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Abstract

UPC++ is a C++ library providing classes and functions that support Partitioned Global
Address Space (PGAS) programming. The key communication facilities in UPC++ are
one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All com-
munication operations are syntactically explicit and default to non-blocking; asynchrony
is managed through the use of futures, promises and continuation callbacks, enabling the
programmer to construct a graph of operations to execute asynchronously as high-latency
dependencies are satisfied. A global pointer abstraction provides system-wide addressabil-
ity of shared memory, including host and accelerator memories. The parallelism model
is primarily process-based, but the interface is thread-safe and designed to allow efficient
and expressive use in multi-threaded applications. The interface is designed for extreme
scalability throughout, and deliberately avoids design features that could inhibit scalability.
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Recent Changes

The UPC++ library continues to evolve and improve in response to stakeholder require-
ments and feedback.

Notable changes in this specification relative to the 2022.3.0 revision are as follows:

1. Specify serialization behavior for std::reference_wrapper<T>, which now works
analogously to serialization for other reference types.

2. Specify a new signature for the user-defined deserialize() member-function tem-
plate used in custom class serialization. This interface has been generalized to support
emplacement into managed storage, as well as construction in raw memory. The old
signature is now deprecated and may be removed in a future revision.

3. Specify new upcxx::optional template that provides the same interface as C++17
std::optional.

4. Specify new overloads of deserializing_iterator<T>::deserialize_into() and
[Reader]::read_into() that deserialize into a upcxx::optional.

5. Specify new deserializing_iterator<T>::deserialize_overwrite(),
[Reader]::read_overwrite() and [Reader]::read_sequence_overwrite()
functions that work analogously to their *_into() counterparts, but additionally
destruct target objects before deserializing into them.

6. Remove the overly broad MoveConstructibility requirement on all deserialized types,
and instead specify a MoveConstructible requirement for deserialized types where
it’s actually required, i.e. on specific function arguments and in standard library
containers that are serialized.

7. UPC++ Progress level annotations in API reference sections are now omitted for
progress level none, which is the default unless otherwise specified.

8. Improve the code example and prose in the Custom Serialization section.

9. Clarify that dist_object<T>::fetch() requires MoveConstructible
deserialized_type_t<T>, but not necessarily MoveConstructible T.

10. Clarify behavior of array types with custom serialization and
deserialized_type_t<T[n]>.

11. Clarify semantics of [Reader]::read_sequence_into() when num_items is zero.

12. Clarify description of serialization behavior for reference types.

iv September 30, 2022 – LBNL-2001480



13. Clarify prose descriptions referring to the creation and behavior of the master persona
and default personas.

14. Clarify prose description of the interaction between thread persona stacks and asyn-
chronous completions.

The UPC++ 2022.9.0 software release implements all the changes described above. For
details on the implementation, please consult https://upcxx.lbl.gov

Providing Feedback

Readers are encouraged to provide feedback and comments on this specification via one of
the following channels:

1. Enter a new issue in the UPC++ Specification issue tracker, located at:
https://upcxx-bugs.lbl.gov

2. Send email to upcxx@googlegroups.com – this is a semi-public forum for maintainers
of UPC++ and other interested parties.

3. Real-time video chat meetings with the Pagoda group’s specification developers can
be arranged upon request to: pagoda@lbl.gov
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Chapter 1

Overview and Scope

1.1 Preliminaries

1 UPC++ is a C++ library providing classes and functions that support Partitioned Global
Address Space (PGAS) programming. The project began in 2012 with a prototype labeled
V0.1, described in the IPDPS14 paper by Zheng et al. [9]. This document describes a
production version, V1.0, with the addition of several features and a new asynchronous
API. For a peer-reviewed overview of the new version, see the IPDPS19 paper [5].

2 Under the PGAS model, a distributed memory parallel computer is viewed abstractly as a
collection of processing elements, an individual computing resource, each with local memory
(see Fig. 1.1). A processing element is called a process in UPC++. The execution model of
UPC++ is SPMD and the number of UPC++ processes is fixed during program execution.

3 As with conventional C++ threads programming, processes can access their respective
local memory via a pointer. However, the PGAS abstraction supports a global address
space, which is allocated in shared segments distributed over the processes. A global pointer
enables the UPC++ programmer to reference objects in the shared segments between pro-
cesses as shown in Fig. 1.2. As with threads programming, accesses to shared objects
made via global pointers may be subject to race conditions, and appropriate synchroniza-
tion must be employed.

4 UPC++ global pointers are fundamentally different from conventional C-style pointers. A
global pointer refers to a location in a shared segment. It cannot be dereferenced using
the * operator, and it cannot be constructed by the address-of operator. Rather, there
are more syntactically explicit methods for accomplishing these tasks. On the other hand,

1
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Figure 1.1: Abstract Machine Model of a PGAS program memory

Figure 1.2: Global pointers and shared memory objects in a PGAS model

UPC++ global pointers do support some properties of a regular C pointer, such as pointer
arithmetic and passing a pointer by value.

5 Notably, global pointers are used in one-sided communication: Remote Memory Access
(RMA) operations similar to memcpy but across processes (Ch. 8), and in Remote Pro-
cedure Calls (RPC, Ch. 9). RPC enables the programmer to move computation to other
processes, which is useful in managing irregular distributed data structures. These pro-
cesses can push or pull data via global pointers. Futures and Promises (Ch. 5) are used
to determine completion of communication or to schedule callbacks that respond to com-
pletion. Wherever possible, UPC++ engages low-level hardware support for communication
and this capability is crucial to UPC++’s support of lightweight communication.

6 UPC++’s design philosophy is to encourage writing scalable, high-performance applications.
UPC++ imposes certain restrictions in order to meet this goal. In particular, non-blocking
communication is the default for nearly all operations defined in the API, and all commu-
nication is explicit. These two restrictions encourage the programmer to write code that is
performant and make it more difficult to write code that is not. Conversely, UPC++ relaxes
some restrictions found in models such as MPI; in particular, it does not impose an in-order

2 September 30, 2022 – LBNL-2001480
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delivery requirement between separate communication operations. The added flexibility
increases the possibility of overlapping communication and scheduling it appropriately.

7 UPC++ also avoids non-scalable constructs found in models such as UPC. For example,
it does not support shared distributed arrays or shared scalars. Instead, it provides dis-
tributed objects, which can be used for similar purposes (Ch. 14). Distributed objects
are useful in solving the bootstrapping problem, whereby processes need to distribute their
local copies of global pointers to other processes. Though UPC++ does not directly provide
multidimensional arrays, applications that use UPC++ may define them. To this end, UPC++
supports non-contiguous data transfers for regular, irregular and strided data (Ch. 15).

8 UPC++ does not create internal threads to manage progress. Therefore, UPC++ must manage
all progress inside active calls to the library. The strengths of this approach include im-
proved user-visibility into the resource requirements of UPC++ and better interoperability
with software packages and their possibly restrictive threading requirements. The conse-
quence, however, is that the user must be conscientious to balance the need for making
progress against the application’s need for CPU cycles. Chapter 10 discusses subtleties of
managing progress and how an application can arrange for UPC++ to advance the state of
asynchronous communication.

9 Processes may be grouped into teams (Ch. 11). A team can participate in collective
operations. Teams are also the interface that UPC++ uses to advertise the shared memory
capabilities of the underlying hardware and operating system. This enables a programmer
to reason about hierarchical processor-memory organization, allowing an application to
reduce its memory footprint. UPC++ supports remote atomic memory operations (Ch. 13).
Atomics are useful in managing distributed queues, hash tables, and so on. However, UPC++
remote atomic operations are explicitly split-phased and handled somewhat differently from
the process-scope atomics provided in C++11 std::atomic.

10 UPC++ supports memory kinds (Ch. 16), whereby the programmer can identify regions
of memory requiring different access methods or having different performance properties,
such as GPU device memory [8]. Global pointers can reference device memory, and UPC++
supports seamless data motion between any combination of host or device memory, whether
local or remote.

1.2 Execution Model

1 The UPC++ state for each process contains internal unordered queues that are managed for
the user. The UPC++ progress engine scans these queues for operations initiated by this
process, as well as externally generated operations that target this process. The progress

September 30, 2022 – LBNL-2001480 3
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engine is active inside UPC++ calls only and is quiescent at other times, as there are no
threads or background processes executing inside UPC++. This passive stance permits
UPC++ to be driven by any other execution model a user might choose. This universality
does place a small burden on the user: calling into the progress function. UPC++ relies on
the user to make periodic calls into the progress function to ensure that UPC++ operations
are completed. progress is the mechanism by which the user loans UPC++ a thread of
execution to perform operations that target the given process. The user can determine
that a specific operation completes by checking the status of its associated future, or by
attaching a completion handler to the operation.

2 UPC++ presents a thread-aware programming model. With a few exceptions, it generally
assumes that only one thread of execution is interacting with any given library object
at a time. The abstraction for thread-awareness in UPC++ is the persona. A future
produced by a thread of execution is associated with its persona, and transferring the
future to another thread must be accompanied by transferring the underlying persona.
Each process has a master persona, initially attached to the thread that calls init. Some
UPC++ operations, such as barrier, require a thread to have exclusive access to the master
persona to call them. Thus, the programmer is responsible for ensuring synchronized access
to both personas and memory.

1.3 Memory Model

1 The UPC++ memory model differs from that of C++11 (and beyond) in that all updates
are split-phased: every communication operation has a distinct initiate and wait step.
Thus, RMA operations execute over a time interval, and the time intervals of successive
operations that target the same datum must not overlap, or a data race will result.

2 UPC++ differs from message passing in MPI in that it doesn’t guarantee in-order delivery.1
For example, if we overlap two successive RMA operations involving the same source and
destination process, there are no guarantees regarding which will complete first. The same
lack of implicit point-to-point ordering holds for all asynchronous operations (including
RMA, RPC, remote atomics, etc). The only way to guarantee ordering is to apply explicit
synchronization, e.g. issue a wait on a prior operation before initiating any dependent
operation.

1MPI supports RMA, which is also unordered.
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1.4 Common Requirements

1 Unless explicitly stated otherwise, the requirements in [res.on.arguments] in the C++ stan-
dard apply to UPC++ functions as well. In particular, if a local or global pointer passed to
a UPC++ function is invalid for its intended use, the behavior of the function is undefined.

2 A number of functions accept a sequence of inputs delimited by two Iterator arguments,
e.g. [begin,end). Such functions have implicit preconditions that end must be reachable
by incrementing begin zero or more times, and all accesses to the underlying objects in
the sequence must be valid. Otherwise the behavior of the function is undefined.

3 UPC++ functions may call into user code, including invoking constructors and destructors
and running user-provided callbacks. If an exception propagates from user code into a
UPC++ function specified as noexcept, the behavior is undefined2. As indicated in §1.6,
UPC++ functions are implicitly declared noexcept unless specified otherwise. Thus, if user-
provided code throws an exception that propagates outward into any UPC++ function
whose specification does not include an Exceptions clause explicitly allowing this, the
behavior is undefined.

4 For UPC++ functions with a Precondition(s) clause, violation of the preconditions results in
undefined behavior.

1.5 Organization of this Document

1 This specification is intended to be a normative reference, not a tutorial on learning to
use the library. A Programmer’s Guide is available from https://upcxx.lbl.gov and is
a good tutorial to gain a working understanding of the library.

2 The organization for the rest of the document is as follows. Chapter 2 discusses the pro-
cess of starting up and closing down UPC++. Global pointers (Ch. 3) are fundamental to
the PGAS model, and Chapter 4 discusses shared heap storage management. UPC++ sup-
ports aggressively asynchronous communication and provides futures and promises (Ch. 5)
to manage asynchronous operations and control flow. Chapter 6 discusses how C++ ob-
jects are serialized for communication. Chapter 7 describes the different completion models
available for UPC++ communication operations. Chapters 8 and 9 describe two core forms of
asynchronous one-sided communication, RMA and RPC, respectively. Chapter 10 discusses
progress. Chapter 11 discusses teams, which are a means of organizing UPC++ processes,

2This differs from standard C++, which specifies that std::terminate is called if an exception reaches
the outermost block of a non-throwing function.
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and Chapter 12 describes collective communication operations. Chapter 13 discusses ato-
mic operations on shared memory. Chapter 14 discusses distributed objects. Chapter 15
discusses non-contiguous one-sided RMA transfers. Chapter 16 discusses memory kinds
for device memory.

1.6 Conventions

1. All entities are declared by the header upcxx/upcxx.hpp, unless otherwise specified.

2. All library identifiers are in the upcxx namespace, unless otherwise qualified.

3. All functions are declared noexcept unless specifically called out.

4. The notation cq represents an optional const qualifier.

5. All instances of size_t and ptrdiff_t are illustrative shorthand for the correspond-
ing fully-qualified std:: type.

6. Except where otherwise specified, all library functions have a progress level (§10)
guarantee of progress level: none.

1.7 Glossary

1 Affinity. A binding of each location in a shared or device segment to a particular process
(generally the process which allocated that shared object). Every byte of shared
memory has affinity to exactly one process (at least logically).

2 C++ Concepts. E.g. TriviallyCopyable. This document references C++ Concepts as
defined in the C++14 standard [3] when specifying the semantics of types. However,
compliant implementations are still possible within a compiler adhering to the earlier
C++11 standard [2].

3 Collective. A constraint placed on some language operations which requires evaluation
of such operations to be matched across all participating processes. The behavior of
collective operations is undefined unless all processes execute the same sequence of
collective operations.

4 A collective operation need not provide any actual synchronization between pro-
cesses, unless otherwise noted. The collective requirement simply states a relative
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ordering property of calls to collective operations that must be maintained in the par-
allel execution trace for all executions of any valid program. Some implementations
may include unspecified synchronization between processes within collective opera-
tions, but programs must not rely upon the presence or absence of such unspecified
synchronization for correctness.

5 Collective object. (16) A semantic binding of objects constructed and destroyed collec-
tively by the processes in a team.

6 Device. (16) A physical device with storage that is distinct from main memory.

7 Device segment. (16) A region of storage associated with a device that is used to allocate
objects that are accessible by any process.

8 Futures (and Promises). (5) The primary mechanisms by which a UPC++ application
interacts with non-blocking operations. The semantics of futures and promises in
UPC++ differ from the those of standard C++. While futures in C++ facilitate
communicating between threads, the intent of UPC++ futures is solely to provide an
interface for managing and composing non-blocking operations, and they cannot be
used directly to communicate between threads or processes. A future is the interface
through which the status of the operation can be queried and the results retrieved,
and multiple future objects may be associated with the same promise. A future thus
represents the consumer side of a non-blocking operation. A promise represents the
producer side of the operation, and it is through the promise that the results of the
operation are supplied and its dependencies fulfilled.

9 Global pointer. (3) The primary way to address memory in a shared memory segment
of a UPC++ program. Global pointers can themselves be stored in shared memory or
otherwise passed between processes and retain their semantic meaning to any process.

10 Local. (11.2) Refers to an object or reference with affinity to a process in the local team.

11 Operation completion. (7) The condition where a communication operation is com-
plete with respect to the initiating process, such that its effects are visible and that
resources, such as source and destination memory regions, are no longer in use by
UPC++.

12 Persona. (10.4) The abstraction for thread-awareness in UPC++. A UPC++ persona object
represents a collection of UPC++-internal state usually attributed to a single thread.
By making it a proper construct, UPC++ allows a single OS thread to switch between
multiple application-defined roles for processing notifications. Personas act as the
receivers for notifications generated by the UPC++ runtime.
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13 Private object. An object outside the shared space that can be accessed only by the
process that owns it (e.g. an object on the program stack).

14 Process. (1) An OS process with associated system resources that is a member of a
UPC++ parallel job execution. UPC++ uses a SPMD execution model, and the number
of processes is fixed during a given program execution. The placement of processes
across physical processors or NUMA domains is implementation-defined.

15 Progress. (10) The means by which the application allows the UPC++ runtime to advance
the state of outstanding operations initiated by this or other processes, to ensure
they eventually complete.

16 Rank. (11) An integer index that identifies a unique UPC++ process within a UPC++ team.
17 Referentially transparent. A routine that is is a pure function, where inputs alone

determine the value returned by the function. For the same inputs, repeated calls to
a referentially transparent function will always return the same result.

18 Remote. Refers to an object or reference whose affinity is not local to the current process.
19 Remote Procedure Call. A communication operation that injects a function call invo-

cation into the execution stream of another process. These injections are one-sided,
meaning the target process need not explicitly expect the incoming operation or
perform any specific action to receive it, aside from invoking UPC++ progress.

20 Serializable. (6) A C++ type that is either TriviallySerializable, or that implements the
UPC++ class serialization interface.

21 Source completion. The condition where a communication operation initiated by the
current process has advanced to a point where serialization of the local source memory
regions for the operation has occurred, and the contents of those regions can be safely
overwritten or reclaimed without affecting the behavior of the ongoing operation.
Source completion does not generally imply operation completion, and other effects
of the operation (e.g., updating destination memory regions, or delivery to a remote
process) may still be in-progress.

22 Shared segment. A region of storage associated with a particular process that is used
to allocate shared objects that are accessible by any process.

23 Team. (11) A UPC++ object representing an ordered set of processes. Each process in a
team has a unique 0-based rank index.

24 Thread (or OS thread). An independent stream of executing instructions with private
state. A process may contain many threads (created by the application), and each is
associated with at least one persona.
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25 TriviallySerializable. (6) A C++ type that is valid to serialize by making a byte copy
of an object.
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Chapter 2

Init and Finalize

2.1 Overview

1 The init function must be called before any other UPC++ function can be invoked. This
can happen anywhere in the program, so long as it appears before any UPC++ calls that
require the library to be in an initialized state. The call is collective, meaning every process
in the parallel job must enter this function if any are to participate in UPC++ operations.
While init can be called more than once by each process in a program, only the first
invocation will initialize UPC++, and the rest will merely increment the internal count of
how many times init has been called. For each init call, a matching finalize call must
eventually be made. init and finalize are not re-entrant and must be called by only
a single thread of execution in each process. The thread that calls init has the master
persona attached to it (see section 10.5.1 for more details of threading behavior). After the
number of calls to finalize matches the number of calls to init, no UPC++ function that
requires the library to be in an initialized state can be invoked until UPC++ is reinitialized
by a subsequent call to init.

2 All UPC++ operations require the library to be in an initialized state unless otherwise
specified, and violating this requirement results in undefined behavior. Member functions,
constructors, and destructors are included in the set of operations that require UPC++ to
be initialized, unless explicitly stated otherwise.

10
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1 # include <upcxx/upcxx.hpp >
2 # include <iostream >
3 int main(int argc , char *argv [])
4 {
5 upcxx :: init (); // initialize UPC ++
6

7 std :: cout << "Hello World"
8 << " ranks:" << upcxx :: rank_n () // how many processes ?
9 << " my rank: " << upcxx :: rank_me () // which process am I?

10 << std :: endl;
11

12 upcxx :: finalize (); // finalize UPC ++
13 return 0;
14 }

Figure 2.1: HelloWorld.cpp program

2.2 Hello World

1 A UPC++ installation should be able to compile and execute the simple Hello World program
shown in Figure 2.1. The output of Hello World, however, is platform-dependent and may
vary between different runs, since there is no synchronization to order the output between
processes. Depending on the nature of the buffering protocol of stdout, output from
different processes may even be interleaved.

2.3 API Reference

1 void init ();

2 Precondition: Called collectively by all processes in the parallel job. The master
persona (§10.5.1) must appear in the persona stack of the calling thread if UPC++
is in an already-initialized state.

3 If there have been no previous calls to init, or if all previous calls to init
have had matching calls to finalize, then this routine initializes the UPC++
library. Initialization of the library also pushes the master persona onto the
active persona stack of the calling thread (§10.5.1).

4 Otherwise, leaves the library state and active persona stack unchanged.
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5 This function may be called when UPC++ is in the uninitialized state.
6 bool initialized ();

7 Returns whether or not UPC++ is in the initialized state. UPC++ is initialized if
there has been at least one previous call to init that has not had a matching
call to finalize.

8 This function may be called when UPC++ is in the uninitialized state.
9 void finalize ();

10 Precondition: Called collectively by all processes in the parallel job. The master
persona (§10.5.1) must appear in the persona stack of the calling thread, and
UPC++ must be in an already-initialized state.

11 If this call matches the call to init that placed UPC++ in an initialized state,
then this call uninitializes the UPC++ library. Otherwise, this function does not
alter the library’s state.

12 Before uninitializing the UPC++ library, finalize shall execute a (blocking)
barrier() over team world(). If this call uninitializes the UPC++ library while
there are any asynchronous operations still in-flight (after the barrier), behav-
ior is undefined. An operation is defined as in-flight if it was initiated but still
requires internal-level or user-level progress from any persona on any process
in the job before it can complete. It is left to the application to define and
implement their own specific approach to ensuring quiescence of in-flight oper-
ations. A potential quiescence API is being considered for future versions and
feedback is encouraged.

13 UPC++ progress level: user
14 # define UPCXX_SPEC_VERSION 20220900 L

15 A macro definition to an integer literal identifying the version of this specifi-
cation. Implementations complying to this specification shall define the value
shown above. It is intended that future versions of this specification will replace
the value of this macro with a greater value.

16 # define UPCXX_VERSION /* implementation - defined */

17 A macro definition to an integer literal identifying the version of the imple-
mentation. Values are implementation-defined, but are recommended to be
monotonically non-decreasing for subsequent revisions of the same implemen-
tation.
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18 char * getenv_console (const char * env_var );

19 The getenv_console function searches an environment list, provided by the
host environment, for a string that matches the string pointed to by env_var.

20 The function returns a pointer to a string associated with the matched list
member. The string pointed to shall not be modified by the program, but may
be overwritten by a subsequent call to the getenv_console function. If the
specified name cannot be found, a null pointer is returned.

21 It is unspecified whether and how functions that modify the POSIX environ-
ment (std::setenv, std::unsetenv, std::putenv, etc.) affect the return
values of this function.

22 Advice to users: On some platforms, environment variables provided by the
spawning console might not be propagated to the POSIX environment of all
UPC++ processes. This function’s semantics are the same as std::getenv(),
except that if env_var was set in the environment of the spawning console,
that value is instead returned. UPC++ programs are recommended to use this
function instead of std::getenv() to help ensure portability.

23 Note: As with most library functions, this function requires UPC++ to be in
an already-initialized state.
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Chapter 3

Global Pointers

3.1 Overview

1 The UPC++ global_ptr is the primary way to address memory in a remote shared memory
segment of a UPC++ program. The next chapter discusses how memory in the shared
segment is allocated to the user.

2 As mentioned in Chapter 1, a global pointer is a handle that may not be dereferenced. This
restriction follows from the design decision to prohibit implicit communication. Logically,
a global pointer has two parts: a raw C++ pointer and an associated affinity, which is a
binding of each location in a shared or device (Ch. 16) segment to a particular process
(generally the process which allocated that shared object). In cases where the use of a
global_ptr executes in a process that has direct load/store access to the memory of the
global_ptr (i.e. is_local is true), we may extract the raw pointer component, and
benefit from the reduced cost of employing a local reference rather than a global one. To
this end, UPC++ provides the local() function, which returns a raw C++ pointer. Calling
local() on a global_ptr that references an address in a remote shared segment or a
device location to which the caller does not have load/store access results in undefined
behavior.

3 Global pointers have the following guarantees:

1. A global_ptr<T, Kind> is only valid if it is the null global pointer, it references a
valid object, or it represents one element past the end of a valid array or non-array
object.

14
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2. Two global pointers compare equal if and only if they reference the same object, one
past the end of the same array or non-array object, or are both null.

3. Equality of global pointers corresponds to observational equality, meaning that two
global pointers which compare equal will produce equivalent behavior when inter-
changed.

4 These facts become important given that UPC++ allows two processes which are local to
each other to map the same memory into their own virtual address spaces but possibly
with different virtual addresses. They also ensure that a global pointer can be viewed from
any process to mean the same thing without need for translation.

5 Global pointers are parameterized by the kind of memory they can refer to. A global
pointer of type global_ptr<T, Kind> can only refer to memory on devices described by
Kind, and the referenced memory may be located on a device attached to a local or remote
process. The default global pointer, global_ptr<T, memory_kind::host>, can only refer
to host memory on a local or remote process. A global_ptr<T, memory_kind::any> can
refer to either host memory or memory on any device associated with a local or remote
process.

6 Most UPC++ communication operations only operate on host memory, working on the de-
fault global_ptr<T>. Functions that work with device memory are additionally parame-
terized by memory kind, working with general types such as global_ptr<T, Kind>.

7 The type global_ptr<T, Kind> is implicitly convertible to global_ptr<const T, Kind>,
even in contexts that require template deduction. Thus, a global_ptr<T, Kind> may be
passed to any UPC++ operation that requires a global_ptr<const T, Kind>.

8 On the other hand, an object of type global_ptr<const T, Kind> can only be converted
to a global_ptr<T, Kind> by a call to const_pointer_cast<T>().

3.2 API Reference

1 using intrank_t = /* see below */;

2 A signed integer type that represents a UPC++ rank ID.
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3 enum class memory_kind {
any = /* unspecified */,
host = /* unspecified */,
cuda_device = /* unspecified */,
hip_device = /* unspecified */

};

4 Constants used with a global pointer to specify the kind of memory (Ch. 16)
that may be referenced by the global pointer.

5 template < typename T, memory_kind Kind = memory_kind ::host >
struct global_ptr : global_ptr <const T, Kind >;
template < typename T, memory_kind Kind >
struct global_ptr <const T, Kind >;

6 C++ Concepts: DefaultConstructible, TriviallyCopyable, TriviallyDestructible,
EqualityComparable, LessThanComparable, hashable

7 UPC++ Concepts: TriviallySerializable
8 T must not be qualified with volatile: std::is_volatile<T>::value must

be false.
9 T must not be a reference type: std::is_reference<T>::value must be false.

10 T may be an incomplete type, but some member functions are specified to
require T to be a complete type at invocation.

11 template < typename T, memory_kind Kind >
struct global_ptr {

using element_type = T;
using pointer_type = T*;
// ...

};

12 Member type aliases for the template parameter T and the underlying raw
pointer type.

13 template < typename T, memory_kind Kind >
static const memory_kind global_ptr <T, Kind >:: kind = Kind;

14 Constant that has the same value as the Kind template parameter.
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15 template < typename T, memory_kind Kind >
global_ptr <T, Kind >:: global_ptr (std :: nullptr_t = nullptr );

16 Constructs a global pointer corresponding to a null pointer.
17 This function may be called when UPC++ is in the uninitialized state.

18 template < typename T>
template < memory_kind Kind >
global_ptr <T, memory_kind ::any >:: global_ptr (

global_ptr <T, Kind > other );

19 Constructs a global pointer with kind memory_kind::any from an existing
global pointer.

20 template < typename T, memory_kind Kind >
global_ptr <T, Kind >::~ global_ptr ();

21 Trivial destructor. Does not delete or otherwise reclaim the raw pointer that
this global pointer is referencing.

22 This function may be called when UPC++ is in the uninitialized state.

23 template < typename T>
global_ptr <T> to_global_ptr (T* ptr );

24 Precondition: ptr is a null pointer, or a valid pointer to host memory such
that the expression *ptr on the calling process yields a (possibly uninitialized)
object of type T that resides within the shared segment of a process in the local
team (§11.2) of the caller

25 Constructs a global pointer corresponding to the given raw pointer.

26 template < typename T>
global_ptr <T> try_global_ptr (T* ptr );

27 Precondition: ptr is a null pointer, or a valid pointer to host memory such
that the expression *ptr on the calling process yields a (possibly uninitialized)
object of type T

28 If the object referenced by *ptr resides within the shared segment of a process
in the local team (§11.2) of the caller, returns a global pointer referencing that
object. Otherwise returns a null pointer.
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29 template < typename T, memory_kind Kind >
memory_kind global_ptr <T, Kind >:: dynamic_kind () const;

30 If !is_null(), returns the actual memory kind associated with the memory
referenced by this pointer.

31 If is_null(), the result is unspecified.

32 template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: is_local () const;

33 Returns whether or not the calling process has load/store access to the memory
referenced by this pointer. Returns true if this is a null pointer, regardless of the
context in which this query is called. Otherwise, the result is unspecified if this
pointer targets device memory (i.e. dynamic_kind() != memory_kind::host).

34 template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: is_null () const;

35 Returns whether or not this global pointer corresponds to the null value, mean-
ing that it references no memory. This query is purely a function of the global
pointer instance, it is not affected by the context in which it is called.

36 template < typename T, memory_kind Kind >
[ explicit ] bool global_ptr <T, Kind >:: operator bool () const;

37 Explicit conversion operator that returns !is_null().

38 template < typename T, memory_kind Kind >
T* global_ptr <T, Kind >:: local () const;

39 Precondition: this->is_local()

40 Converts this global pointer into a raw pointer.
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41 template < typename T, memory_kind Kind >
intrank_t global_ptr <T, Kind >:: where () const;

42 Returns the rank in team world() of the process with affinity to the T object
pointed-to by this global pointer. The return value for where() on a null global
pointer is an implementation-defined value.

43 For a non-null device pointer (dynamic_kind() != memory_kind::host), re-
turns the rank in team world() of the process that allocated the memory
referenced by this pointer. The result is undefined if this pointer references
unallocated memory.

44 This query is purely a function of the global pointer instance, it is not affected
by the context in which it is called.

45 template < typename T, memory_kind Kind >
global_ptr <T, Kind >

global_ptr <T, Kind >:: operator +( ptrdiff_t diff) const;
template < typename T, memory_kind Kind >
global_ptr <T, Kind >

operator +( ptrdiff_t diff , global_ptr <T, Kind > ptr );
template < typename T, memory_kind Kind >
global_ptr <T, Kind >&

global_ptr <T, Kind >:: operator +=( ptrdiff_t diff );

46 Precondition: T must be a complete type. Either diff == 0, or the global
pointer is pointing to the ith element of an array of N elements, where i may
be equal to N, representing a one-past-the-end pointer. At least one of the
indices i+diff or i+diff-1 must be a valid element of the same array. A
pointer to a non-array object is treated as a pointer to an array of size 1.

47 If diff == 0, returns a copy of the global pointer. Otherwise produces a
pointer that references the element that is at diff positions greater than the
current element, or a one-past-the-end pointer if the last element of the array
is at diff-1 positions greater than the current.

48 operator+= modifies the global_ptr in-place and returns a reference to this
pointer after the operation.

49 These routines are purely functions of their arguments, they are not affected
by the context in which they are called.
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50 template < typename T, memory_kind Kind >
global_ptr <T, Kind >

global_ptr <T, Kind >:: operator -( ptrdiff_t diff) const;
template < typename T, memory_kind Kind >
global_ptr <T, Kind >&

global_ptr <T, Kind >:: operator -=( ptrdiff_t diff );

51 Precondition: T must be a complete type. Either diff == 0, or the global
pointer is pointing to the ith element of an array of N elements, where i may
be equal to N, representing a one-past-the-end pointer. At least one of the
indices i-diff or i-diff-1 must be a valid element of the same array. A
pointer to a non-array object is treated as a pointer to an array of size 1.

52 If diff == 0, returns a copy of the global pointer. Otherwise produces a
pointer that references the element that is at diff positions less than the
current element, or a one-past-the-end pointer if the last element of the array
is at diff+1 positions less than the current.

53 operator-= modifies the global_ptr in-place and returns a reference to this
pointer after the operation.

54 These routines are purely a function of their arguments, they are not affected
by the context in which they are called.

