Commits

Anonymous committed 76f0518

first import of a package holding a set of C++ classes and template utilities w/o any external dependency (apart from boost)

  • Participants

Comments (0)

Files changed (8)

+2008-09-09  Sebastien Binet  <binet@lblbox>
+
+	* tagging CxxUtils-00-00-00
+	* first import of a package holding a set of C++ classes and template
+	  utilities w/o any external dependency (apart from boost)
+

File CxxUtils/hashtable.h

+// This file's extension implies that it's C, but it's really -*- C++ -*-.
+// $Id: hashtable.h,v 1.1.1.1 2008-09-10 04:02:52 binet Exp $
+/**
+ * @file CxxUtils/hashtable.h
+ * @author scott snyder <snyder@bnl.gov>, copied from gcc4.
+ * @date Apr, 2007
+ * @brief This is the TR1 hashtable implementation from gcc4,
+ *        adapted to build in Atlas.  Once the TR1 library is available
+ *        on all our platforms, we can switch to using the system-supplied
+ *        version instead.
+ *
+ *        Search for `sss' to find changes from the gcc version.
+ */
+
+// Internal header for TR1 unordered_set and unordered_map -*- C++ -*-
+// Copyright (C) 2005, 2006 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING.  If not, write to the Free
+// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction.  Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License.  This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+/*  @file  (sss --- hide from doxygen)
+ *  This is a TR1 C++ Library header. 
+ */
+
+// This header file defines std::tr1::hashtable, which is used to
+// implement std::tr1::unordered_set, std::tr1::unordered_map, 
+// std::tr1::unordered_multiset, and std::tr1::unordered_multimap.
+// hashtable has many template parameters, partly to accommodate
+// the differences between those four classes and partly to 
+// accommodate policy choices that go beyond what TR1 calls for.
+
+// ??? Arguably this should be Internal::hashtable, not std::tr1::hashtable.
+
+// Class template hashtable attempts to encapsulate all reasonable
+// variation among hash tables that use chaining.  It does not handle
+// open addressing.
+
+// References: 
+// M. Austern, "A Proposal to Add Hash Tables to the Standard
+//    Library (revision 4)," WG21 Document N1456=03-0039, 2003.
+// D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching.
+// A. Tavori and V. Dreizin, "Generic Associative Containers", 2004.
+//    ??? Full citation?
+
+#ifndef CXXUTILS_HASHTABLE_H // sss GNU_LIBSTDCXX_TR1_HASHTABLE_
+#define CXXUTILS_HASHTABLE_H // sss GNU_LIBSTDCXX_TR1_HASHTABLE_
+
+#include <utility>		// For std::pair
+#include <iterator>
+#include <cstddef>
+#include <cstdlib>
+#include <cmath>
+//#include <bits/functexcept.h> sss
+//#include <tr1/type_traits>	// For true_type and false_type sss
+
+//=====================================================================
+// sss from TR1 type_traits
+namespace CxxUtils_Internal {
+  template<typename _Tp, _Tp __v>
+    struct integral_constant
+    {
+      static const _Tp                      value = __v;
+      typedef _Tp                           value_type;
+      typedef integral_constant<_Tp, __v>   type;
+    };
+  typedef integral_constant<bool, true>     true_type;
+  typedef integral_constant<bool, false>    false_type;
+}
+// sss end from TR1 type_traits
+//=====================================================================
+//=====================================================================
+// sss from TR1 functional
+namespace SG {
+  // Definition of default hash function std::tr1::hash<>.  The types for
+  // which std::tr1::hash<T> is defined is in clause 6.3.3. of the PDTR.
+  template<typename T>
+    struct hash;
+
+#define tr1_hashtable_define_trivial_hash(T)            \
+  template<>                                            \
+    struct hash<T>                                      \
+    : public std::unary_function<T, std::size_t>        \
+    {                                                   \
+      std::size_t                                       \
+      operator()(T val) const                           \
+      { return static_cast<std::size_t>(val); }         \
+    }                                                     
+
+  tr1_hashtable_define_trivial_hash(bool);
+  tr1_hashtable_define_trivial_hash(char);
+  tr1_hashtable_define_trivial_hash(signed char);
+  tr1_hashtable_define_trivial_hash(unsigned char);
+  tr1_hashtable_define_trivial_hash(wchar_t);
+  tr1_hashtable_define_trivial_hash(short);
+  tr1_hashtable_define_trivial_hash(int);
+  tr1_hashtable_define_trivial_hash(long);
+  tr1_hashtable_define_trivial_hash(unsigned short);
+  tr1_hashtable_define_trivial_hash(unsigned int);
+  tr1_hashtable_define_trivial_hash(unsigned long);
+
+#undef tr1_hashtable_define_trivial_hash
+
+  template<typename T>
+    struct hash<T*>
+    : public std::unary_function<T*, std::size_t>
+    {
+      std::size_t
+      operator()(T* p) const
+      { return reinterpret_cast<std::size_t>(p); }
+    };
+
+  // Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
+  // (used by the next specializations of std::tr1::hash<>)
+
+  // Dummy generic implementation (for sizeof(size_t) != 4, 8).
+  template<std::size_t = sizeof(std::size_t)>
+    struct Fnv_hash
+    {
+      static std::size_t
+      hash(const char* first, std::size_t length)
+      {
+	std::size_t result = 0;
+	for (; length > 0; --length)
+	  result = (result * 131) + *first++;
+	return result;
+      }
+    };
+
+  template<>
+    struct Fnv_hash<4>
+    {
+      static std::size_t
+      hash(const char* first, std::size_t length)
+      {
+	std::size_t result = static_cast<std::size_t>(2166136261UL);
+	for (; length > 0; --length)
+	  {
+	    result ^= (std::size_t)*first++;
+	    result *= 16777619UL;
+	  }
+	return result;
+      }
+    };
+  
+  template<>
+    struct Fnv_hash<8>
+    {
+      static std::size_t
+      hash(const char* first, std::size_t length)
+      {
+	std::size_t result = static_cast<std::size_t>(14695981039346656037ULL);
+	for (; length > 0; --length)
+	  {
+	    result ^= (std::size_t)*first++;
+	    result *= 1099511628211ULL;
+	  }
+	return result;
+      }
+    };
+
+  // XXX String and floating point hashes probably shouldn't be inline
+  // member functions, since are nontrivial.  Once we have the framework
+  // for TR1 .cc files, these should go in one.
+  template<>
+    struct hash<std::string>
+    : public std::unary_function<std::string, std::size_t>
+    {      
+      std::size_t
+      operator()(const std::string& s) const
+      { return Fnv_hash<>::hash(s.data(), s.length()); }
+    };
+
+#ifdef _GLIBCXX_USE_WCHAR_T
+  template<>
+    struct hash<std::wstring>
+    : public std::unary_function<std::wstring, std::size_t>
+    {
+      std::size_t
+      operator()(const std::wstring& s) const
+      {
+	return Fnv_hash<>::hash(reinterpret_cast<const char*>(s.data()),
+				s.length() * sizeof(wchar_t));
+      }
+    };
+#endif
+
+  template<>
+    struct hash<float>
+    : public std::unary_function<float, std::size_t>
+    {
+      std::size_t
+      operator()(float fval) const
+      {
+	std::size_t result = 0;
+
+	// 0 and -0 both hash to zero.
