(1024);

Note the second template argument to the global_ptr which specifies the kind of the target memory,
i.e., memory_kind::cuda_device. This statically indicates a global pointer that references memory in a
CUDA device memory segment. This differs from pointers to host memory, where the second template
argument to global_ptr defaults to memory_kind::host, indicating regular host memory. There is also a
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memory_kind::any kind which acts as a wildcard and specifies a global_ptr type that can reference memory
of any kind.

Next, we allocate the host storage using the familiar new_array method:

global_ptr<double> host_array = upcxx::new_array<double>(1024);

Data movement that potentially involves non-host memory is handled by the upcxx::copy() function.
We transfer 1024 doubles from the host buffer to the GPU buffer. As with rput and rget, copy is an
asynchronous operation that returns a future. In this case, we simply use wait, but the full machinery of
completions is available (see Completions).

upcxx::copy(host_array, gpu_array, 1024).wait();

If we wanted to move the data in the opposite direction, we’d simply swap the host_array and gpu_array
arguments. Note the absence of explicit CUDA data movement calls.

After transferring the data, most users will need to invoke a computational kernel on the device, and will
therefore need a raw pointer to the data allocated on the device. The device_allocator::allocate function
returns a global_ptr to the data in the specific segment associated with that allocator. This global_ptr
can be downcast to a raw device pointer using the allocator’s local function.

template<typename Device>
template<typename T>
Device::pointer<T> device_allocator<Device>::local(global_ptr<T, Device::kind> g);

This function will return the raw device pointer which can then be used as an argument to a CUDA
computational kernel.

In a similar fashion, a raw device pointer into the segment managed by a device_allocator may be upcast
into a global_ptr using the to_global_ptr function of that allocator.

template<typename Device>
template<typename T>
global_ptr<T, Device::kind> device_allocator<Device>::to_global_ptr(Device::pointer<T> ptr);

In the case of CUDA, it is important to obtain the device id in order to be able to launch a kernel. This can
be retrieved using the cuda_device::device_id method.

Here is a complete example:

#include <upcxx/upcxx.hpp>
#include <iostream>
#if !UPCXX_KIND_CUDA
#error "This example requires UPC++ to be built with CUDA support."
#endif
using namespace std;
using namespace upcxx;

int main() {
upcxx::init();

std::size_t segsize = 4*1024*1024; // 4 MiB
auto gpu_device = upcxx::cuda_device( 0 ); // open device 0
auto gpu_alloc = // alloc GPU segment

upcxx::device_allocator<upcxx::cuda_device>(gpu_device, segsize);

// alloc some arrays of 1024 doubles on GPU and host
global_ptr<double,memory_kind::cuda_device> gpu_array = gpu_alloc.allocate<double>(1024);
global_ptr<double> host_array1 = new_array<double>(1024);
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global_ptr<double> host_array2 = new_array<double>(1024);

double *h1 = host_array1.local();
double *h2 = host_array2.local();
for (int i=0; i< 1024; i++) h1[i] = i; //initialize h1

// copy data from host memory to GPU
upcxx::copy(host_array1, gpu_array, 1024).wait();
// copy data back from GPU to host memory
upcxx::copy(gpu_array, host_array2, 1024).wait();

int nerrs = 0;
for (int i=0; i< 1024; i++){

if (h1[i] != h2[i]){
if (nerrs < 10) cout << "Error at element " << i << endl;
nerrs++;

}
}
if (nerrs) cout << "Failure/ERROR: " << nerrs << " errors detected" << endl;
else cout << "Success/SUCCESS" << endl;

delete_array(host_array2);
delete_array(host_array1);
gpu_alloc.deallocate(gpu_array);

gpu_device.destroy();
upcxx::finalize();

}

17.2 RMA Communication using GPU memory
The power of the UPC++ memory kinds facility lies in its unified interface for moving data not only between
host and device on the same node, but between source and target of any memory kind that reside on different
nodes. As in the previous example, the copy method leverages UPC++’s global pointer abstraction. We next
show how to move data between a host and device that reside on different nodes.