55 template < typename T, memory_kind Kind >
ptrdiff_t

global_ptr <T, Kind >:: operator -(
global_ptr <const T, Kind > rhs) const;

56 Precondition: T must be a complete type. Either *this == rhs, or this global
pointer is pointing to the ith element of an array of N elements, and rhs is
pointing at the jth element of the same array. Either pointer may also point
one past the end of the array, so that i or j is equal to N. A pointer to a
non-array object is treated as a pointer to an array of size 1.

57 If *this == rhs, results in 0. Otherwise, returns i-j.

58 This routine is purely a function of its arguments, it is not affected by the
context in which it is called.
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59 template < typename T, memory_kind Kind >
global_ptr <T, Kind >& global_ptr <T, Kind >:: operator ++();
template < typename T, memory_kind Kind >
global_ptr <T, Kind > global_ptr <T, Kind >:: operator ++( int );
template < typename T, memory_kind Kind >
global_ptr <T, Kind >& global_ptr <T, Kind >:: operator - -();
template < typename T, memory_kind Kind >
global_ptr <T, Kind > global_ptr <T, Kind >:: operator --( int );

60 Precondition: T must be a complete type. In the first two variants, the global
pointer must be pointing to an element of an array or to a non-array object.
In the third and fourth variants, the global pointer must either be pointing to
the ith element of an array, where i >= 1, or one element past the end of an
array or a non-array object.

61 Modifies this pointer to have the value *this + 1 in the first two variants and
*this - 1 in the third and fourth variants.

The first and third variants return a reference to this pointer. The second and
fourth variants return a copy of the original pointer.

62 This routine is purely a function of its instance, it is not affected by the context
in which it is called.

63 template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator ==(

global_ptr <const T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator !=(

global_ptr <const T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator <(

global_ptr <const T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator <=(

global_ptr <const T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator >(

global_ptr <const T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator >=(

global_ptr <const T, Kind > rhs) const;
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64 Returns the result of comparing two global pointers. Two global pointers com-
pare equal if they both represent null pointers, or if they represent the same
memory address with affinity to the same process. All other global pointers
compare unequal.

65 If Kind == memory_kind::any, then two non-null global pointers compare
equal only if the memory locations they reference have affinity to the same
process and represent the same memory address on the same device.

66 A pointer to a non-array object is treated as a pointer to an array of size
one. If two global pointers point to different elements of the same array, or to
subobjects of two different elements of the same array, then the pointer to the
element at the higher index compares greater than the pointer to the element
at the lower index. If one pointer points to an element of an array or to a
subobject of an element of an array, and the other pointer points one past the
end of the array, then the latter compares greater than the former.

67 If global pointers p and q compare equal, then p == q, p <= q, and p >= q all
result in true while p != q, p < q, and p > q all result in false. If p and q do
not compare equal, then p != q is true while p == q is false.

68 If p compares greater than q, then p > q, p >= q, q < p, and q <= p all result
in true while p < q, p <= q, q > p, and q >= p all result in false.

69 All other comparisons result in an unspecified value.
70 These routines are purely functions of their arguments, they are not affected

by the context in which they are called.

71 namespace std {
template < typename T, memory_kind Kind >
struct less <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct less_equal <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct greater <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct greater_equal <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct hash <global_ptr <T, Kind >>;

}
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72 Specializations of STL function objects for performing comparisons and com-
puting hash values on global pointers. The specializations of std::less,
std::less_equal, std::greater, and std::greater_equal all produce a
strict total order over global pointers, even if the comparison operators do
not. This strict total order is consistent with the partial order defined by the
comparison operators.

73 template < typename T, memory_kind Kind >
std :: ostream & operator <<( std :: ostream &os ,

global_ptr <T, Kind > ptr );

74 Inserts an unspecified character representation of ptr into the output stream
os. The textual representation of two objects of type global_ptr<T, Kind> is
identical if and only if the two global pointers compare equal.

75 template < typename T, typename U, memory_kind Kind >
global_ptr <T, Kind >

static_pointer_cast (global_ptr <U, Kind > ptr );
template < typename T, typename U, memory_kind Kind >
global_ptr <T, Kind >

reinterpret_pointer_cast (global_ptr <U, Kind > ptr );
template < typename T, typename U, memory_kind Kind >
global_ptr <T, Kind >

const_pointer_cast (global_ptr <U, Kind > ptr );

76 Precondition: The expression static_cast<T*>((U*)nullptr) must be well-
formed for the first variant; reinterpret_cast<T*>((U*)nullptr) must be
well-formed for the second variant; const_cast<T*>((U*)nullptr) must be
well-formed for the third variant.

77 Constructs a global pointer whose underlying raw pointer is obtained by using
a cast expression on that of ptr. The affinity of the result is the same as that
of ptr.

78 If rp is the raw pointer of ptr, then the raw pointer of the result is constructed
by static_cast<T*>(rp) for the first variant, reinterpret_cast<T*>(rp) for
the second variant, and const_cast<T*>(rp) for the third.
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79 template < memory_kind ToKind , typename T, memory_kind FromKind >
global_ptr <T, ToKind >

static_kind_cast (global_ptr <T, FromKind > ptr );
template < memory_kind ToKind , typename T, memory_kind FromKind >
global_ptr <T, ToKind >

dynamic_kind_cast (global_ptr <T, FromKind > ptr );

80 Precondition: ptr.is_null() || ToKind == memory_kind::any ||
ptr.dynamic_kind() == ToKind for the first variant

81 Constructs a global pointer with kind ToKind from an existing global pointer
with kind FromKind. It is an error if ToKind != FromKind and neither ToKind
nor FromKind is memory_kind::any.

82 In the second variant, the result is a null pointer if
ptr.dynamic_kind() != ToKind and ToKind != memory_kind::any.

83 // Macro: function template syntax used for clarity
template < typename T, memory_kind Kind >
global_ptr <MType , Kind > upcxx_memberof (global_ptr <T, Kind > ptr ,

member - designator MEMBER )

84 Precondition: T must be a complete type. ptr is a pointer to a (possibly
uninitialized) object of type T. T must be a standard-layout type. MEMBER is a
member designator such that the expression offsetof(T, MEMBER) (using the
standard library macro from <cstddef>) is well-formed and valid in the calling
context.

85 Evaluates to a global pointer referencing the specified member of the object
referenced by ptr. If MEMBER specifies a member object with array type, then
this invocation evaluates to a global pointer referencing the first element of the
array rather than the array itself.

86 The type parameter MType of the returned global pointer preserves constness
in the same manner as access to MEMBER through a raw pointer of type T*.
Thus, if the expression std::addressof(std::declval<T*>()->MEMBER) has
the type U*, where U is not an array type, then MType is the same as U. If U is
an array type W[Dim1]...[DimN], then MType is W.

87 The result of applying the upcxx_memberof macro to a static data member or
a function member is undefined.
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88 // Macro: function template syntax used for clarity
template < typename T, memory_kind Kind >
future <global_ptr <MType , Kind > >

upcxx_memberof_general (global_ptr <T, Kind > ptr ,
member - designator MEMBER )

89 Precondition: T must be a complete type. ptr is a pointer to an object of type
T. MEMBER is a member designator such that given a valid T* lp referencing
the target object, the expression lp->MEMBER is well-formed and valid in the
calling context. The expression lp->MEMBER must not have reference type.

90 Computes a global pointer referencing the specified member of the object ref-
erenced by ptr, using the most efficient mechanism available, and evaluates to
a future encapsulating that pointer. If the result is determined using purely
local information, then the progress level is none and the result is a readied
future. Otherwise, the progress level is internal and the resulting future will
be readied during a subsequent user-level progress for the calling persona.

91 If MEMBER specifies a member object with array type, then this invocation eval-
uates to a global pointer referencing the first element of the array rather than
the array itself.

92 The type parameter MType of the global pointer encapsulated in the returned
future is as described in the specification of upcxx_memberof.

93 The result of applying the upcxx_memberof_general macro to a static data
member or a function member is undefined.

94 Advice to users: The preconditions of this macro may prohibit applying it to
objects residing in storage allocated from a cuda_device whose type hierarchy
includes virtual base classes, due to restrictions of the CUDA model.

95 Advice to users: The preconditions of this macro prohibit MEMBER from speci-
fying an array element. Instead, a pointer to an array element ARRAY[idx] can
be constructed by using upcxx_memberof_general to access the array itself,
producing a pointer to the base element of the array, and then adding the offset
of the desired element:

96 upcxx_memberof_general (ptr , ARRAY ). then(
[=]( global_ptr < ElementType > gp) {

return gp + idx;
})

97 UPC++ progress level: none or internal
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Storage Management

4.1 Overview

1 UPC++ provides several flavors of storage allocation involving the shared segment:

2 • The pair of functions new_ and delete_ respectively allocate and deallocate space
for one object with dynamic storage duration in the shared segment of the calling
process and respectively invoke the object constructor/destructor. These are the
shared segment analog of C++’s traditional new and delete operators for non-array
types.

3 • The functions new_array and delete_array respectively allocate and deallocate
space for a typed array of objects with dynamic storage duration in the shared seg-
ment of the calling process. Array elements allocated by new_array are default
initialized, and delete_array invokes destructors on the elements. These are the
shared segment analog of C++’s traditional new and delete operators for array
types.

4 • The functions allocate and deallocate allocate and deallocate memory with dy-
namic storage duraction from the shared segment of the calling process, but do not
initialize the memory or invoke C++ constructors/destructors. Callers are responsi-
ble for initializing the memory and invoking any constructors (for example, via place-
ment new) and destructors. These are the shared segment analog of std::malloc
and std::free.

5 In addition, Chapter 16 describes mechanisms for managing device-resident shared memory
segments and shared objects in the memory of accelerators such as GPUs.
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4.2 API Reference

1 class bad_shared_alloc : public std :: bad_alloc ;

2 An exception type derived from std::bad_alloc that is thrown by some shared
heap allocation functions to indicate failure to allocate shared storage.

3 template < typename T, typename ... Args >
global_ptr <T> new_(Args &&... args );

4 Precondition: T(args...) must be a valid call to a constructor for T. T must
not be an array type.

5 Allocates space for an object of type T from the shared segment of the calling
process. If the allocation succeeds, returns a pointer to the start of the allocated
memory, and the object is initialized by invoking the constructor T(args...).
If the allocation fails, throws upcxx::bad_shared_alloc.

6 Exceptions: May throw upcxx::bad_shared_alloc or any exception thrown
by the call T(args...).

7 template < typename T, typename ... Args >
global_ptr <T> new_(const std :: nothrow_t &tag , Args &&... args );

8 Precondition: T(args...) must be a valid call to a constructor for T. T must
not be an array type.

9 Allocates space for an object of type T from the shared segment of the calling
process. If the allocation succeeds, returns a pointer to the start of the allocated
memory, and the object is initialized by invoking the constructor T(args...).
If the allocation fails, returns a null pointer.

10 Exceptions: May throw any exception thrown by the call T(args...).
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11 template < typename T>
global_ptr <T> new_array ( size_t n);

12 Precondition: T must be DefaultConstructible. T must not be an array type.
13 Allocates space for an array of n objects of type T from the shared segment of

the calling process. If the allocation succeeds, returns a pointer to the start of
the allocated memory, and the objects are default initialized1. If the allocation
fails, throws upcxx::bad_shared_alloc.

14 Exceptions: May throw upcxx::bad_shared_alloc or any exception thrown by
the call T(). If an exception is thrown by the constructor for T, then previously
initialized elements are destroyed in reverse order of construction.

15 template < typename T>
global_ptr <T> new_array ( size_t n, const std :: nothrow_t &tag );

16 Precondition: T must be DefaultConstructible. T must not be an array type.
17 Allocates space for an array of n objects of type T from the shared segment of

the calling process. If the allocation succeeds, returns a pointer to the start of
the allocated memory, and the objects are default initialized. If the allocation
fails, returns a null pointer.

18 Exceptions: May throw any exception thrown by the call T(). If an exception
is thrown by the constructor for T, then previously initialized elements are
destroyed in reverse order of construction.

19 template < typename T>
void delete_ (global_ptr <T> g);

20 Precondition: T must be Destructible. g must be either a null pointer or a
non-deallocated pointer that resulted from a call to new_<T, Args...> on the
calling process, for some value of Args....

21 If g is not a null pointer, invokes the destructor on the given object and deal-
locates the storage allocated to it. Does nothing if g is a null pointer.

22 Exceptions: May throw any exception thrown by the the destructor for T.
1This behavior is analogous to C++ operator new for array types, and should not be be confused with

value initialization. Default initialization implies that when T is a class type, the elements will have their
default constructors invoked, but when T is a non-class type, the elements are not initialized and will have
indeterminate values.
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23 template < typename T>
void delete_array (global_ptr <T> g);

24 Precondition: T must be Destructible. g must be either a null pointer or a non-
deallocated pointer that resulted from a call to new_array<T> on the calling
process.

25 If g is not a null pointer, invokes the destructor on each object in the given
array and deallocates the storage allocated to it. Does nothing if g is a null
pointer.

26 Exceptions: May throw any exception thrown by the the destructor for T.

27 void* allocate ( size_t size ,
size_t alignment = alignof (std :: max_align_t ));

28 Precondition: alignment is a valid alignment. size must be an integral mul-
tiple of alignment.

29 Allocates size bytes of memory from the shared segment of the calling process,
with alignment as specified by alignment. If the allocation succeeds, returns
a pointer to the start of the allocated memory, and the allocated memory is
uninitialized. If the allocation fails, returns a null pointer.

30 template < typename T>
global_ptr <T> allocate ( size_t n = 1,

size_t alignment = alignof (T));

31 Precondition: alignment is a valid alignment.
32 Allocates enough space for n objects of type T from the shared segment of the

calling process, with the memory aligned as specified by alignment. If the
allocation succeeds, returns a pointer to the start of the allocated memory, and
the allocated memory is uninitialized. If the allocation fails, returns a null
pointer.

33 void deallocate (void* p);

34 Precondition: p must be either a null pointer or a non-deallocated pointer that
resulted from a call to the first form of allocate on the calling process.

35 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if p is a null pointer.
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36 template < typename T>
void deallocate (global_ptr <T> g);

37 Precondition: g must be either a null pointer or a non-deallocated pointer that
resulted from a call to allocate<T, alignment> on the calling process, for
some value of alignment.

38 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if g is a null pointer. Does not invoke the destructor for T.

39 std :: int64_t shared_segment_size ();

40 Requests a snapshot of the total size of the shared segment for the calling
process.

41 Implementations are permitted to return unspecified negative values, which
indicate the query is unsupported or encountered some other error.

42 Otherwise, a positive return value indicates the current total size, in bytes,
of the shared segment for the calling process. This total size reflects an up-
per bound on the sum of space consumed by all shared objects allocated but
not yet deallocated by the calling process, space available for servicing subse-
quent such requests, and unspecified implementation overheads (including but
not limited to, padding around allocated objects and objects allocated by the
implementation).

43 Return values may vary across processes or across calls on a given process in
unspecified ways.

44 std :: int64_t shared_segment_used ();

45 Requests a snapshot of the occupied size of the shared segment for the calling
process.

46 Implementations are permitted to return unspecified negative values, which
indicate the query is unsupported or encountered some other error.

47 Otherwise, a positive return value indicates the current occupied size, in bytes,
of the shared segment for the calling process. This occupied size reflects an
upper bound on the sum of space consumed by all shared objects allocated
but not yet deallocated by the calling process and unspecified implementation
overheads (including but not limited to, padding around allocated objects and
objects allocated by the implementation).
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48 Return values may vary across processes or across calls on a given process in
unspecified ways.
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Chapter 5

Futures and Promises

5.1 Overview

1 In UPC++, the primary mechanisms by which a programmer interacts with non-blocking
operations are futures and promises.1 These two mechanisms, usually bound together
under the umbrella concept of futures, are present in the C++11 standard. However, while
we borrow some of the high-level concepts of C++’s futures, many of the semantics of
upcxx::future and upcxx::promise differ from those of std::future and std::promise.
In particular, while futures in C++ facilitate communicating between threads, the intent of
UPC++ futures is solely to provide an interface for managing and composing non-blocking
operations, and they cannot be used directly to communicate between threads or processes.

2 A non-blocking operation is associated with a state that encapsulates both the status of
the operation as well as any result values. Each such operation has associated promise
objects, which can either be explicitly created by the user or implicitly by the runtime
when a non-blocking operation is invoked. A promise represents the producer side of the
operation, and it is through a promise that the results of the operation are supplied and its
dependencies fulfilled. A future is the interface through which the status of the operation
can be queried and the results retrieved, and multiple future and promise objects may be
associated with the same underlying operation. A future thus represents the consumer side
of a non-blocking operation.

1Another mechanism, persona-targeted callbacks, is discussed in §10.4.
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5.2 The Basics of Asynchronous Communication

1 A programmer can invoke a non-blocking operation to be serviced by another process, such
as a one-sided get operation (Ch. 8) or a remote procedure call (Ch. 9). Such an operation
creates an implicit promise and returns an associated future object to the user. When the
operation completes, the future becomes ready, and it can be used to access the results.
The following demonstrates an example using a remote get (see Ch. 10 on how to make
progress with UPC++):

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 future <double > fut = rget(ptr ); // initiate a remote get
3 // ... call into upcxx :: progress () elided ...
4 if (fut.ready ()) { // check for readiness
5 double value = fut. result (); // retrieve result
6 std :: cout << "got: " << value << ’\n’; // use result
7 }

2 In general, a non-blocking operation will not complete immediately, so if a user needs
to wait on the readiness of a future, they must do so in a loop. To facilitate this, we
provide the wait member function, which waits on a future to complete while ensuring
that sufficient progress (Ch. 10) is made on internal and user-level state:

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 future <double > fut = rget(ptr ); // initiate a remote get
3 double value = fut.wait (); // wait for completion and
4 // retrieve result
5 std :: cout << "got: " << value << ’\n’; // use result

3 An alternative to waiting for completion of a future is to attach a callback or completion
handler to the future, to be executed when the future completes. This callback can be
any function object, including lambda (anonymous) functions, that can be called on the
results of the future, and is attached using then.

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 auto fut =
3 rget(ptr ). then( // initiate a remote get and register a callback
4 // lambda callback function
5 []( double value) {
6 std :: cout << "got: " << value << ’\n’; // use result
7 }
8 );
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4 The return value of then is another future representing the results of the callback, if any.
This permits the specification of a sequence of operations, each of which depends on the
results of the previous one.

5 A future can also represent the completion of a combination of several non-blocking opera-
tions. Unlike the standard C++ future, upcxx::future is a variadic template, encapsulating
an arbitrary number of result values that can come from different operations. The following
example constructs a future that represents the results of two existing futures:

1 future <double > fut1 = /* one future */;
2 future <int > fut2 = /* another future */;
3 future <double , int > combined = when_all (fut1 , fut2 );

6 Here, combined represents the state and results of two futures, and it will be ready when
both fut1 and fut2 are ready. The results of combined are a std::tuple whose compo-
nents are the results of the source futures.

5.3 Working with Promises

1 In addition to the implicit promises created by non-blocking operations, a user may explic-
itly create a promise object, obtain associated future objects, and then register non-blocking
operations on the promise. This is useful in several cases, such as when a future is required
before a non-blocking operation can be initiated, or where a single promise is used to count
dependencies.

2 A promise can also be used to count anonymous dependencies, keeping track of operations
that complete without producing a value. Upon creation, a promise has a dependency count
of one, representing the unfulfilled results or, if there are none, an anonymous dependency.
Further anonymous dependencies can then be registered on the promise. When registration
is complete, the original dependency can then be fulfilled to signal the end of registration.
The following example keeps track of several remote put operations with a single promise:

1 global_ptr <int > ptrs [10] = /* some remote pointers */;
2 // create a promise with no results , dependency count starts at one
3 promise <> prom;
4

5 // do 10 puts , registering each of them on the promise
6 for (int k = 0; k < 10; k++) {
7 // rput implicitly registers itself on the given promise
8 rput(k, ptrs[k], operation_cx :: as_promise (prom ));
9 }
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10

11 // fulfill initial anonymous dependency , since registration is done
12 future <> fut = prom. finalize ();
13

14 // wait for the rput operations to complete
15 fut.wait ();

5.4 Advanced Callbacks

1 Polling for completion of a future allows simple overlap of communication and computation
operations. However, it introduces the need for synchronization, and this requirement can
diminish the benefits of overlap. To this end, many programs can benefit from the use
of callbacks. Callbacks avoid the need for an explicit wait and enable reactive control
flow: future completion triggers a callback. Callbacks allow operations to occur as soon as
they are capable of executing, rather than artificially waiting for an unrelated operation
to complete before being initiated.

2 Futures are the core abstraction for obtaining asynchronous results, and an API that
supports asynchronous behavior can work with futures rather than values directly. Such
an API can also work with immediately available values by having the caller wrap the
values into a ready future using the make_future function template, as in this example
that creates a future for an ordered pair of a double and an int:

1 void consume (future <int , double > fut );
2 consume ( make_future (3, 4.1));

3 Given a future, we can attach a callback to be executed at some subsequent point when
the future is ready using the then member function:

1 future <int , double > source = /* obtain a future */;
2 future <double > result = source .then(
3 []( int x, double y) {
4 return x + y;
5 }
6 );

4 In this example, source is a future representing an int and a double value. The argument
of the call to then must be a function object that can be called on these values. Here,
we use a lambda function that takes in an int and a double. The call to then returns a
future that represents the result of calling the argument of then on the values contained
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in source. Since the lambda function above returns a double, the result of then is a
future<double> that will hold the double’s value when it is ready.

5 Instead of returning a plain value, the callback function passed to then may directly return
a future. In this case, the future returned by then has the same type as the future returned
by the callback, and both futures represent the same set of results. The future returned by
then will be readied when two conditions are met: the invocation of the callback function
has completed, and the future returned by the callback has itself been readied.

1 future <int , double > source = /* obtain a future */;
2 future <double > result = source .then(
3 []( int x, double y) {
4 // return a future <double > that is ready
5 return make_future (x + y);
6 }
7 );
8 // result may not be ready , since the callback will not be executed
9 // until source is ready

6 In the example above, the future returned by then is readied as soon as the callback
completes its execution, since the callback returns a ready future. The future returned by
then encapsulates the values passed to make_future.

7 A callback may also initiate new asynchronous work and return a future representing the
completion of that work:

1 global_ptr <int > remote_array = /* some remote array */;
2

3 // retrieve remote_array [0]
4 future <int > elt0 = rget( remote_array );
5

6 // retrieve remote_array [ remote_array [0]]
7 future <int > elt_indirect = elt0.then(
8 [=]( int index) {
9 return rget( remote_array + index );

10 }
11 );

8 In this example, a callback is chained onto the result of the first call to rget. The future
returned by the callback only becomes ready after the operation initiated by the rget
contained within the callback completes. Thus, elt_indirect will be made ready after
all of the following:
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9 • The operation initiated by the first rget completes, producing the value to be passed
to the callback.

10 • The invocation of the callback completes, returning a future that represents the
eventual results of the second rget.

11 • The operation initiated by the second rget completes, producing the final int value.

12 The final int value is the result encapsulated by elt_indirect. This example demon-
strates how the UPC++ programmer can chain the results of one asynchronous operation
into the inputs of the next, to arbitrary degree of nesting.

13 The then member function is a combinator for constructing pipelines of transformations
over futures. Given a future and a function that transforms that future’s value into another
value, then produces a future representing the transformed value. For example, we can
transform, via a future, the value of elt_indirect above as follows:

1 future <int > elt_indirect_squared = elt_indirect .then(
2 []( int value) {
3 return value * value;
4 }
5 );

14 As the examples above demonstrate, the then member function allows a callback to depend
on the result of another future. A more general pattern is for an operation to depend on the
results of multiple futures. The when_all function template enables this by constructing a
single future that combines the results of multiple futures. We can then register a callback
on the combined future:

1 future <int > value1 = /* ... */;
2 future <double > value2 = /* ... */;
3

4 future <int , double > combined = when_all (value1 , value2 );
5 future <double > result = combined .then(
6 []( int x, double y) {
7 return x + y;
8 }
9 );

15 In the more general case, we may need to combine heterogeneous mixtures of future and
non-future types. The when_all function template also permits non-future values to be
passed in as arguments. Thus, we can use when_all to construct a single future that
represents the combination of both future and non-future values:

September 30, 2022 – LBNL-2001480 37



UPC++ v1.0 Specification, Revision 2022.9.0

1 future <int > value1 = /* ... */;
2 double value2 = /* ... */;
3

4 future <int , double > combined = when_all (value1 , value2 );
5 future <double > result = combined .then(
6 []( int x, double y) {
7 return x + y;
8 }
9 );

16 The results of a ready future can be obtained as a std::tuple using the result_tuple
member function. Individual components can be retrieved by value with the result mem-
ber function template. Unlike with std::get, it is not a compile-time error to use an
invalid index with result; instead, the return type is void for an invalid index (other than
-1, which has special handling as described in the API reference below). This simplifies
writing generic functions on futures, such as the following definition of wait:

1 template < typename ...T>
2 template <int I=-1>
3 auto future <T... >:: wait () { // C++14 - style decl for brevity
4 while (! ready ()) {
5 progress ();
6 }
7 return result <I >();
8 }

5.5 Execution Model

1 While some software frameworks provide thread-level parallelism by considering each call-
back to be a task that can be run in an arbitrary worker thread, this is not the case in
UPC++. In order to maximize performance, our approach to futures is purposefully am-
bivalent to issues of concurrency. A UPC++ implementation is allowed to take action as if
the current thread is the only one that needs to be accounted for. This restriction gives
rise to a natural execution policy: callbacks registered against futures are always executed
as soon as possible by the thread that discovers them. There are exactly two scenarios in
which this may happen:

1. When a promise is fulfilled.

2. A callback is registered onto a ready future using the then member function.
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2 Fulfilling a promise (via fulfill_result, fulfill_anonymous or finalize) is the only
operation that can change an associated future from a non-ready to a ready state, enabling
callbacks that depend on it to execute. Thus, promise fulfillment is an obvious place for
discovering and executing such callbacks. Whenever a thread calls a fulfillment function
on a promise, the user must anticipate that any newly available callbacks will be executed
by the current thread before the fulfillment call returns.

3 The other place in which a callback will execute immediately is during the invocation of
then on a future that is already in its ready state. In this case, the callback provided will
fire immediately during the call to then.

4 There are some common programming contexts where it is not safe for a callback to execute
during fulfillment of a promise. For example, it is generally unsafe to execute a callback
that modifies a data structure while a thread is traversing the data structure. In such
a situation, it is the user’s responsibility to ensure that a conflicting callback will not
execute. One solution is create a promise that represents a thread reaching its safe-to-
execute context, and then adding it to the dependency list of any conflicting callback.

1 future <int > value = /* ... */;
2 // create a promise representing a safe -to - execute state
3 // dependency count is initially 1
4 promise <> safe_state ;
5 // create a future that depends on both value and safe_state
6 future <int > combined = when_all (value , safe_state . get_future ());
7 auto fut = // register a callback on the combined future
8 combined .then(/* some callback that requires a safe state */);
9 // do some work , potentially fulfilling value ’s promise ...

10 // signify a safe state
11 safe_state . finalize ();
12 // callback can now execute

5 As demonstrated above, the user can wait to fulfill the promise until it is safe to execute
the callback, which will then allow it to execute.

5.6 Fulfilling Promises

1 As demonstrated previously, promises can be used to both supply values as well as signal
completion of events that do not produce a value. As such, a promise is a unified abstraction
for tracking the completion of asynchronous operations, whether the operations produce a
value or not. A promise represents at most one dependency that produces a value, but it
can track any number of anonymous dependencies that do not result in a value.
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2 When created, a promise starts with an initial dependency count of 1. For an empty
promise (promise<>), this is necessarily an anonymous dependency, since an empty promise
does not hold a value. For a non-empty promise, the initial count represents the sole
dependency that produces a value. Further anonymous dependencies can be explicitly
registered on a promise with the require_anonymous member function:

1 promise <int , double > pro; // initial dependency count is 1
2 pro. require_anonymous (10); // dependency count is now 11

3 The argument to require_anonymous must be nonnegative and the promise’s current
dependency count must be greater than zero, so that a call to require_anonymous never
causes the dependency count to reach zero, which would put the promise in the fulfilled
state. In the example above, the argument must be greater than -1, and the given argument
of 10 is valid.

4 Anonymous dependencies can be fulfilled by calling the fulfill_anonymous member func-
tion:

1 for (int k = 0; k < 5; i++) {
2 pro. fulfill_anonymous (k);
3 } // dependency count is now 1

5 A non-anonymous dependency is fulfilled by calling fulfill_result with the produced
values:

1 pro. fulfill_result (3, 4.1); // dependency count is now 0
2 assert (pro. get_future (). ready ());

6 Both empty and non-empty promises can be used to track anonymous dependencies. A
UPC++ communication operation that operates on a promise always increments its depen-
dency count upon invocation, as if by calling require_anonymous(1) on the promise. After
the operation completes2, if the completion produces values of type T..., then the values
are supplied to the promise through a call to fulfill_result. Otherwise, the completion is
signaled by fulfilling an anonymous dependency through a call to fulfill_anonymous(1).

7 The rationale for this behavior is to free the user from having to manually increment the
dependency count before calling an operation on a promise; instead, UPC++ will implicitly
perform this increment. This leads to the pattern, shown at the beginning of this chapter,
of registering operations on a promise and then finalizing the promise to take it out of
registration mode:

2See Ch. 7 for details about when the completion notification will occur.
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1 global_ptr <int > ptrs [10] = /* some remote pointers */;
2 promise <> prom; // dependency count is 1
3

4 for (int i = 0; i < 10; i++) {
5 rput(i, ptrs[i],
6 operation_cx :: as_promise (prom )); // register operations
7 }
8

9 future <> fut = prom. finalize (); // fulfill initial dependency
10

11 // wait for the rput operations to complete
12 fut.wait ();

8 A user familiar with UPC++ V0.1 will observe that empty promises subsume the capabilities
of events in UPC++ V0.1. In addition, they can take part in all the machinery of promises,
futures, and callbacks, providing a much richer set of capabilities than were available in
V0.1.

5.7 Lifetime and Thread Safety

1 Understanding the lifetime of objects in the presence of asynchronous control flow can be
tricky. Objects must outlive the last callback that references them, which in general does
not follow the scoped lifetimes of the call stack. For this reason, UPC++ automatically man-
ages the state represented by futures and promises, and the state persists for as long as
there is a future, promise, or dependent callback that references it. Thus, a user can con-
struct intricate webs of callbacks over futures without worrying about explicitly managing
the state representing the callbacks’ dependencies or results.

2 Though UPC++ does not prescribe a specific management strategy, the semantics of fu-
tures and promises are analogous to those of standard C++11 smart pointers. As with
std::shared_ptr, futures and promises may be freely copied, and both the original and
the copy represent the same state and are associated with the same underlying set of de-
pendencies and callbacks. Thus, if one copy of a future becomes ready, then so will the
other copies, and if a dependency is fulfilled on one copy of a promise, it is fulfilled on the
others as well.