+	if (fval != 0.0f)
+	  result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&fval),
+				    sizeof(fval));
+	return result;
+      }
+    };
+
+  template<>
+    struct hash<double>
+    : public std::unary_function<double, std::size_t>
+    {
+      std::size_t
+      operator()(double dval) const
+      {
+	std::size_t result = 0;
+
+	// 0 and -0 both hash to zero.
+	if (dval != 0.0)
+	  result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&dval),
+				    sizeof(dval));
+	return result;
+      }
+    };
+
+  // For long double, careful with random padding bits (e.g., on x86,
+  // 10 bytes -> 12 bytes) and resort to frexp.
+  template<>
+    struct hash<long double>
+    : public std::unary_function<long double, std::size_t>
+    {
+      std::size_t
+      operator()(long double ldval) const
+      {
+	std::size_t result = 0;
+
+	int exponent;
+	ldval = std::frexp(ldval, &exponent);
+	ldval = ldval < 0.0l ? -(ldval + 0.5l) : ldval;
+
+	const long double mult = std::numeric_limits<std::size_t>::max() + 1.0l;
+	ldval *= mult;
+
+	// Try to use all the bits of the mantissa (really necessary only
+	// on 32-bit targets, at least for 80-bit floating point formats).
+	const std::size_t hibits = (std::size_t)ldval;
+	ldval = (ldval - (long double)hibits) * mult;
+
+	const std::size_t coeff =
+	  (std::numeric_limits<std::size_t>::max()
+	   / std::numeric_limits<long double>::max_exponent);
+
+	result = hibits + (std::size_t)ldval + coeff * exponent;
+
+	return result;
+      }
+    };
+}
+// sss end from TR1 functional
+//=====================================================================
+
+//----------------------------------------------------------------------
+// General utilities
+
+namespace CxxUtils_Internal // sss Internal
+{
+  template<bool Flag, typename IfTrue, typename IfFalse>
+    struct IF;
+
+  template<typename IfTrue, typename IfFalse>
+    struct IF<true, IfTrue, IfFalse>
+    { typedef IfTrue type; };
+ 
+  template <typename IfTrue, typename IfFalse>
+    struct IF<false, IfTrue, IfFalse>
+    { typedef IfFalse type; };
+
+  // Helper function: return distance(first, last) for forward
+  // iterators, or 0 for input iterators.
+  template<class Iterator>
+    inline typename std::iterator_traits<Iterator>::difference_type
+    distance_fw(Iterator first, Iterator last, std::input_iterator_tag)
+    { return 0; }
+
+  template<class Iterator>
+    inline typename std::iterator_traits<Iterator>::difference_type
+    distance_fw(Iterator first, Iterator last, std::forward_iterator_tag)
+    { return std::distance(first, last); }
+
+  template<class Iterator>
+    inline typename std::iterator_traits<Iterator>::difference_type
+    distance_fw(Iterator first, Iterator last)
+    {
+      typedef typename std::iterator_traits<Iterator>::iterator_category tag;
+      return distance_fw(first, last, tag());
+    }
+  
+} // namespace CxxUtils_Internal sss
+
+//----------------------------------------------------------------------
+// Auxiliary types used for all instantiations of hashtable: nodes
+// and iterators.
+
+// Nodes, used to wrap elements stored in the hash table.  A policy
+// template parameter of class template hashtable controls whether
+// nodes also store a hash code. In some cases (e.g. strings) this may
+// be a performance win.
+
+namespace CxxUtils_Internal // sss Internal
+{
+  template<typename Value, bool cache_hash_code>
+    struct hash_node;
+
+  template<typename Value>
+    struct hash_node<Value, true>
+    {
+      Value m_v;
+      std::size_t hash_code;
+      hash_node* m_next;
+    };
+
+  template<typename Value>
+    struct hash_node<Value, false>
+    {
+      Value m_v;
+      hash_node* m_next;
+    };
+
+  // Local iterators, used to iterate within a bucket but not between
+  // buckets.
+
+  template<typename Value, bool cache>
+    struct node_iterator_base
+    {
+      node_iterator_base(hash_node<Value, cache>* p)
+      : m_cur(p) { }
+      
+      void
+      incr()
+      { m_cur = m_cur->m_next; }
+
+      hash_node<Value, cache>* m_cur;
+    };
+
+  template<typename Value, bool cache>
+    inline bool
+    operator==(const node_iterator_base<Value, cache>& x,
+	       const node_iterator_base<Value, cache>& y)
+    { return x.m_cur == y.m_cur; }
+
+  template<typename Value, bool cache>
+    inline bool
+    operator!=(const node_iterator_base<Value, cache>& x,
+	       const node_iterator_base<Value, cache>& y)
+    { return x.m_cur != y.m_cur; }
+
+  template<typename Value, bool constant_iterators, bool cache>
+    struct node_iterator
+    : public node_iterator_base<Value, cache>
+    {
+      typedef Value                                    value_type;
+      typedef typename IF<constant_iterators, const Value*, Value*>::type
+                                                       pointer;
+      typedef typename IF<constant_iterators, const Value&, Value&>::type
+                                                       reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      explicit
+      node_iterator(hash_node<Value, cache>* p = 0)
+      : node_iterator_base<Value, cache>(p) { }
+
+      reference
+      operator*() const
+      { return this->m_cur->m_v; }
+  
+      pointer
+      operator->() const
+      { return &this->m_cur->m_v; }
+
+      node_iterator&
+      operator++()
+      { 
+	this->incr(); 
+	return *this; 
+      }
+  
+      node_iterator
+      operator++(int)
+      { 
+	node_iterator tmp(*this);
+	this->incr();
+	return tmp;
+      }
+    };
+
+  template<typename Value, bool constant_iterators, bool cache>
+    struct node_const_iterator
+    : public node_iterator_base<Value, cache>
+    {
+      typedef Value                                    value_type;
+      typedef const Value*                             pointer;
+      typedef const Value&                             reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      explicit
+      node_const_iterator(hash_node<Value, cache>* p = 0)
+      : node_iterator_base<Value, cache>(p) { }
+
+      node_const_iterator(const node_iterator<Value, constant_iterators,
+			  cache>& x)
+      : node_iterator_base<Value, cache>(x.m_cur) { }
+
+      reference
+      operator*() const
+      { return this->m_cur->m_v; }
+  
+      pointer
+      operator->() const
+      { return &this->m_cur->m_v; }
+
+      node_const_iterator&
+      operator++()
+      { 
+	this->incr(); 
+	return *this; 
+      }
+  
+      node_const_iterator
+      operator++(int)
+      { 
+	node_const_iterator tmp(*this);
+	this->incr();
+	return tmp;
+      }
+    };
+
+  template<typename Value, bool cache>
+    struct hashtable_iterator_base
+    {
+      hashtable_iterator_base(hash_node<Value, cache>* node,
+			      hash_node<Value, cache>** bucket)
+      : m_cur_node(node), m_cur_bucket(bucket)
+      { }
+
+      void
+      incr()
+      {
+	m_cur_node = m_cur_node->m_next;
+	if (!m_cur_node)
+	  m_incr_bucket();
+      }
+
+      void
+      m_incr_bucket();
+
+      hash_node<Value, cache>* m_cur_node;
+      hash_node<Value, cache>** m_cur_bucket;
+    };
+
+  // Global iterators, used for arbitrary iteration within a hash
+  // table.  Larger and more expensive than local iterators.