Assuming that we have set up a GPU allocator, we allocate host and device buffers as before. We use
dist_object as a directory for fetching remote global pointers, which we can then use in the copy() method:

dist_object<global_ptr<double,memory_kind::cuda_device>> dobj(gpu_array);
int neighbor = (rank_me() + 1) % rank_n();
global_ptr<double,memory_kind::cuda_device> other_gpu_array = dobj.fetch(neighbor).wait();

// copy data from local host memory to remote GPU
upcxx::copy(host_array1, other_gpu_array, 1024).wait();
// copy data back from remote GPU to local host memory
upcxx::copy(other_gpu_array, host_array2, 1024).wait();

upcxx::barrier();

Again, if we want to reverse the direction of the data motion, we need only swap the first two arguments in
the call to copy(). Instead of immediately waiting for it to complete, we could instead use completion objects
such as the operation_cx::as_rpc mechanism mentioned in the Completions section. To modify the heat
transfer simulation mentioned there for GPU compatibility, the memory buffers of both interior and halo cells
could be allocated in device memory. This would mean that copy() operations between neighboring ranks
take the form of a device-to-device memory transfer. On compatible architectures, UPC++ can implement
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this using offload technologies, such as GPUDirect RDMA. For a more thorough discussion and analysis of
how to write a GPU version of the heat transfer example (which is decomposed in three dimensions and uses
the Kokkos programming model for on-node parallelism), the reader is referred to this paper.

Our code concludes by deallocating host and node buffers. Device allocator has its own method for deallocation:

gpu_alloc.deallocate(gpu_array);

Note that in this second example, we have added a call to upcxx::barrier to prevent a process from
deallocating its segment while another rank is copying data (See Quiescence).

In this section, we’ve shown how to use memory kinds in UPC++. This powerful feature relies on a unified
notion of the global pointer abstraction to enable code using the pointer to interpret the type of memory the
pointer refers to, while hiding the details of the actual access method from the user. We’ve not demonstrated
how to move data directly between GPUs, but the details follow the same patterns presented in the preceding
examples.

Intermixing communication on device memory kinds with CUDA computational kernels is straightforward,
but CUDA programming is beyond the scope of this guide. Please consult the upcxx-extras package for
several examples that demonstrate efficient use of the GPU with UPC++.

18 Advanced Job Launch
The upcxx-run utility provides a convenience wrapper around a system-provided “native” job launcher, to
provide a uniform interface for the most-common scenarios. However, for the “power user” the facilities of
the native job launcher (such as core binding) are indispensable. Therefore, this section describes how to
launch UPC++ applications with the native launcher.

The operation of upcxx-run includes the following three conceptual steps:

1. The UPC++ executable is parsed to extract necessary information, including the network for which it
was compiled.

2. Necessary environment variables are set, for instance to implement the -shared-heap and -backtrace
command line options.

3. A network-dependent next-level launcher is run.

To run a UPC++ application with the native launcher, you must first use upcxx-run -v -show ... to
display the results of the three steps above (echoing the next-level launcher rather than executing it). Until
you are familiar with the operation of upcxx-run for your scenario, take care to include all of options
appropriate to your desired execution. If you cannot pass the intended executable, at least pass one compiled
with the same installation and for the same network.

The following shows a simple example:

$ upcxx-run -v -show -n2 ./test-hello_upcxx-smp
UPCXX_RUN: ./test-hello_upcxx-smp is compiled with smp conduit
UPCXX_RUN: Environment:
UPCXX_RUN: GASNET_MAX_SEGSIZE = 128MB/P
UPCXX_RUN: GASNET_PSHM_NODES = 2
UPCXX_RUN: UPCXX_SHARED_HEAP_SIZE = 128 MB
UPCXX_RUN: Command line:

./test-hello_upcxx-smp

The first line of the output above identifies the network as smp. The three lines indented below Environment:
show the environment variables set by upcxx-run as well as any (potentially) relevant ones set in the
environment prior to running upcxx-run. Finally, after Command line: we see the next-level launcher
command (which is trivial in the case of smp).
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The key to launching without upcxx-run is to run the native launcher with the same environment one would
have if using it. In some cases, the command line in the -show output is the native launch command. In
others it is a second-level wrapper provided by GASNet. The following sub-sections describe what to do with
the command line, based on the network. However, since the presentation is incremental, you should read in
order and not skip ahead to the network you are using.