3 Given that UPC++ futures and promises are already thread-unaware to allow the execution
strategy to be straightforward and efficient, UPC++ also makes no thread safety guarantees
about internal state management. This enables creation of copies of a future or promise to
be a very cheap operation. For example, a future or promise can be captured by value by
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a lambda function3 or passed by value without any performance penalties. On the other
hand, the lack of thread safety means that sharing a future or promise between threads
must be handled with great caution. Even a simple operation such as making a copy of
a future or promise, as when passing it by value to a function, is unsafe if another thread
is concurrently accessing an identical future or promise, since the act of copying it can
modify the internal management state. Thus, a mutex or other synchronization is required
to ensure exclusive access to a future or promise when performing any operation on it.

4 Fulfilling a promise gives rise to an even more stringent demand, since it can set off a
cascade of callback execution. Before fulfilling a promise, the user must ensure that the
thread has the exclusive right to mutate not just the future associated with the promise,
but all other futures that are directly or indirectly dependent on fulfillment of the promise.
Thus, when crafting their code, the user must properly manage exclusivity for islands of
disjoint futures. We say that two futures are in disjoint islands if there is no dependency,
direct or indirect, between them.

5 A reader having previous experience with futures will note that UPC++’s formulation is
a significant departure from many other software packages. Futures are commonly used
to pass data between threads, like a channel that a producing thread can supply a value
into, notifying a consuming thread of its availability. UPC++, however, is intended for
high-performance computing, and supporting concurrently shareable futures would require
synchronization that would significantly degrade performance. As such, futures in UPC++
are not intended to directly facilitate communication between threads. Rather, they are
designed for a single thread to manage the non-determinism of reacting to the events
delivered by concurrently executing agents, be they other threads or the network hardware.

5.8 API Reference

1 In this and subsequent API-reference sections, FType denotes a future type, and EType
denotes a non-future type derived from the element types of a future. The actual types
denoted by FType and EType differ between uses and are explained in the API descriptions
in which they are used.

3Futures and promises are not TriviallySerializable (or even Serializable) (Ch. 6), so they cannot be
captured by copy in a lambda expression that is passed to a remote procedure call (Ch. 9) or an RPC
completion (Ch. 7).
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5.8.1 future

1 template < typename ...T>
class future ;

2 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

3 The types in T must be complete types (and not void). Several member func-
tions impose stricter requirements on T.

4 The constructors, assignment operators, and destructor may be called when
UPC++ is in the uninitialized state.

5 template < typename ...T>
future <T... >:: future ();

6 Constructs a future that will never become ready.
7 This function may be called when UPC++ is in the uninitialized state.

8 template < typename ...T>
future <T... >::~ future ();

9 Destructs this future object.
10 This function may be called when UPC++ is in the uninitialized state.

11 template < typename ...T>
future <T...> make_future (T ... results );

12 Precondition: Each component of T must be MoveConstructible.
13 Constructs a trivially ready future from the given values.
14 This function may be called when UPC++ is in the uninitialized state.

15 template < typename ...T>
bool future <T... >:: ready () const;

16 Returns true if the future is in the ready state, meaning that all its dependen-
cies have been fulfilled and the encapsulated values, if any, are available for
consumption.
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17 template < typename ...T>
std :: tuple <T...> future <T... >:: result_tuple () const;

18 Precondition: this->ready(). Each component of Tmust be CopyConstructible.
19 Retrieves the tuple of result values for this future.

20 template < typename ...T>
template <int I=-1>
EType future <T... >:: result () const;

21 Precondition: this->ready(). If EType is non-void, each component of EType
must be CopyConstructible.

22 If I is in the range [0, sizeof...(T)), retrieves the Ith component from the
future’s results tuple. The return type EType is the Ith component of T.

23 If I is -1, returns the following:

•24 void if T is empty

•25 if T has one element, the single component of the future’s results tuple;
the return type is T

•26 if T has multiple elements, the tuple of result values for the future; the
return type is std::tuple<T...>

27 The return type is void if I is outside the range [-1, sizeof...(T)).

28 template < typename ...T>
template <int I=-1>
EType future <T... >:: result_reference () const;

29 Precondition: this->ready()

30 If I is in the range [0, sizeof...(T)), retrieves the Ith component from the
future’s results tuple as a reference. If the Ith component of T has type U, the
return type of this function is:

•31 U if U is of reference type

•32 const U& if U is of non-reference type
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33 If I is -1, returns the following:

•34 void if T is empty

•35 if T has one element, the single component of the future’s results tuple as
a reference; if the component has type U, the return type of this function
is:

–36 U if U is of reference type

–37 const U& if U is of non-reference type

•38 if T has multiple elements, the tuple of result values for the future as refer-
ences; the return type is std::tuple<V...>, where if the nth component
of T has type U, then the nth component of V has type:

–39 U if U is of reference type

–40 const U& if U is of non-reference type
41 The return type is void if I is outside the range [-1, sizeof...(T)).

42 template < typename ...T>
template < typename Func >
FType future <T... >:: then(Func && func) const;

Preconditions:
43 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be MoveConstructible.
44 • If Func&& is an lvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be CopyConstructible.
45 • func must be invokable on a sequence of sizeof...(T) arguments, where

if the nth component of T has type U, then the nth argument provided to
func has type:

46 – U if U is of reference type
47 – const U& if U is of non-reference type

48 • If the return type RetType of func is of non-reference or rvalue-reference
type, the underlying decayed type (std::decay<RetType>::type) must
be MoveConstructible.

49 • The invocation of func must not throw an exception.
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50 Returns a new future representing the return value of the given function object
func when invoked on the results of this future as its argument list. The return
type FType and return value are as follows:

51 • If func returns a future type future<U...>, then FType is also
future<U...>. The future returned by then encapsulates the same set
of results as the future returned by func. The future returned by then is
readied when both the invocation of func has completed and the future
returned by that invocation has been made ready.

52 • If func returns a non-future, non-void type U, then FType is future<U>.
The future returned by then encapsulates the result of func, and it is
readied upon completion of the invocation of func.

53 • If func has void return type, then FType is future<>. The future returned
by then encapsulates whether or not the invocation of func has completed,
and it is readied upon completion of that invocation.

54 The function object will be invoked in one of two situations:

•55 Immediately before then returns if this future is in the ready state.

•56 During a promise fulfillment which would directly or indirectly make this
future transition to the ready state.

57 template < typename ...T>
std :: tuple <T...> future <T... >:: wait_tuple () const;

58 Precondition: Each component of T must be CopyConstructible.
59 Blocks until the future is ready, while making UPC++ user-level progress. See

Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result_tuple() on the future.

60 This function may not be invoked from the restricted context (§10.2).
61 UPC++ progress level: user

62 template < typename ...T>
template <int I=-1>
EType future <T... >:: wait () const;
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63 Precondition: If EType is non-void, each component of EType must be Copy-
Constructible.

64 Blocks until the future is ready, while making UPC++ user-level progress. See
Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result<I>() on the future.

65 This function may not be invoked from the restricted context (§10.2).
66 UPC++ progress level: user

67 template < typename ...T>
template <int I=-1>
EType future <T... >:: wait_reference () const;

68 Blocks until the future is ready, while making UPC++ user-level progress. See
Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result_reference<I>() on the future.

69 This function may not be invoked from the restricted context (§10.2).
70 UPC++ progress level: user

71 template < typename ...T>
future < ETypes ...> when_all (T&& ... futures_or_values );

72 Precondition: For any future type future<U...> in T, each argument type U
must be CopyConstructible. Each non-future type in T must be MoveCon-
structible.

73 Given a variadic list of arguments consisting of futures and non-future values,
constructs a future representing the readiness of all arguments. The results
tuple of this future will consist of the concatenation of the results or non-future
values represented by each argument. The type parameters of the returned
object (ETypes...) is the ordered concatenation of the following over each
component of T:

74 • U... if the nth component of T is a future type or a reference to a future
type future<U...>

75 • U if the nth component of T is a non-future type or a reference to a non-
future type U

If T... is empty, then the result is a trivially ready future<>.
76 This function may be called when UPC++ is in the uninitialized state.
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77 template < typename T>
future < ETypes ...> to_future (T future_or_value );

78 Precondition: T must be MoveConstructible if it is a non-future type.
79 Constructs a future that encapsulates the value represented by future_or_

value. If T is of type future<U...>, then ETypes... is the same as U...,
and the returned future is a copy of future_or_value. If T is not a future,
then the call to_future(arg) is semantically equivalent to make_future(arg).
In this case, ETypes... is T, and the function returns a ready future whose
encapsulated value is future_or_value.

80 This function may be called when UPC++ is in the uninitialized state.
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5.8.2 promise

1 template < typename ...T>
class promise ;

2 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

3 The types in T must be complete types (and not void). Several member func-
tions impose stricter requirements on T.

4 template < typename ...T>
promise <T... >:: promise (std :: intptr_t dependency_count =1);

5 Precondition: dependency_count >= 1

6 Constructs a promise with its results uninitialized and the given initial depen-
dency count. The state of the resulting promise is independent of all existing
promises.

7 This function may be called when UPC++ is in the uninitialized state.

8 template < typename ...T>
promise <T... >::~ promise ();

9 Destructs this promise object.
10 This function may be called when UPC++ is in the uninitialized state.

11 template < typename ...T>
void promise <T... >:: require_anonymous (std :: intptr_t count) const;

12 Precondition: count is nonnegative. The dependency count of this promise is
greater than 0.

13 Adds count to this promise’s dependency count.
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14 template < typename ...T>
template < typename ...U>
void promise <T... >:: fulfill_result (U &&... results ) const;

15 Precondition: fulfill_result has not been called on this promise or a copy
of this promise before, and the dependency count of this promise is greater
than zero. T and U must have the same number of components, and each
component of T must be constructible from the corresponding component of
U (i.e., std::is_constructible<std::tuple<T...>, U&&...>::value must
be true).

16 Initializes the promise’s result tuple with the given values and decrements the
dependency counter by 1. If the dependency counter reaches zero as a result
of this call, the associated future is set to ready, and callbacks that are waiting
on the future are executed on the calling thread before this function returns.

17 template < typename ...T>
void promise <T... >:: fulfill_anonymous (std :: intptr_t count) const;

18 Precondition: count is nonnegative. The dependency count of this promise is
greater than zero and greater than or equal to count. If the dependency count
is equal to count and T is not empty, then the results of this promise must have
been previously supplied by a call to fulfill_result.

19 Subtracts count from the dependency counter. If this produces a zero counter
value, the associated future is set to ready, and callbacks that are waiting on
the future are executed on the calling thread before this function returns.

20 template < typename ...T>
future <T...> promise <T... >:: get_future () const;

21 Returns the future representing this promise being fulfilled. Repeated calls to
get_future return equivalent futures with the guarantee that no additional
memory allocation is performed.

22 template < typename ...T>
future <T...> promise <T... >:: finalize () const;

23 Equivalent to calling this->fulfill_anonymous(1) and then returning the
result of this->get_future().
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Serialization

1 As a communication library, UPC++ needs to send C++ objects between processes that
might be separated by a network interface. The underlying GASNet-EX [6] networking
interface sends and receives bytes, thus, UPC++ needs to be able to convert C++ objects
to and from bytes.

2 UPC++ communication operations such as remote procedure calls (Ch. 9) serialize C++
objects, converting them to raw bytes, before sending the data to the destination. Upon
receiving the data at the destination, the library deserializes the raw bytes back into C++
objects. We refer to the data channel between the sender and receiver of an operation as a
byte stream; the sender writes data sequentially to the stream, and the receiver sequentially
reads data out of it.

6.1 Serialization Concepts

1 UPC++ defines the concepts TriviallySerializable and Serializable that describe what form
of serialization a C++ type supports. Figure 6.1 helps summarize the relationship of these
concepts.

2 A type T is TriviallySerializable if it is semantically valid to copy an object by copying its
underlying bytes. UPC++ serializes such types by making a byte copy.

3 A type T is considered TriviallySerializable if either of the following holds:
4 • T is TriviallyCopyable (i.e. std::is_trivially_copyable<T>::value is true), and

(if T is of class type) T does not implement any class serialization interface described
in §6.2
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TriviallySerializable
TriviallyCopyable

-or-
is_trivially_serializable

specialized to true

Serializable
Types implementing any
Class Serialization interface

-or-

Some spec-provided types
(e.g., view<T>)

Figure 6.1: Serializable UPC++ concepts type hierarchy.

5 • upcxx::is_trivially_serializable<T> is specialized to provide a member con-
stant value that is true

6 In the latter case, UPC++ treats the type T as if it were TriviallyCopyable for the purposes
of serialization. Thus, UPC++ will serialize an object of type T by making a byte copy, and
it will assume T is TriviallyDestructible when destroying a deserialized object of type T.

7 A type T is considered Serializable if one of the following holds:
8 • T is TriviallySerializable
9 • T is of class type and implements a class serialization interface described in §6.2

10 • T is explicitly described as Serializable by this specification
11 The type trait upcxx::is_trivially_serializable<T> provides a member constant

value that is true if T is TriviallySerializable and false otherwise. This trait may be
specialized for user types (types that are not defined by the C++ or UPC++ standards).

12 The type trait upcxx::is_serializable<T> provides a member constant value that is
true if T is Serializable and false otherwise. This trait may not be specialized by the user
for any types.

13 Several UPC++ communication operations require that the objects to be transferred are
of TriviallySerializable type. The C++ standard allows implementations to determine
whether or not lambda function objects are TriviallyCopyable, so whether or not such
objects are TriviallySerializable is implementation-dependent.

14 Serializability of a type T does not imply that objects of type T are meaningful on another
process. In particular, C++ pointer-to-object and pointer-to-function types are Trivially-
Serializable, but it is generally invalid to dereference a local pointer that originated from
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another process. More generally, objects that represent local process resources (e.g., file
descriptors) are usually not meaningful on other processes, whether their types are Serial-
izable or not.

6.2 Class Serialization Interface

1 For a class T that requires nontrivial serialization, UPC++ provides several different mecha-
nisms for specifying how serialization and deserialization are to be performed.

1. Declare which member variables of T to serialize with UPCXX_SERIALIZED_FIELDS.
UPC++ automatically generates the required serialization logic.

2. Specify expressions for computing the data to be serialized with
UPCXX_SERIALIZED_VALUES. UPC++ automatically generates logic to evaluate
the expressions in serialization and invoke a constructor with the resulting values in
deserialization.

3. Define a public, nested T::upcxx_serialization member type with public
serialize and deserialize member-function templates.

4. Define a specialization of upcxx::serialization<T> with public serialize and
deserialize member-function templates.

2 If any of these mechanisms is used on a type T, then T is Serializable but not Triviall-
ySerializable, unless upcxx::is_trivially_serializable<T> is specialized to provide a
member constant value that is true.

3 It is an error if more than one of the first three mechanisms (UPCXX_SERIALIZED_FIELDS,
UPCXX_SERIALIZED_VALUES, or a nested upcxx_serialization class) is used directly by
the same class T.

4 It is an error if both an explicit specialization of upcxx::serialization<T> is defined
and upcxx::is_trivially_serializable<T> is specialized to provide a member constant
value that is true.

5 An explicit specialization of serialization<T> or is_trivially_serializable<T> takes
precedence over the mechanisms that are nested within a class (UPCXX_SERIALIZED_FIELDS,
UPCXX_SERIALIZED_VALUES, or a nested upcxx_serialization class).
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6.2.1 UPCXX_SERIALIZED_FIELDS

1 If serialization of a type T can be accomplished by recursively serializing a fixed subset of its
member variables, the variadic UPCXX_SERIALIZED_FIELDS macro may be used to declare
this subset. UPC++ will then automatically generate the code to serialize and deserialize
objects of type T.

2 The following is an example of using UPCXX_SERIALIZED_FIELDS:

1 struct UserType {
2 U a;
3 V b;
4 W c;
5

6 UPCXX_SERIALIZED_FIELDS (a, b, c)
7 };

3 The macro UPCXX_SERIALIZED_FIELDS must be invoked directly within a class definition
in a context that has public access level. The macro arguments must name non-static
member variables of the class or an application of UPCXX_SERIALIZED_BASE (§6.2.5). A
bit-field data member may not be used as an argument. In addition, the following must
hold:

4 • The class must have a default constructor; the default constructor may have any
access level.

5 • Each argument to UPCXX_SERIALIZED_FIELDS must be of a non-array type T, or a
(possibly multidimensional) array of elements of type T, where:

6 – T must not be qualified with const

7 – T must be Serializable and Destructible

8 – T and deserialized_type_t<T> (§6.2.6) must be the same type

9 UPC++ serializes an object of a type T that invokes UPCXX_SERIALIZED_FIELDS by serial-
izing each member variable that is an argument to the macro in some unspecified order.
Deserialization starts by default constructing an object of type T. Then each member
variable listed in UPCXX_SERIALIZED_FIELDS is destructed and overwritten by an object
deserialized from the byte stream, in the same order as serialization. Member variables
elided from UPCXX_SERIALIZED_FIELDS are not overwritten; they retain their initial values
as determined by the default constructor for T.
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6.2.2 UPCXX_SERIALIZED_VALUES

1 If serialization of a type T consists of computing values to be inserted into the byte
stream and using those values in deserialization to reconstruct the object, the variadic
UPCXX_SERIALIZED_VALUES macro may be used. Each argument to the macro must be an
expression that can be evaluated from the body of a non-static, const member function or
an application of UPCXX_SERIALIZED_BASE (§6.2.5), and T must have a constructor that
can be invoked with the resulting rvalues from the body of a static member function. The
expressions provided to UPCXX_SERIALIZED_VALUES are evaluated in an unspecified order,
and the types of the values must be Serializable.

2 The following is an example that uses UPCXX_SERIALIZED_VALUES to serialize a type using
single-precision rather than the original double-precision floating-point values:

1 struct Point {
2 double x;
3 double y;
4

5 Point(float a, float b) : x(a), y(b) {}
6

7 UPCXX_SERIALIZED_VALUES (float(x), float(y))
8 };

3 The macro UPCXX_SERIALIZED_VALUES must be invoked directly within a class definition
in a context that has public access level.

6.2.3 Custom Serialization

1 Serialization for a class Tmay be customized by directly writing subobjects to a byte stream
and reading them back out in deserialization. The following is an example of specifying
custom serialization for a class:

1 class UnrolledList {
2 struct Node {
3 int data[ NODE_CAPACITY ];
4 int node_size ;
5 Node* next;
6 };
7

8 Node* first;
9 std :: size_t size_;

10
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11 Node* extend (); // allocate a new Node and place at the end
12

13 public :
14 UnrolledList () : first( nullptr ), size_ (0) {}
15

16 struct upcxx_serialization {
17 // Write an UnrolledList into the given writer .
18 template < typename Writer >
19 static void serialize ( Writer &writer ,
20 const UnrolledList &obj) {
21 writer .write(obj.size_ );
22 for (Node* crnt = obj.first; crnt; crnt = crnt ->next) {
23 writer . write_sequence (crnt ->data ,
24 crnt ->data+crnt -> node_size );
25 }
26 }
27

28 // Read an UnrolledList from the given reader into the
29 // provided storage .
30 template < typename Reader , typename Storage >
31 static UnrolledList * deserialize ( Reader &reader ,
32 Storage storage ) {
33 UnrolledList * result = storage . construct ();
34 std :: size_t count = reader . template read <std :: size_t >();
35 result ->size_ = count;
36 for (std :: size_t read_count = 0; read_count < count;
37 read_count += NODE_CAPACITY ) {
38 Node* node = result -> extend ();
39 node -> node_size = std :: min(count -read_count , NODE_CAPACITY );
40 reader . template read_sequence_overwrite <int >(
41 node ->data ,
42 node -> node_size
43 );
44 }
45 return result ;
46 }
47 };
48 };
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2 A Writer is an object of an opaque type that provides an interface for writing to a byte
stream. Writers provide the following member-function templates:

3 • write(item) writes a single object to the byte stream.

4 • write_sequence(begin, end) writes a sequence of objects to the byte stream and
returns the number of objects in the sequence.

5 • write_sequence(begin, end, num_items) provides the same behavior as
write_sequence(begin, end), but is more efficient when begin and end are not
RandomAccessIterators.

6 • reserve<T>() reserves space in the byte stream for a single object of TriviallySeri-
alizable type T and returns a handle to the location in the stream. The location is
written by calling commit(handle, object), where object has type T.

7 The combination of reserve, write_sequence, and commit can be used to write a
sequence of unknown length, prefixing the sequence with the actual length:

1 // reserve space for the length , to be written later
2 auto handle = writer . template reserve <size_t >();
3 // write the sequence
4 size_t length = writer . write_sequence (begin , end );
5 // write the actual length prior to the sequence
6 writer . commit (handle , length );

8 A Reader is an object of an opaque type that provides an interface for reading from a byte
stream. Readers provide the following member-function templates:1

9 • read<T>() reads and returns a single object from the byte stream. T must be the
type of the object written to the current location in the byte stream, and the returned
object is of type deserialized_type_t<T>.

10 • read_overwrite<T>(object) overwrites the given object with an object read from
the byte stream. The call invokes the destructor for deserialized_type_t<T> on
object before overwriting it, and it returns the address of the resulting object.

11 • read_into<T>(optional_obj) reads a single object into a
upcxx::optional<deserialized_type_t<T>>. The upcxx::optional is reset
before a new object is read into the optional. The return value of the call is the
address of the resulting object.

1Note that due to C++ typechecking rules, invocations of these member-function templates must be
explicitly instantiated using a template keyword, eg: reader.template read<int>()
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12 • read_into<T>(pointer) reads an object directly into the memory pointed to by
pointer. Any existing object in the memory denoted by the pointer is not destructed.
If pointer points to an existing object, read_overwrite<T>(*pointer) should be
used instead. The return value of the call is the address of the resulting object.

13 • read_sequence_overwrite<T>(array, num_items) reads a sequence of num_items
objects from the byte stream and places them into an array at the memory denoted
by array after destructing the existing objects located at array.

14 • read_sequence_into<T>(pointer, num_items) reads a sequence of num_items
objects from the byte stream and places them into an array at the memory
denoted by pointer. If pointer points to a location with existing objects,
read_sequence_overwrite<T>(pointer, num_items) should be used instead.

15 read_sequence_overwrite and read_sequence_into are semantically equivalent to a se-
quence of calls to read_overwrite or read_into, respectively, but they may provide better
performance.

16 For each of these Reader member-function templates, T must be the same type of the
original objects written in serialization by write, write_sequence, or commit. However,
the objects constructed in deserialization are of type deserialized_type_t<T>, which
may be different from T.

17 Serialization and deserialization for a class T may be customized by defining either a
public, nested, member type T::upcxx_serialization or an explicit specialization of
upcxx::serialization<T>. The nested class or specialization must define the following
public member-function templates:

1 template < typename Writer >
2 static void serialize ( Writer & writer , T const& object );
3

4 template < typename Reader , typename Storage >
5 static U* deserialize ( Reader & reader , Storage storage );

18 A Storage is an object of an opaque type that provides the following member-function
template:

19 • construct(args...), when invoked on a Storage object that was passed to the
deserialize member-function template for type T, forwards args... to the con-
structor for type deserialized_type_t<T> and returns a pointer to the newly con-
structed object. The deserialize member-function template must return this same
pointer.
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20 For compatibility purposes, UPC++ allows the following deprecated interface for the
deserialize template:

1 template < typename Reader >
2 static U* deserialize ( Reader & reader , void* pointer );

21 pointer points to a location with appropriate storage and alignment for an object of type
U. Definitions of deserialize that conform to this interface must use placement new to
construct the resulting object in the provided location and return a pointer to the object.

22 It is an error if either T::upcxx_serialization or an explicit specialization
of upcxx::serialization<T> is defined without the required public member-
function templates. The behavior is unspecified if T::upcxx_serialization or
upcxx::serialization<T> defines both interfaces for the deserialize member-function
template.

23 UPC++ invokes serialize(writer, object) to serialize object into a byte stream, where
object has type T. Similarly, deserialize(reader, storage) is invoked to deserialize
an object of type T. The return type of deserialize must be a pointer U*, where U is the
type of the resulting object, which may be distinct from the type T passed to serialization.

24 As described in §6.2.6, the types serialization_traits<T>::deserialized_type and
deserialized_type_t<T> are defined as aliases for the type U, where U* is the return type
of deserialize.

6.2.4 Restrictions on Class Serialization

1 There are restrictions on which actions serialization/deserialization routines and expres-
sions may perform. The following restrictions apply to constructors and destructors invoked
when deserializing an object that uses UPCXX_SERIALIZED_FIELDS, expressions passed
to UPCXX_SERIALIZED_VALUES and the constructor invoked upon deserialization, and all
statements executed within any call to the member-function templates serialize and
deserialize (§6.2.3):

1. Serialization/deserialization may not call any UPC++ routine with a progress level
other than none.

2. If multiple application threads in the same process may concurrently invoke serial-
ization/deserialization, the expressions or routines must be thread-safe and permit
concurrent invocation from multiple threads.

2 Serialization/deserialization is only invoked by UPC++ functions with a progress level of
internal or user. Calls to the member-function templates of a Writer synchronously
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invoke serialization on the argument objects, and calls to the member-function templates
of a Reader synchronously invoke deserialization to construct the resulting objects.

6.2.5 Serialization and Inheritance

1 Serialization mechanisms that are defined within a class T (UPCXX_SERIALIZED_FIELDS,
UPCXX_SERIALIZED_VALUES, or a nested upcxx_serialization class) are inherited by the
derived classes of T. The resulting behavior differs depending on which mechanism is
inherited:

2 • If a derived class U inherits a nested upcxx_serialization class, then serializing an
object of type U and deserializing produces an object of the deserialized counterpart of
base type T. Thus, deserialized_type_t<U> (§6.2.6) is deserialized_type_t<T>.

3 • If a derived class U inherits serialization defined using UPCXX_SERIALIZED_FIELDS
or UPCXX_SERIALIZED_VALUES, then serializing an object of type U and deserializing
produces an object of type U. Thus, deserialized_type_t<U> (§6.2.6) is U.

4 If a derived class U inherits serialization defined using UPCXX_SERIALIZED_FIELDS or
UPCXX_SERIALIZED_VALUES, the constructors required by those mechanisms must be mem-
bers of U, and these constructors must additionally have public access level.

5 A derived class U may provide its own serialization by directly defining one of these mech-
anisms itself, or by specializing serialization<U> or is_trivially_serializable<U>.

6 Specializations of serialization<T> or is_trivially_serializable<T> do not affect
serialization of derived classes of T.

7 A derived class U may disable serialization, when it would otherwise be inherited, by invok-
ing the UPCXX_SERIALIZED_DELETE macro. The macro must be invoked directly within the
definition of U in a context that has public access level, and it is subsequently inherited
by derived classes of U. The following is an example of using UPCXX_SERIALIZED_DELETE:

1 struct Derived : Base {
2 UPCXX_SERIALIZED_DELETE ()
3 };

8 UPC++ serialization does not perform dynamic dispatch. Thus, the call
writer.write(object) uses the static type of object to determine how to serial-
ize object, regardless of the actual runtime type of the object.
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9 Class serialization for a derived class U may explicitly serialize each of its base subobjects:
10 • The expression UPCXX_SERIALIZED_BASE(B) may be passed as an argument to

UPCXX_SERIALIZED_FIELDS to serialize the subobject of base type B. B must be
Serializable and Destructible. B must be neither polymorphic nor abstract.

11 Since the order in which the arguments to UPCXX_SERIALIZED_FIELDS are
serialized and deserialized is unspecified, the behavior is undefined if both
UPCXX_SERIALIZED_BASE(B) and a member variable inherited from B are passed
to UPCXX_SERIALIZED_FIELDS.

12 • The expression UPCXX_SERIALIZED_BASE(B) may be passed as an argument to
UPCXX_SERIALIZED_VALUES to serialize the subobject of base type B. B must be
Serializable and must not be abstract. The constructor of U invoked by deserializa-
tion must accept an rvalue of type B as the corresponding argument.

13 • Custom serialization may serialize a base subobject by casting the object to a base
class and writing the result. The base type must be Serializable. Deserialization
requires reading a base-type object into a temporary before passing it to a derived-
class constructor. The following is an example:

1 struct Derived : Base {
2 X d;
3 Derived (Base && base , X&& x)
4 : Base(std :: forward (base )), d(std :: forward (x)) {}
5

6 struct upcxx_serialization {
7 template < typename Writer >
8 static void serialize ( Writer & writer ,
9 Derived const& object ) {

10 writer .write( static_cast <Base const &>( object ));
11 writer .write( object .d);
12 }
13

14 template < typename Reader , typename Storage >
15 static Derived * deserialize ( Reader & reader ,
16 Storage storage ) {
17 Base base = reader . template read <Base >();
18 X x = reader . template read <X >();
19 return storage . construct (std :: move(base),
20 std :: move(x));
21 }
22 };
23 };
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6.2.6 Serialization Traits

1 As mentioned in §6.2.3, custom UPC++ deserialization may produce an object of a different
type than that of the original serialized object. UPC++ provides the serialization_traits
class template that enables a user to determine the type of the deserialized object:
serialization_traits<T>::deserialized_type is an alias for the type resulting from
deserializing an object of type T. The top-level alias template deserialized_type_t is an
alias for serialization_traits<T>::deserialized_type.

2 The serialization_traits template also provides a static member func-
tion that converts an object to its deserialized counterpart. The call
serialization_traits<T>::deserialized_value(object) returns a value of type
serialization_traits<T>::deserialized_type. The latter must be Movable, and
object must not be a view (§6.7).

6.3 Standard-Library Containers

1 UPC++ supports serialization of several standard-library container types.

2 The following fixed-size containers are TriviallySerializable when the element types T, T1
and T2, or T... are all TriviallySerializable. They are Serializable when the element types
are all Serializable:

3 • std::array<T, N>

4 • std::pair<T1, T2>

5 • std::tuple<T...>

6 UPC++ treats std::pair<T1, T2> and std::tuple<T...> as TriviallySerializable when
T1, T2, and T... are TriviallySerializable even when the C++ implementation does not
consider the pair or tuple to be TriviallyCopyable.

7 The following sequence container types are Serializable when the template parameters (T
and Allocator) are all Serializable:

8 • std::vector<T, Allocator>

9 • std::deque<T, Allocator>

10 • std::list<T, Allocator>
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11 The following set container types are Serializable when the template parameters (Key,
Compare, Hash, KeyEqual, and Allocator) are all Serializable:

12 • std::set<Key, Compare, Allocator>

13 • std::multiset<Key, Compare, Allocator>

14 • std::unordered_set<Key, Hash, KeyEqual, Allocator>

15 • std::unordered_multiset<Key, Hash, KeyEqual, Allocator>

16 The following map container types are Serializable when the template parameters (Key, T,
Compare, Hash, KeyEqual, and Allocator) are all Serializable:

17 • std::map<Key, T, Compare, Allocator>

18 • std::multimap<Key, T, Compare, Allocator>

19 • std::unordered_map<Key, T, Hash, KeyEqual, Allocator>

20 • std::unordered_multimap<Key, T, Hash, KeyEqual, Allocator>

21 The type std::basic_string<CharT, Traits, Allocator> is Serializable when the tem-
plate parameter Allocator is Serializable.

22 The following types are also Serializable:
23 • std::allocator<T>

24 • standard specializations of std::hash<T>
25 Typical library implementations of std::equal_to<T>, std::not_equal_to<T>,

std::greater<T>, std::less<T>, std::greater_equal<T>, and std::less_equal<T>
are TriviallyCopyable and thus TriviallySerializable.

26 When serializing a container that has a template parameter of Compare, Hash, KeyEqual, or
Allocator, UPC++ invokes the corresponding observer member function (e.g., key_comp()
or get_allocator()), serializes the resulting object, and passes the deserialized object as
an argument to the constructor when deserializing the container.