+  template<typename Value, bool cache>
+    void
+    hashtable_iterator_base<Value, cache>::
+    m_incr_bucket()
+    {
+      ++m_cur_bucket;
+
+      // This loop requires the bucket array to have a non-null sentinel.
+      while (!*m_cur_bucket)
+	++m_cur_bucket;
+      m_cur_node = *m_cur_bucket;
+    }
+
+  template<typename Value, bool cache>
+    inline bool
+    operator==(const hashtable_iterator_base<Value, cache>& x,
+	       const hashtable_iterator_base<Value, cache>& y)
+    { return x.m_cur_node == y.m_cur_node; }
+
+  template<typename Value, bool cache>
+    inline bool
+    operator!=(const hashtable_iterator_base<Value, cache>& x,
+	       const hashtable_iterator_base<Value, cache>& y)
+    { return x.m_cur_node != y.m_cur_node; }
+
+  template<typename Value, bool constant_iterators, bool cache>
+    struct hashtable_iterator
+    : public hashtable_iterator_base<Value, cache>
+    {
+      typedef Value                                    value_type;
+      typedef typename IF<constant_iterators, const Value*, Value*>::type
+                                                       pointer;
+      typedef typename IF<constant_iterators, const Value&, Value&>::type
+                                                       reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      hashtable_iterator(hash_node<Value, cache>* p,
+			 hash_node<Value, cache>** b)
+      : hashtable_iterator_base<Value, cache>(p, b) { }
+
+      explicit
+      hashtable_iterator(hash_node<Value, cache>** b)
+      : hashtable_iterator_base<Value, cache>(*b, b) { }
+  
+      reference
+      operator*() const
+      { return this->m_cur_node->m_v; }
+  
+      pointer
+      operator->() const
+      { return &this->m_cur_node->m_v; }
+
+      hashtable_iterator&
+      operator++()
+      { 
+	this->incr();
+	return *this;
+      }
+  
+      hashtable_iterator
+      operator++(int)
+      { 
+	hashtable_iterator tmp(*this);
+	this->incr();
+	return tmp;
+      }
+    };
+
+  template<typename Value, bool constant_iterators, bool cache>
+    struct hashtable_const_iterator
+    : public hashtable_iterator_base<Value, cache>
+    {
+      typedef Value                                    value_type;
+      typedef const Value*                             pointer;
+      typedef const Value&                             reference;
+      typedef std::ptrdiff_t                           difference_type;
+      typedef std::forward_iterator_tag                iterator_category;
+
+      hashtable_const_iterator(hash_node<Value, cache>* p,
+			       hash_node<Value, cache>** b)
+      : hashtable_iterator_base<Value, cache>(p, b) { }
+
+      explicit
+      hashtable_const_iterator(hash_node<Value, cache>** b)
+      : hashtable_iterator_base<Value, cache>(*b, b) { }
+  
+      hashtable_const_iterator(const hashtable_iterator<Value,
+			       constant_iterators, cache>& x)
+      : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }
+
+      reference
+      operator*() const
+      { return this->m_cur_node->m_v; }
+  
+      pointer
+      operator->() const
+      { return &this->m_cur_node->m_v; }
+
+      hashtable_const_iterator&
+      operator++()
+      { 
+	this->incr();
+	return *this;
+      }
+  
+      hashtable_const_iterator
+      operator++(int)
+      { 
+	hashtable_const_iterator tmp(*this);
+	this->incr();
+	return tmp;
+      }
+    };
+} // namespace CxxUtils_Internal sss
+
+// ----------------------------------------------------------------------
+// Many of class template hashtable's template parameters are policy
+// classes.  These are defaults for the policies.
+
+namespace CxxUtils_Internal // sss Internal
+{
+  // The two key extraction policies used by the *set and *map variants.
+  template<typename T>
+    struct identity
+    {
+      T
+      operator()(const T& t) const
+      { return t; }
+    };
+
+  template<typename Pair>
+    struct extract1st
+    {
+      typename Pair::first_type
+      operator()(const Pair& p) const
+      { return p.first; }
+    };
+
+  // Default range hashing function: use division to fold a large number
+  // into the range [0, N).
+  struct mod_range_hashing
+  {
+    typedef std::size_t first_argument_type;
+    typedef std::size_t second_argument_type;
+    typedef std::size_t result_type;
+
+    result_type
+    operator() (first_argument_type r, second_argument_type N) const
+    { return r % N; }
+  };
+
+  // Default ranged hash function H.  In principle it should be a
+  // function object composed from objects of type H1 and H2 such that
+  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
+  // h1 and h2.  So instead we'll just use a tag to tell class template
+  // hashtable to do that composition.
+  struct default_ranged_hash { };
+
+  // Default value for rehash policy.  Bucket size is (usually) the
+  // smallest prime that keeps the load factor small enough.
+  struct prime_rehash_policy
+  {
+    prime_rehash_policy(float z = 1.0);
+    
+    float
+    max_load_factor() const;
+
+    // Return a bucket size no smaller than n.
+    std::size_t
+    next_bkt(std::size_t n) const;
+    
+    // Return a bucket count appropriate for n elements
+    std::size_t
+    bkt_for_elements(std::size_t n) const;
+    
+    // n_bkt is current bucket count, n_elt is current element count,
+    // and n_ins is number of elements to be inserted.  Do we need to
+    // increase bucket count?  If so, return make_pair(true, n), where n
+    // is the new bucket count.  If not, return make_pair(false, 0).
+    std::pair<bool, std::size_t>
+    need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;
+    
+    float m_max_load_factor;
+    float m_growth_factor;
+    mutable std::size_t m_next_resize;
+  };
+
+  // XXX This is a hack.  prime_rehash_policy's member functions, and
+  // certainly the list of primes, should be defined in a .cc file.
+  // We're temporarily putting them in a header because we don't have a
+  // place to put TR1 .cc files yet.  There's no good reason for any of
+  // prime_rehash_policy's member functions to be inline, and there's
+  // certainly no good reason for X<> to exist at all.
+  // sss: Moved the prime table to hashtable.cxx.  
+  //      gcc 3.2.3 chokes on the original code.
+  
+  struct lt
+  {
+    template<typename X, typename Y>
+      bool
+      operator()(X x, Y y)
+      { return x < y; }
+  };
+
+  //template<int dummy> // sss
+    struct X
+    {
+      static const int n_primes = 256;
+      static const unsigned long primes[n_primes + 1];
+    };
+
+#if 0 // sss
+  template<int dummy>
+    const int X<dummy>::n_primes;
+
+  template<int dummy>
+    const unsigned long X<dummy>::primes[n_primes + 1] =
+    {
+      2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
+      37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
+      83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
+      157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
+      277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
+      503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
+      953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
+      1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
+      3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
+      5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
+      11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
+      19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
+      33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
+      57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
+      99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
+      159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
+      256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
+      410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
+      658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
+      1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
+      1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
+      2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
+      4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
+      6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
+      11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
+      16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
+      24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
+      36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
+      54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
+      80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
+      118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
+      176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
+      260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
+      386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
+      573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
+      849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
+      1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
+      1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
+      2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
+      3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
+      4294967291ul,
+      4294967291ul // sentinel so we don't have to test result of lower_bound
+    };
+#endif // sss
+
+  inline
+  prime_rehash_policy::
+  prime_rehash_policy(float z)
+  : m_max_load_factor(z), m_growth_factor(2.f), m_next_resize(0)
+  { }
+
+  inline float
+  prime_rehash_policy::
+  max_load_factor() const
+  { return m_max_load_factor; }
+
+  // Return a prime no smaller than n.