18.1 UPCXX_NETWORK=smp
In the case of the smp network, communication is performed through shared memory on a single host, and
there is no actual network used. This leaves very little motivation to bypass upcxx-run in order to execute
an application in this case. However, we present this case both for completeness and because it is the simplest
case. Using the environment output shown prior to the start of this sub-section, one may launch a 2-process
instance of ./test-hello_upcxx-smp as follows:

$ env GASNET_MAX_SEGSIZE=128MB/P GASNET_PSHM_NODES=2 \
UPCXX_SHARED_HEAP_SIZE='128 MB' ./test-hello_upcxx-smp

Hello from 0 of 2
Hello from 1 of 2

18.2 UPCXX_NETWORK=udp
The udp network case uses amudprun as its second-level launcher. The -show output may look like one of the
following two examples depending on use of -localhost or -ssh-servers:

$ upcxx-run -show -v -n4 -localhost ./test-hello_upcxx-udp
UPCXX_RUN: ./test-hello_upcxx-udp is compiled with udp conduit
UPCXX_RUN: Looking for spawner "amudprun" in:
UPCXX_RUN: /usr/local/pkg/upcxx/bin/../gasnet.opt/bin
UPCXX_RUN: Found spawner "/usr/local/pkg/upcxx/bin/../gasnet.opt/bin/amudprun"
UPCXX_RUN: Environment:
UPCXX_RUN: GASNET_MAX_SEGSIZE = 128MB/P
UPCXX_RUN: GASNET_SPAWNFN = L
UPCXX_RUN: UPCXX_SHARED_HEAP_SIZE = 128 MB
UPCXX_RUN: Command line:

/usr/local/pkg/upcxx/bin/../gasnet.opt/bin/amudprun -np 4 ./test-hello_upcxx-udp

$ upcxx-run -show -v -n4 -ssh-servers pcp-d-5,pcp-d-6,pcp-d-7,pcp-d-8 ./test-hello_upcxx-udp
UPCXX_RUN: ./test-hello_upcxx-udp is compiled with udp conduit
UPCXX_RUN: Looking for spawner "amudprun" in:
UPCXX_RUN: /usr/local/pkg/upcxx/bin/../gasnet.opt/bin
UPCXX_RUN: Found spawner "/usr/local/pkg/upcxx/bin/../gasnet.opt/bin/amudprun"
UPCXX_RUN: Environment:
UPCXX_RUN: GASNET_IBV_SPAWNFN = ssh
UPCXX_RUN: GASNET_MAX_SEGSIZE = 128MB/P
UPCXX_RUN: GASNET_SPAWNFN = S
UPCXX_RUN: GASNET_SSH_SERVERS = pcp-d-5,pcp-d-6,pcp-d-7,pcp-d-8
UPCXX_RUN: SSH_SERVERS = pcp-d-5,pcp-d-6,pcp-d-7,pcp-d-8
UPCXX_RUN: UPCXX_SHARED_HEAP_SIZE = 128 MB
UPCXX_RUN: Command line:

/usr/local/pkg/upcxx/bin/../gasnet.opt/bin/amudprun -np 4 ./test-hello_upcxx-udp

As with smp, running this ./test-hello_upcxx-udp is simply a matter of running the indicated command
line with the indicated environment. Taking the simpler -localhost case and folding-away bin/../:
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$ env GASNET_MAX_SEGSIZE=128MB/P GASNET_SPAWNFN=L UPCXX_SHARED_HEAP_SIZE='128 MB' \
/usr/local/pkg/upcxx/gasnet.opt/bin/amudprun -np 4 ./test-hello_upcxx-udp

Hello from 0 of 4
Hello from 1 of 4
Hello from 2 of 4
Hello from 3 of 4

18.3 UPCXX_NETWORK=aries or ibv
For the aries and ibv networks the output of upcxx-run -v -show ... will display a command line
involving a next-level launcher gasnetrun_aries or gasnetrun_ibv. For instance (with line continuations
added for readability):