27 UPC++ allows the template arguments (e.g. T and Key in the types above) of containers to
produce different types upon deserialization.
For example, the container std::vector<T, Allocator> is deserialized as:
std::vector<deserialized_type_t<T>,deserialized_type_t<Allocator>>,
and the container std::map<Key, T, Compare, Allocator> is deserialized as:
std::map<deserialized_type_t<Key>, deserialized_type_t<T>,

deserialized_type_t<Compare>, deserialized_type_t<Allocator>>.
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28 When serializing a container, the deserialized types (e.g. deserialized_type_t<T> and
deserialized_type_t<Key>) corresponding to the template type arguments must be Move-
Constructible.

6.4 References, Arrays, and CV-Qualified Types

1 A reference type cq T& or cq T&&, as well as std::reference_wrapper<cq T>, is Serializ-
able when T is Serializable. An object of such type is serialized by serializing the referent,
and deserialization produces an object of non-reference type deserialized_type_t<T>.
Thus, deserialized_type_t<cq T&>, deserialized_type_t<cq T&&>, and
deserialized_type_t<std::reference_wrapper<cq T>> are all the same as
deserialized_type_t<T>, without any top-level const qualifier.

2 A reference or reference-wrapper type is never TriviallySerializable.

3 An array type is never Serializable. However, an array may be passed to
UPCXX_SERIALIZED_FIELDS or the write member-function template of a Writer if the
element type of the array is Serializable. Such an array type may also be used with the
read_into member-function template of a Reader to read an entire array into a given
memory location.

4 The type T const is Serializable when T is Serializable, and it is TriviallySerializable when
T is TriviallySerializable. Deserialization preserves the original const qualifier for non-
reference types. Thus, an RPC (§9) of a function whose return type is T const by default
produces a future (§5) whose type is future<deserialized_type_t<T> const>. Simi-
larly, deserialization of a std::pair<T1 const, T2 const> produces an object of type
std::pair<deserialized_type_t<T1> const, deserialized_type_t<T2> const>. On
the other hand, due to the rules for deserializing references above, dese-
rialization of a std::pair<T1 const&, T2 const> produces an object of type
std::pair<deserialized_type_t<T1>, deserialized_type_t<T2> const>.

5 The types T volatile and T const volatile are not Serializable.

6 It is an error to define an explicit specialization is_trivially_serializable<T> or
serialization<T> if T is a reference, array, or cv-qualified type.
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6.5 Functions

1 In Chapter 7 (Completion) and Chapter 9 (Remote Procedure Calls) there are several cases
where a C++ FunctionObject is expected to execute on a destination process. In these cases
the function arguments are serialized as described in this chapter. The FunctionObject
itself (i.e. the func argument to rpc, rpc_ff, or as_rpc) is converted to a function
pointer offset from a known sentinel in the source program’s code segment. The details of
the implementation are not described here but typical allowed FunctionObjects are:

2 • C functions
3 • C++ global and file-scope functions
4 • Class static functions
5 • lambda expressions
6 Objects captured by copy in a lambda expression are transferred to the destination by

making a byte copy. The behavior is undefined if the type of an object captured by copy
is not TriviallySerializable.

6.6 Special Handling in Remote Procedure Calls

1 Remote procedure calls, whether standalone (§9) or completion-based (§7), perform special
handling on certain non-Serializable UPC++ data structures. Arguments that are either a
reference to dist_object type (see §14 Distributed Objects) or a team (see §11 Teams) are
transferred by their dist_id or team_id respectively. Execution of the RPC is deferred
until all of the id’s have a corresponding instance constructed on the recipient. When that
occurs, func is enlisted for execution during user-level progress of the recipient’s master
persona (see §10 Progress), and it will be called with the recipient’s instance references
in place of those supplied at the send site. The behavior is undefined if the recipient’s
instance of a dist_object or team argument is destroyed before the RPC executes.

6.7 View-Based Serialization

1 UPC++ also provides a mechanism for serializing the elements of a sequence, without ex-
plicitly serializing an enclosing container type. The following is an example of transferring
a sequence with rpc:
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1 std ::list <double > items = /* fill with elements */;
2 auto fut = rpc_ff (1, []( view <double > packedlist ) {
3 // target side gets object containing iterators
4 for ( double elem : packedlist ) { // traverse network buffer
5 process (elem ); // process each element
6 }
7 }, make_view (items.begin (), items.end ()));

2 In this example, a std::list<double> contains the elements to be transferred. Calling
make_view on its begin and end iterators results in a view, which can then be passed to a
remote procedure call. The elements in the sequence are serialized and transferred as part
of the RPC, and the target receives a view over the elements stored in the network buffer.
The RPC can then iterate over the view to obtain each element.

3 There is an asymmetry in the view types at the initiator and target of an
RPC, reflecting the difference in how the underlying sequences are stored
in memory. In the example above, the type of the value returned by
make_view is view<double, std::list<double>::iterator>, since the initia-
tor supplies iterators associated with a list. The target of the RPC, how-
ever, receives a view<double, view_default_iterator_t<double>>, with the
view_default_iterator_t<T> type representing an iterator over a network buffer.
The latter is the default argument for the second template parameter of view, so that a
user can specify view<T> rather than view<T, view_default_iterator_t<T>>.

4 UPC++ provides different handling of view<T> based on whether the element type T
is TriviallySerializable or not. For TriviallySerializable element type, deserialization is
a no-op, and the view<T> on the recipient is a direct view over a network buffer,
providing both random access and access to the buffer itself. The corresponding
view_default_iterator_t<T> is an alias for T*. On the other hand, if the view el-
ement type is not TriviallySerializable, then an element must be nontrivially deserial-
ized before it can be accessed by the user. In such a case, the view<T> only provides
access through an InputIterator, which deserializes and returns elements by value, and
view_default_iterator_t<T> is an alias for deserializing_iterator<T>.

5 A deserializing_iterator<T> also provides several member functions that deserialize
an object into existing memory. These avoid constructing a deserialized_type_t<T> on
the stack and returning it by value, which can be inefficient for large types or types that
are costly to move:

6 • deserialize_overwrite(object) deserializes an object into space occupied by an
existing object of type deserialized_type_t<T>. The existing object is destructed
before being overwritten by the deserialized object.
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7 • deserialize_into(optional_obj) deserializes an object into a
upcxx::optional<deserialized_type_t<T>>. The upcxx::optional is reset
before a new object is read into the optional.

8 • deserialize_into(pointer) deserializes an object directly into the memory
pointed to by pointer. Any existing object in the memory denoted by
the pointer is not destructed. If pointer points to an existing object,
deserialize_overwrite(*pointer) should be used instead.

9 The following is an example of using a view and deserialize_into to transfer a single
object of a large, non-TriviallySerializable type:

1 BigObject *ptr = /* ... */;
2 future <> = rpc( target_rank ,
3 []( view <BigObject > item) {
4 auto opt = new upcxx :: optional <BigObject >;
5 BigObject *ptr = item.begin (). deserialize_into (opt );
6 /* ... consume the object */
7 delete opt;
8 },
9 make_view (ptr , ptr +1));

10 The result of deserializing a view<T, Iter> is always view<T>, even if
deserialized_type_t<T> is some type U that is distinct from T2. In such a
case, T is necessarily not TriviallySerializable, and deserializing_iterator<T> in-
vokes the deserialize routine for T to produce an element of type U. The type
deserializing_iterator<T>::value_type is an alias for the element type produced by
deserializing_iterator<T>, and it is equivalent to deserialized_type_t<T>.

11 As a non-owning interface, view only provides const access to the elements in the underly-
ing sequence, analogous to C++17 string_view. However, in the case of a view<T> that is
received by the target of an RPC, where T is TriviallySerializable, the underlying elements
are stored directly in a network buffer as indicated above. There is no external owning
container, so UPC++ permits a user to perform a const_cast conversion on an element and
modify it.

2 Note this differs from the behavior of standard-library containers, where for example,
deserialized_type_t<std::vector<T>> is std::vector<deserialized_type_t<T>>, and objects of the
latter type are completely deserialized before being passed to RPC callbacks or completion events. The
difference arises because the view<T> object passed to an RPC callback is a non-owning container over
the serialized representation, and its deserializing_iterator performs deserialization on-demand using
the deserialization code provided by T.
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12 The lifetime of the underlying data buffer and all view iterators on the target in both
the TriviallySerializable and non-TriviallySerializable cases is restricted by default to the
duration of the RPC. In this case, the elements must be processed or copied elsewhere
before the RPC returns. However, if the RPC returns a future, then the lifetime of the
buffer and view iterators is extended until that future is readied. This allows an RPC to
initiate an asynchronous operation to consume the elements, and as long as the resulting
future is returned from the RPC, the underlying buffer will remain valid until the asyn-
chronous operation is complete and the future readied. Lifetime extension applies to all
RPC variants, including rpc_ff and as_rpc where the return value is not made available
to user code.

13 While UPC++ manages the lifetime of the data underlying a view when it is an argument
to an RPC, the library does not support a view as the return type of an RPC due to the
lifetime issues it raises. Thus, an RPC is prohibited from returning a view even though it
is classified as Serializable.

14 If a view<T, IterType> is passed to rpc, rpc_ff, or as_rpc where the type T is itself a
view, behavior is undefined.

6.8 API Reference

1 template < typename T>
struct is_trivially_serializable ;

2 Provides a member constant value that is true if T is TriviallySerializable and
false otherwise. This trait may be specialized for user types.

3 template < typename T>
struct is_serializable ;

4 Provides a member constant value that is true if T is Serializable and false
otherwise. This trait may not be specialized. However, its value may be in-
directly influenced by specializing is_trivially_serializable<T>, or imple-
menting a class serialization interface for T (§6.2), as appropriate.
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6.8.1 Optionals

1 template < typename T>
class optional ;
struct in_place_t ;
constexpr in_place_t in_place ;
struct nullopt_t ;
constexpr nullopt_t nullopt ;
class bad_optional_access ;

2 A class template that provides the same interface as C++17 std::optional,
along with corresponding utilities [4]. If UPC++ is compiled with C++17 or
later, these are aliases for the respective entities in the std namespace.

6.8.2 Views

1 template < typename T>
class deserializing_iterator {
public :

// types
using iterator_category = std :: input_iterator_tag ;
using value_type = deserialized_type_t <T>;
using difference_type = ptrdiff_t ;
using pointer = value_type *;
using reference = value_type ;

deserializing_iterator ();

value_type operator *() const;
pointer_type deserialize_overwrite ( value_type & object ) const;
pointer_type deserialize_into (

optional <value_type >& optional_obj ) const;
pointer_type deserialize_into (void* pointer ) const;

deserializing_iterator & operator ++();
deserializing_iterator operator ++( int );

};
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2 // comparisons
template < typename T>
bool operator ==( const deserializing_iterator & x,

const deserializing_iterator & y);
template < typename T>
bool operator !=( const deserializing_iterator & x,

const deserializing_iterator & y);

3 C++ Concepts: InputIterator
4 T must be Serializable.
5 An iterator over elements stored in a network buffer. Dereferenc-

ing the iterator causes the element to be deserialized and returned
by value (i.e. deserializing_iterator<T>::reference is an alias for
deserializing_iterator<T>::value_type).

6 While this iterator is classified as an InputIterator, it does not support
operator->, as the underlying element must be materialized on demand and
its lifetime would not extend beyond the application of the operator.

7 template < typename T>
deserialized_type_t <T>*

deserializing_iterator <T >:: deserialize_overwrite (
deserialized_type_t <T>& object ) const;

8 Precondition: This iterator must be pointing to a valid element.
9 Destructs object, reads the serialized representation of an object of type T

referenced by this iterator, and deserializes it into the memory denoted by
&object. Returns a pointer to the newly constructed object.

10 template < typename T>
deserialized_type_t <T>*

deserializing_iterator <T >:: deserialize_into (
optional < deserialized_type_t <T>>& optional_obj ) const;

11 Precondition: This iterator must be pointing to a valid element.
deserialized_type_t<T> must not have a top-level const qualifier. If T is
TriviallySerializable, then T must also be DefaultConstructible. If custom se-
rialization is defined for T, it must not use the deprecated interface for the
deserialize member-function template.
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12 Reads the serialized representation of an object of type T referenced by this
iterator and deserializes it into optional_obj. optional_obj is reset before
the deserialized object is constructed into the optional. Returns a pointer to
the newly constructed object.

13 template < typename T>
deserialized_type_t <T>*

deserializing_iterator <T >:: deserialize_into (void* pointer ) const;

14 Precondition: This iterator must be pointing to a valid element. pointer must
point to a location with appropriate size and alignment for an object of type
deserialized_type_t<T>.

15 Reads the serialized representation of an object of type T referenced by this
iterator and deserializes it into the memory denoted by pointer. Returns a
pointer to the newly constructed object.

16 template < typename T>
using view_default_iterator_t = /* ... */;

17 A type alias that is equivalent to T* if T is TriviallySerializable
(i.e. upcxx::is_trivially_serializable<T>::value is true), and
deserializing_iterator<T> otherwise.

18 template < typename T, typename IterType = view_default_iterator_t <T>>
class view {
public :

// types
using iterator = IterType ;
using size_type = size_t ;

// iterators
iterator begin ();
iterator end ();

// capacity
size_type size () const;

};
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19 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

20 UPC++ Concepts: Serializable
21 A class template representing a view over an underlying sequence of elements

of type T, delimited by begin() and end().

22 template < typename T>
class view <T, T*> {
public :

// types
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using const_iterator = const T*;
using iterator = const_iterator ;
using const_reverse_iterator =

std :: reverse_iterator < const_iterator >;
using reverse_iterator = const_reverse_iterator ;
using size_type = size_t ;
using difference_type = ptrdiff_t ;

// no explicit construct /copy/ destroy for non - owning type

// iterators
const_iterator begin () const;
const_iterator cbegin () const;
const_iterator end () const;
const_iterator cend () const;
const_reverse_iterator rbegin () const;
const_reverse_iterator crbegin () const;
const_reverse_iterator rend () const;
const_reverse_iterator crend () const;

// capacity
bool empty () const;
size_type size () const;

// element access
const_reference operator []( size_type n) const;

72 September 30, 2022 – LBNL-2001480



CHAPTER 6. SERIALIZATION

const_reference at( size_type n) const;
const_reference front () const;
const_reference back () const;

const_pointer data () const;
};

23 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

24 UPC++ Concepts: Serializable
25 A template specialization representing a view over a network buffer of elements

of TriviallySerializable type T, delimited by begin() and end().
26 Exceptions: at(n) throws std::out_of_range if n is not in the range

[0, size()).

27 template < typename T, typename IterType >
view <T, IterType >:: view ();

28 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
type std::iterator_traits<IterType>::value_type must be the same as
T. T must be Serializable.

29 Initializes this view to represent an empty sequence.

30 template < typename IterType >
view < typename std :: iterator_traits <IterType >:: value_type , IterType >

make_view ( IterType begin , IterType end );

31 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
underlying element type (std::iterator_traits<IterType>::value_type)
must be Serializable.

32 Constructs a view over the sequence delimited by begin and end.

33 template < typename IterType >
view < typename std :: iterator_traits <IterType >:: value_type , IterType >

make_view ( IterType begin , IterType end , size_t num_items );
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34 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
underlying element type (std::iterator_traits<IterType>::value_type)
must be Serializable. num_items must be equal to the number of elements in
[begin, end).

35 Constructs a view over the sequence delimited by begin and end. This is
semantically equivalent to make_view(begin, end), but it may provide better
performance when IterType is not a RandomAccessIterator.

36 template < typename Container >
view < typename Container :: value_type ,

typename Container :: const_iterator >
make_view (const Container & container );

37 Precondition: Container must satisfy the Container C++ concept. The un-
derlying element type (Container::value_type) must be Serializable.

38 Constructs a view over the sequence delimited by container.cbegin() and
container.cend().

6.8.3 Class Serialization

1 template < typename T>
struct serialization_traits ;

2 Precondition: T must be Serializable or a (possibly multidimensional) array
type whose element type is Serializable.

3 Provides a member type alias deserialized_type that is the type resulting
from deserializing an object that was serialized as the type T. If T is an array
type U[n], then deserialized_type is an alias for serialization_traits<U>
::deserialized_type[n].

4 template < typename T>
using deserialized_type_t =

typename serialization_traits <T >:: deserialized_type ;

5 Type alias for serialization_traits<T>::deserialized_type.
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6 template < typename T>
static deserialized_type_t <T>

serialization_traits <T >:: deserialized_value (T const& object );

7 Precondition: T must be Serializable and must not be a view.
deserialized_type_t<T> must be Movable.

8 Returns a value that is the deserialized counterpart of object. Equivalent to
serializing object into temporary storage and deserializing the result.

9 # define UPCXX_SERIALIZED_FIELDS (...) /* see below */

10 A variadic macro for specifying a subset of member variables to be automati-
cally serialized by UPC++, as described in §6.2.1.

11 # define UPCXX_SERIALIZED_VALUES (...) /* see below */

12 A variadic macro for specifying a set of values to be used by UPC++ to serialize
an object, as described in §6.2.2.

13 # define UPCXX_SERIALIZED_DELETE () /* see below */

14 A macro for disabling serialization of a derived class when the derived class
would otherwise inherit a serialization mechanism from a base class (§6.2.5).

15 # define UPCXX_SERIALIZED_BASE (base) /* see below */

16 A macro for specifying serialization of a base subobject of type base, as de-
scribed in §6.2.5.

17 template < typename T>
struct serialization ;

18 A class template that can be specialized to customize serialization and deseri-
alization for a type T, as described in §6.2.3.
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19 template < typename T>
void [ Writer ]:: write(T const & object );

20 Precondition: T must be Serializable or a (possibly multidimensional) array
type whose element type is Serializable.

21 Writes a serialized representation of object to the given writer.
22 Advice to users: An invocation of write<U[n]> is not guaranteed to be equiva-

lent to a sequence of invocations of write<U>. Thus, the only specified way to
read an object written by write<U[n]> is via a call to read_overwrite<U[n]>
or read_into<U[n]>.

23 template < typename IterType >
size_t [ Writer ]:: write_sequence ( IterType begin , IterType end );

24 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
underlying element type (std::iterator_traits<IterType>::value_type)
must be Serializable.

25 Writes serialized representations of the objects in the sequence delimited by
begin and end to the given writer and returns the number of objects written.
This is semantically equivalent to separate calls to write on the elements of
the sequence in order, but it may provide better performance.

26 template < typename IterType >
size_t [ Writer ]:: write_sequence ( IterType begin , IterType end ,

size_t num_items );

27 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
underlying element type (std::iterator_traits<IterType>::value_type)
must be Serializable. num_items must be equal to the number of elements in
[begin, end).

28 Writes serialized representations of the objects in the sequence delimited by
begin and end to the given writer and returns the number of objects written.
This is semantically equivalent to write_sequence(begin, end), but it may
provide better performance when IterType is not a RandomAccessIterator.
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29 template < typename T>
struct [ Writer ]:: reserve_handle ;

30 C++ Concepts: Movable, Destructible
31 Represents a reserved location in a writer where an object of type T is to be

written.

32 template < typename T>
typename [ Writer ]:: reserve_handle <T> [ Writer ]:: reserve ();

33 Precondition: T must be TriviallySerializable
34 Reserves space in the given writer for an object of type T and returns a handle

to the resulting location. The handle must be written by a call to commit prior
to the return of the function that invoked reserve to create the handle.

35 template < typename T>
void [ Writer ]:: commit (

typename [ Writer ]:: reserve_handle <T >&& handle ,
T const& object );

36 Precondition: T must be TriviallySerializable. handle must have been con-
structed through a call to reserve on this writer, and it must not previously
have had commit called on it.

37 Writes a representation of object to the location in the writer denoted by
handle. Invalidates handle.

38 template < typename T>
deserialized_type_t <T> [ Reader ]:: read ();

39 Precondition: The current position of the reader must be a location where an
object of type T was written. T must not be an array type.

40 Reads a serialized representation of an object of type T and returns a deserial-
ized object of type deserialized_type_t<T>.
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41 template < typename T>
deserialized_type_t <T>* [ Reader ]:: read_overwrite (

deserialized_type <T>& object );

42 Precondition: The current position of the reader must be a location where
an object of type T was written. deserialized_type_t<T> must not have a
top-level const qualifier.

43 Destructs object, reads a serialized representation of an object of type T, and
constructs a deserialized object of type deserialized_type_t<T> in the mem-
ory denoted by &object. Returns a pointer to the newly constructed object.

44 template < typename T>
deserialized_type_t <T>* [ Reader ]:: read_into (void* pointer );
template < typename T>
deserialized_type_t <T>* [ Reader ]:: read_into (

optional < deserialized_type_t <T>>& optional_obj );

Preconditions:
45 • The current position of the reader must be a location where an object of

type T was written.
46 • In the first variant, pointer must point to a location with appropriate

space and alignment for an object of type deserialized_type_t<T>. If
deserialized_type_t<T> is not TriviallyDestructible, then an existing
object must not be located at the memory denoted by pointer.

47 • In the second variant, deserialized_type_t<T>must not have a top-level
const qualifier. If T is TriviallySerializable, then T must also be Default-
Constructible. If custom serialization is defined for T, it must not use the
deprecated interface for the deserialize member-function template.

48 Reads a serialized representation of an object of type T and constructs a de-
serialized object of type deserialized_type_t<T> in the location denoted by
pointer or optional_obj. Returns a pointer to the newly constructed object.

49 In the second variant, optional_obj is reset before the deserialized object is
constructed into the optional.

50 template < typename T>
deserialized_type_t <T>* [ Reader ]:: read_sequence_overwrite (

deserialized_type_t <T>* array , size_t num_items );
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51 If num_items is zero, array is returned (and otherwise ignored), and the call
has no preconditions or effects.

52 Precondition: The current position of the reader must be a location where
num_items objects of type T were written. array must point to a location with
existing objects of type deserialized_type_t<T>.

53 Destructs the existing num_items objects located at the memory denoted by
array, reads serialized representations of num_items objects of type T, and
constructs an array of deserialized objects of type deserialized_type_t<T> in
the memory denoted by array. Returns a pointer to the first newly constructed
object in the array.

54 template < typename T>
deserialized_type_t <T>*

[ Reader ]:: read_sequence_into (void* pointer , size_t num_items );

55 If num_items is zero, pointer is returned after being converted to a
deserialized_type_t<T>* via a reinterpret_cast (and pointer is other-
wise ignored), and the call has no preconditions or effects.

56 Precondition: The current position of the reader must be a location where
num_items objects of type T were written. pointer must point to a location
with appropriate space and alignment for an array of num_items objects of
type deserialized_type_t<T>. If deserialized_type_t<T> is not Trivially-
Destructible, then existing objects must not be located at the memory denoted
by pointer.

57 Reads serialized representations of num_items objects of type T and constructs
an array of deserialized objects of type deserialized_type_t<T> in the mem-
ory denoted by pointer. Returns a pointer to the first newly constructed
object in the array.

58 template < typename ... Args >
/* see below */ [ Storage ]:: construct (Args &&... args );

59 Precondition: The constructor selected by the invocation
U(std::forward<Args>(args)...) must have public member access.

60 Forwards args to the constructor for the underlying object type U and returns a
pointer to the newly constructed object. The type U is deserialized_type<T>
for a Storage object that is passed to the deserialize member-function tem-
plate for type T.
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61 Advice to users: The passkey idiom can be used to prevent external access to
a public constructor. The following is an example of this pattern:

1 class UserType {
2 struct Key { // private member type
3 // explicit to prevent conversion from initializer list
4 explicit Key () {}
5 };
6 public :
7 UserType (Key key /*, other parameters */);
8 struct upcxx_serialization {
9 /* ... */

10 template < typename Reader , typename Storage >
11 static UserType * deserialize ( Reader & reader ,
12 Storage storage ) {
13 return storage . construct (Key {} /*, other arguments */);
14 }
15 };
16 };

Only code within UserType can construct a Key object, so outside code cannot
invoke the constructor that takes a Key without having an existing Key object
available. The deserialize member-function template makes such an object
available to construct, allowing it to invoke the constructor.
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Completion

7.1 Overview

1 Asynchronous operations such as communication entail the concept of completion, mean-
ing that the effect of the operation is now visible on the source or target process and that
resources, such as memory on the source and destination sides, are no longer in use by
UPC++. A single UPC++ call may have several completion events associated with it, in-
dicating completion of different stages of a communication operation. These events are
categorized as follows:

2 • Source completion: The source-side resources of a communication operation are no
longer in use by UPC++, and the application is now permitted to modify or reclaim
them.

3 • Remote completion: The data have been deposited on the remote target process, and
they can be consumed by the target.

4 • Operation completion: The operation is complete from the viewpoint of the initiator.
The transferred data can now be read by the initiator, resulting in the values that
were written to the target locations.

5 A completion event may be associated with some values produced by the communication
operation, or it may merely signal completion of an action. Each communication operation
specifies the set of completion events it provides, as well as the values that a completion
event produces. Unless otherwise indicated, a completion event does not produce a value.

6 UPC++ provides several alternatives for how completion can be signaled to the program:
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7 • Future: The communication call returns a future, which will be readied after the
completion event occurs. This is the default notification mode for communication
operations. If the completion event is associated with some values of type T..., then
the returned future will have type future<T...>. If no value is associated with the
completion, then the future will have type future<>.

8 • Promise: The user provides a promise when requesting notification of a comple-
tion event. Initiating a communication operation increments the dependency count
of the promise, and that promise will have one its dependencies fulfilled after the
event occurs. The promise must have a non-zero dependency count. If the com-
pletion event is associated with some values of type T..., then it must be valid to
call fulfill_result() on the promise with values of type T..., and the promise
must not have had fulfill_result() called on it. The promise will then have
fulfill_result() called on it with the associated values after the completion event
occurs. If no value is associated with the completion, then the promise may have any
type. It will have an anonymous dependency fulfilled upon the completion event.

9 • Local-Procedure Call (LPC): The user provides a target persona and a callback func-
tion object when requesting notification of a completion event. If the completion is
associated with some values of type T..., then the callback must be invokable with
a sequence of sizeof...(T) arguments, where if the nth component of T has type U,
then the nth argument provided to the callback has type:

10 – U if U is of reference type
11 – U&& if U is of non-reference type

12 If the completion is not associated with any values, the callback must be invokable
with no arguments. The callback, together with the associated completion values if
any, is enlisted for execution during user-level progress of the given persona after the
completion event occurs.

13 • Remote-Procedure Call (RPC): The user provides a function object that is either
Serializable or one of the allowed FunctionObjects in §6.5 when requesting notification
of a completion event, as well as the arguments on which the function object should
be invoked. Each argument must either be Serializable, a cq dist_object<T>&, or
cq team&. The result of serializing and deserializing the function object must be
invokable on the values that result from serializing and deserializing the arguments,
and the invocation must not throw an exception. Specifically, if an argument is of
type cq dist_object<T>& or cq team&, the function object must accept a value
of dist_object<T>& or team&, respectively, for the associated parameter. If the
argument is of some other type T, the function object must accept a value of type
deserialized_type_t<T>&& for the respective parameter. The function object and
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arguments are transferred as part of the communication operation, and the invocation
is enlisted for execution during user-level progress of the master persona of the target
process after the completion event occurs.

14 The result from invoking the function object is discarded. However, the return value
affects the lifetime of the deserialized objects that the UPC++ runtime constructs1

and passes to the function object. If the return value is a non-future value or a
ready future, the deserialized objects are destructed immediately after the invocation
returns. On the other hand, if the return value is a non-ready future, destruction of
the deserialized objects is deferred until after the future becomes ready, allowing the
function object to safely initiate further asynchronous computation that operates on
those objects.

15 • Buffered: The communication call consumes the source-side resources of the operation
before the call returns, allowing the application to immediately modify or reclaim
them. This delays the return of the call until after the source-completion event. The
implementation may internally buffer the source-side resources or block until network
resources are available to inject the data directly.

16 • Blocking: This is similar to buffered completion, except that the implementation is
required to block until network resources are available to inject the data directly.

17 Future, promise, and LPC completions are only valid for completion events that occur
at the initiator of a communication call, namely source and operation completion. RPC
completion is only valid for a completion event that occurs at the target of a communication
operation, namely remote completion. Buffered and blocking completion are only valid for
source completion. More details on futures and promises are in Ch. 5, while LPC and
RPC callbacks are discussed in Ch. 10.

18 If a completion event is associated with some values, the UPC++ runtime is permitted to pass
separate copies of those values to each notification registered on that completion event. If
multiple notifications are registered on an event that produces values, their respective types
must be CopyConstructible. Otherwise, the respective types must be MoveConstructible.

19 Notification of future and promise completions may be deferred or eager [7]:

20 • Deferred: Notification only happens during user-level progress of the initiator, even
if a completion event occurs synchronously (i.e. prior to the return from initiation).
Only when the initiating thread (persona actually) enters user-level progress will the
future or promise be eligible for taking on a readied or fulfilled state.

1This excludes team& and dist_object<T>& arguments, where the underlying objects are not con-
structed by the UPC++ runtime in deserialization.
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21 • Eager: If the completion event occurs synchronously, the UPC++ implementation is
permitted (but not required) to perform notification of completion immediately. If
completion is not signaled immediately, then it must be signaled at some later point
during user-level progress of the initiator.

22 Notification of other kinds of completion are always deferred until user-level progress of the
target process or persona. See Ch. 10 for the full discussion on user progress and personas.

23 If buffered or blocking completion is requested, then the source-completion event occurs
before the communication call returns. However, deferred source-completion notifications,
such as readying a deferred future completion or executing an LPC, are still delayed until
the next user-level progress. Similarly, deferred source-completion notifications for empty
data transfers (e.g. rput with a size of zero) are delayed until the next user-level progress.

24 Operation completion implies both source and remote completion. However, it does not
imply that notifications associated with source and remote completion have occurred. Sim-
ilarly, remote completion implies source completion, but it does not imply that notifications
associated with source completion have occurred.

7.2 Completion Objects

1 The UPC++ mechanism for requesting notification of completion is through opaque com-
pletion objects, which associate notification actions with completion events. Completion
objects are CopyConstructible, CopyAssignable, and Destructible, and the same comple-
tion object may be passed to multiple communication calls. A simple completion object
is constructed by a call to a static member function of the source_cx, remote_cx, or
operation_cx class, providing notification for the corresponding event. Member functions
such as as_future, as_promise, as_lpc, and as_rpc request notification through a fu-
ture, promise, LPC, or RPC, respectively. Only the member functions that correspond to
valid means of signaling notification of an event are defined in the class associated with
that event.

2 The following is an example of a simple completion object:

1 global_ptr <int > gp1 = /* some global pointer */;
2 promise <int > pro1;
3 auto cxs = operation_cx :: as_promise (pro1 );
4 rget(gp1 , cxs );
5 pro1. finalize (); // fulfill the initial anonymous dependency
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3 The rget function, when provided just a global_ptr<int>, transfers a single int from
the given location to the initiator. Thus, operation completion is associated with an int
value, and the promise used for signaling that event must have type compatible with an
int value, e.g. promise<int>. The user constructs a completion object that requests
operation notification on the promise pro1 by calling operation_cx::as_promise(pro1).
Since a completion object is opaque, the auto keyword is used to deduce the type of the
completion object. The resulting completion object can then be passed to rget, which
fulfills the promise with the transferred value upon operation completion.