+  inline std::size_t
+  prime_rehash_policy::
+  next_bkt(std::size_t n) const
+  {
+    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
+    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, n); // sss
+    m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+    return *p;
+  }
+
+  // Return the smallest prime p such that alpha p >= n, where alpha
+  // is the load factor.
+  inline std::size_t
+  prime_rehash_policy::
+  bkt_for_elements(std::size_t n) const
+  {
+    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
+    const float min_bkts = n / m_max_load_factor;
+    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, // sss
+					       min_bkts, lt());
+    m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+    return *p;
+  }
+
+  // Finds the smallest prime p such that alpha p > n_elt + n_ins.
+  // If p > n_bkt, return make_pair(true, p); otherwise return
+  // make_pair(false, 0).  In principle this isn't very different from 
+  // bkt_for_elements.
+  
+  // The only tricky part is that we're caching the element count at
+  // which we need to rehash, so we don't have to do a floating-point
+  // multiply for every insertion.
+  
+  inline std::pair<bool, std::size_t>
+  prime_rehash_policy::
+  need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
+  {
+    if (n_elt + n_ins > m_next_resize)
+      {
+	float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
+	if (min_bkts > n_bkt)
+	  {
+	    min_bkts = std::max (min_bkts, m_growth_factor * n_bkt);
+	    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
+	    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, // sss
+						       min_bkts, lt());
+	    m_next_resize = 
+	      static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+	    return std::make_pair(true, *p);
+	  }
+	else 
+	  {
+	    m_next_resize = 
+	      static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
+	    return std::make_pair(false, 0);
+	  }
+      }
+    else
+      return std::make_pair(false, 0);
+  }
+
+} // namespace CxxUtils_Internal sss
+
+//----------------------------------------------------------------------
+// Base classes for std::tr1::hashtable.  We define these base classes
+// because in some cases we want to do different things depending on
+// the value of a policy class.  In some cases the policy class affects
+// which member functions and nested typedefs are defined; we handle that
+// by specializing base class templates.  Several of the base class templates
+// need to access other members of class template hashtable, so we use
+// the "curiously recurring template pattern" for them.
+
+namespace CxxUtils_Internal // sss Internal
+{
+  // class template map_base.  If the hashtable has a value type of the
+  // form pair<T1, T2> and a key extraction policy that returns the
+  // first part of the pair, the hashtable gets a mapped_type typedef.
+  // If it satisfies those criteria and also has unique keys, then it
+  // also gets an operator[].
+  
+  template<typename K, typename V, typename Ex, bool unique, typename Hashtable>
+    struct map_base { };
+	  
+  template<typename K, typename Pair, typename Hashtable>
+    struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
+    {
+      typedef typename Pair::second_type mapped_type;
+    };
+
+  template<typename K, typename Pair, typename Hashtable>
+    struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
+    {
+      typedef typename Pair::second_type mapped_type;
+      
+      mapped_type&
+      operator[](const K& k)
+      {
+	Hashtable* h = static_cast<Hashtable*>(this);
+	typename Hashtable::iterator it = 
+	  h->insert(std::make_pair(k, mapped_type())).first;
+	return it->second;
+      }
+    };
+
+  // class template rehash_base.  Give hashtable the max_load_factor
+  // functions iff the rehash policy is prime_rehash_policy.
+  template<typename RehashPolicy, typename Hashtable>
+    struct rehash_base { };
+
+  template<typename Hashtable>
+    struct rehash_base<prime_rehash_policy, Hashtable>
+    {
+      float
+      max_load_factor() const
+      {
+	const Hashtable* This = static_cast<const Hashtable*>(this);
+	return This->rehash_policy().max_load_factor();
+      }
+
+      void
+      max_load_factor(float z)
+      {
+	Hashtable* This = static_cast<Hashtable*>(this);
+	This->rehash_policy(prime_rehash_policy(z));    
+      }
+    };
+
+  // Class template hash_code_base.  Encapsulates two policy issues that
+  // aren't quite orthogonal.
+  //   (1) the difference between using a ranged hash function and using
+  //       the combination of a hash function and a range-hashing function.
+  //       In the former case we don't have such things as hash codes, so
+  //       we have a dummy type as placeholder.
+  //   (2) Whether or not we cache hash codes.  Caching hash codes is
+  //       meaningless if we have a ranged hash function.
+  // We also put the key extraction and equality comparison function 
+  // objects here, for convenience.
+  
+  // Primary template: unused except as a hook for specializations.
+  
+  template<typename Key, typename Value,
+	   typename ExtractKey, typename Equal,
+	   typename H1, typename H2, typename H,
+	   bool cache_hash_code>
+    struct hash_code_base;
+
+  // Specialization: ranged hash function, no caching hash codes.  H1
+  // and H2 are provided but ignored.  We define a dummy hash code type.
+  template<typename Key, typename Value,
+	   typename ExtractKey, typename Equal,
+	   typename H1, typename H2, typename H>
+    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, false>
+    {
+    protected:
+      hash_code_base(const ExtractKey& ex, const Equal& eq,
+		     const H1&, const H2&, const H& h)
+      : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }
+
+      typedef void* hash_code_t;
+  
+      hash_code_t
+      m_hash_code(const Key& k) const
+      { return 0; }
+  
+      std::size_t
+      bucket_index(const Key& k, hash_code_t, std::size_t N) const
+      { return m_ranged_hash (k, N); }
+
+      std::size_t
+      bucket_index(const hash_node<Value, false>* p, std::size_t N) const
+      { return m_ranged_hash (m_extract (p->m_v), N); }
+  
+      bool
+      compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
+      { return m_eq (k, m_extract(n->m_v)); }
+
+      void
+      store_code(hash_node<Value, false>*, hash_code_t) const
+      { }
+
+      void
+      copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
+      { }
+      
+      void
+      m_swap(hash_code_base& x)
+      {
+	std::swap(m_extract, x.m_extract);
+	std::swap(m_eq, x.m_eq);
+	std::swap(m_ranged_hash, x.m_ranged_hash);
+      }
+
+    protected:
+      ExtractKey m_extract;
+      Equal m_eq;
+      H m_ranged_hash;
+    };
+
+
+  // No specialization for ranged hash function while caching hash codes.
+  // That combination is meaningless, and trying to do it is an error.
+  
+  
+  // Specialization: ranged hash function, cache hash codes.  This
+  // combination is meaningless, so we provide only a declaration
+  // and no definition.
+  
+  template<typename Key, typename Value,
+	    typename ExtractKey, typename Equal,
+	    typename H1, typename H2, typename H>
+    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, true>;
+
+
+  // Specialization: hash function and range-hashing function, no
+  // caching of hash codes.  H is provided but ignored.  Provides
+  // typedef and accessor required by TR1.