$ upcxx-run -v -show -n4 -N2 ./test-hello_upcxx-aries
UPCXX_RUN: ./hello_upcxx is compiled with aries conduit
[... environment output elided ...]
UPCXX_RUN: Command line:

<upcxx-install-path>/bin/../gasnet.opt/bin/gasnetrun_aries \
-E UPCXX_INSTALL,UPCXX_NETWORK,UPCXX_SHARED_HEAP_SIZE \
-N 2 -n 4 ./test-hello_upcxx-aries

Similar to upcxx-run -show, the gasnetrun_[network] utilities take -t to echo some verbose output which
concludes with the command to be run (without running it). Continuing the example above (noting the -t
inserted as the first argument to gasnetrun_aries):

$ env [environment-settings-from-upcxx-run] \
[full-path-to]/gasnetrun_aries -t \
-E UPCXX_INSTALL,UPCXX_NETWORK,UPCXX_SHARED_HEAP_SIZE \
-N 2 -n 4 ./test-hello_upcxx-aries

[... some output elided ...]
gasnetrun: running: /usr/bin/srun -C knl -K0 -W30 -v -mblock \

-n 4 -N 2 [full-path-to]/test-hello_upcxx-aries

In this case /usr/bin/srun is the native job launcher on a SLURM-based Cray XC system. Other native
launchers one might see include aprun, jsrun or even mpirun.

Together with the environment from the initial upcxx-run -v -show ... the printed /usr/bin/srun ...
command is sufficient to reproduce the behavior of the upcxx-run command without -v -show. With an
understanding of the native launcher one can modify this command to suit one’s needs, such as by addition
of options to bind processes to CPU cores.

18.4 Single-step Approach
The preceding subsection describes a two-step process for determining the native launcher for the aries
and ibv networks. There is also a single-step approach: upcxx-run -vv .... The output from both steps
described above are produced in a single step, but with two key differences. The first is that this approach
will run the provided executable (and thus may require you to run in an appropriate environment). The
second is that in addition to the output required to uncover the native launcher, a large volume of additional
verbose output is generated by the added execution.

18.5 Identifying and Avoiding ssh-spawner
The ibv network case may default to using a GASNet-provided “ssh-spawner”. As the name implies, this
utilizes ssh to perform job launch. This can be identified in the output of gasnetrun_ibv -t ... by the
presence of gasnetrun: set GASNET_SPAWN_ARGS=....
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Since ssh-spawner bypasses the native job launcher, it is not suitable for obtaining more control over the job
than is available via upcxx-run. You may try GASNET_IBV_SPAWNER=mpi or GASNET_IBV_SPAWNER=pmi in
the environment to demand a different spawner. However, this may result in a failure from gasnetrun_ibv
such as the following:
Spawner is set to PMI, but PMI support was not compiled in

18.6 Third-Level Launchers
In some cases, running gasnetrun_[network] -t ... may yield yet another level of launcher above the
native one. When present, this is most often a site-specific wrapper intended to apply default behaviors (such
as for core binding) or to collect usage statistics. Since there is no uniformity in such utilities, we cannot
provide detailed instructions. However, there is often some way to enable a “show” or “verbose” behavior in
order to find the native spawn command hidden beneath. Take care in such cases to seek out not only the
final launch command, but also any environment variables which may be set to influence its behavior.
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19 Additional Resources
Here are some helpful additional resources for learning and using UPC++:

Main UPC++ Site : upcxx.lbl.gov

• Software downloads
• Formal specification of UPC++ semantics
• Additional documentation
• Contact information

UPC++ Training Materials Site: upcxx.lbl.gov/training

• Video tutorials
• Hands-on exercises

UPC++ Extras: upcxx.lbl.gov/extras

• Optional UPC++ extensions, implemented as libraries atop UPC++
• Extended UPC++ example codes

IPDPS’19 Paper: doi.org/10.25344/S4V88H

• Introductory peer-reviewed research paper
• Includes performance analysis of microbenchmarks and application proxies

UPC++ Issue Tracker: upcxx-bugs.lbl.gov

• Problem reports and feature requests

UPC++ User Support Forum: upcxx.lbl.gov/forum

• Questions and discussion regarding UPC++ programming

Thanks for your interest in UPC++ - we welcome your participation and feedback!
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