4 A user can request notification of multiple completion events, as well as multiple noti-
fications of a single completion event. The pipe (|) operator can be used to combine
completion objects to construct a union of the operands. The following is an example:

1 int foo () {
2 return 0;
3 }
4

5 int bar(int x) {
6 return x;
7 }
8

9 void do_comm ( double *src , size_t count) {
10 global_ptr <double > dest = /* some global pointer */;
11 promise <> pro1;
12 persona &per1 = /* some persona */;
13 auto cxs = ( operation_cx :: as_promise (pro1) |
14 source_cx :: as_future () |
15 operation_cx :: as_future () |
16 operation_cx :: as_future () |
17 source_cx :: as_lpc (per1 , foo) |
18 remote_cx :: as_rpc (bar , 3)
19 );
20 std :: tuple <future <>, future <>, future <>> result =
21 rput(src , dest , count , cxs );
22 pro1. finalize (). wait (); // finalize promise , wait on its future
23 }

5 This code initiates an rput operation, which provides source-, remote-, and operation-
completion events. A unified completion object is constructed by applying the pipe op-
erator to individual completion objects. When rput is invoked with the resulting unified
completion object, it returns a tuple of futures corresponding to the individual future com-
pletions requested. The ordering of futures in this tuple matches the order of application
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of the pipe operator (this operator is associative but not commutative). In the example
above, the first future in the tuple would correspond to source completion, and the second
and third would be for operation completion. If no future-based notification is requested,
then the return type of the communication call would be void rather than a tuple.

6 When multiple notifications are requested for a single event, the order in which those
notifications occur is unspecified. In the code above, the order in which pro1 is fulfilled
and the two futures for operation completion are readied is indeterminate. More generally,
whenever two or more event notifications are pending (regardless of what events they
correspond to), the order in which those notifications are delivered is unspecified. In
the code above, for example, operation-completion notifications might be delivered before
source-completion notifications, despite the fact that operation completion implies source
completion.

7 Unlike a direct call to the rpc function (Ch. 9), but like a call to rpc_ff, an RPC
completion callback does not return a result to the initiator. Thus, the value returned by
the RPC invocation of bar above is discarded.

8 Arguments to remote_cx::as_rpc are serialized at an unspecified time between the invo-
cation of as_rpc and the return from the invocation of a communication operation that
accepts the resulting completion object. If multiple communication operations use a single
completion object resulting from as_rpc, then the arguments may be serialized multiple
times. For lvalue arguments, the user must ensure that they remain valid until the return
from the invocation of all communication operations that use the associated completion
object. Rvalue arguments are guaranteed to be “consumed" before the remote_cx::as_rpc
factory function returns the completion object, meaning they are move-constructed into
an internal location and/or fully serialized.

7.2.1 Restrictions

1 The API reference for a UPC++ call that supports the completion interface lists the comple-
tion events that the call provides, as well as the types of values associated with each event,
if any. The result is undefined if a completion object is passed to a call and the object
contains a request for an event that the call does not support. Passing a completion object
that contains a request whose type does not match the types provided by the corresponding
completion event, as described in §7.1, also results in undefined behavior.

2 If a UPC++ call provides both operation and remote completion, then at least one must be
requested by the provided completion object. If a call provides operation but not remote
completion, then operation completion must be requested. The behavior of the program is
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undefined if neither operation nor remote completion is requested from a call that supports
one or both of operation or remote completion.

3 A promise object associated with a promise-based completion request must have a depen-
dency count greater than zero when the completion object is passed to a UPC++ operation.
The result is undefined if the same promise object is used in multiple requests for notifica-
tions that produce values.

7.2.2 Completion and Return Types

1 In subsequent API-reference sections, the opaque type of a completion object is denoted
by CType. Similarly, RType denotes a return type that is dependent on the completion
object passed to a UPC++ call. This return type is as follows:

2 • void, if no future-based completions are requested
3 • future<T...>, if a single future-based completion is requested, where T... is the

sequence of types associated with the given completion event
4 • std::tuple<future<T...>...>, if multiple future-based completions are requested,

where each future’s arguments T... is the sequence of types associated with the
corresponding completion event

5 Type deduction, such as with auto, is recommended when working with completion objects
and return types.

7.2.3 Default Completions

1 If a completion object is not explicitly provided to a communication call, then a default
completion object is used. For most calls, the default is operation_cx::as_future().
However, for rpc_ff, the default completion is source_cx::as_buffered(), and for rpc,
it is source_cx::as_buffered() | operation_cx::as_future(). The default comple-
tion of a UPC++ communication call is listed in its API reference as a defaulted function
argument, for example:
Cx &&completions=operation_cx::as_future()

indicates a default completion of operation_cx::as_future(). Each such function tem-
plate also includes a template argument corresponding to the type of this completion
argument; this template argument is usually inferred, and the default type is omitted for
brevity of presentation.
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7.3 API Reference

1 struct source_cx ;

struct remote_cx ;

struct operation_cx ;

2 Types that contain static member functions for constructing completion objects
for source, remote, and operation completion.

3 static CType source_cx :: as_future ();

static CType operation_cx :: as_future ();

4 Constructs a completion object that represents notification of source or op-
eration completion with a future. It is implementation-defined whether the
completion objects created by these functions will request eager or deferred
notification.

5 static CType source_cx :: as_defer_future ();

static CType operation_cx :: as_defer_future ();

6 Constructs a completion object that represents deferred notification of source
or operation completion with a future.

7 static CType source_cx :: as_eager_future ();

static CType operation_cx :: as_eager_future ();

8 Constructs a completion object that represents eager notification of source or
operation completion with a future.
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9 template < typename ...T>
static CType source_cx :: as_promise (promise <T...> pro );

template < typename ...T>
static CType operation_cx :: as_promise (promise <T...> pro );

10 Precondition: pro must have a dependency count greater than zero.
11 Constructs a completion object that represents signaling the given promise

upon source or operation completion. It is implementation-defined whether
the completion objects created by these functions will request eager or deferred
notification.

12 template < typename ...T>
static CType source_cx :: as_defer_promise (promise <T...> pro );

template < typename ...T>
static CType operation_cx :: as_defer_promise (promise <T...> pro );

13 Precondition: pro must have a dependency count greater than zero.
14 Constructs a completion object that represents deferred notification of source

or operation completion via signaling the given promise.

15 template < typename ...T>
static CType source_cx :: as_eager_promise (promise <T...> pro );

template < typename ...T>
static CType operation_cx :: as_eager_promise (promise <T...> pro );

16 Precondition: pro must have a dependency count greater than zero.
17 Constructs a completion object that represents eager notification of source or

operation completion via signaling the given promise.

18 template < typename Func >
static CType source_cx :: as_lpc ( persona &target , Func && func );

template < typename Func >
static CType operation_cx :: as_lpc ( persona &target , Func && func );
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19 Precondition: Func must be a function-object type, and the underlying decayed
type (std::decay<Func&&>::type) must be CopyConstructible. func must
not throw an exception when invoked.

20 Constructs a completion object that represents the enqueuing of func on the
given local persona upon source or operation completion.

21 template < typename Func , typename ... Args >
static CType remote_cx :: as_rpc (Func &&func , Args ... && args );

Preconditions:
22 • Func must be a function-object type.
23 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be CopyConstructible.
24 • Func must either be Serializable or one of the FunctionObjects listed in

§6.5.
25 • deserialized_type_t<Func> must be MoveConstructible.
26 • Each of Args... must either be a Serializable type, or cq

dist_object<T>&, or cq team&.
27 • If a type Arg in Args&&... is an rvalue-reference type, the underlying

decayed type (std::decay<Arg>::type) must be CopyConstructible.
28 • If a type Arg in Args&&... is not cq dist_object<T>& or cq team&,

deserialized_type_t<Arg> must be MoveConstructible.
29 • The invocation of the deserialized function object on the deserialized ar-

guments must not throw an exception.
30 Constructs a completion object that represents the enqueuing of func on a

target process upon remote completion.

31 static CType source_cx :: as_buffered ();

32 Constructs a completion object that represents buffering source-side resources
or blocking until they are consumed before a communication call returns, de-
laying the return until the source-completion event occurs.
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33 static CType source_cx :: as_blocking ();

34 Constructs a completion object that represents blocking until source-side re-
sources are consumed before a communication call returns, delaying the return
until the source-completion event occurs.

35 template < typename CTypeA , CTypeB >
CType operator |( CTypeA &&a, CTypeB &&b);

36 Precondition: CTypeA and CTypeB must be completion types.
37 Constructs a completion object that is the union of the completions in a and

b. Future-based completions in the result are ordered the same as in a and b,
with those in a preceding those in b.
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Chapter 8

One-Sided Communication

8.1 Overview

1 The main one-sided communication functions for UPC++ are rput and rget. Where possi-
ble, the underlying transport layer will use RDMA techniques to provide the lowest-latency
transport possible. The type T used by rput or rget needs to be TriviallySerializable,
as described in Chapter 6 (Serialization).

8.2 API Reference

8.2.1 Remote Puts

1 template < typename T, typename Cx=/*...*/>
RType rput(T value , global_ptr <T> dest ,

Cx &&completions=operation_cx::as_future());

2 Precondition: T must be TriviallySerializable.
3 Initiates a transfer of value that will store it in the memory referenced by dest.
4 Remote-completion operations execute on the master persona of the process

associated with the destination (i.e. dest.where()).
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Completions:
5 • Remote: Indicates completion of the transfer of value.
6 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
7 C++ memory ordering: The writes to dest will have a happens-before re-

lationship with the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment) and remote-completion actions
(RPC enlistment). For LPC and RPC completions, all evaluations sequenced-
before this call will have a happens-before relationship with the execution of the
completion function.

8 UPC++ progress level: internal

9 template < typename T, typename Cx=/*...*/)
RType rput(T const *src , global_ptr <T> dest , size_t count ,

Cx &&completions=operation_cx::as_future());

10 Precondition: Tmust be TriviallySerializable. The source and destination mem-
ory regions must not overlap. src and dest must not be null pointers, even if
count is zero.

11 Initiates an operation to transfer and store the count items of type T begin-
ning at src to the memory beginning at dest. The values referenced in the
[src,src+count) interval must not be modified until either source or operation
completion is indicated.

12 Remote-completion operations execute on the master persona of the process
associated with the destination (i.e. dest.where()).

Completions:
13 • Source: Indicates completion of injection or internal buffering of the source

values, signifying that the src buffer may be modified.
14 • Remote: Indicates completion of the transfer of the values, implying readi-

ness of the target buffer [dest,dest+count).
15 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.

September 30, 2022 – LBNL-2001480 93



UPC++ v1.0 Specification, Revision 2022.9.0

16 C++ memory ordering: The reads of src will have a happens-before relationship
with the source-completion notification actions (future readying, promise ful-
fillment, or persona LPC enlistment). The writes to dest will have a happens-
before relationship with the operation-completion notification actions (future
readying, promise fulfillment, or persona LPC enlistment) and remote-comple-
tion actions (RPC enlistment). For LPC and RPC completions, all evaluations
sequenced-before this call will have a happens-before relationship with the exe-
cution of the completion function.

17 UPC++ progress level: internal

8.2.2 Remote Gets

1 template < typename T, typename Cx=/*...*/>
RType rget(global_ptr <const T> src ,

Cx &&completions=operation_cx::as_future());

2 Precondition: T must be TriviallySerializable.

3 Initiates a transfer to this process of a single value of type T located at src. The
value will be transferred to the calling process and delivered in the operation-
completion notification.

Completions:

4 • Operation: Indicates completion of all aspects of the operation, including
transfer and readiness of the resulting value. This completion produces a
value of type T.

5 C++ memory ordering: The read of src will have a happens-before relationship
with the operation-completion notification actions (future readying, promise
fulfillment, or persona LPC enlistment). All evaluations sequenced-before this
call will have a happens-before relationship with the invocation of any LPC
associated with operation completion.

6 UPC++ progress level: internal
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7 template < typename T, typename Cx=/*...*/>
RType rget(global_ptr <const T> src , T *dest , size_t count ,

Cx &&completions=operation_cx::as_future());

8 Precondition: Tmust be TriviallySerializable. The source and destination mem-
ory regions must not overlap. src and dest must not be null pointers, even if
count is zero.

9 Initiates a transfer of count values of type T beginning at src and stores them
in the locations beginning at dest. The source values must not be modified
until operation completion is notified.

Completions:
10 • Operation: Indicates completion of all aspects of the operation, including

transfer and readiness of the resulting values.
11 C++ memory ordering: The reads of src and writes to dest will have a

happens-before relationship with the operation-completion notification actions
(future readying, promise fulfillment, or persona LPC enlistment). All evalua-
tions sequenced-before this call will have a happens-before relationship with the
invocation of any LPC associated with operation completion.

12 UPC++ progress level: internal
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Remote Procedure Call

9.1 Overview

1 UPC++ provides remote procedure calls (RPCs) for injecting function calls into other pro-
cesses. These injections are one-sided, meaning the recipient is not required to explicitly
acknowledge which functions are expected. Concurrent with a process’s execution, incom-
ing RPCs accumulate in an internal queue managed by UPC++. The only control a process
has over inbound RPCs is when it would like to check its inbox for arrived function calls
and execute them. Draining the RPC inbox is one of the many responsibilities of the
progress API (see Ch. 10, Progress).

2 There are two main flavors of RPC in UPC++: fire-and-forget (rpc_ff) and round trip (rpc).
Each takes a function Func together with variadic arguments Args.

3 The rpc_ff call serializes the given function and arguments into a message destined for the
recipient, and guarantees that this function call will be placed eventually in the recipient’s
inbox. The round-trip rpc call does the same, but also forces the recipient to reply to the
sender of the RPC with a message containing the return value of the function, providing
the value for operation completion of the sender’s invocation of rpc. Thus, when the future
is ready, the sender knows the recipient has executed the function call. Additionally, if the
return value of func is a future, the recipient will wait for that future to become ready
before sending its result back to the sender.

4 There are important restrictions on what the permissible types for func and its bound
arguments can be for RPC functions. First, the Func type must be a function object
(has a publicly accessible overload of the function call operator, operator()). Second,
Func must either be Serializable or one of the FunctionObject types listed in §6.5, and
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all Args... types must be Serializable (see Ch. 6, Serialization), a cq dist_object<T>&,
or cq team&. Third, the result of serializing and deserializing the function object (a
value of type deserialized_type_t<Func>) must be invokable on the values that re-
sult from serializing and deserializing the arguments. Specifically, if an argument is
of type cq dist_object<T>& or cq team&, the function object must accept a value
of dist_object<T>& or team&, respectively, for the associated parameter. If the ar-
gument is of some other type T, the function object must accept a value of type
deserialized_type_t<T>&& for the respective parameter1. Lastly, the invocation must
not throw an exception.

9.2 Remote Hello World Example

1 Figure 9.1 shows a simple alternative Hello World example where each process issues an
rpc to its neighbor, where the last rank wraps around to 0.

1 # include <upcxx/upcxx.hpp >
2 # include <iostream >
3 void hello_world ( intrank_t num ){
4 std :: cout << "Rank " << num <<" told rank " << upcxx :: rank_me ()
5 << " to say Hello World" << std :: endl;
6 }
7 int main(int argc , char ** argv []){
8 upcxx :: init (); // Start UPC ++ state
9 intrank_t remote = (upcxx :: rank_me ()+1)% upcxx :: rank_n ();

10 auto f = upcxx :: rpc(remote , hello_world , upcxx :: rank_me ());
11 f.wait ();
12 upcxx :: finalize (); // Close down UPC ++ state
13 return 0;
14 }

Figure 9.1: HelloWorld with Remote Procedure Call

1 The parameter type may be any of U, const U&, or U&&, where U is deserialized_type_t<T>, as all
three parameter types accept an argument value of type U&&. The parameter type may not be U&, as that
does not accept an argument value of type U&&. The parameter types const U& and U&& are recommended
over U to minimize copy/move costs at invocation.
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9.3 API Reference

9.3.1 One-way RPC

1 template < typename Func , typename ... Args >
void rpc_ff ( intrank_t recipient ,

Func &&func , Args &&... args );
template < typename Cx , typename Func , typename ... Args >
RType rpc_ff ( intrank_t recipient ,

Cx && completions ,
Func &&func , Args &&... args );

template < typename Func , typename ... Args >
void rpc_ff (const team &team , intrank_t recipient ,

Func &&func , Args &&... args );
template < typename Cx , typename Func , typename ... Args >
RType rpc_ff (const team &team , intrank_t recipient ,

Cx && completions ,
Func &&func , Args &&... args );

Preconditions:
2 • Func must be a function-object type.
3 • Func must either be Serializable or one of the FunctionObjects listed in

§6.5.
4 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be MoveConstructible.
5 • deserialized_type_t<Func> must be MoveConstructible.
6 • Each of Args... must be a Serializable type, or cq dist_object<T>&, or

cq team&.
7 • If a type Arg in Args&&... is an rvalue-reference type, the underlying

decayed type (std::decay<Arg>::type) must be MoveConstructible.
8 • If a type Arg in Args&&... is not cq dist_object<T>& or cq team&,

deserialized_type_t<Arg> must be MoveConstructible.
9 • The invocation of the deserialized function object on the deserialized ar-

guments must not throw an exception.
10 • In the third and fourth variants, team.is_active() must be true.
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11 In all variants, the func and args... are serialized and internally buffered
before the call returns, regardless of what source-completion notifications are
requested. In other words, the source-completion event always occurs before
the invocation of rpc_ff returns. However, source-completion notifications
(signaling a future, executing an LPC, or fulfilling a promise) are delayed until
the next user-level progress. Requesting a notification other than buffered
or blocking for source completion is deprecated, and it may be prohibited in
subsequent revisions.

12 The call rpc_ff(rank, func, args...) is equivalent to:
rpc_ff (rank ,

source_cx :: as_buffered (),
func , args ...)

13 Similarly, the call rpc_ff(team, rank, func, args...) is equivalent to
rpc_ff (team , rank ,

source_cx :: as_buffered (),
func , args ...)

14 In the first two variants, the target of the RPC is the process whose rank is
recipient in the world team (Ch. 11). In the latter two variants, the target
is the process whose rank is recipient relative to the the given team.

15 After their receipt on the target, the data are deserialized and the invocation
of the deserialized function object on the deserialized arguments is enlisted for
execution during user-level progress of the master persona. So long as the send-
ing persona continues to make internal-level progress it is guaranteed that the
message will eventually arrive at the recipient. See §10.5.3 progress_required
for an understanding of how much internal-progress is necessary.

16 The result from invoking the function object is discarded. However, the return
value affects the lifetime of the deserialized objects that the UPC++ runtime
constructs2 and passes to the function object. If the return value is a non-future
value or a ready future, the deserialized objects are destructed immediately
after the invocation returns. On the other hand, if the return value is a non-
ready future, destruction of the deserialized objects is deferred until after the
future becomes ready, allowing the function object to safely initiate further
asynchronous computation that operates on those objects.

2This excludes team& and dist_object<T>& arguments, where the underlying objects are not con-
structed by the UPC++ runtime in deserialization.
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17 The function object and arguments are always serialized and deserialized, even
if the target is the same as the calling process. The invocation of the deserialized
function object on the deserialized arguments is never performed synchronously,
even if the target is the same as the calling process and rpc_ff is invoked during
user-level progress.

18 Special handling is applied to those members of args which are either a refer-
ence to dist_object type or a team, as described in §6.6.

Completions:
19 • Source: Indicates completion of serialization of the function object and

arguments.
20 Exceptions: This function may throw an implementation-defined exception un-

der implementation-defined conditions. The ordering of any such exception
throw with respect to argument serialization and/or deserialization is unspec-
ified. However a call throwing such an exception shall not deliver any event
notifications, nor shall it lead to invocation of the function object.

21 C++ memory ordering: All evaluations sequenced-before this call will have
a happens-before relationship with the source-completion notification actions
(future readying, promise fulfillment, or persona LPC enlistment) and the re-
cipient’s invocation of the function object.

22 UPC++ progress level: internal

9.3.2 Round-trip RPC

1 template < typename Func , typename ... Args >
RType rpc( intrank_t recipient ,

Func &&func , Args &&... args );
template < typename Cx , typename Func , typename ... Args >
RType rpc( intrank_t recipient ,

Cx && completions ,
Func &&func , Args &&... args );

template < typename Func , typename ... Args >
RType rpc(const team &team , intrank_t recipient ,

Func &&func , Args &&... args );
template < typename Cx , typename Func , typename ... Args >
RType rpc(const team &team , intrank_t recipient ,

Cx && completions ,
Func &&func , Args &&... args );
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Preconditions:
2 • Func must be a function-object type.
3 • Func must either be Serializable or one of the FunctionObjects listed in

§6.5.
4 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be MoveConstructible.
5 • deserialized_type_t<Func> must be MoveConstructible.
6 • Each of Args... must be a Serializable type, or cq dist_object<T>&, or

cq team&.
7 • If a type Arg in Args&&... is an rvalue-reference type, the underlying

decayed type (std::decay<Arg>::type) must be MoveConstructible.
8 • If a type Arg in Args&&... is not cq dist_object<T>& or cq team&,

deserialized_type_t<Arg> must be MoveConstructible.
9 • The result of applying the deserialized function object to the dese-

rialized arguments must either be of a Serializable type that is not
view<U, IterType>, or it must be future<T...>, where each type in
T... must be Serializable but not view<U, IterType>. In either case,
the deserialized types corresponding to these Serializable types must be
MoveConstructible.

10 • If the return type RetType of the function object is of non-
reference or rvalue-reference type, the underlying decayed type
(std::decay<RetType>::type) must be MoveConstructible.

11 • The invocation of the deserialized function object on the deserialized ar-
guments must not throw an exception.

12 • In the third and fourth variants, team.is_active() must be true.
13 Similar to rpc_ff, this call sends func and args... to be executed remotely,

but additionally provides an operation-completion event. This event produces
the value returned from the remote invocation of the deserialized function object
on its deserialized arguments, if it is non-void.

14 In all variants, the func and args... are serialized and internally buffered
before the call returns, regardless of what source-completion notifications are
requested. In other words, the source-completion event always occurs before the
invocation of rpc returns. However, source-completion notifications (signaling
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a future, executing an LPC, or fulfilling a promise) are delayed until the next
user-level progress. Requesting a notification other than buffered or blocking
for source completion is deprecated, and it may be prohibited in subsequent
revisions.

15 The call rpc(rank, func, args...) is equivalent to:

rpc(rank ,
source_cx :: as_buffered () | operation_cx :: as_future (),
func , args ...)

16 Similarly, the call rpc(team, rank, func, args...) is equivalent to:

rpc(team , rank ,
source_cx :: as_buffered () | operation_cx :: as_future (),
func , args ...)

17 In the first two variants, the target of the RPC is the process whose rank is
recipient in the world team (Ch. 11). In the latter two variants, the target
is the process whose rank is recipient relative to the the given team.

18 After their receipt on the target, the data are deserialized and the invocation
is enlisted for execution during user-level progress of the master persona.

19 In the first variant, the returned future is readied upon operation completion.
20 For futures provided by an operation-completion request, or promises used in

promise-based operation-completion requests, the type of the future or promise
must correspond to the return type of the invocation of the function object as
follows:

•21 If the return type is of the form future<T...>, then a future provided by
operation completion has type future<deserialized_type_t<T>...>,
and promises used in operation-completion requests must permit invoca-
tion of fulfill_result with values of type deserialized_type_t<T>....

•22 If the return type is some other non-void type T, then a future provided by
operation completion has type future<deserialized_type_t<T>>, and
promises used in operation-completion requests must permit invocation of
fulfill_result with a value of type deserialized_type_t<T>.

•23 If the return type is void, then a future provided by operation completion
has type future<>, and promises used in operation-completion requests
may have any type promise<T...>.
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24 Within user-progress of the recipient’s master persona, the result from invoking
the function object will be immediately serialized if the result is a non-future
value or a ready future. If the result is a non-ready future, the encapsulated
value will be serialized when the future becomes ready. In both cases, the dese-
rialized objects that the UPC++ runtime constructs3 and passes to the function
object are destructed after serialization of the result is complete. This allows
the function object to safely initiate further asynchronous computation that
operates on the deserialized objects or return a result that contain references
to those objects. The serialized value is eventually sent back to the initiat-
ing process. Upon receipt, it will be deserialized, and operation-completion
notifications will take place during subsequent user-progress of the initiating
persona.

25 The function object and arguments are always serialized and deserialized, even
if the target is the same as the calling process. The invocation of the deserialized
function object on the deserialized arguments is never performed synchronously,
even if the target is the same as the calling process and rpc is invoked during
user-level progress.

26 The same special handling applied to dist_object& and team& arguments by
rpc_ff is also done by rpc.

Completions:
27 • Source: Indicates completion of serialization of the function object and

arguments.
28 • Operation: Indicates completion of all aspects of the operation: serial-

ization, deserialization, remote invocation, transfer of any result, and de-
struction of any internally managed values are complete. This completion
produces a value as described above.

29 Exceptions: This function may throw an implementation-defined exception un-
der implementation-defined conditions. The ordering of any such exception
throw with respect to argument serialization and/or deserialization is unspec-
ified. However a call throwing such an exception shall not deliver any event
notifications, nor shall it lead to invocation of the function object.

30 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of the function object. The
return from the invocation of the function object will have a happens-before

3This excludes team& and dist_object<T>& arguments, where the underlying objects are not con-
structed by the UPC++ runtime in deserialization.
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relationship with the operation-completion actions (future readying, promise
fulfillment, or persona LPC enlistment). For LPC completions, all evaluations
sequenced-before this call will have a happens-before relationship with the exe-
cution of the completion function.

31 UPC++ progress level: internal
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Progress

10.1 Overview

1 UPC++ presents a highly-asynchronous interface, but guarantees that user-provided call-
backs will only ever run on user threads during calls to the library. This guarantees a good
user-visibility of the resource requirements of UPC++, while providing a better interoper-
ability with other software packages which may have restrictive threading requirements.
However, such a design choice requires the application developer to be conscientious about
providing UPC++ access to CPU cycles.

2 Progress in UPC++ refers to how the calling application allows the UPC++ internal runtime to
advance the state of its outstanding asynchronous operations. Any asynchronous operation
initiated by the user may require the application to give UPC++ access to the execution
thread periodically until the operation reports its completion. Such access is granted by
simply making calls into UPC++. Each UPC++ function’s contract to the user contains its
progress guarantee level. This is described by the members of the upcxx::progress_level
enumerated type:

3 progress_level::user UPC++ may advance its internal state as well as signal completion
of user-initiated operations. This may entail the firing of remotely injected procedure
calls (RPCs), or readying/fulfillment of futures/promises and the ensuing callback
cascade.

4 progress_level::internal UPC++ may advance its internal state, but no notifications
will be delivered to the application other than eager notification (Ch. 7) of events
associated with the invoked function itself. Thus, an application has very limited
ways to “observe" the effects of such progress.
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5 Progress level: none UPC++ will not attempt to advance the progress of asynchronous op-
erations. (Note this level does not have an explicit entry in the progress_level
enumerated type).

6 The most common progress guarantee made by UPC++ functions is Progress level: none. As
indicated in §1.6, all UPC++ functions implicitly guarantee Progress level: none, unless ex-
plicitly specified otherwise. Calls to functions with Progress level: none will never progress
UPC++ internal state nor execute user callbacks.

7 Most functions that inject communication have progress_level::internal. This en-
sures the delivery of notifications to remote processes (or other threads) making user-
level progress in a timely manner. The invocation of a function with progress_level::
internal will notably never execute callbacks or RPCs before returning. In order to avoid
having the user contend with the cost associated with callbacks and RPCs being run any-
time a UPC++ function is entered, progress_level::user is purposefully not the common
case.

8 progress is the notable function enabling the application to make user-level progress. Its
sole purpose is to look for ready operations involving this process or thread and run the
associated RPC/callback code:

upcxx :: progress ( progress_level lev = progress_level :: user)

9 UPC++ execution phases which leverage asynchrony heavily tend to follow a particular pro-
gram structure. First, initial communications are launched. Their completion callbacks
might then perform a mixture of compute or further UPC++ communication with simi-
lar, cascading completion callbacks. Then, the application spins on upcxx::progress(),
checking some designated application state which monitors the amount of pending outgo-
ing/incoming/local work to be done. For the user, understanding which functions perform
these progress spins becomes crucial, since any invocation of user-level progress may exe-
cute RPCs or callbacks.

10.2 Restricted Context

1 During user-level progress made by UPC++, callbacks may be executed. Such callbacks
are subject to restrictions on how they may further invoke UPC++ themselves. We desig-
nate such restricted execution of callbacks as being in the restricted context. The general
restriction is stated as:
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2 User code running in the restricted context must assume that for the duration
of the context all other attempts at making user-level progress, from any thread
on any process, may result in a no-op every time.

3 The immediate implication is that a thread which is already in the restricted context should
assume no-op behavior from further attempts at making progress. This makes it pointless
to try and wait for UPC++ notifications from within restricted context since there is no
viable mechanism to make the notifications visible to the user. Thus, calling any routine
which spins on user-level progress until some notification occurs will likely hang the thread.

4 A thread running in the restricted context shall not initiate any UPC++ collective operation
(§12).

5 The in_progress function can be used to query whether the calling thread is currently
running in the restricted context.

10.3 Attentiveness

1 Many UPC++ operations have a mechanism to signal completion to the application. How-
ever, a performance-oriented application will need to be aware of an additional asyn-
chronous operation status indicator called progress-required. This status indicates that for
a particular operation further advancements of the current process or thread’s internal-
level progress are necessary so that completion regarding remote entities (e.g. notification
of delivery) can be reached. Once an operation has left the progress-required state, UPC++
guarantees that remote entities will see their side of the operations’ completion without
any further progress by the current compute resource. Applications will need to leverage
this information for performance, as it is inadvisable for a compute resource to become
inattentive to UPC++ progress (e.g. long bouts of arithmetic-heavy computation) while
other entities depend on operations that require further servicing.

2 As said previously, nearly all UPC++ operations track their completion individually. How-
ever, it is not possible for the programmer to query UPC++ if individual operations no
longer require further progress. Instead, the user may ask UPC++ when operations initiated
by this thread have reached a state at which they no longer require internal progress to
reach their destinations. So for example, one may ask whether rpc or rput operations
previously initiated by this thread and destined for a remote process have been handed off
to the network hardware (but not necessarily delivered/completed).

3 This is achieved by using the following functions:
bool upcxx :: progress_required ();
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void upcxx :: discharge ();

4 The progress_required function reports whether this thread requires internal progress
on outgoing operations, allowing the application to know that there are still pending out-
going operations that will not achieve remote completion without further advancements to
internal progress. This is of particular importance before a thread enters a lapse of inat-
tentiveness (for instance, performing expensive computations) in order to prevent slowing
down remote entities.

5 The discharge function allows a thread to ensure that UPC++ no longer requires internal
progress to deliver operations outgoing from this thread1. It is equivalent to the following:

6 void upcxx :: discharge ( persona_scope &ps = top_persona_scope ()) {
while(upcxx :: progress_required (ps))

upcxx :: progress (upcxx :: progress_level :: internal );
}

7 A well-behaved UPC++ application is encouraged to call discharge before any long lapse
of attentiveness to progress.

10.4 Thread Personas/Notification Affinity

1 As explained in Chapter 5 Futures and Promises, futures require careful consideration
when used in the presence of thread concurrency. It is crucial that UPC++ is very explicit
about how a multi-threaded application can safely use futures returned by UPC++ calls.