+  
+  template<typename Key, typename Value,
+	   typename ExtractKey, typename Equal,
+	   typename H1, typename H2>
+    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
+			  default_ranged_hash, false>
+    {
+      typedef H1 hasher;
+      
+      hasher
+      hash_function() const
+      { return m_h1; }
+
+    protected:
+      hash_code_base(const ExtractKey& ex, const Equal& eq,
+		     const H1& h1, const H2& h2, const default_ranged_hash&)
+      : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+      typedef std::size_t hash_code_t;
+      
+      hash_code_t
+      m_hash_code(const Key& k) const
+      { return m_h1(k); }
+      
+      std::size_t
+      bucket_index(const Key&, hash_code_t c, std::size_t N) const
+      { return m_h2 (c, N); }
+
+      std::size_t
+      bucket_index(const hash_node<Value, false>* p, std::size_t N) const
+      { return m_h2 (m_h1 (m_extract (p->m_v)), N); }
+
+      bool
+      compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
+      { return m_eq (k, m_extract(n->m_v)); }
+
+      void
+      store_code(hash_node<Value, false>*, hash_code_t) const
+      { }
+
+      void
+      copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
+      { }
+
+      void
+      m_swap(hash_code_base& x)
+      {
+	std::swap(m_extract, x.m_extract);
+	std::swap(m_eq, x.m_eq);
+	std::swap(m_h1, x.m_h1);
+	std::swap(m_h2, x.m_h2);
+      }
+
+    protected:
+      ExtractKey m_extract;
+      Equal m_eq;
+      H1 m_h1;
+      H2 m_h2;
+    };
+
+  // Specialization: hash function and range-hashing function, 
+  // caching hash codes.  H is provided but ignored.  Provides
+  // typedef and accessor required by TR1.
+  template<typename Key, typename Value,
+	   typename ExtractKey, typename Equal,
+	   typename H1, typename H2>
+    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
+			  default_ranged_hash, true>
+    {
+      typedef H1 hasher;
+      
+      hasher
+      hash_function() const
+      { return m_h1; }
+
+    protected:
+      hash_code_base(const ExtractKey& ex, const Equal& eq,
+		     const H1& h1, const H2& h2, const default_ranged_hash&)
+      : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+      typedef std::size_t hash_code_t;
+  
+      hash_code_t
+      m_hash_code(const Key& k) const
+      { return m_h1(k); }
+  
+      std::size_t
+      bucket_index(const Key&, hash_code_t c, std::size_t N) const
+      { return m_h2 (c, N); }
+
+      std::size_t
+      bucket_index(const hash_node<Value, true>* p, std::size_t N) const
+      { return m_h2 (p->hash_code, N); }
+
+      bool
+      compare(const Key& k, hash_code_t c, hash_node<Value, true>* n) const
+      { return c == n->hash_code && m_eq(k, m_extract(n->m_v)); }
+
+      void
+      store_code(hash_node<Value, true>* n, hash_code_t c) const
+      { n->hash_code = c; }
+
+      void
+      copy_code(hash_node<Value, true>* to,
+		const hash_node<Value, true>* from) const
+      { to->hash_code = from->hash_code; }
+
+      void
+      m_swap(hash_code_base& x)
+      {
+	std::swap(m_extract, x.m_extract);
+	std::swap(m_eq, x.m_eq);
+	std::swap(m_h1, x.m_h1);
+	std::swap(m_h2, x.m_h2);
+      }
+      
+    protected:
+      ExtractKey m_extract;
+      Equal m_eq;
+      H1 m_h1;
+      H2 m_h2;
+    };
+
+} // namespace CxxUtils_Internal sss
+
+//namespace std      sss
+//{                  sss
+namespace SG // tr1  sss
+{
+#define Internal CxxUtils_Internal // sss
+  //----------------------------------------------------------------------
+  // Class template hashtable, class definition.
+  
+  // Meaning of class template hashtable's template parameters
+  
+  // Key and Value: arbitrary CopyConstructible types.
+  
+  // Allocator: an allocator type ([lib.allocator.requirements]) whose
+  // value type is Value.
+  
+  // ExtractKey: function object that takes a object of type Value
+  // and returns a value of type Key.
+  
+  // Equal: function object that takes two objects of type k and returns
+  // a bool-like value that is true if the two objects are considered equal.
+  
+  // H1: the hash function.  A unary function object with argument type
+  // Key and result type size_t.  Return values should be distributed
+  // over the entire range [0, numeric_limits<size_t>:::max()].
+  
+  // H2: the range-hashing function (in the terminology of Tavori and
+  // Dreizin).  A binary function object whose argument types and result
+  // type are all size_t.  Given arguments r and N, the return value is
+  // in the range [0, N).
+  
+  // H: the ranged hash function (Tavori and Dreizin). A binary function
+  // whose argument types are Key and size_t and whose result type is
+  // size_t.  Given arguments k and N, the return value is in the range
+  // [0, N).  Default: h(k, N) = h2(h1(k), N).  If H is anything other
+  // than the default, H1 and H2 are ignored.
+  
+  // RehashPolicy: Policy class with three members, all of which govern
+  // the bucket count. n_bkt(n) returns a bucket count no smaller
+  // than n.  bkt_for_elements(n) returns a bucket count appropriate
+  // for an element count of n.  need_rehash(n_bkt, n_elt, n_ins)
+  // determines whether, if the current bucket count is n_bkt and the
+  // current element count is n_elt, we need to increase the bucket
+  // count.  If so, returns make_pair(true, n), where n is the new
+  // bucket count.  If not, returns make_pair(false, <anything>).
+  
+  // ??? Right now it is hard-wired that the number of buckets never
+  // shrinks.  Should we allow RehashPolicy to change that?
+  
+  // cache_hash_code: bool.  true if we store the value of the hash
+  // function along with the value.  This is a time-space tradeoff.
+  // Storing it may improve lookup speed by reducing the number of times
+  // we need to call the Equal function.
+  
+  // constant_iterators: bool.  true if iterator and const_iterator are
+  // both constant iterator types.  This is true for unordered_set and
+  // unordered_multiset, false for unordered_map and unordered_multimap.
+  
+  // unique_keys: bool.  true if the return value of hashtable::count(k)
+  // is always at most one, false if it may be an arbitrary number.  This
+  // true for unordered_set and unordered_map, false for unordered_multiset
+  // and unordered_multimap.
+  
+  template<typename Key, typename Value, 
+	   typename Allocator,
+	   typename ExtractKey, typename Equal,
+	   typename H1, typename H2,
+	   typename H, typename RehashPolicy,
+	   bool cache_hash_code,
+	   bool constant_iterators,
+	   bool unique_keys>
+    class hashtable
+    : public Internal::rehash_base<RehashPolicy,
+				   hashtable<Key, Value, Allocator, ExtractKey,
+					     Equal, H1, H2, H, RehashPolicy,
+					     cache_hash_code, constant_iterators,
+					     unique_keys> >,
+      public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H,
+				      cache_hash_code>,
+      public Internal::map_base<Key, Value, ExtractKey, unique_keys,
+				hashtable<Key, Value, Allocator, ExtractKey,
+					  Equal, H1, H2, H, RehashPolicy,
+					  cache_hash_code, constant_iterators,
+					  unique_keys> >
+    {
+    public:
+      typedef Allocator                                      allocator_type;
+      typedef Value                                          value_type;
+      typedef Key                                            key_type;
+      typedef Equal                                          key_equal;
+      // mapped_type, if present, comes from map_base.
+      // hasher, if present, comes from hash_code_base.
