Source

mana-core-cxxutils / CxxUtils / hashtable.h

The default branch has multiple heads

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
// This file's extension implies that it's C, but it's really -*- C++ -*-.
// $Id: hashtable.h,v 1.4 2008-12-11 18:57:44 ssnyder Exp $
/**
 * @file CxxUtils/hashtable.h
 * @author scott snyder <snyder@bnl.gov>, copied from gcc4.
 * @date Apr, 2007
 * @brief This is the TR1 hashtable implementation from gcc4,
 *        adapted to build in Atlas.  Once the TR1 library is available
 *        on all our platforms, we can switch to using the system-supplied
 *        version instead.
 *
 *        Search for `sss' to find changes from the gcc version.
 */

// Internal header for TR1 unordered_set and unordered_map -*- C++ -*-
// Copyright (C) 2005, 2006 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*  @file  (sss --- hide from doxygen)
 *  This is a TR1 C++ Library header. 
 */

// This header file defines std::tr1::hashtable, which is used to
// implement std::tr1::unordered_set, std::tr1::unordered_map, 
// std::tr1::unordered_multiset, and std::tr1::unordered_multimap.
// hashtable has many template parameters, partly to accommodate
// the differences between those four classes and partly to 
// accommodate policy choices that go beyond what TR1 calls for.

// ??? Arguably this should be Internal::hashtable, not std::tr1::hashtable.

// Class template hashtable attempts to encapsulate all reasonable
// variation among hash tables that use chaining.  It does not handle
// open addressing.

// References: 
// M. Austern, "A Proposal to Add Hash Tables to the Standard
//    Library (revision 4)," WG21 Document N1456=03-0039, 2003.
// D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching.
// A. Tavori and V. Dreizin, "Generic Associative Containers", 2004.
//    ??? Full citation?

#ifndef CXXUTILS_HASHTABLE_H // sss GNU_LIBSTDCXX_TR1_HASHTABLE_
#define CXXUTILS_HASHTABLE_H // sss GNU_LIBSTDCXX_TR1_HASHTABLE_

#include <algorithm>
#include <utility>		// For std::pair
#include <iterator>
#include <cstddef>
#include <cstdlib>
#include <cmath>
#include <limits>
#include "boost/type_traits/remove_const.hpp" // sss
//#include <bits/functexcept.h> sss
//#include <tr1/type_traits>	// For true_type and false_type sss

//=====================================================================
// sss from TR1 type_traits
namespace CxxUtils_Internal {
  template<typename _Tp, _Tp __v>
    struct integral_constant
    {
      static const _Tp                      value = __v;
      typedef _Tp                           value_type;
      typedef integral_constant<_Tp, __v>   type;
    };
  typedef integral_constant<bool, true>     true_type;
  typedef integral_constant<bool, false>    false_type;
}
// sss end from TR1 type_traits
//=====================================================================
//=====================================================================
// sss from TR1 functional
namespace SG {
  // Definition of default hash function std::tr1::hash<>.  The types for
  // which std::tr1::hash<T> is defined is in clause 6.3.3. of the PDTR.
  template<typename T>
    struct hash;

#define tr1_hashtable_define_trivial_hash(T)            \
  template<>                                            \
    struct hash<T>                                      \
    : public std::unary_function<T, std::size_t>        \
    {                                                   \
      std::size_t                                       \
      operator()(T val) const                           \
      { return static_cast<std::size_t>(val); }         \
    }                                                     

  tr1_hashtable_define_trivial_hash(bool);
  tr1_hashtable_define_trivial_hash(char);
  tr1_hashtable_define_trivial_hash(signed char);
  tr1_hashtable_define_trivial_hash(unsigned char);
  tr1_hashtable_define_trivial_hash(wchar_t);
  tr1_hashtable_define_trivial_hash(short);
  tr1_hashtable_define_trivial_hash(int);
  tr1_hashtable_define_trivial_hash(long);
  tr1_hashtable_define_trivial_hash(unsigned short);
  tr1_hashtable_define_trivial_hash(unsigned int);
  tr1_hashtable_define_trivial_hash(unsigned long);

#undef tr1_hashtable_define_trivial_hash

  template<typename T>
    struct hash<T*>
    : public std::unary_function<T*, std::size_t>
    {
      std::size_t
      operator()(T* p) const
      { return reinterpret_cast<std::size_t>(p); }
    };

  // Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
  // (used by the next specializations of std::tr1::hash<>)