2 The notion of “thread” has been used in a loose fashion throughout portions of this doc-
ument, the natural interpretation being an operating system (OS) thread. More precisely,
this document often uses the term “thread” to denote a UPC++ abstraction referred to as
thread persona (or simply “persona”) which generalizes the notion of an OS thread.

3 A UPC++ thread persona is a collection of UPC++-internal state usually attributed to a
single thread. By making it a proper construct, UPC++ allows a single OS thread to switch
between multiple application-defined roles for processing notifications. Personas act as the
receivers for notifications generated by the UPC++ runtime.

4 Values of type upcxx::persona are non-copyable, non-movable objects which the applica-
tion can instantiate as desired. For each OS thread, UPC++ internally maintains a stack of
active persona references. The top of this stack is the current persona. All asynchronous

1Actually, this only applies to non-master personas active with this thread; see the API reference for
detailed semantics. Personas are discussed in the next section.
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UPC++ operations will have their notification events (signaling of futures or promises) sent
to the current persona of the OS thread invoking the operation. Calls that make user-level
progress will process notifications destined to any of the active personas of the invoking
thread. For the duration of a notification’s processing, its target persona is placed at the
top of the persona stack of the OS thread associated with that persona.

5 The most important implication for application code is that event completions are reported
to a specific persona, regardless of which thread currently holds that persona. For example,
when a thread invokes an asynchronous UPC++ operation that returns a future, that future
becomes implicitly associated with the current persona of the calling thread. After oper-
ation completion, that future will later be readied during user-level progress of that same
persona (regardless of which thread currently holds it). In the common case where this
persona does not migrate across threads, that means the completion notification is deliv-
ered to the same thread which initiated the operation. However if the application explicitly
transfers the persona to a different thread while the operation is in-flight, the completion
will instead be delivered during progress of the thread now holding the associated persona.
An example of this pattern will be described later in this section.

6 The initial state of the persona stack for each thread consists of a single entry pointing
to a persona known as the default persona. A default persona is created automatically by
UPC++ for each OS thread and remains pinned to that OS thread. The default persona
may never be removed from the persona stack or added to the persona stack of a different
thread.

7 There is one special persona per process, themaster persona, which is created automatically
by UPC++ and pushed onto the active persona stack of the thread which initializes the library
by calling upcxx::init() (§2). The master persona is special in that it is the only persona
in each process that can execute incoming RPC callbacks. The master persona is also a
specified precondition for invoking most collective operations and certain other operations.

8 Pushing and popping personas from the persona stack (hence changing the current persona)
is done with the upcxx::persona_scope type. For example:

1 persona scheduler_persona ;
2 std :: mutex scheduler_lock ;
3

4 { // Scope block delimits domain of persona_scope instance .
5 auto scope = persona_scope ( scheduler_lock , scheduler_persona );
6

7 // All following upcxx actions will use ‘scheduler_persona ‘
8 // as current .
9

10 // ...
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11

12 // ‘scope ‘ destructs :
13 // - ‘scheduler_persona ‘ dropped from active set if it
14 // wasn ’t active before the scope ’s construction .
15 // - Previously current persona revived .
16 // - Lock released .
17 }

9 Since UPC++ will assume an OS thread has exclusive access to all of its active personas, it
is the user’s responsibility to ensure that no OS threads share an active persona concur-
rently. The use of the persona_scope constructor, which takes a lock-like synchronization
primitive, is strongly encouraged to facilitate in enforcing this invariant.

10 To summarize, each future returned by a UPC++ asynchronous operation is implicitly
associated with a particular persona, each persona may only be active with a single OS
thread at a time, and the future will only be readied during user-level progress of the
thread where the persona is active.

11 There are two ways that asynchronous operations can be initiated by a given OS thread
but retired in another. The first solution is simple:

1. The user defines a persona P.

2. Thread 1 activates P, initiates the asynchronous operation, and releases P.

3. Thread 1 synchronizes with Thread 2, indicating the operation has been initiated.

4. Thread 2 activates P, spins on progress until the operation completes.
12 Care must be taken that any futures created by phase 2 are never altered (uttered) concur-

rently. The same synchronization that was used to enforce exclusivity of persona acquisition
can be leveraged to protect the future as well.

13 While this technique achieves our goal of different threads initiating and resolving asyn-
chronous operations, it fails a different but also desirable property. It is often desirable
to allow multiple threads to issue communication concurrently while delegating a separate
thread to handle the notifications. To achieve this, it is clear that multiple personas are
needed. Indeed, the exclusivity of a persona being current to only one OS thread prevents
the application from concurrent initiation of communication.

14 In order to issue operations and concurrently retire them in a different thread, the user
is strongly encouraged to use the LPC completion mechanism described in Chapter 7, as
opposed to the future or promise variants. An example of such a call is:

15 rget(gptr_src , operation_cx :: as_lpc ( some_persona , callback_func ));
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16 In addition to the arguments necessary for the particular operation, the as_lpc completion
mechanism takes a reference to a persona (which need not be active with the calling
thread) and a C++ function object (lambda, etc.). Upon completion of the operation, the
designated persona shall execute the function object during its user-level progress. Using
this mechanism, it is simple to have multiple threads initiating communication concurrently
with a designated thread receiving the completion notifications. To achieve this, each
operation is initiated by a thread using the agreed-upon persona of the receiver thread
together with a callback that will incorporate knowledge of completion into the receiver’s
state.
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10.5 API Reference

1 enum class progress_level {
/*none , -- not an actual member , conceptual only */
internal ,
user

};

2 void progress ( progress_level lev = progress_level :: user );

3 This call will always attempt to advance internal progress.
4 If lev == progress_level::user then this thread is also used to execute any

available user actions for the personas currently active. Actions include:

1. Either future-readying or promise-fulfilling completion notifications for
asynchronous operations initiated by one of the active personas. By the
execution model of futures and promises this can induce callback cascade.

2. Continuation-style completion notifications from operations initiated by
any persona but designating one of the active personas as the completion
recipient.

3. RPCs destined for this process but only if the master persona is among
the active set.

4. lpc’s destined for any of the active personas.
5 UPC++ progress level: internal or user

6 bool in_progress ();

7 Returns true if and only if the calling thread is currently executing in the
restricted context (§10.2), in other words, within the dynamic scope of user-
level progress.
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10.5.1 persona

1 class persona ;

2 C++ Concepts: DefaultConstructible, Destructible

3 persona :: persona ();

4 Constructs a persona object with no enqueued operations.
5 This function may be called when UPC++ is in the uninitialized state.

6 persona ::~ persona ();

7 Destructs this persona object. If this persona is a member of any thread’s
persona stack, the result of this call is undefined. If any operations are currently
enqueued on this persona, or if any operations initiated by this persona require
further progress, the result of this call is undefined.

8 This function may be called when UPC++ is in the uninitialized state.

9 template < typename Func >
void persona :: lpc_ff (Func && func );

Preconditions:
10 • Func must be a function-object type that can be invoked on zero argu-

ments.
11 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be MoveConstructible.
12 • If Func&& is an lvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be CopyConstructible.
13 • The call func() must not throw an exception.
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14 std::forward’s func into an unordered collection of type-erased function ob-
jects to be executed during user-level progress of the targeted (this) persona.
This function is thread-safe, so it may be called from any thread to enqueue
work for this persona.

15 The execution of func is never performed synchronously, even if the target
persona is a member of the caller’s persona stack and this function is invoked
during user-level progress.

16 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of func.

17 template < typename Func >
FType persona :: lpc(Func && func );

Preconditions:
18 • Func must be a function-object type that can be invoked on zero argu-

ments.
19 • If Func&& is an rvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be MoveConstructible.
20 • If Func&& is an lvalue-reference type, the underlying decayed type

(std::decay<Func&&>::type) must be CopyConstructible.
21 • The call func() must not throw an exception.
22 • If the return type RetType of Func is of non-reference or rvalue-reference

type, the underlying decayed type (std::decay<RetType>::type) must
be MoveConstructible.

23 std::forward’s func into an unordered collection of type-erased function ob-
jects to be executed during user-level progress of the targeted (this) persona.
The return value of func is asynchronously returned to the currently active
persona in a future. If the return value of func is a future, then the targeted
persona will wait for that future before signaling the future returned by lpc
with its value. This function is thread-safe, so it may be called from any thread
to enqueue work for this persona. Note that the future returned by lpc is con-
sidered to be owned by the currently active persona, the future returned by
func (if any) will be considered owned by the target (this) persona.

24 If the return type U of Func is an lvalue reference, then FType is future<U>.
Otherwise, FType is future<typename std::decay<U>::type>.
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25 The execution of func is never performed synchronously, even if the target
persona is a member of the caller’s persona stack and this function is invoked
during user-level progress.

26 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of func, and the invocation of
func will have a happens-before relationship with evaluations sequenced after
the signaling of the final future.

27 bool persona :: active_with_caller () const;

28 Returns true if and only if this persona is a member of the calling OS thread’s
persona stack.

29 persona & master_persona ();

30 Returns a reference to the master persona automatically instantiated by the
UPC++ runtime. The thread that executes upcxx::init implicitly acquires this
persona as its current persona. The master persona is special in that it is the
only one which will execute RPCs destined for this process. Additionally, some
UPC++ functions may only be called by a thread with the master persona in its
active stack.

31 persona & current_persona ();

32 Returns a reference to the persona on the top of the thread’s active persona
stack.

33 persona & default_persona ();

34 Returns a reference to the persona instantiated automatically and uniquely for
this OS thread. The default persona is always the bottom of and can never be
removed from its designated OS thread’s active stack.

September 30, 2022 – LBNL-2001480 115



UPC++ v1.0 Specification, Revision 2022.9.0

35 void liberate_master_persona ()

36 Precondition: This thread must be the one which called upcxx::init, it must
have not altered its persona stack since calling init, and it must not have
called this function already since calling init.

37 The thread which invokes upcxx::init implicitly has the master persona at
the top of its active stack, yet the user has no persona_scope to drop to allow
other threads to acquire the persona. Thus, if the user intends for other threads
to acquire the master persona, they should have the init-calling thread release
the persona with this function so that it can be claimed by persona_scope’s.
Generally, if this function is ever called, it is done soon after init and then the
master persona should be reacquired by a persona_scope.

10.5.2 persona_scope

1 class persona_scope ;

2 C++ Concepts: Destructible, MoveConstructible

3 persona_scope :: persona_scope ( persona &p);

4 Precondition: Excluding this thread, p is not a member of any other thread’s
active stack.

5 Pushes p onto the top of the calling OS thread’s active persona stack.

6 template < typename Mutex >
persona_scope :: persona_scope (Mutex &mutex , persona &p);

7 C++ Concepts of Mutex: Mutex
8 Precondition: p will only be a member of some thread’s active stack if that

thread holds mutex in a locked state.
9 Invokes mutex.lock(), then pushes p onto the OS thread’s active persona

stack.
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10 persona_scope ::~ persona_scope ();

11 Precondition: All persona_scope’s constructed on this thread since the con-
struction of this instance have since destructed.

12 The persona supplied to this instance’s constructor is popped from this thread’s
active stack. If this instance was constructed with the mutex constructor, then
that mutex is unlocked.

13 This function may be called when UPC++ is in the uninitialized state.

14 persona_scope & top_persona_scope ();

15 Reference to the most recently constructed but not destructed persona_scope
for this thread. Every thread begins with an implicitly instantiated scope point-
ing to its default persona that survives for the duration of the thread’s lifetime.

16 persona_scope & default_persona_scope ();

17 Every thread begins with an implicitly instantiated scope pointing to its default
persona that survives for the duration of the thread’s lifetime. This function
returns a reference to that bottommost persona_scope for the calling thread,
which points at the calling thread’s default_persona().

10.5.3 Outgoing Progress

1 bool progress_required ( persona_scope &ps = top_persona_scope ());

2 Precondition: ps has been constructed by this thread.
3 For the set of personas included in this thread’s active stack section bounded in-

clusively between ps and the current top, nearly answers if any UPC++ operations
initiated by those personas require further advancement of internal-progress of
their respective personas before their completion events will be eventually avail-
able to user-level progress on the destined processes. The exact meaning of the
return value depends on which personas are selected by ps:

4 • If ps does not include the master persona: A return value of true means
that one or more of the personas indicated by ps requires further internal-
progress to achieve completion of its outgoing operations. A value of false
means that none of the personas indicated by ps require internal-progress,
but internal-progress of the master persona might still be required.
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5 • If ps does include the master persona: A return value of true means that
one or more of the personas indicated by ps requires further internal-
progress to achieve completion of its outgoing operations. A return value
of false means that none of the non-master personas indicated by ps
requires further internal-progress, but the master persona may or may not
require further internal-progress.

6 void discharge ( persona_scope &ps = top_persona_scope ());

7 Advances internal-progress enough to ensure that progress_required(ps) re-
turns false.

8 Note: discharge() only ensures that internal progress has been advanced suffi-
ciently to guarantee that outgoing operations initiated by non-master personas
active with this thread will eventually reach their destinations. In particular,
it does not guarantee anything about communication arrival at other processes
or acknowledgements to those operations, for example acknowledgements that
trigger operation completion events.

9 UPC++ progress level: internal
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Teams

11.1 Overview

1 UPC++ provides teams as a means of grouping processes. UPC++ uses teams for collective
operations (Ch. 12). team construction is collective and should be considered moderately
expensive and done as part of the set-up phase of a calculation. teams are similar to
MPI_Groups and the default team is world(). teams are considered special when it comes
to serialization. Each team has a unique team_id that is equal across the team and acts as
an opaque handle. Any process that is a member of the team can retrieve the team object
with the team_id::here() function. Hence, coordinating processes can reference specific
teams by their team_id.

2 While a process within a UPC++ SPMD program can have multiple intrank_t values that
represent their relative placement in several teams, it is the intrank_t in the world() team
that is used in most UPC++ functions, unless otherwise specifically noted. For example,
broadcast takes a rank relative to the specific team over which it operates.

11.2 Local Teams

1 The local team is an ordered set of processes where heap storage in the shared segment
allocated by any process in the team is local to all members. Any process can obtain a
reference to the local team by calling local_team and global pointers behave accordingly:
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1. global_ptr’s referencing objects allocated in the shared segment of processes that
are members of this team will report is_local() == true and local() will return
a valid T* referencing the corresponding object.

2. The global_ptr where() function will report the rank in team world() of the
process that originally acquired the referenced object using the functions in chapter 4.

2 It is not guaranteed that the T*’s obtained by different processes to the same shared object
will have bit-wise identical pointer values. In the general case, peers may have different
virtual addresses for the same physical memory.

11.3 API Reference

11.3.1 team

1 class team final;

2 C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,
Destructible

3 constexpr intrank_t team :: color_none ;

4 A constant used to specify that the calling process of split() will not be a
member of any subteam. This constant is guaranteed to have a negative value.

5 bool team :: is_active () const;

6 Returns whether or not this team is active. A team is active if both the following
hold:

7 • It was created as a fundamental team, via team::split() with a color
argument other than team::color_none, via team::create() with a non-
empty sequence, or as the target of move construction or move assignment
from an active team.

8 • It has not subsequently been passed as an argument to the move construc-
tor or move assignment operator, nor had its state destroyed by a call to
team::destroy().
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9 intrank_t team :: rank_n () const;

10 Precondition: this->is_active().

11 Returns the number of ranks in the given team.

12 intrank_t team :: rank_me () const;

13 Precondition: this->is_active().

14 Returns the rank of the calling process in the given team.

15 intrank_t team :: operator []( intrank_t peer_index ) const;

16 Precondition: this->is_active(). peer_index >= 0 and peer_index <
rank_n().

17 Returns the rank in the world() team of the process with rank peer_index in
this team.

18 UPC++ progress level: unspecified between none and internal

19 intrank_t team :: from_world ( intrank_t world_index ) const;
intrank_t team :: from_world ( intrank_t world_index ,

intrank_t otherwise ) const;

20 Precondition: this->is_active(). world_index >= 0 and world_index <
world().rank_n(). For the single-argument overload, the process with rank
world_index in the world() team must be a member of this team.

21 Returns the rank in this team of the process with rank world_index in the
world() team. For the two-argument overload, if that process is not a member
of this team then the value of otherwise is returned.

22 UPC++ progress level: unspecified between none and internal
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23 team team :: split( intrank_t color , intrank_t key) const;

24 This function is collective (§12.1) over this (i.e. the parent) team, the team
must be active, and the master persona (§10.5.1) must appear in the persona
stack of the calling thread.

25 Precondition: color >= 0 || color == team::color_none

26 Splits the given team into subteams based on the color and key arguments.
27 If color == team::color_none, the return value is an inactive team.
28 Otherwise, all processes that call the function with the same color value will be

separated into the same subteam. Ranks in the same subteam will be numbered
according to their position in the sequence of sorted key values. If two callers
specify the same combination of color and key, their relative ordering in the
subteam will be the same as in the parent team. The return value is the team
representing the calling process’s new subteam, and the resulting team is active.

29 C++ memory ordering: With respect to all threads participating in this collec-
tive and passing a color that is not team::color_none, all evaluations which
are sequenced-before their respective thread’s invocation of this call will have a
happens-before relationship with all evaluations sequenced after the call.

30 UPC++ progress level: user
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31 template < typename Iter >
team team :: create (Iter begin , Iter end) const;
template < typename Iter >
team team :: create (Iter begin , Iter end , size_t count) const;
template < typename Container >
team team :: create (const Container &c) const;

32 This function is collective (§12.1) over this (i.e. the parent) team, the team
must be active, and the master persona (§10.5.1) must appear in the persona
stack of the calling thread.

33 Precondition: In the first and second variants, Iter must satisfy the InputIter-
ator C++ concept and *std::declval<Iter>() must have a type convertible
to intrank_t. In the second variant count must be equal to the number of el-
ements in [begin, end). In the third variant, Containermust satisfy the Con-
tainer C++ concept1 and the underlying element type Container::value_type
must be convertible to intrank_t. In all cases, if the input sequence of
intrank_t values is non-empty, then all values must be distinct integers in the
range [0..this->rank_n()), and the sequence must contain this->rank_me().

34 Splits the parent team into zero or more disjoint subset teams. The return
value is the team representing the calling process’s new subteam.

35 Each process passes a sequence of ranks in this (i.e. the parent) team which
specifies the membership of the new subteam it will join. If a process passes a
non-empty sequence of ranks, then all processes identified by those ranks must
pass the same sequence, and the resulting team is active.

36 Any process passing an empty sequence does not become a member of a new
subteam, and the return value to such callers is an inactive team.

37 Advice to users: team::create can express the same team subdivision opera-
tions as team::split. The former requires all participants to directly provide
the sequence of ranks comprising their new team, whereas the latter must con-
struct this information dynamically via interprocess communication. In cases
where all participants can independently compute this sequence, create may
require less communication and synchronization than an equivalent split call.

38 C++ memory ordering: Although this is a collective call, it does not provide
any synchronization or ordering guarantees between participating threads.

39 UPC++ progress level: user
1Note the Container iterators must traverse the elements in a deterministic order to satisfy the constraint

on sequence equality across processes.
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40 team :: team ();

41 Constructs an inactive team.
42 This function may be called when UPC++ is in the uninitialized state.

43 team :: team(team && other );

44 Precondition: The master persona (§10.5.1) must appear in the persona stack
of the calling thread. other must not reference the world() or local team. No
operation on the team associated with other, nor any UPC++ operation with a
progress level other than none, may have been invoked by the calling process
between the creation of other and this call.

45 Makes this instance the calling process’s representative of the team associated
with other, transferring all state from other. Deactivates other.

46 team& team :: operator =( team && other );

47 Precondition: !this->is_active(). The master persona (§10.5.1) must ap-
pear in the persona stack of the calling thread. other must not reference the
world() or local team. No operation on the team associated with other, nor
any UPC++ operation with a progress level other than none, may have been
invoked by the calling process between the creation of other and this call.

48 Makes this instance the calling process’s representative of the team associated
with other, transferring all state from other. Deactivates other.

49 void team :: destroy ( entry_barrier lev = entry_barrier :: user );

50 If this references an inactive team, then this->destroy() is a non-collective
call with no preconditions, progress level none and no other semantics (i.e., the
call has no effect). Otherwise, the following specifications apply.

51 This function is collective (§12.1) over this team, and the master persona
(§10.5.1) must appear in the persona stack of the calling thread.

52 Precondition: this must not reference the world() or local team. lev must
be single-valued (Ch. 12). After the entry barrier (§12.2) specified by lev
completes, or upon entry if lev == entry_barrier::none, the operations on
this team must not require internal-level or user-level progress from any persona
before they can complete.
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53 Destroys the calling process’s state associated with the team. Further lookups
on this process using the team_id corresponding to this team will have unde-
fined behavior. Deactivates this team object.

54 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

55 UPC++ progress level: user if lev == entry_barrier::user,
internal otherwise

56 team ::~ team ();

57 Precondition: Either UPC++ must have been uninitialized since the team’s cre-
ation, or this must be an inactive team.

58 Destructs this team object.
59 Advice to users: team::destroy() should be used to deactivate an active team

before destruction.
60 This function may be called when UPC++ is in the uninitialized state.
61 team_id team ::id() const;

62 Precondition: this->is_active().
63 Returns the universal name that uniquely identifies this team.
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11.3.2 team_id

1 class team_id ;

2 C++ Concepts: DefaultConstructible, TriviallyCopyable, StandardLayoutType,
EqualityComparable, LessThanComparable, hashable

3 UPC++ Concepts: TriviallySerializable
4 A universal name that uniquely identifies a team.

5 team_id :: team_id ();

6 Initializes this name to be the invalid ID. All default-constructed team_id
objects will receive the same, unique invalid identifier. This enables use of
team_id() as a placeholder ID for naming the absence of a team.

7 team& team_id :: here () const;

8 Precondition: This name must be a valid ID. The calling process must be a
member of the team associated with this name, and it must have completed
creation of the team. The team must not have been destroyed.

9 Retrieves a reference to the team instance associated with this name.

10 future <team &> team_id :: when_here () const;

11 Precondition: This name must be a valid ID. The calling process must be a
member of the team associated with this name. The master persona (§10.5.1)
must appear in the persona stack of the calling thread. The team must not
have been destroyed.

12 Retrieves a future which is readied after the calling process constructs the team
corresponding to this name.
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11.3.3 Fundamental Teams

1 team& world ();

2 Returns a reference to the team representing all the processes in the UPC++
program. The result is undefined if a move is performed on the returned team.
Calling destroy() on the returned team results in undefined behavior.

3 intrank_t rank_n ();

4 Returns the number of ranks in the world() team.
5 Equivalent to: world().rank_n().

6 intrank_t rank_me ();

7 Returns the rank of the calling process in the world() team.
8 Equivalent to: world().rank_me().

9 team& local_team ();

10 Returns a reference to the local team containing this process. The local team
represents an ordered set of processes where memory allocated from the shared
segment of any member is local to all team members (§11.2). The result is
undefined if a move is performed on the returned team. Calling destroy() on
the returned team results in undefined behavior.

11 bool local_team_contains ( intrank_t world_index );

12 Precondition: world_index >= 0 and world_index < world().rank_n().
13 Determines if the process whose rank is world_index in world() is a member

of the local team containing the calling process (§11.2).
14 Equivalent to: local_team().from_world(world_index,-1) >= 0
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15 std ::pair <intrank_t , intrank_t > local_team_position ();

16 Queries information about the disjoint local teams comprising world().
17 Returns a value such that if the result is assigned to the std::pair variable

info, then:
18 • info.second provides the number of disjoint local teams in the set com-

prising world(). During a given execution, this value is equal for all
callers.

19 • info.first provides an integral index in [0,info.second) that identifies
the local team of the calling process within that set. During a given
execution, the value returned to two processes is equal if and only if they
share a local team.

20 The values returned to any given calling process remain stable across subse-
quent calls.

21 Advice to Users: This function returns information about the number and iden-
tity of local teams, which delineate the boundaries of shared heap locality within
the job (and may correspond to physical node boundaries). Information about a
caller’s position within its local team is available via local_team().rank_me()
and local_team().rank_n().
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Collectives

1 A collective operation is a UPC++ operation that must be matched across all participating
processes. Informally, any two processes that both participate in a pair of collective op-
erations must agree on their ordering. Furthermore, if a parameter or other property of
a collective operation is specified as single-valued, all participating processes must provide
the same value for the parameter or property.

2 A collective operation need not provide any actual synchronization between processes, un-
less otherwise noted. The collective requirement simply states a relative ordering property
of calls to collective operations that must be maintained in the parallel execution trace for
all executions of any valid program. Some implementations may include unspecified syn-
chronization between processes within collective operations, but programs must not rely
upon the presence or absence of such unspecified synchronization for correctness.

3 A noteworthy exception to the previous paragraph is that collective calls specified with
progress level: none are additionally prohibited from synchronizing between processes.
However, such calls still require the proper collective ordering of matching calls across all
participating processes.

4 UPC++ provides several collective communication operations over teams, described below.
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12.1 Common Requirements

1 For an execution of a UPC++ program to be valid, the collective operations invoked by the
program must obey the following ordering constraints:

•2 For a collective operation C over a team T , let Participants(C) denote the set of
processes that are members of T .

•3 For a process P ∈ Participants(C1) ∩ Participants(C2), let PrecedesP (C1, C2) be
true if and only if C1 6= C2 and C1 is initiated before C2 on P .

•4 Let Collectives be the set of collective operations invoked during execution of the
program. The collectives must satisfy the following property:

∀C1,C2 ∈ Collectives. ∀P, Q ∈ Participants(C1) ∩ Participants(C2).
P recedesP (C1, C2) = PrecedesQ(C1, C2)

(12.1)

5 The constraints above formalize the notion that any two processes that both participate
in a pair of collectives must agree on their ordering.

6 For any collective operation C, it is an error if the completion of the operation (return from
synchronous collectives, operation-completion notifications for asynchronous collectives) on
at least one participant has a happens-before relationship with the initiation of operation
C on another participant.

7 When invoking a collective operation, the master persona of the process must appear
in the persona stack of the calling thread (§10.5.1). In other words, the expression
master_persona().active_with_caller() must be true for the calling thread. This
property is initially true for the thread that invokes upcxx::init, meaning this require-
ment is trivially satisfied for processes that only ever invoke UPC++ from one thread
(provided it never invokes liberate_master_persona()).

12.2 API Reference

1 enum class entry_barrier {
none ,
internal ,
user

};
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2 Constants used with some UPC++ operations to specify the entry barrier to be
used by the operation:

•3 none: the operation has no entry barrier

•4 internal: the operation should perform a barrier at entry that makes
only internal-level progress

•5 user: the operation should perform a barrier at entry that makes user-
level progress

6 void barrier (const team &team = world ());

7 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

8 Performs a barrier operation over the given team. The call will not return until
all processes in the team have entered the call. There is no implied relationship
between this call and other in-flight operations.

9 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before their respective thread’s in-
vocation of this call will have a happens-before relationship with all evaluations
sequenced after the call.

10 UPC++ progress level: user

11 template <typename Cx=/*...*/>
RType barrier_async (const team &team = world (),

Cx &&completions=operation_cx::as_future());

12 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

13 Initiates an asynchronous barrier operation over the given team. The call will
return without waiting for other processes to make the call. Operation com-
pletion will be signaled after all other processes in the team have entered the
call.
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Completions:
14 • Operation: Indicates completion of the collective from the viewpoint of

the caller, implying that all processes in the given team have entered the
collective.

15 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before their respective thread’s in-
vocation of this call will have a happens-before relationship with all evaluations
sequenced after the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

16 UPC++ progress level: internal
17 constexpr /* see below */ op_fast_add ;

constexpr /* see below */ op_fast_mul ;
constexpr /* see below */ op_fast_min ;
constexpr /* see below */ op_fast_max ;
constexpr /* see below */ op_fast_bit_and ;
constexpr /* see below */ op_fast_bit_or ;
constexpr /* see below */ op_fast_bit_xor ;

18 Instances of function-object types that have the following overloaded function-
call operator:

19 T operator ()(T a, T b) const;

20 The function-object types meet the requirements for the BinaryOp template pa-
rameter to reduce_one and reduce_all (e.g. they are referentially transparent
and concurrently invokable).

21 For op_fast_add, op_fast_mul, op_fast_min, and op_fast_max, the allowed
types for T are those for which std::is_arithmetic<T>::value is true. For
op_fast_bit_and, op_fast_bit_or, and op_fast_bit_xor, the allowed types
for T are those for which std::is_integral<T>::value is true.

22 The operation performed by the function-call operator is, respectively: bi-
nary +, binary *, std::min, std::max, binary &, |, and ^. If T is
bool, then op_fast_add and op_fast_max perform the same operation as
op_fast_bit_or, and op_fast_mul and op_fast_min perform the same op-
eration as op_fast_bit_and.
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23 template < typename T, typename BinaryOp , typename Cx=/*...*/>
RType reduce_one (T value , BinaryOp &&op , intrank_t root ,

const team &team = world (),
Cx &&completions=operation_cx::as_future());

template < typename T, typename BinaryOp , typename Cx=/*...*/>
RType reduce_all (T value , BinaryOp &&op ,

const team &team = world (),
Cx &&completions=operation_cx::as_future());

template < typename T, typename BinaryOp , typename Cx=/*...*/>
RType reduce_one (const T *src , T *dst , size_t count ,

BinaryOp &&op , intrank_t root ,
const team &team = world (),
Cx &&completions=operation_cx::as_future());

template < typename T, typename BinaryOp , typename Cx=/*...*/>
RType reduce_all (const T *src , T *dst , size_t count ,

BinaryOp &&op ,
const team &team = world (),
Cx &&completions=operation_cx::as_future());

24 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

25 Precondition: T must be TriviallySerializable. BinaryOp must be a function-
object type representing an associative and commutative mathematical oper-
ation taking two values of type T and returning a value implicitly convertible
to T. BinaryOp must be referentially transparent and concurrently invokable.
BinaryOp may not invoke any UPC++ routine with a progress level other than
none. In the first and third variants, root must be single-valued and a valid
rank in team. In the third variant, src and dst on the process whose rank
is root in the team may be equal but must not otherwise overlap, and count
must be single-valued across all participants. In the fourth variant, src and
dst may be equal but must not otherwise overlap, and src == dst and count
must both be single-valued.

26 Performs a reduction operation over the processes in the given team.
27 If the team contains only a single process, then the resulting operation com-

pletion will produce value in the first two variants. In the latter two variants,
the contents of src will be copied to dst if src != dst.

28 If the team contains more than one process, initiates an asynchronous reduction
over the values provided by each process. The reduction is performed in some
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non-deterministic order by applying op to combine values and intermediate
results. In the second and fourth variants, the order in which op is applied may
differ between processes, so the results may differ if op is not fully associative
and commutative (as with floating-point arithmetic on some operands). In the
third and fourth variants, the contents of src are combined element-wise across
the processes in the team, with the results placed in dst.

29 In the first variant, the process whose rank is root in team receives the result
of the reduction as part of operation completion, while the remaining processes
receive an undefined value.

30 In the second variant, each process receives the result of the reduction as part
of operation completion.

31 In the third variant, operation completion signifies the results have been stored
in dst on the process whose rank is root in team and that src is no longer in
use by the reduction. On the remaining processes, the argument dst is ignored,
and operation completion signifies that src is no longer in use by the reduction.

32 In the fourth variant, operation completion on each process signifies that the
results have been stored in dst on that process and that src is no longer in
use by the reduction.

33 Advice to users: If op is one of op_fast_* and T is one of the allowed types for
op, implementations may offload the reduction operations to NIC hardware.