+      typedef typename Allocator::difference_type            difference_type;
+      typedef typename Allocator::size_type                  size_type;
+      typedef typename Allocator::reference                  reference;
+      typedef typename Allocator::const_reference            const_reference;
+      
+      typedef Internal::node_iterator<value_type, constant_iterators,
+				      cache_hash_code>
+        local_iterator;
+      typedef Internal::node_const_iterator<value_type, constant_iterators,
+					    cache_hash_code>
+        const_local_iterator;
+
+      typedef Internal::hashtable_iterator<value_type, constant_iterators,
+					   cache_hash_code>
+        iterator;
+      typedef Internal::hashtable_const_iterator<value_type, constant_iterators,
+						 cache_hash_code>
+        const_iterator;
+
+    private:
+      typedef Internal::hash_node<Value, cache_hash_code>    node;
+      typedef typename Allocator::template rebind<node>::other
+        node_allocator_t;
+      typedef typename Allocator::template rebind<node*>::other
+        bucket_allocator_t;
+
+    private:
+      node_allocator_t m_node_allocator;
+      node** m_buckets;
+      size_type m_bucket_count;
+      size_type m_element_count;
+      RehashPolicy m_rehash_policy;
+      
+      node*
+      m_allocate_node(const value_type& v);
+  
+      void
+      m_deallocate_node(node* n);
+  
+      void
+      m_deallocate_nodes(node**, size_type);
+
+      node**
+      m_allocate_buckets(size_type n);
+  
+      void
+      m_deallocate_buckets(node**, size_type n);
+
+    public:			    // Constructor, destructor, assignment, swap
+      hashtable(size_type bucket_hint,
+		const H1&, const H2&, const H&,
+		const Equal&, const ExtractKey&,
+		const allocator_type&);
+  
+      template<typename InIter>
+        hashtable(InIter first, InIter last,
+		  size_type bucket_hint,
+		  const H1&, const H2&, const H&,
+		  const Equal&, const ExtractKey&,
+		  const allocator_type&);
+  
+      hashtable(const hashtable&);
+      
+      hashtable&
+      operator=(const hashtable&);
+  
+      ~hashtable();
+
+      void swap(hashtable&);
+
+    public:				// Basic container operations
+      iterator
+      begin()
+      {
+	iterator i(m_buckets);
+	if (!i.m_cur_node)
+	  i.m_incr_bucket();
+	return i;
+      }
+
+      const_iterator
+      begin() const
+      {
+	const_iterator i(m_buckets);
+	if (!i.m_cur_node)
+	  i.m_incr_bucket();
+	return i;
+      }
+
+      iterator
+      end()
+      { return iterator(m_buckets + m_bucket_count); }
+
+      const_iterator
+      end() const
+      { return const_iterator(m_buckets + m_bucket_count); }
+
+      size_type
+      size() const
+      { return m_element_count; }
+  
+      bool
+      empty() const
+      { return size() == 0; }
+
+      allocator_type
+      get_allocator() const
+      { return m_node_allocator; }
+  
+      size_type
+      max_size() const
+      { return m_node_allocator.max_size(); }
+
+    public:                             // Observers
+      key_equal
+      key_eq() const
+      { return this->m_eq; }
+
+      // hash_function, if present, comes from hash_code_base.
+
+    public:				// Bucket operations
+      size_type
+      bucket_count() const
+      { return m_bucket_count; }
+  
+      size_type
+      max_bucket_count() const
+      { return max_size(); }
+  
+      size_type
+      bucket_size(size_type n) const
+      { return std::distance(begin(n), end(n)); }
+  
+      size_type
+      bucket(const key_type& k) const
+      { 
+	return this->bucket_index(k, this->m_hash_code(k),
+				  this->m_bucket_count);
+      }
+
+      local_iterator
+      begin(size_type n)
+      { return local_iterator(m_buckets[n]); }
+  
+      local_iterator
+      end(size_type)
+      { return local_iterator(0); }
+  
+      const_local_iterator
+      begin(size_type n) const
+      { return const_local_iterator(m_buckets[n]); }
+  
+      const_local_iterator
+      end(size_type) const
+      { return const_local_iterator(0); }
+
+      float
+      load_factor() const
+      { 
+	return static_cast<float>(size()) / static_cast<float>(bucket_count());
+      }
+      // max_load_factor, if present, comes from rehash_base.
+
+      // Generalization of max_load_factor.  Extension, not found in TR1.  Only
+      // useful if RehashPolicy is something other than the default.
+      const RehashPolicy&
+      rehash_policy() const
+      { return m_rehash_policy; }
+      
+      void 
+      rehash_policy(const RehashPolicy&);
+
+    public:				// lookup
+      iterator
+      find(const key_type&);
+
+      const_iterator
+      find(const key_type& k) const;
+
+      size_type
+      count(const key_type& k) const;
+
+      std::pair<iterator, iterator>
+      equal_range(const key_type& k);
+
+      std::pair<const_iterator, const_iterator>
+      equal_range(const key_type& k) const;
+
+    private:			// Insert and erase helper functions
+      // ??? This dispatching is a workaround for the fact that we don't
+      // have partial specialization of member templates; it would be
+      // better to just specialize insert on unique_keys.  There may be a
+      // cleaner workaround.
+      typedef typename Internal::IF<unique_keys,
+				    std::pair<iterator, bool>, iterator>::type
+        Insert_Return_Type;
+
+      typedef typename Internal::IF<unique_keys,
+				    Internal::extract1st<Insert_Return_Type>,
+				    Internal::identity<Insert_Return_Type>
+                                   >::type
+        Insert_Conv_Type;
+
+      node*
+      find_node(node* p, const key_type& k,
+		typename hashtable::hash_code_t c) const;
+
+      std::pair<iterator, bool>
+      insert(const value_type&, CxxUtils_Internal/*std::tr1*/::true_type); // sss
+  
+      iterator
+      insert(const value_type&, CxxUtils_Internal/*std::tr1*/::false_type); // sss
+
+      void
+      erase_node(node*, node**);
+
+    public:				// Insert and erase
+      Insert_Return_Type
+      insert(const value_type& v) 
+      { 
+	return this->insert(v, CxxUtils_Internal/*std::tr1*/::integral_constant<bool,//sss
+			    unique_keys>());
+      }
+
+      iterator
+      insert(iterator, const value_type& v)
+      { return iterator(Insert_Conv_Type()(this->insert(v))); }
+      
+      const_iterator
+      insert(const_iterator, const value_type& v)
+      { return const_iterator(Insert_Conv_Type()(this->insert(v))); }
+
+      template<typename InIter>
+        void
+        insert(InIter first, InIter last);
+
+      iterator
+      erase(iterator);
+
+      const_iterator
+      erase(const_iterator);
+
+      size_type
+      erase(const key_type&);
+
+      iterator
+      erase(iterator, iterator);
+
+      const_iterator
+      erase(const_iterator, const_iterator);
+
+      void
+      clear();
+
+    public:
+      // Set number of buckets to be appropriate for container of n element.
+      void rehash(size_type n);
+      
+    private:
+      // Unconditionally change size of bucket array to n.
+      void m_rehash(size_type n);
+    };
+
+  //----------------------------------------------------------------------
+  // Definitions of class template hashtable's out-of-line member functions.
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node*
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_allocate_node(const value_type& v)
+    {
+      node* n = m_node_allocator.allocate(1);
+      try
+	{
+	  get_allocator().construct(&n->m_v, v);
+	  n->m_next = 0;
+	  return n;
+	}
+      catch(...)
