
UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes
 Scott B. Baden (PI) and Paul Hargrove (co-PI)

© 2018, Lawrence Berkeley National Laboratory

UPC++ at Lawrence Berkeley National Lab (http://upcxx.lbl.gov)

Case 1: Easy distributed hash-table via function shipping and futures

• Function shipping via RPC simplifies distributed data-structure design
• RPC inserts the key meta data at the target
• Once the RPC completes, a callback attached to the RPC uses a one

sided rput to store the associated data
• Benefits

• Key insertion and storage allocation handled at the target
• Asynchronous execution enables communication-computation overlap

// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char> > local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
 return rpc(key % rank_n(), // RPC obtains location for the data
 [key,sz]() -> global_ptr<char> { // lambda invoked by RPC
 global_ptr<char> gptr = new_array<char>(sz);
 local_map[key] = gptr; // insert in local map
 return gptr;
 }).then(// callback executes when RPC completes
 [val,sz](global_ptr<char> loc) -> future<> { // lambda RMA put
 return rput(val, loc, sz); });
}

Private address spaces

Global address space

Local
task
queue

Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

In-bound
function
invocations

Outbound function
invocations Hash table partitions:

a std::unordered_map
per rank

• Efficient weak scaling from 4 nodes onwards (Cori KNL)

2.3.1.14

Cores Cores

Case 2: symPACK: UPC++ asynchronous task-based sparse Cholesky solver
• Application: symPACK, a parallel direct linear solver for sparse

symmetric matrices
• Challenges: Sparse matrix factorizations have low computational

intensity and irregular communication patterns

Push – MPI 2-sided communication
Pull – UPC++: RPC + RMA Get when ready
 2 variants: with and without event driven scheduling

Ti
m

e
(s

)

Impact of communication strategy (boneS10)

Strong scaling of symmetric solvers
(factorization time only)

Ti
m

e
(s

)

Comparison to competing solvers (Flan_1565)

• Solution: UPC++ function shipping enables an efficient pull
communication strategy and event-driven scheduling

•  Impact: on average, symPACK delivers a ✕2.65 speedup over the
best state-of-the-art sparse symmetric solver (Results on Edison)
UPC++’s one-sided pull strategy avoids the need for (and cost of)
unexpected messages in MPI

l  UPC++ is a C++11 library
l  Lightweight, asynchronous, PGAS one-sided communication
l  Asynchronous remote function execution (function shipping)
l  Data transfers may be non-contiguous
l  Futures manage asynchrony, enable communication overlap
l  Collectives, teams, remote atomic updates
l  Distributed irregular data structures

l  Easy on-ramp and integration
l  Interoperable with MPI+OpenMP/CUDA etc.
l  Enables incremental development
l  Replace performance-critical sections with lightweight PGAS

l  Latest software release: Jan 2018
l  Runs on systems from laptops to supercomputers