Completions:
34 • Operation: Indicates completion of the collective from the viewpoint of

the caller, implying that the results of the reduction are available to this
process as described above. In the third and fourth variants, also signi-
fies that the src buffer may be modified. In the first two variants, this
completion produces a value of type T. In the latter two variants, this
completion does not produce a value.

35 C++ memory ordering: With respect to all threads participating in this collec-
tive, all evaluations which are sequenced-before any thread’s invocation of this
call will have a happens-before relationship with all evaluations sequenced after
the operation-completion notification actions (future readying, promise fulfill-
ment, or persona LPC enlistment) on the threads that receive the results of the
collective (on the root process in the first and third variants; on all participating
processes in the second and fourth variants).

36 UPC++ progress level: internal
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37 template < typename T, typename Cx=/*...*/>
RType broadcast (T value , intrank_t root ,

const team &team = world (),
Cx &&completions=operation_cx::as_future());

template < typename T, typename Cx=/*...*/>
RType broadcast (T *buffer , size_t count , intrank_t root ,

const team &team = world (),
Cx &&completions=operation_cx::as_future());

38 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

39 Precondition: root must be single-valued and a valid rank in team. In the
second variant, count must be single-valued. The type T must be TriviallySe-
rializable.

40 Initiates an asynchronous broadcast (one-to-all) operation, with rank root in
team acting as the producer of the broadcast. In the first variant, value will
be asynchronously sent to all processes in the team, encapsulated in operation
completion, which will be signaled upon receipt of the value. In the second
variant, the objects in [buffer,buffer+count) of rank root in team are sent
to the addresses [buffer,buffer+count) provided by the receiving processes.
Operation completion signals completion of the operation with respect to the
calling process. For the root, this indicates its buffer is available for reuse, and
for a receiver, it indicates that the data have been received in its buffer.

Completions:
41 • Operation: In the first variant, indicates that the value provided by the

root is available at the caller, and this completion produces a value of type
T. In the second variant, indicates completion of the collective from the
viewpoint of the caller as described above, and this completion does not
produce a value.

42 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before the producing thread’s invo-
cation of this call will have a happens-before relationship with all evaluations
sequenced after the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

43 UPC++ progress level: internal
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Atomics

13.1 Overview

1 UPC++ supports atomic operations on shared memory locations. Atomicity entails that a
read-modify-write sequence on a memory location will happen without interference or inter-
leaving with other concurrently executing atomic operations. Atomicity is not guaranteed
if a memory location is concurrently targeted by both atomic and non-atomic operations.
The order in which concurrent atomics update the same memory is not guaranteed, not
even for successively issued operations by a single process. Ordering of atomics with re-
spect to other asynchronous operations is also not guaranteed. The only means to ensure
such ordering is by waiting for one operation to complete before initiating its successor.
Note that UPC++ atomics do not interoperate with std::atomic.

2 At this time, it is unclear how UPC++ will support mixing of atomic and non-atomic accesses
to the same memory location. Until this is resolved, users must assume that for the duration
of the program, once a memory location is accessed via a UPC++ atomic, only further atomic
operations to that location will have meaningful results (note that even global barrier
synchronization does not grant an exception to this rule). This unfortunately implies that
deallocation of such memory is unsafe, as that would allow the memory to be reallocated
to a context unaware of its constrained condition.

3 All atomic operations are associated with an atomic domain. An atomic domain is de-
fined for an integer or floating-point type and a set of operations. Currently, the allowed
types are float, double, and any signed or unsigned integral type with a 32-bit or 64-bit
representation. The list of operations is detailed in the API section below. A process’s
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representative of an atomic domain is an instance of an atomic_domain class, and the
operations are defined as methods on that class.

4 An atomic domain is created collectively over a team. The result is a semantic binding
of atomic_domain objects as a collective object. We use the phrase atomic domain to
refer to this semantic binding. An atomic domain must be destroyed by the processes in
the team collectively calling the destroy() member function, which releases the resources
associated with the domain.

5 The use of atomic domains permits selection (at construction) of the most efficient available
implementation which can provide correct results for the given set of operations on the given
data type. This is important because the best possible implementation of a operation "X"
may not be compatible with operation "Y". So, this best "X" can only be used when it is
known that "Y" will not be used. This issue arises because a NIC may offload "X" (but not
"Y") and use of a CPU-based implementation of "Y" would not be coherent with the NIC
performing a concurrent "X" operation.

6 Similar to a mutex, an atomic domain exists independent of the data it applies to. User
code is responsible for ensuring that data accessed via a given atomic domain is only
accessed via that domain, never via a different domain or without use of a domain.

7 Users may create as many domains as needed to describe their uses of atomic operations,
so long as there is at most one domain per atomic datum. If distinct data of the same type
are accessed using differing sets of operations, then creation of distinct domains for each
operation set is recommended to achieve the best performance on each set.

8 For example, to use atomic fetch-and-add, load and store operations on an int64_t, a user
must first define a domain as follows:

9 atomic_domain <int64_t > ad_i64 ({ atomic_op ::load ,
atomic_op :: store ,
atomic_op :: fetch_add });

10 Each atomic operation works on a global pointer to the type given when the domain was
constructed. The target memory must have affinity to a member of the domain’s team.

11 All atomic operations are non-blocking and provide an operation-completion event to indi-
cate completion of the atomic. By default, all operations return futures. So, for example,
this is the way to call an atomic operation for the previous example’s domain:

1 global_ptr <int64_t > x = new_ <int64_t >(0);
2 future <int64_t > f = ad_i64 . fetch_add (x, 2,
3 std :: memory_order_relaxed );
4 int64_t res = f.wait ();
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12 UPC++ also provides overloads of fetching atomic operations that write the resulting value
into a memory location1 rather than encapsulating it into a future. This avoids some of
the overheads associated with non-empty future or promise completions. The following is
an example:

1 global_ptr <int64_t > x = new_ <int64_t >(0);
2 int64_t res;
3 future <> f = ad_i64 . fetch_add (x, 2, &res ,
4 std :: memory_order_relaxed );
5 f.wait ();

13 Atomic domains enable a user to select a subset of operations that are supported in hard-
ware on a given platform, and hence more performant.

13.2 Deviations from IEEE 754

1 UPC++ atomics on float and double are permitted to deviate from the IEEE 754 stan-
dard [1], even where float and double otherwise conform to the standard in the underlying
C++ implementation. For example, a UPC++ atomic may perform a compare_exchange
operation on floating-point values as if they were integers of the same width, and it may
compare floating-point values as if they were sign-and-magnitude-representation integers
of the same width. This can lead to non-conforming behavior with respect to NaNs and
negative zero.

13.3 API Reference

1 enum class atomic_op : /* integral type */ {
/* Syntax below is only for clarity of presentation :

All enum values are unspecified */
load = ..., store ,
compare_exchange ,
add , fetch_add ,
sub , fetch_sub ,
mul , fetch_mul ,
min , fetch_min ,
max , fetch_max ,
bit_and , fetch_bit_and ,

1The write into that memory location (&res in the example here) is not guaranteed to be atomic.
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bit_or , fetch_bit_or ,
bit_xor , fetch_bit_xor ,
inc , fetch_inc ,
dec , fetch_dec

};

2 template < typename T>
class atomic_domain final;

3 C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,
Destructible

4 template < typename T>
bool atomic_domain <T >:: is_active () const;

5 Returns whether or not this atomic domain is active. An atomic domain is
active if both the following hold:

6 • It was created via the non-default constructor, or was the target of move
construction or move assignment from an active atomic domain.

7 • It has not subsequently been passed as an argument to the move construc-
tor or move assignment operator, nor had its state destroyed by a call to
atomic_domain<T>::destroy().

8 template < typename T>
atomic_domain <T >:: atomic_domain (std :: vector <atomic_op > const &ops ,

const team &team = world ());

9 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

10 Precondition: T must be one of the approved atomic types: float, double,
or any signed or unsigned integral type with a 32-bit or 64-bit representation.
T must be a permitted type for each of the operations in ops. The set of
operations specified by ops must be single-valued (Ch. 12).

11 Constructs an active atomic domain for type T, with supported operations ops.
This instance acts as the calling process’s representative in the resulting atomic
domain.

12 UPC++ progress level: user
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13 template < typename T>
atomic_domain <T >:: atomic_domain ();

14 Constructs an inactive atomic domain.
15 This function may be called when UPC++ is in the uninitialized state.

16 template < typename T>
atomic_domain <T >:: atomic_domain ( atomic_domain && other );

17 Precondition: The master persona (§10.5.1) must appear in the persona stack
of the calling thread.

18 Makes this instance the calling process’s representative of the atomic domain
associated with other, transferring all state from other. Deactivates other.

19 template < typename T>
atomic_domain <T>& atomic_domain <T >:: operator =(

atomic_domain && other );

20 Precondition: !this->is_active(). The master persona (§10.5.1) must ap-
pear in the persona stack of the calling thread.

21 Makes this instance the calling process’s representative of the atomic domain
associated with other, transferring all state from other. Deactivates other.

22 template < typename T>
void atomic_domain <T >:: destroy ( entry_barrier lev =

entry_barrier :: user );

23 This function is collective (§12.1) over the team associated with this atomic
domain, and the master persona (§10.5.1) must appear in the persona stack
of the calling thread.

24 Precondition: this->is_active(). This instance must be the process’s repre-
sentative of the atomic domain. The team associated with this domain must
not have been deactivated since the construction of this domain. lev must be
single-valued (Ch. 12). After the entry barrier (§12.2) specified by lev com-
pletes, or upon entry if lev == entry_barrier::none, all operations on this
atomic domain must have signaled operation completion.

25 Destroys the calling process’s state associated with the atomic domain. Deac-
tivates this atomic_domain.
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26 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

27 UPC++ progress level: user if lev == entry_barrier::user,
internal otherwise

28 template < typename T>
atomic_domain <T >::~ atomic_domain ();

29 Precondition: Either UPC++ must have been uninitialized since this domain’s
creation, or this must be an inactive atomic domain.

30 Destructs this atomic_domain object.
31 Advice to users: atomic_domain<T>::destroy() should be used to deactivate

an active atomic domain before destruction.
32 This function may be called when UPC++ is in the uninitialized state.

33 template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: load(

global_ptr <const T> p, std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: load(

global_ptr <const T> p, T *dst , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

34 Precondition: this->is_active(). Tmust be the only type used by any atomic
referencing any part of p’s target memory for the entire lifetime of UPC++. order
must be std::memory_order_relaxed or std::memory_order_acquire. The
atomic_op::load operation must have been included in the ops used to con-
struct this atomic_domain. The target of p must have affinity to a member
of the team associated with this domain, and that team must not have been
deactivated since the construction of this domain.

35 Initiates an atomic read of the object at location p. In the first variant, the
value read is produced as part of operation completion. In the second variant,
the value read is written (non-atomically) to *dst.

September 30, 2022 – LBNL-2001480 141



UPC++ v1.0 Specification, Revision 2022.9.0

Completions:
36 • Operation: Indicates completion of all aspects of the operation: the remote

atomic read and transfer of the result are complete. In the first variant,
this completion produces a value of type T. In the second variant, this
completion does not produce a value.

37 C++ memory ordering: If order is std::memory_order_acquire then the
read performed will have a happens-before relationship with the operation-
completion notification actions (future readying, promise fulfillment, or persona
LPC enlistment).

38 UPC++ progress level: internal

39 template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: store(

global_ptr <T> p, T val , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

40 Precondition: this->is_active(). Tmust be the only type used by any atomic
referencing any part of p’s target memory for the entire lifetime of UPC++. order
must be std::memory_order_relaxed or std::memory_order_release. The
atomic_op::store operation must have been included in the ops used to con-
struct this atomic_domain. The target of p must have affinity to a member
of the team associated with this domain, and that team must not have been
deactivated since the construction of this domain.

41 Initiates an atomic write of val to the location p. Completion of the write is
indicated by operation completion.

Completions:
42 • Operation: Indicates completion of all aspects of the operation: the trans-

fer of the value and remote atomic write are complete.
43 C++ memory ordering: If order is std::memory_order_release then all eval-

uations sequenced-before this call will have a happens-before relationship with
the write performed. The write performed will have a happens-before rela-
tionship with the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

44 UPC++ progress level: internal
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45 template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: compare_exchange (

global_ptr <T> p, T val1 , T val2 , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const ;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: compare_exchange (

global_ptr <T> p, T val1 , T val2 , T *dst ,
std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const ;

46 Precondition: this->is_active(). T must be the only type used by
any atomic referencing any part of p’s target memory for the entire life-
time of UPC++. order must be std::memory_order_relaxed, std::memory_
order_acquire, std::memory_order_release, or std::memory_order_acq_
rel. The ops used to construct this atomic_domain must have included the
atomic_op::compare_exchange operation. The target of p must have affinity
to a member of the team associated with this domain, and that team must not
have been deactivated since the construction of this domain.

47 Initiates the atomic read-modify-write operation consisting of: reading the
value of the object located at p, and if it is equal to val1, writing val2 back. In
the first variant, the value produced by operation completion is the one initially
read. In the second variant, the value initially read is written (non-atomically)
to *dst.

Completions:

48 • Operation: Indicates completion of all aspects of the operation: the trans-
fer of the given value to the recipient, remote atomic update, and transfer
of the old value to the initiator are complete. In the first variant, this com-
pletion produces a value of type T. In the second variant, this completion
does not produce a value.

49 C++ memory ordering: If order is either std::memory_order_release or
std::memory_order_acq_rel then all evaluations sequenced-before this call
will have a happens-before relationship with the atomic action. If order is std::
memory_order_acquire or std::memory_order_acq_rel then the atomic ac-
tion will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or LPC enlistment).

50 UPC++ progress level: internal
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51 template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >::binary_key (

global_ptr <T> p, T val , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: fetch_binary_key (

global_ptr <T> p, T val , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: fetch_binary_key (

global_ptr <T> p, T val , T *dst , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

52 Precondition: this->is_active(). T must be the only type used by any ato-
mic referencing any part of p’s target memory for the entire lifetime of UPC++,
and it must be one of the permitted types for the operation. order must be
std::memory_order_relaxed, std::memory_order_acquire, std::memory_
order_release, or std::memory_order_acq_rel. The atomic_op::op oper-
ation must have been included in the ops used to construct this atomic_domain,
where op is the following for each variant, respectively: binary_key,
fetch_binary_key, fetch_binary_key. The target of p must have affinity to a
member of the team associated with this domain, and that team must not have
been deactivated since the construction of this domain.

binary_key Computation Supports float and double
add + yes
sub - yes
mul * yes
min std::min yes
max std::max yes

bit_and & no
bit_or | no
bit_xor ˆ no

Table 13.1: Binary atomic arithmetic computations

53 Initiates the atomic read-modify-write operation consisting of: reading the
value of the object located at p, performing the operation corresponding to
binary_key, and writing the new value back. The operation is performed on
the value initially read and the val argument. In the second variant, the value
initially read is produced by operation completion. In the third variant, the
value initially read is written (non-atomically) to *dst.
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54 The correspondence between binary_key, its respective arithmetic operation,
and the permitted types is as in Table 13.1. All operations support the integral
types.

Completions:
55 • Operation: Indicates completion of all aspects of the operation: the trans-

fer of the given value to the recipient and remote atomic update, and
transfer of the old value to the initiator in the fetch variants, are complete.
This completion does not produce a value in the first or third variant and
produces a value of type T in the second variant.

56 C++ memory ordering: If order is either std::memory_order_release or
std::memory_order_acq_rel then all evaluations sequenced-before this call
will have a happens-before relationship with the atomic action. If order is std::
memory_order_acquire or std::memory_order_acq_rel then the atomic ac-
tion will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment).

57 UPC++ progress level: internal

58 template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >::unary_key (

global_ptr <T> p, std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: fetch_unary_key (

global_ptr <T> p, std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

template < typename T> template<typename Cx=/*...*/>
RType atomic_domain <T >:: fetch_unary_key (

global_ptr <T> p, T *dst , std :: memory_order order ,
Cx &&completions=operation_cx::as_future()) const;

59 Precondition: this->is_active(). T must be the only type used by
any atomic referencing any part of p’s target memory for the entire life-
time of UPC++, and it must be one of the permitted types for the oper-
ation. order must be std::memory_order_relaxed, std::memory_order_
acquire, std::memory_order_release, or std::memory_order_acq_rel.
The atomic_op::op operation must have been included in the ops used to
construct this atomic_domain, where op is the following for each variant, re-
spectively: unary_key, fetch_unary_key, fetch_unary_key. The target of
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p must have affinity to a member of the team associated with this domain,
and that team must not have been deactivated since the construction of this
domain.

unary_key Computation Supports float and double
inc ++ yes
dec -- yes

Table 13.2: Unary atomic arithmetic computations

60 Initiates the atomic read-modify-write operation consisting of: reading the
value of the object located at p, performing the operation corresponding to
unary_key, and writing the new value back. The operation is performed on
the value initially read. In the second variant, the value initially read is pro-
duced by operation completion. In the third variant, the value initially read is
written (non-atomically) to *dst.

61 The correspondence between unary_key, its respective arithmetic operation,
and the permitted types is as in Table 13.2. All operations support the integral
types.

Completions:
62 • Operation: Indicates completion of all aspects of the operation: the trans-

fer of the given value to the recipient and remote atomic update, and
transfer of the old value to the initiator in the fetch variants, are complete.
This completion does not produce a value in the first or third variant and
produces a value of type T in the second variant.

63 C++ memory ordering: If order is either std::memory_order_release or
std::memory_order_acq_rel then all evaluations sequenced-before this call
will have a happens-before relationship with the atomic action. If order is std::
memory_order_acquire or std::memory_order_acq_rel then the atomic ac-
tion will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment).

64 UPC++ progress level: internal
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Distributed Objects

14.1 Overview

1 In distributed-memory parallel programming, the concept of a single logical object parti-
tioned over several processes is a useful capability in many contexts: for example, geometric
meshes, vectors, matrices, tensors, and associative maps. Since UPC++ is a communication
library, it strives to focus on the mechanisms of communication as opposed to the various
programming idioms for managing distribution. However, a basic framework for users to
implement their own distributed objects is useful and also enables UPC++ to provide the
user with the following valuable features:

1. Universal distributed object naming: per-object names that can be transmitted to
other processes while retaining their meaning.

2. Name-to-this mapping: Mapping between the universal name and the calling pro-
cess’s memory address holding that distributed object’s state for the process (the
calling process’s this pointer).

2 The need for universal distributed object naming stems primarily from RPC-based commu-
nication. If one process needs to remotely invoke code on a peer’s partition of a distributed
object, there needs to be some mutually agreeable identifier for referring to that distributed
object. For simplicity, this identifier value should be: identical across all processes so that
it may be freely communicated while maintaining its meaning. Moreover, the name should
be TriviallyCopyable so that it may be serialized into RPCs efficiently (including with the
auto-capture [=] lambda syntax), hashable, and comparable so that it works well with
standard C++ containers. UPC++ provides distributed object names meeting these criteria
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as well as the registry for mapping names to and from the calling process’s partition of the
distributed object.

14.2 Building Distributed Objects

1 Distributed objects are built with the upcxx::dist_object<T> constructor over a specific
team (defaulting to team world()). For all processes in the given team, each process
constructs an instance of dist_object<T>, supplying a value of type T representing this
process’s instance value. All processes in the team must call this constructor collectively.
Once construction completes, the distributed object has a universal name which can be
used by any rank in the team to locate the resident instance. When the dist_object<T>
is destructed the T value is also destructed. At this point the name will cease to carry
meaning on this process. Thus, the programmer should ensure that no process destructs a
distributed object until all name lookups destined for it complete and all hanging references
of the form T& or T* to the value have expired.

2 The names of dist_object<T>’s are encoded by the dist_id<T> type. This type is
TriviallyCopyable, EqualityComparable, LessThanComparable, hashable, and Trivially-
Serializable. It has the members .here() and .when_here() for retrieving the resident
dist_object<T> instance registered with the name.

14.3 Ensuring Distributed Existence

1 The dist_object<T> constructor requires it be called in a collective context, but it does
not guarantee that, after the call, all other ranks in the team have exited or even reached
the constructor. Thus users are required to guard against the possibility that when an
RPC carrying an distributed object’s name executes, the recipient process may not yet
have an entry for that name in its registry. Possible ways to deal with this include:

1. Barrier: Before issuing communication containing a dist_id<T> for a newly created
distributed object, the relevant team completes a barrier to ensure global existence
of the dist_object<T>.

2. Point to point: Before communicating a dist_id<T> with a given process, the initi-
ating process uses some two-party protocol to ensure that the peer has constructed
the dist_object<T>.
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3. Asynchronous point-to-point: The user performs no synchronization to ensure remote
existence. Instead, an RPC is sent which, upon arrival, must wait asynchronously
via a continuation for the peer to construct the distributed object.

2 UPC++ enables the asynchronous point-to-point approach implicitly when arguments of type
cq dist_object<T>& are given to any of the RPC family of functions (see Ch. 9).

14.4 API Reference

14.4.1 dist_object

1 template < typename T>
class dist_object ;

2 C++ Concepts: MoveConstructible (when T is MoveConstructible), Destruc-
tible

3 template < typename T>
dist_object <T >:: dist_object (T value , const team &team = world ());

4 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

5 Precondition: T must be MoveConstructible.
6 Constructs this process’s member of the distributed object identified by the

collective calling context across team. The initial value for this process is given
in value. The future returned from dist_id<T>::when_here for the corre-
sponding dist_id<T> will be readied during this constructor. This implies
that continuations waiting for that future will execute before the constructor
returns.

7 C++ memory ordering: Although this is a collective call, it does not provide
any synchronization or ordering guarantees between participating threads.

September 30, 2022 – LBNL-2001480 149



UPC++ v1.0 Specification, Revision 2022.9.0

8 template < typename T>
template < typename ... Arg >
dist_object <T >:: dist_object (const team &team , Arg &&... arg );

9 This function is collective (§12.1) over the given team, the team must be active,
and the master persona (§10.5.1) must appear in the persona stack of the calling
thread.

10 Constructs this process’s member of the distributed object identified by the
collective calling context across team. The initial value for this process is con-
structed with T(std::forward<Arg>(arg)...). The result is undefined if this
call throws an exception. The future returned from dist_id<T>::when_here
for the corresponding dist_id<T> will be readied during this constructor. This
implies that continuations waiting for that future will execute before the con-
structor returns.

11 C++ memory ordering: Although this is a collective call, it does not provide
any synchronization or ordering guarantees between participating threads.

12 template < typename T>
dist_object <T >:: dist_object ( dist_object <T> && other );

13 Precondition: The master persona (§10.5.1) must appear in the persona stack
of the calling thread. T must be MoveConstructible.

14 Makes this instance the calling process’s representative of the distributed object
associated with other, transferring all state from other. Invalidates other, and
any subsequent operations on other, except for destruction, produce undefined
behavior.

15 template < typename T>
dist_object <T >::~ dist_object ();

16 Precondition: The master persona (§10.5.1) must appear in the persona stack
of the calling thread, or UPC++ must have been uninitialized since the
dist_object<T> construction.

17 ~T() is invoked to destroy the resident value instance.
18 If this instance has not been invalidated by being passed to the move con-

structor, then this will destroy the calling process’s member of the distributed
object, and further lookups on this process using the dist_id<T> correspond-
ing to this distributed object will have undefined behavior. If this instance has
been invalidated by a move, then this call will not affect the distributed object.
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19 This function may be called when UPC++ is in the uninitialized state.

20 template < typename T>
dist_id <T> dist_object <T >:: id() const;

21 Returns the dist_id<T> representing the universal name of this distributed
object.

22 template < typename T>
team& dist_object <T >:: team ();
template < typename T>
const team& dist_object <T >:: team () const;

23 Precondition: The team associated with this distributed object must not have
been deactivated since the construction of this distributed object.

24 Retrieves a reference to the team instance associated with this distributed ob-
ject.

25 template < typename T>
T* dist_object <T >:: operator ->() const;

26 Access to the calling process’s value instance for this distributed object.

27 template < typename T>
T& dist_object <T >:: operator *() const;

28 Access to the calling process’s value instance for this distributed object.

29 template < typename T>
future < deserialized_type_t <T>>

dist_object <T >:: fetch( intrank_t rank) const;

Preconditions:
30 • rank must be a valid rank in the team associated with this distributed

object.
31 • T must be Serializable, but not view<U, IterType>.
32 • deserialized_type_t<T> must be MoveConstructible.
33 • rank’s instance of this distributed object must not have been destroyed

by the owning process.
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34 • The team associated with this distributed object must not have been de-
activated since the construction of this distributed object.

35 Asynchronously retrieves a copy of the instance of this distributed object asso-
ciated with the peer index rank in this distributed object’s team. The result is
encapsulated in the returned future. This call is equivalent to:

rpc(team (), rank ,
[]( dist_object <T> &obj) -> const T& {

return *obj;
}, *this)

36 UPC++ progress level: internal

14.4.2 dist_id

1 template < typename T>
struct dist_id <T>;

2 C++ Concepts: DefaultConstructible, TriviallyCopyable, StandardLayoutType,
EqualityComparable, LessThanComparable, hashable

3 UPC++ Concepts: TriviallySerializable

4 template < typename T>
dist_id <T >:: dist_id ();

5 Initializes this name to be an invalid ID.

6 template < typename T>
future < dist_object <T>&> dist_id <T >:: when_here () const;

7 Precondition: This name must be a valid ID for the calling process. The
dist_object<T> instance owned by the calling process that is associated with
this name must not have been destroyed. The master persona (§10.5.1) must
appear in the persona stack of the calling thread.

8 Retrieves a future representing when the calling process constructs the
dist_object<T> corresponding to this name.
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9 template < typename T>
dist_object <T>& dist_id <T >:: here () const;

10 Precondition: This name must be a valid ID for the calling process. The
dist_object<T> instance owned by the calling process that is associated with
this name must have been previously constructed but not yet destroyed. The
master persona (§10.5.1) must appear in the persona stack of the calling thread.

11 Retrieves a reference to the calling process’s dist_object<T> instance associ-
ated with this name.

12 template < typename T>
std :: ostream & operator <<( std :: ostream &os , dist_id <T> id);

13 Inserts an unspecified character representation of id into the output stream
os. The textual representation of two objects of type dist_id<T> is identical
if and only if the two objects compare equal.
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Non-Contiguous One-Sided
Communication

15.1 Overview

1 UPC++ provides functions to perform one-sided communications similar to rget and rput
which are dedicated to handle data stored in non-contiguous locations. These functions are
denoted with a suffix added to the type of operation, in increasing order of specialization:

2 {rput,rget}_{irregular,regular,strided}

3 The most general variant of the API, {rput,rget}_irregular, accept iterators over an
array or collection of std::pair (or std::tuple) that contain a local or global pointer
to a memory location in the first member while the second member contains the size of
the contiguous chunk of memory to be transferred. This variant is capable of expressing
non-contiguous RMA of arbitrary shape, but pays the highest overhead in metadata to
payload ratio.

4 The next set of functions, {rput,rget}_regular, operates over contiguous elements of
identical size on each side of the transfer, and only requires the caller to provide an array
or collection of base pointers to each element.

5 Finally, the most specialized set of functions, {rput,rget}_strided, provide an interface
for expressing translational and transposing copies between arbitrary rectangular sections
of densely stored N-dimensional arrays. This specialized pattern requires the least meta-
data, which is constant in size for a given dimensionality. An example of such a transfer is
depicted in Figure 15.1.
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Figure 15.1: Example of a 3-D strided translational copy, with associated metadata

15.2 API Reference

15.2.1 Requirements on Iterators

1 An iterator used with a UPC++ operation in this section must adhere to the following
requirements:

2 • It must satisfy the Iterator and EqualityComparable C++ concepts.

3 • Calling std::distance on the iterator must not invalidate it.
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15.2.2 Irregular Put

1 template < typename SrcIter , typename DestIter , typename Cx=/*...*/>
RType rput_irregular (

SrcIter src_runs_begin , SrcIter src_runs_end ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
Cx &&completions=operation_cx::as_future());

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • std::get<0>(*std::declval<SrcIter>()) has a return type convertible

to T const*, for some TriviallySerializable type T.
4 • std::get<1>(*std::declval<SrcIter>()) has a return type convertible

to size_t.
5 • std::get<0>(*std::declval<DestIter>()) has the return type

global_ptr<T>, for the same type T as with SrcIter.
6 • std::get<1>(*std::declval<DestIter>()) has a return type convert-

ible to size_t.
7 • All destination addresses must be global_ptr<T>’s referencing memory

with affinity to the same process.
8 • The length of the expanded address sequence (the sum over the run

lengths) must be the same for the source and destination sequences.
9 • The source and destination addresses must not be null pointers, even if

the length of a run is zero.
10 For some type T, takes a sequence of source addresses of T const* and a se-

quence of destination addresses of global_ptr<T> and does the corresponding
puts from each source address to the destination address of the same sequence
position.

11 Address sequences are encoded in run-length form as sequences of runs, where
each run is a pair consisting of a starting address plus the number of consecutive
elements of type T beginning at that address.

12 As an example of valid types for individual runs, SrcIter could be an it-
erator over elements of type std::pair<T const*, size_t>, and DestIter
an iterator over std::pair<global_ptr<T>, size_t>. Variations replacing
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std::pair with std::tuple or size_t with other primitive integral types are
also valid.

13 The source sequence iterators must remain valid, and the underlying addresses
and source memory contents must not be modified until source completion
is signaled. Only after source completion is signaled can the source address
sequences and memory be reclaimed by the application.

14 The destination sequence iterators must remain valid until source completion
is signaled.

15 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

16 Remote-completion operations execute on the master persona of the process
associated with the destination (i.e. dest_runs_begin->where()), unless the
destination sequence is empty (i.e. dest_runs_begin == dest_runs_end), in
which case they run on the master persona of the initiating process.

Completions:

17 • Source: Indicates that the source sequence iterators and underlying mem-
ory, as well as the destination sequence iterators, are no longer in use by
UPC++ and may be reclaimed by the user.

18 • Remote: Indicates completion of the transfer of all values.

19 • Operation: Indicates completion of all aspects of the operation: the trans-
fer and remote stores are complete.

20 C++ memory ordering: The reads of the sources will have a happens-before
relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

21 UPC++ progress level: internal
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15.2.3 Irregular Get

1 template < typename SrcIter , typename DestIter , typename Cx=/*...*/>
RType rget_irregular (

SrcIter src_runs_begin , SrcIter src_runs_end ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
Cx &&completions=operation_cx::as_future());

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • std::get<0>(*std::declval<SrcIter>()) has a type that is convertible

to global_ptr<const T> for some TriviallySerializable type T.
4 • std::get<1>(*std::declval<SrcIter>()) has a type that is convertible

to size_t.
5 • std::get<0>(*std::declval<DestIter>()) has the type T*, for the same

type T as with SrcIter.
6 • std::get<1>(*std::declval<DestIter>()) has a type that is convert-

ible to size_t.
7 • All source addresses must be global_ptr<const T>’s referencing memory

with affinity to the same process.
8 • The length of the expanded address sequence (the sum over the run

lengths) must be the same for the source and destination sequences.
9 • The source and destination addresses must not be null pointers, even if

the length of a run is zero.
10 For some type T, takes a sequence of source addresses of global_ptr<const T>

and a sequence of destination addresses of T* and does the corresponding gets
from each source address to the destination address of the same sequence posi-
tion.