+	{
+	  m_node_allocator.deallocate(n, 1);
+	  __throw_exception_again;
+	}
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_deallocate_node(node* n)
+    {
+      get_allocator().destroy(&n->m_v);
+      m_node_allocator.deallocate(n, 1);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_deallocate_nodes(node** array, size_type n)
+    {
+      for (size_type i = 0; i < n; ++i)
+	{
+	  node* p = array[i];
+	  while (p)
+	    {
+	      node* tmp = p;
+	      p = p->m_next;
+	      m_deallocate_node (tmp);
+	    }
+	  array[i] = 0;
+	}
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node**
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_allocate_buckets(size_type n)
+    {
+      bucket_allocator_t alloc(m_node_allocator);
+
+      // We allocate one extra bucket to hold a sentinel, an arbitrary
+      // non-null pointer.  Iterator increment relies on this.
+      node** p = alloc.allocate(n+1);
+      std::fill(p, p+n, (node*) 0);
+      p[n] = reinterpret_cast<node*>(0x1000);
+      return p;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_deallocate_buckets(node** p, size_type n)
+    {
+      bucket_allocator_t alloc(m_node_allocator);
+      alloc.deallocate(p, n+1);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    hashtable(size_type bucket_hint,
+	      const H1& h1, const H2& h2, const H& h,
+	      const Eq& eq, const Ex& exk,
+	      const allocator_type& a)
+    : Internal::rehash_base<RP,hashtable>(),
+      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(exk, eq, h1, h2, h),
+      Internal::map_base<K, V, Ex, u, hashtable>(),
+      m_node_allocator(a),
+      m_bucket_count(0),
+      m_element_count(0),
+      m_rehash_policy()
+    {
+      m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
+      m_buckets = m_allocate_buckets(m_bucket_count);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    template<typename InIter>
+      hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+      hashtable(InIter f, InIter l,
+		size_type bucket_hint,
+		const H1& h1, const H2& h2, const H& h,
+		const Eq& eq, const Ex& exk,
+		const allocator_type& a)
+      : Internal::rehash_base<RP,hashtable>(),
+	Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c> (exk, eq,
+							      h1, h2, h),
+	Internal::map_base<K,V,Ex,u,hashtable>(),
+	m_node_allocator(a),
+	m_bucket_count (0),
+	m_element_count(0),
+	m_rehash_policy()
+      {
+	m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
+				  m_rehash_policy.
+				  bkt_for_elements(Internal::
+						   distance_fw(f, l)));
+	m_buckets = m_allocate_buckets(m_bucket_count);
+	try
+	  {
+	    for (; f != l; ++f)
+	      this->insert(*f);
+	  }
+	catch(...)
+	  {
+	    clear();
+	    m_deallocate_buckets(m_buckets, m_bucket_count);
+	    __throw_exception_again;
+	  }
+      }
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    hashtable(const hashtable& ht)
+    : Internal::rehash_base<RP, hashtable>(ht),
+      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(ht),
+      Internal::map_base<K, V, Ex, u, hashtable>(ht),
+      m_node_allocator(ht.get_allocator()),
+      m_bucket_count(ht.m_bucket_count),
+      m_element_count(ht.m_element_count),
+      m_rehash_policy(ht.m_rehash_policy)
+    {
+      m_buckets = m_allocate_buckets (m_bucket_count);
+      try
+	{
+	  for (size_t i = 0; i < ht.m_bucket_count; ++i)
+	    {
+	      node* n = ht.m_buckets[i];
+	      node** tail = m_buckets + i;
+	      while (n)
+		{
+		  *tail = m_allocate_node(n->m_v);
+		  this->copy_code(*tail, n);
+		  tail = &((*tail)->m_next);
+		  n = n->m_next;
+		}
+	    }
+	}
+      catch (...)
+	{
+	  clear();
+	  m_deallocate_buckets (m_buckets, m_bucket_count);
+	  __throw_exception_again;
+	}
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>&
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    operator=(const hashtable& ht)
+    {
+      hashtable tmp(ht);
+      this->swap(tmp);
+      return *this;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    ~hashtable()
+    {
+      clear();
+      m_deallocate_buckets(m_buckets, m_bucket_count);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    swap(hashtable& x)
+    {
+      // The only base class with member variables is hash_code_base.  We
+      // define hash_code_base::m_swap because different specializations
+      // have different members.
+      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);
+
+      // open LWG issue 431
+      // std::swap(m_node_allocator, x.m_node_allocator);
+      std::swap(m_rehash_policy, x.m_rehash_policy);
+      std::swap(m_buckets, x.m_buckets);
+      std::swap(m_bucket_count, x.m_bucket_count);
+      std::swap(m_element_count, x.m_element_count);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    rehash_policy(const RP& pol)
+    {
+      m_rehash_policy = pol;
+      size_type n_bkt = pol.bkt_for_elements(m_element_count);
+      if (n_bkt > m_bucket_count)
+	m_rehash (n_bkt);
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    find(const key_type& k)
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      std::size_t n = this->bucket_index(k, code, this->bucket_count());
+      node* p = find_node(m_buckets[n], k, code);
+      return p ? iterator(p, m_buckets + n) : this->end();
+    }
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    find(const key_type& k) const
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      std::size_t n = this->bucket_index(k, code, this->bucket_count());
+      node* p = find_node(m_buckets[n], k, code);
+      return p ? const_iterator(p, m_buckets + n) : this->end();
+    }
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::size_type
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    count(const key_type& k) const
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      std::size_t n = this->bucket_index(k, code, this->bucket_count());
+      size_t result = 0;
+      for (node* p = m_buckets[n]; p ; p = p->m_next)
+	if (this->compare(k, code, p))
+	  ++result;
+      return result;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+				 H2, H, RP, c, ci, u>::iterator,
+	      typename hashtable<K, V, A, Ex, Eq, H1,
+				 H2, H, RP, c, ci, u>::iterator>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    equal_range(const key_type& k)
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      std::size_t n = this->bucket_index(k, code, this->bucket_count());
+      node** head = m_buckets + n;
+      node* p = find_node (*head, k, code);
+      
+      if (p)
+	{
+	  node* p1 = p->m_next;
+	  for (; p1 ; p1 = p1->m_next)
+	    if (!this->compare (k, code, p1))
+	      break;
+
+	  iterator first(p, head);
+	  iterator last(p1, head);
+	  if (!p1)
+	    last.m_incr_bucket();
+	  return std::make_pair(first, last);
+	}
+      else
+	return std::make_pair(this->end(), this->end());
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+				 H2, H, RP, c, ci, u>::const_iterator,
+	      typename hashtable<K, V, A, Ex, Eq, H1,
+				 H2, H, RP, c, ci, u>::const_iterator>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    equal_range(const key_type& k) const
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      std::size_t n = this->bucket_index(k, code, this->bucket_count());
+      node** head = m_buckets + n;
+      node* p = find_node(*head, k, code);
+
+      if (p)
+	{
+	  node* p1 = p->m_next;
+	  for (; p1 ; p1 = p1->m_next)
+	    if (!this->compare(k, code, p1))
+	      break;
+
+	  const_iterator first(p, head);
+	  const_iterator last(p1, head);
+	  if (!p1)
+	    last.m_incr_bucket();
+	  return std::make_pair(first, last);
+	}
+      else
+	return std::make_pair(this->end(), this->end());
+    }
+
+  // Find the node whose key compares equal to k, beginning the search
+  // at p (usually the head of a bucket).  Return nil if no node is found.
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node* 
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    find_node(node* p, const key_type& k,
+	      typename hashtable::hash_code_t code) const
+    {
+      for ( ; p ; p = p->m_next)
+	if (this->compare (k, code, p))
+	  return p;
+      return false;
+    }
+
+  // Insert v if no element with its key is already present.
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+				 H2, H, RP, c, ci, u>::iterator, bool>
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    insert(const value_type& v, CxxUtils_Internal/*std::tr1*/::true_type) // sss
+    {
+      const key_type& k = this->m_extract(v);
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      size_type n = this->bucket_index(k, code, m_bucket_count);
+      
+      if (node* p = find_node(m_buckets[n], k, code))
+	return std::make_pair(iterator(p, m_buckets + n), false);
+
+      std::pair<bool, size_t> do_rehash
+	= m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+
+      // Allocate the new node before doing the rehash so that we don't
+      // do a rehash if the allocation throws.
+      node* new_node = m_allocate_node (v);
+      
+      try
+	{
+	  if (do_rehash.first)
+	    {
+	      n = this->bucket_index(k, code, do_rehash.second);
+	      m_rehash(do_rehash.second);
+	    }
+
+	  new_node->m_next = m_buckets[n];
+	  this->store_code(new_node, code);
+	  m_buckets[n] = new_node;
+	  ++m_element_count;
+	  return std::make_pair(iterator(new_node, m_buckets + n), true);
+	}
+      catch (...)
+	{
+	  m_deallocate_node (new_node);
+	  __throw_exception_again;
+	}
+    }
+  
+  // Insert v unconditionally.
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    insert(const value_type& v, CxxUtils_Internal/*std::tr1*/::false_type) // sss
+    {
+      std::pair<bool, std::size_t> do_rehash
+	= m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+      if (do_rehash.first)
+	m_rehash(do_rehash.second);
+
+      const key_type& k = this->m_extract(v);
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      size_type n = this->bucket_index(k, code, m_bucket_count);
+      
+      node* new_node = m_allocate_node (v);
+      node* prev = find_node(m_buckets[n], k, code);
+      if (prev)
+	{
+	  new_node->m_next = prev->m_next;
+	  prev->m_next = new_node;
+	}
+      else
+	{
+	  new_node->m_next = m_buckets[n];
+	  m_buckets[n] = new_node;
+	}
+      this->store_code(new_node, code);
+
+      ++m_element_count;
+      return iterator(new_node, m_buckets + n);
+    }
+
+  // For erase(iterator) and erase(const_iterator).
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase_node(node* p, node** b)
+    {
+      node* cur = *b;
+      if (cur == p)
+	*b = cur->m_next;
+      else
+	{
+	  node* next = cur->m_next;
+	  while (next != p)
+	    {
+	      cur = next;
+	      next = cur->m_next;
+	    }
+	  cur->m_next = next->m_next;
+	}
+
+      m_deallocate_node (p);
+      --m_element_count;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    template<typename InIter>
+      void 
+      hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+      insert(InIter first, InIter last)
+      {
+	size_type n_elt = Internal::distance_fw (first, last);
+	std::pair<bool, std::size_t> do_rehash
+	  = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
+	if (do_rehash.first)
+	  m_rehash(do_rehash.second);
+
+	for (; first != last; ++first)
+	  this->insert (*first);
+      }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase(iterator i)
+    {
+      iterator result = i;
+      ++result;
+      erase_node(i.m_cur_node, i.m_cur_bucket);
+      return result;
+    }
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase(const_iterator i)
+    {
+      const_iterator result = i;
+      ++result;
+      erase_node(i.m_cur_node, i.m_cur_bucket);
+      return result;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::size_type
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase(const key_type& k)
+    {
+      typename hashtable::hash_code_t code = this->m_hash_code(k);
+      size_type n = this->bucket_index(k, code, m_bucket_count);
+      size_type result = 0;
+      
+      node** slot = m_buckets + n;
+      while (*slot && ! this->compare(k, code, *slot))
+	slot = &((*slot)->m_next);
+
+      while (*slot && this->compare(k, code, *slot))
+	{
+	  node* n = *slot;
+	  *slot = n->m_next;
+	  m_deallocate_node (n);
+	  --m_element_count;
+	  ++result;
+	}
+
+      return result;
+    }
+
+  // ??? This could be optimized by taking advantage of the bucket
+  // structure, but it's not clear that it's worth doing.  It probably
+  // wouldn't even be an optimization unless the load factor is large.
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase(iterator first, iterator last)
+    {
+      while (first != last)
+	first = this->erase(first);
+      return last;
+    }
+  
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    erase(const_iterator first, const_iterator last)
+    {
+      while (first != last)
+	first = this->erase(first);
+      return last;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    clear()
+    {
+      m_deallocate_nodes(m_buckets, m_bucket_count);
+      m_element_count = 0;
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    rehash(size_type n)
+    {
+      m_rehash(std::max(m_rehash_policy.next_bkt(n),
+			m_rehash_policy.bkt_for_elements(m_element_count
+							 + 1)));
+    }
+
+  template<typename K, typename V, 
+	   typename A, typename Ex, typename Eq,
+	   typename H1, typename H2, typename H, typename RP,
+	   bool c, bool ci, bool u>
+    void
+    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
+    m_rehash(size_type N)
+    {
+      node** new_array = m_allocate_buckets (N);
+      try
+	{
+	  for (size_type i = 0; i < m_bucket_count; ++i)
+	    while (node* p = m_buckets[i])
+	      {
+		size_type new_index = this->bucket_index (p, N);
+		m_buckets[i] = p->m_next;
+		p->m_next = new_array[new_index];
+		new_array[new_index] = p;
+	      }
+	  m_deallocate_buckets(m_buckets, m_bucket_count);
+	  m_bucket_count = N;
+	  m_buckets = new_array;
+	}
+      catch (...)
+	{
+	  // A failure here means that a hash function threw an exception.
+	  // We can't restore the previous state without calling the hash
+	  // function again, so the only sensible recovery is to delete
+	  // everything.
+	  m_deallocate_nodes(new_array, N);
+	  m_deallocate_buckets(new_array, N);
+	  m_deallocate_nodes(m_buckets, m_bucket_count);
+	  m_element_count = 0;
+	  __throw_exception_again;
+	}
+    }
+#undef Internal // sss
+//} sss
+}				// Namespace std::tr1
+
+#endif /* GNU_LIBSTDCXX_TR1_HASHTABLE_ */
+

File CxxUtils/unordered_map.h

+// This file's extension implies that it's C, but it's really -*- C++ -*-.
+// $Id: unordered_map.h,v 1.1.1.1 2008-09-10 04:02:52 binet Exp $
+/**
+ * @file CxxUtils/unordered_map.h
+ * @author scott snyder <snyder@bnl.gov>, copied from gcc4.
+ * @date Apr, 2007
+ * @brief This is the TR1 unordered_set implementation from gcc4,
+ *        adapted to build in Atlas.  Once the TR1 library is available
+ *        on all our platforms, we can switch to using the system-supplied
+ *        version instead.
+ *
+ *        Search for `sss' to find changes from the gcc version.
+ */
+
+// TR1 unordered_map -*- C++ -*-
+
+// Copyright (C) 2005 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING.  If not, write to the Free
+// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction.  Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License.  This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+/*  @file  (sss --- hide from doxygen)
+ *  This is a TR1 C++ Library header. 
+ */
+