11 Address sequences are encoded in run-length form as sequences of runs, where
each run is a pair consisting of a starting address plus the number of consecutive
elements of type T beginning at that address.

12 As an example of valid types for individual runs, DestIter could be an iterator
over elements of type std::pair<T*, size_t>, and SrcIter an iterator over
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std::pair<global_ptr<T>, size_t>. Variations replacing std::pair with
std::tuple or size_t with other primitive integral types are also valid.

13 The source sequence iterators must remain valid, and the underlying addresses
and memory contents must not be modified until operation completion is sig-
naled. Only after operation completion is signaled can the address sequences
and source memory be reclaimed by the application.

14 The destination sequence iterators must remain valid until operation comple-
tion is signaled.

15 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

Completions:
16 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
17 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

18 UPC++ progress level: internal
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15.2.4 Regular Put

1 template < typename SrcIter , typename DestIter , typename Cx=/*...*/>
RType rput_regular (

SrcIter src_runs_begin , SrcIter src_runs_end ,
size_t src_run_length ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
size_t dest_run_length ,
Cx &&completions=operation_cx::as_future());

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • *std::declval<SrcIter>() has a type convertible to T const*, for some

TriviallySerializable type T.
4 • *std::declval<DestIter>()) has the type global_ptr<T>, for the same

type T as with SrcIter.
5 • All destination addresses must be global_ptr<T>’s referencing memory

with affinity to the same process.
6 • The length of the two sequences delimited by (src_runs_begin,

src_runs_end) and (dest_runs_begin, dest_runs_end) multiplied by
src_run_length and dest_run_length, respectively, must be the same.

7 • The source and destination addresses must not be null pointers, even if
src_run_length and dest_run_length are zero.

8 This call has the same semantics as rput_irregular with the exception that,
for each sequence, all run lengths are the same and are factored out of the
sequences into two extra parameters src_run_length and dest_run_length,
which express the number of consecutive elements of type T in units of element
count. Thus the iterated elements are no longer pairs, but just pointers.

9 The source sequence iterators must remain valid, and the underlying addresses
and source memory contents must not be modified until source completion
is signaled. Only after source completion is signaled can the source address
sequences and memory be reclaimed by the application.

10 The destination sequence iterators must remain valid until source completion
is signaled.
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11 Remote-completion operations execute on the master persona of the process
associated with the destination (i.e. dest_runs_begin->where()), unless the
destination sequence is empty (i.e. dest_runs_begin == dest_runs_end), in
which case they run on the master persona of the initiating process.

Completions:
12 • Source: Indicates that the source sequence iterators and underlying mem-

ory, as well as the destination sequence iterators, are no longer in use by
UPC++ and may be reclaimed by the user.

13 • Remote: Indicates completion of the transfer of all values.
14 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
15 C++ memory ordering: The reads of the sources will have a happens-before

relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

16 UPC++ progress level: internal

15.2.5 Regular Get

1 template < typename SrcIter , typename DestIter , typename Cx=/*...*/>
RType rget_regular (

SrcIter src_runs_begin , SrcIter src_runs_end ,
size_t src_run_length ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
size_t dest_run_length ,
Cx &&completions=operation_cx::as_future());

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • *std::declval<DestIter>() has a type convertible to T*, for some Triv-

iallySerializable type T.
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4 • *std::declval<SrcIter>()) has a type that is convertible to
global_ptr<const T>, for the same type T as with DestIter.

5 • All source addresses must be global_ptr<const T>’s referencing memory
with affinity to the same process.

6 • The length of the two sequences delimited by (src_runs_begin,
src_runs_end) and (dest_runs_begin, dest_runs_end) multiplied by
src_run_length and dest_run_length, respectively, must be the same.

7 • The source and destination addresses must not be null pointers, even if
src_run_length and dest_run_length are zero.

8 This call has the same semantics as rget_irregular with the exception that,
for each sequence, all run lengths are the same and are factored out of the
sequences into two extra parameters src_run_length and dest_run_length,
which express the number of consecutive elements of type T in units of element
count. Thus, the iterated elements are no longer pairs, but just pointers.

9 The source sequence iterators must remain valid, and the underlying addresses
and memory contents must not be modified until operation completion is sig-
naled. Only after operation completion is signaled can the address sequences
and source memory be reclaimed by the application.

10 The destination sequence iterators must remain valid until operation comple-
tion is signaled.

Completions:
11 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
12 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

13 UPC++ progress level: internal
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15.2.6 Strided Put

1 template < size_t Dim , typename T, typename Cx=/*...*/>
RType rput_strided (

T const *src_base , ptrdiff_t const * src_strides ,
global_ptr <T> dest_base , ptrdiff_t const * dest_strides ,
size_t const *extents ,
Cx &&completions=operation_cx::as_future());

template < size_t Dim , typename T, typename Cx=/*...*/>
RType rput_strided (

T const *src_base ,
std :: array <ptrdiff_t ,Dim > const & src_strides ,
global_ptr <T> dest_base ,
std :: array <ptrdiff_t ,Dim > const & dest_strides ,
std :: array <size_t ,Dim > const &extents ,
Cx &&completions=operation_cx::as_future());

2 Precondition: T must be a TriviallySerializable type. src_base and dest_base
must not be null pointers, even if the number of bytes to be transferred is zero.

3 If Dim == 0, src_strides, dest_strides, and extents are ignored, and the
data movement performed is equivalent to rput(src_base, dest_base, 1).

4 Otherwise, performs the semantic equivalent of many put’s of type T. Let the
index space be the set of integer vectors of dimension Dim contained in the
bounding box with the inclusive lower bound at the all-zero origin, and the
exclusive upper bound equal to extents. For each index vector index in this
index space, a put will be executed with addresses computed according to the
following pseudo-code, where dotprod is the vector dot product and pointer
arithmetic is done in units of bytes (not elements of T):

5 src_address = src_base + dotprod (index , src_strides )
dest_address = dest_base + dotprod (index , dest_strides )

6 Note this implies the elements of the src_strides and dest_strides arrays
are expressed in units of bytes.

7 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

8 The elements of type T residing in the source addresses must remain valid and
unmodified until source completion is signaled.
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9 The contents of the src_strides, dest_strides, and extents arrays are con-
sumed synchronously before the call returns.

10 Remote-completion operations execute on the master persona of the process
associated with the destination (i.e. dest_base.where()).

Completions:
11 • Source: Indicates that the source memory is no longer in use by UPC++

and may be reclaimed by the user.
12 • Remote: Indicates completion of the transfer of all values.
13 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
14 C++ memory ordering: The reads of the sources will have a happens-before

relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

15 UPC++ progress level: internal

15.2.7 Strided Get

1 template < size_t Dim , typename T, typename Cx=/*...*/>
RType rget_strided (

global_ptr <const T> src_base , ptrdiff_t const * src_strides ,
T *dest_base , ptrdiff_t const * dest_strides ,
size_t const *extents ,
Cx &&completions=operation_cx::as_future());

template < size_t Dim , typename T, typename Cx=/*...*/>
RType rget_strided (

global_ptr <const T> src_base ,
std :: array <ptrdiff_t ,Dim > const & src_strides ,
T *dest_base ,
std :: array <ptrdiff_t ,Dim > const & dest_strides ,
std :: array <size_t ,Dim > const &extents ,
Cx &&completions=operation_cx::as_future());
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2 Precondition: T must be a TriviallySerializable type. src_base and dest_base
must not be null pointers, even if the number of bytes to be transferred is zero.

3 If Dim == 0, src_strides, dest_strides, and extents are ignored, and the
data movement performed is equivalent to rget(src_base, dest_base, 1).

4 Otherwise, performs the reverse direction of rput_strided where now the
source memory is remote and the destination is local.

5 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

6 The elements of type T residing in the source addresses must remain valid and
unmodified until operation completion is signaled.

7 The contents of the src_strides, dest_strides, and extents arrays are con-
sumed synchronously before the call returns.

Completions:
8 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
9 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

10 UPC++ progress level: internal
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Chapter 16

Memory Kinds

16.1 Overview

1 The memory kinds interface enables the programmer to identify regions of memory requir-
ing different access methods or having different performance properties, and subsequently
rely on the UPC++ communication services to perform transfers among such regions (both
local and remote) in a manner transparent to the programmer. With GPU devices, HBM,
scratch-pad memories, NVRAM and various types of storage-class and fabric-attached
memory technologies featured in vendors’ public road maps, UPC++ must be prepared to
deal efficiently with data transfers among all the memory technologies in any given system.

2 UPC++ uses device objects to represent storage that is distinct from main memory, regardless
of whether the storage is directly addressable from the host process. Each kind of memory
has its own device type; for example, a CUDA-enabled GPU device is represented by a
cuda_device object. The device type has a member type-alias template pointer that
refers to the device’s pointer type, as well as a null_pointer member-function template
that returns a null-pointer value of that type. Each device type is associated with a
memory_kind constant, and global pointers are parameterized by a memory_kind (Ch. 3).

3 Creating active device objects is a collective operation over the world() team so that
UPC++ can allocate the resources required to support remote access to device memory. The
result is a semantic binding of device objects as a collective object, which we refer to as a
collective device. A device type also provides a mechanism for constructing inactive device
objects, so that processes without a device resource can still participate in the collective
device-creation operation. A collective device must be destroyed by collectively calling the
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destroy() member function, which releases the resources associated with the collective
device.

1 cuda_device :: id_type device_id =
2 rank_me () % 2 == 0 ? 0 : cuda_device :: invalid_device_id ;
3 cuda_device device ( device_id ); // device 0 on even processes
4 ...
5 device . destroy (); // collective destroy

4 A device object can be associated with a device_allocator that manages memory on
the device. Only one device_allocator may be associated with a particular device ob-
ject (however multiple device objects may optionally be constructed for the same phys-
ical device). The region of memory that a device_allocator manages is called a de-
vice segment. Users can either allocate their own memory segments and pass them to
the device_allocator constructor, or they can request that the device_allocator al-
locate its own segment. In the latter case, the segment is automatically freed when the
device_allocator is destroyed.

1 size_t seg_size = 4*1024*1024; // 4MB
2 device_allocator < cuda_device > gpu_alloc (device , seg_size );
3 global_ptr <double , memory_kind :: cuda_device > gpu_array =
4 gpu_alloc .allocate <double >(1024);
5 ...
6 gpu_alloc . deallocate ( gpu_array );

5 We define the affinity (Ch. 3) of memory allocated by a device_allocator to be the host
process that owns the allocator and its associated device.

6 The device types defined in this section are available to UPC++ programs even in UPC++
installations that are not aware of a particular kind of device; for example, a program
may still create cuda_device objects. However, there are no valid CUDA device IDs in a
non-CUDA-aware installation, so any cuda_device object created by that program will be
inactive. Feature macros are provided to advertise kinds supported by the installation, for
example macro UPCXX_KIND_CUDA is defined if and only if the installation is CUDA-aware.

7 There is also a simplified interface for opening a GPU device and constructing a corre-
sponding device_allocator to manage the device segment, in a single step:

1 // make allocator for a device segment on the default GPU:
2 gpu_heap_allocator gpu_alloc = make_gpu_allocator ( seg_size );
3

4 global_ptr <double , memory_kind ::any > gpu_array =
5 gpu_alloc .allocate <double >(1024);
6 ...
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7 gpu_alloc . deallocate ( gpu_array );
8

9 gpu_alloc . destroy (); // release device segment and close device

The first line in this example creates a device_allocator for the default GPU kind de-
fined by the UPC++ implementation (i.e., generally a site-specific setting), automatically
choosing an available device of that kind.

8 The copy functions transfer data between memory locations of any kind. The source and
destination locations may either be local or remote, and they may refer to either host or
device memory.

1 global_ptr <double > host_array = new_array <double >(1024);
2 global_ptr <double , memory_kind ::any > array0 =
3 broadcast (gpu_array , 0). wait ();
4 // copy from gpu array on process 0 to host array on this process
5 copy(array0 , host_array , 1024). wait ();

16.2 API Reference

1 # define UPCXX_KIND_CUDA 202203 L

2 A macro definition to an integer literal identifying the version of the CUDA
memory-kind feature. CUDA-aware installations of UPC++ that conform to this
specification shall define the value shown above. Non-CUDA-aware installa-
tions shall leave the macro undefined. Future versions of this specification may
replace the value of this macro with a greater value.

3 # define UPCXX_KIND_HIP 202203 L

4 A macro definition to an integer literal identifying the version of the HIP
memory-kind feature. HIP-aware installations of UPC++ that conform to this
specification shall define the value shown above. Non-HIP-aware installations
shall leave the macro undefined. Future versions of this specification may re-
place the value of this macro with a greater value.

5 class bad_segment_alloc : public std :: bad_alloc ;

6 An exception type derived from std::bad_alloc that is thrown by some shared
segment constructors to indicate failure to allocate resources needed to create
the memory segment.
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16.2.1 gpu_device

1 struct gpu_device ;

2 C++ Concepts: Destructible

An abstract base class representing access to a generic GPU device.
3 memory_kind gpu_device :: kind () const;

4 Returns the memory_kind value corresponding to this object. For example, an
instance of cuda_device would return memory_kind::cuda_device.

5 virtual bool gpu_device :: is_active () const;

6 Returns whether or not this gpu_device is active. A gpu_device is active if
both the following hold:

7 • It was created with a valid device ID, or was the target of move construc-
tion or move assignment from an active gpu_device.

8 • It has not subsequently been passed as an argument to the move construc-
tor or move assignment operator, nor had its state destroyed by a call to
destroy().

9 virtual void gpu_device :: destroy ( entry_barrier lev =
entry_barrier :: user );

10 This function is collective (§12.1) over the world() team, and the master
persona (§10.5.1) must appear in the persona stack of the calling thread.

11 Precondition: If this process’s representative of the collective device being de-
stroyed is inactive, then this gpu_device must be inactive. Otherwise, this
instance must be the process’s representative of the collective device. lev must
be single-valued (Ch. 12). After the entry barrier (§12.2) specified by lev
completes, or upon entry if lev == entry_barrier::none, all asynchronous
UPC++ operations on memory associated with this device must have signaled
operation completion.

12 Destroys the calling process’s state associated with this gpu_device, deacti-
vating this device object.

13 Deactivates any device_allocator associated with this device object, and
any global pointers referencing memory in the associated device segment are
invalidated. If the device segment was allocated by the device_allocator
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constructor, additionally frees the associated device segment, without invoking
any destructors for objects in the segment. The contents of device memory
remain otherwise unchanged.

14 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

15 UPC++ progress level: user if lev == entry_barrier::user,
internal otherwise

16 virtual gpu_device ::~ gpu_device ();

17 Precondition: Either UPC++ must have been uninitialized since the construction
of this gpu_device, or this must be an inactive gpu_device.

18 Destructs this gpu_device object. The contents of device memory remain
unchanged.

19 Advice to users: gpu_device::destroy() or device_allocator::destroy()
should be used to deactivate an active gpu_device before destruction.

20 This function may be called when UPC++ is in the uninitialized state.

16.2.2 cuda_device and hip_device

1 class cuda_device final : public gpu_device ;
class hip_device final : public gpu_device ;

2 C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,
Destructible

3 cuda_device represents access to a GPU device supporting the CUDA API,
such as provided by NVIDIA-branded GPU devices.

4 hip_device represents access to a GPU device supporting the ROCm/HIP
API, such as provided by AMD-branded GPU devices.

5 Both are concrete classes derived from the abstract base class gpu_device, and
inherit the members specified in the previous section for that base class.

6 The remainder of this section specifies semantically analgous members of both
concrete classes, where GpuDevice refers to either of the concrete types.
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7 static constexpr memory_kind cuda_device :: kind =
memory_kind :: cuda_device ;

static constexpr memory_kind hip_device :: kind =
memory_kind :: hip_device ;

8 Constant that has the same value returned by gpu_device::kind().

9 struct GpuDevice {
using id_type = int;
// ...

};

10 Member alias for the type of a valid GPU device ID.

11 struct GpuDevice {
template < typename T>
using pointer = T*;
// ...

};

12 Member template alias for raw device pointer types on the GPU device.

13 template < typename T>
static constexpr GpuDevice :: pointer <T> GpuDevice :: null_pointer ();

14 Returns a representation of a null GPU device pointer.

15 template < typename T>
static constexpr size_t GpuDevice :: default_alignment ();

16 Returns the default alignment of an object of type T on the GPU device.

17 static constexpr
GpuDevice :: id_type GpuDevice :: invalid_device_id = /* see below */;
static constexpr
GpuDevice :: id_type GpuDevice :: auto_device_id = /* see below */;

18 GpuDevice::invalid_device_id is a constant representing an invalid GPU
device ID.

19 GpuDevice::auto_device_id is a distinct invalid GPU device ID that activates
different behavior when passed to certain functions. This constant shall only be
passed as a device ID to functions explicitly specified to allow it (see §16.2.5).
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20 static GpuDevice :: id_type GpuDevice :: device_n ();

21 Returns the number of valid GPU device IDs of the given variety available to
the calling process. Valid device IDs are integers in the range [0,device_n()).
Note that each variety of GPU has an independent device ID space; for example,
CUDA device ID 0 and HIP device ID 0 may in general denote different physical
GPU devices.

22 This function may be called when UPC++ is in the uninitialized state.

23 GpuDevice ::GpuDevice ();

24 Constructs an inactive GpuDevice object.
25 This function may be called when UPC++ is in the uninitialized state.

26 GpuDevice ::GpuDevice (GpuDevice :: id_type device_id );

27 This function is collective (§12.1) over the world() team, and the master
persona (§10.5.1) must appear in the persona stack of the calling thread.

28 Precondition: device_id must be GpuDevice::invalid_device_id or in the
range [0,device_n()).

29 If the device ID is GpuDevice::invalid_device_id, constructs an inactive
GpuDevice object. Otherwise, constructs an active GpuDevice with the given
device ID, which acts as the calling process’s representative of the resulting
collective device.

30 The contents of device memory remain unchanged.
31 UPC++ progress level: user

32 GpuDevice ::GpuDevice (GpuDevice && other );

33 Transfers the state represented by other to this GpuDevice. Deactivates other.
34 The contents of device memory remain unchanged.

35 GpuDevice & GpuDevice :: operator =(GpuDevice && other );

36 Precondition: !this->is_active().
37 Transfers the state represented by other to this GpuDevice. Deactivates other.
38 The contents of device memory remain unchanged.
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39 GpuDevice :: id_type GpuDevice :: device_id () const;

40 Returns the device ID of this GpuDevice. If this is an inactive device, returns
GpuDevice::invalid_device_id.

16.2.3 heap_allocator

1 struct heap_allocator ;

2 C++ Concepts: Destructible

3 An abstract base class representing an allocator for a shared memory segment.

4 heap_allocator is the base class for device_allocator<Device> (see §16.2.4),
and the latter inherits all of the following members.

5 memory_kind heap_allocator :: kind () const;

6 Returns the memory_kind value corresponding to the shared memory kind
associated with this object’s dynamic type. For example, an instance of
device_allocator<cuda_device> would return memory_kind::cuda_device.

7 virtual bool heap_allocator :: is_active () const;

8 Returns whether or not this heap_allocator is active. A heap_allocator is
active if both the following hold:

9 • It was created with an active device, or was the target of move construction
or move assignment from an active heap_allocator.

10 • It has not subsequently been passed as an argument to the move construc-
tor or move assignment operator, nor had its state destroyed by a call to
destroy().
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11 template < typename T>
global_ptr <T, memory_kind ::any >

heap_allocator :: allocate ( size_t n = 1, size_t align = 0);

12 Precondition: align is zero or a valid alignment. Additional preconditions from
the allocate member function template on the dynamic type of *this also
apply.

13 This function internally performs a virtual dispatch to the allocate member
function template of the appropriate derived type.

14 When this object is an instance of device_allocator<Device>, this call re-
turns a global pointer obtained as if by calling:
static_cast < device_allocator <Device > *>( this)->

allocate <T>(n,align)

and converting the resulting value to global_ptr<T,memory_kind::any>.
Additionally, when the provided align is zero, it is treated as if
Device::default_alignment<T>() was instead passed for align.

15 The preconditions and semantics are otherwise identical to the corresponding
allocate member function template of the appropriate derived type.

16 template < typename T, memory_kind K>
void heap_allocator :: deallocate (global_ptr <T, K> g);

17 Precondition: K == this->kind() || K == memory_kind::any. Additional
preconditions from the deallocate member function template on the dynamic
type of *this also apply.

18 This function internally performs a virtual dispatch to the deallocate member
function template of the appropriate derived type.

19 When this object is an instance of device_allocator<Device>, this call is
semantically equivalent to:
static_cast < device_allocator <Device > *>( this)->

deallocate <T>(g)

20 The preconditions and semantics are otherwise identical to the corresponding
deallocate member function template of the appropriate derived type.
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21 virtual void heap_allocator :: destroy ( entry_barrier lev =
entry_barrier :: user );

22 Equivalent to calling device_object.destroy(lev), where device_object
is the device object associated with this allocator. For example, an instance
of device_allocator<cuda_device> will invoke cuda_device::destroy() on
the associated cuda_device object.

23 The preconditions and semantics are otherwise identical to the corresponding
destroy member function of the appropriate device type.

24 virtual heap_allocator ::~ heap_allocator ();

25 Destructs this heap_allocator object by dispatching to the destructor pro-
vided by the derived allocator type.

26 This function may be called when UPC++ is in the uninitialized state.

16.2.4 device_allocator

1 template < typename Device >
class device_allocator final : public heap_allocator ;

2 C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,
Destructible

3 A class template representing an allocator for a device segment.
4 device_allocator<Device> is a concrete type derived from the abstract base

class heap_allocator, and inherits the members specified in the previous sec-
tion for that base class.

5 template < typename Device >
class device_allocator {

using device_type = Device ;
// ...

};

6 Member type that is an alias for the template parameter Device.
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7 template < typename Device >
class device_allocator {

static constexpr memory_kind kind = Device :: kind;
// ...

};

8 A constant indicating the memory kind managed by this allocator type.

9 template < typename Device >
device_allocator <Device >:: device_allocator ();

10 Constructs an inactive device_allocator object.
11 This function may be called when UPC++ is in the uninitialized state.

12 template < typename Device >
device_allocator <Device >:: device_allocator (

Device &device , size_t sz_in_bytes ,
typename Device :: pointer <void > device_memory =

Device :: template null_pointer <void >());

13 This function is collective (§12.1) over the world() team, and the master
persona (§10.5.1) must appear in the persona stack of the calling thread.

Preconditions:
14 • Either device is inactive, or device must not have been previously used

to create a device_allocator.
15 • If device is inactive, the other arguments provided by that caller are

ignored. Otherwise, the following preconditions apply.
16 • sz_in_bytes must be non-zero.
17 • If device_memory is non-null, then it must be a pointer to memory at

least sz_in_bytes bytes in size that is associated with the given device,
and it must not be managed by another device_allocator.

18 Although this operation is collective, the arguments need not be single-valued.
If device is inactive, then that caller constructs an inactive device_allocator
object. Otherwise, the caller constructs an active device_allocator associ-
ated with the given device to manage a device segment.
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19 If device is active and device_memory is non-null, then the device_allocator
constructed by this caller manages the given device_memory as its device seg-
ment, and this call does not alter the contents of device_memory. The pro-
vided device memory must remain valid until the destroy() of the constructed
device_allocator.

20 If device is active and device_memory is null, then this caller attempts to allo-
cate memory of at least size sz_in_bytes bytes from the given device to serve
as the device segment. The segment is allocated from the associated device in
a device-specific manner. Any device-specific properties of the resulting alloca-
tion are implementation-defined. If special properties are required, users may
supply their own device segment instead using the device_memory argument.

21 If segment allocation fails for any callers participating in this collective with an
active device and null device_memory, then any successful allocations by any
caller are released and all callers will throw upcxx::bad_segment_alloc.

22 Exceptions: May throw upcxx::bad_segment_alloc.
23 UPC++ progress level: user

24 template < typename Device >
device_allocator <Device >:: device_allocator (

device_allocator && other );

25 Transfers the state represented by other to this device_allocator. Deacti-
vates other.

26 The contents of device memory remain unchanged.

27 template < typename Device >
device_allocator <Device >& device_allocator <Device >:: operator =(

device_allocator && other );

28 Precondition: !this->is_active().
29 Transfers the state represented by other to this device_allocator. Deacti-

vates other.
30 The contents of device memory remain unchanged.
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31 template < typename Device >
device_allocator <Device >::~ device_allocator () override ;

32 Precondition: Either UPC++ must have been uninitialized since the construction
of this device_allocator, or this must be an inactive device_allocator.

33 Destructs this device_allocator object. The contents of device memory are
unchanged.

34 Advice to users: Either device_allocator::destroy() or Device::destroy()
should be used to deactivate an active device_allocator before destruction.

35 This function may be called when UPC++ is in the uninitialized state.

36 template < typename Device >
template < typename T>
global_ptr <T, Device ::kind >

device_allocator <Device >:: allocate ( size_t n = 1,
size_t align = Device :: default_alignment <T >());

37 Precondition: this->is_active(). align is a valid alignment.
38 Allocates enough space for n objects of type T from the segment managed by

this allocator, with the memory aligned as specified by align. If the allocation
succeeds, returns a global pointer to the start of the allocated memory, and the
allocated memory is uninitialized. If the allocation fails, returns a null pointer.

39 template < typename Device >
template < typename T>
void device_allocator <Device >:: deallocate (

global_ptr <T, Device ::kind > g);
template < typename Device >
template < typename T>
void device_allocator <Device >:: deallocate (

global_ptr <T, memory_kind ::any > g);

40 Precondition:
g.is_null() || (this->is_active() && g.where == rank_me()).
g must be either a null pointer or a non-deallocated pointer that resulted from
a call to allocate<T, align> on this allocator, for some value of align.

41 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if g is a null pointer. Does not invoke the destructor for T.
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42 template < typename Device >
template < typename T>
global_ptr <T, Device ::kind >

device_allocator <Device >:: to_global_ptr (
typename Device :: pointer <T> ptr) const;

43 Precondition: ptr is a null pointer, or this->is_active() and ptr is a valid
pointer such that the expression *ptr on this allocator’s device yields a (possi-
bly uninitialized) object of type T that resides within the segment managed by
this allocator.

44 Converts a raw device pointer to a global pointer.

45 template < typename Device >
template < typename T>
static typename Device :: pointer <T>

device_allocator <Device >:: local(global_ptr <T, Device ::kind > g);

46 Precondition: g.is_null() || g.where() == rank_me(). g must be ei-
ther a null pointer or a valid pointer to a (possibly uninitialized) object of
type T that resides within a device segment currently managed by an active
device_allocator<Device> on the caller’s process.

47 Returns the raw device pointer associated with g. If g is a null pointer, returns
Device::null_pointer<T>().

48 template < typename Device >
typename Device :: id_type

device_allocator <Device >:: device_id () const;

49 If this->is_active(), returns the ID of the device associated with this allo-
cator. Otherwise, returns Device::invalid_device_id.

50 template < typename Device >
template < typename T>
static typename Device :: id_type

device_allocator <Device >:: device_id (
global_ptr <T, Device ::kind > g);
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51 Precondition: g.is_null() || g.where() == rank_me(). g must be ei-
ther a null pointer or a valid pointer to a (possibly uninitialized) object of
type T that resides within a device segment currently managed by an active
device_allocator<Device> on the caller’s process.

52 If the pointer is not null, returns the ID of the device where the referenced
object resides. If the pointer is null, returns Device::invalid_device_id.

16.2.5 Simplified Allocator Management

1 using gpu_default_device = /* see below */;

2 A type alias for a derived type of gpu_device that indicates the default GPU
device type.

3 The choice of default GPU device type is implementation-defined.

4 using gpu_heap_allocator = device_allocator < gpu_default_device >;

5 A type alias for the default GPU device allocator.

6 template < typename Device = gpu_default_device >
device_allocator <Device > make_gpu_allocator ( size_t sz_in_bytes ,

Device :: id_type device_id = Device :: auto_device_id ,
void * device_memory = nullptr );

7 This function is collective (§12.1) over the world() team, and the master
persona (§10.5.1) must appear in the persona stack of the calling thread.

8 Precondition: Device is a derived type of gpu_device. device_id must
be Device::invalid_device_id, Device::auto_device_id, or in the range
[0,Device::device_n()). If device_memory is non-null, then device_id
must not be Device::auto_device_id.

9 Although this operation is collective, the arguments need not be single-valued.
10 If device_id is Device::auto_device_id, constructs a Device

object device_object as if by calling Device(auto_id), where
auto_id is an implementation-defined choice of valid device ID, or
Device::invalid_device_id if no valid device ID is available.

11 Otherwise, constructs a Device object device_object, as if by calling
Device(device_id).
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12 The lifetime of Device object device_object is managed internally.
13 If the resulting device_object is inactive, the other arguments pro-

vided by that caller are ignored and the call returns an inactive
device_allocator<Device>.

14 If the resulting device_object is active and device_memory is null, constructs
an active device_allocator<Device> to allocate and manage a GPU de-
vice segment of size sz_in_bytes (which must be non-zero) as if by calling
device_allocator<Device>(device_object, sz_in_bytes) and returns the
result.

15 If the resulting device_object is active and device_memory is non-null, it
must be a pointer to memory associated with the given device, and it must
not be managed by another device_allocator. The memory referenced by
device_memory must be at least sz_in_bytes bytes in size and sz_in_bytes
must be non-zero. Constructs an active device_allocator<Device> to
manage the given device_memory as a GPU device segment, as if by calling:
device_allocator<Device>(device_object,sz_in_bytes,device_memory)
and returns the result. The contents of device_memory remain unchanged.

16 Exceptions: May throw upcxx::bad_segment_alloc.
17 UPC++ progress level: user

16.2.6 Data Movement

1 template < typename T, memory_kind Kind1 , memory_kind Kind2 ,
typename Cx=/*...*/>

RType copy(
global_ptr <const T, Kind1 > src , global_ptr <T, Kind2 > dest ,
size_t count , Cx &&completions=operation_cx::as_future());

2 template < typename T, memory_kind Kind , typename Cx=/*...*/>
RType copy(

T const *src , global_ptr <T, Kind > dest , size_t count ,
Cx &&completions=operation_cx::as_future());

template < typename T, memory_kind Kind , typename Cx=/*...*/>
RType copy(

global_ptr <const T, Kind > src , T *dest , size_t count ,
Cx &&completions=operation_cx::as_future());
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3 Precondition: Tmust be TriviallySerializable. The source and destination mem-
ory regions must not overlap. src and dest must not be null pointers, even if
count is zero. src in the second variant and dest in the third variant must
reference host memory.

4 Initiates an operation to transfer and store the count items of type T begin-
ning at src to the memory beginning at dest. The values referenced in the
[src,src+count) interval must not be modified until either source or operation
completion is indicated.

5 Source- and operation-completion operations execute on the current (initiat-
ing) persona of the calling process. In the first and second variant, remote-
completion operations execute on the master persona of the host process asso-
ciated with the destination (i.e. dest.where()). In the third variant, remote-
completion operations execute on the master persona of the calling process.

Completions:
6 • Source: Indicates completion of injection or internal buffering of the source

values, signifying that the src buffer may be modified.
7 • Remote: Indicates completion of the transfer of the values, implying readi-

ness of the target buffer [dest,dest+count).
8 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and stores are complete.
9 C++ memory ordering: For LPC and RPC completions, all evaluations

sequenced-before this call will have a happens-before relationship with the exe-
cution of the completion function.

10 UPC++ progress level: internal
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