  // Dummy generic implementation (for sizeof(size_t) != 4, 8).
  template<std::size_t = sizeof(std::size_t)>
    struct Fnv_hash
    {
      static std::size_t
      hash(const char* first, std::size_t length)
      {
	std::size_t result = 0;
	for (; length > 0; --length)
	  result = (result * 131) + *first++;
	return result;
      }
    };

  template<>
    struct Fnv_hash<4>
    {
      static std::size_t
      hash(const char* first, std::size_t length)
      {
	std::size_t result = static_cast<std::size_t>(2166136261UL);
	for (; length > 0; --length)
	  {
	    result ^= (std::size_t)*first++;
	    result *= 16777619UL;
	  }
	return result;
      }
    };
  
  template<>
    struct Fnv_hash<8>
    {
      static std::size_t
      hash(const char* first, std::size_t length)
      {
	std::size_t result = static_cast<std::size_t>(14695981039346656037ULL);
	for (; length > 0; --length)
	  {
	    result ^= (std::size_t)*first++;
	    result *= static_cast<std::size_t>(1099511628211ULL); // sss
	  }
	return result;
      }
    };

  // XXX String and floating point hashes probably shouldn't be inline
  // member functions, since are nontrivial.  Once we have the framework
  // for TR1 .cc files, these should go in one.
  template<>
    struct hash<std::string>
    : public std::unary_function<std::string, std::size_t>
    {      
      std::size_t
      operator()(const std::string& s) const
      { return Fnv_hash<>::hash(s.data(), s.length()); }
    };

#ifdef _GLIBCXX_USE_WCHAR_T
  template<>
    struct hash<std::wstring>
    : public std::unary_function<std::wstring, std::size_t>
    {
      std::size_t
      operator()(const std::wstring& s) const
      {
	return Fnv_hash<>::hash(reinterpret_cast<const char*>(s.data()),
				s.length() * sizeof(wchar_t));
      }
    };
#endif

  template<>
    struct hash<float>
    : public std::unary_function<float, std::size_t>
    {
      std::size_t
      operator()(float fval) const
      {
	std::size_t result = 0;

	// 0 and -0 both hash to zero.
	if (fval != 0.0f)
	  result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&fval),
				    sizeof(fval));
	return result;
      }
    };

  template<>
    struct hash<double>
    : public std::unary_function<double, std::size_t>
    {
      std::size_t
      operator()(double dval) const
      {
	std::size_t result = 0;

	// 0 and -0 both hash to zero.
	if (dval != 0.0)
	  result = Fnv_hash<>::hash(reinterpret_cast<const char*>(&dval),
				    sizeof(dval));
	return result;
      }
    };

  // For long double, careful with random padding bits (e.g., on x86,
  // 10 bytes -> 12 bytes) and resort to frexp.
  template<>
    struct hash<long double>
    : public std::unary_function<long double, std::size_t>
    {
      std::size_t
      operator()(long double ldval) const
      {
	std::size_t result = 0;

	int exponent;
	ldval = std::frexp(ldval, &exponent);
	ldval = ldval < 0.0l ? -(ldval + 0.5l) : ldval;

	const long double mult = std::numeric_limits<std::size_t>::max() + 1.0l;
	ldval *= mult;

	// Try to use all the bits of the mantissa (really necessary only
	// on 32-bit targets, at least for 80-bit floating point formats).
	const std::size_t hibits = (std::size_t)ldval;
	ldval = (ldval - (long double)hibits) * mult;

	const std::size_t coeff =
	  (std::numeric_limits<std::size_t>::max()
	   / std::numeric_limits<long double>::max_exponent);

	result = hibits + (std::size_t)ldval + coeff * exponent;

	return result;
      }
    };
}
// sss end from TR1 functional
//=====================================================================

//----------------------------------------------------------------------
// General utilities

namespace CxxUtils_Internal // sss Internal
{
  template<bool Flag, typename IfTrue, typename IfFalse>
    struct IF;

  template<typename IfTrue, typename IfFalse>
    struct IF<true, IfTrue, IfFalse>
    { typedef IfTrue type; };
 
  template <typename IfTrue, typename IfFalse>
    struct IF<false, IfTrue, IfFalse>
    { typedef IfFalse type; };

  // Helper function: return distance(first, last) for forward
  // iterators, or 0 for input iterators.
  template<class Iterator>
    inline typename std::iterator_traits<Iterator>::difference_type
    distance_fw(Iterator /*first*/, Iterator /*last*/, std::input_iterator_tag)
    { return 0; }

  template<class Iterator>
    inline typename std::iterator_traits<Iterator>::difference_type
    distance_fw(Iterator first, Iterator last, std::forward_iterator_tag)
    { return std::distance(first, last); }

  template<class Iterator>
    inline typename std::iterator_traits<Iterator>::difference_type
    distance_fw(Iterator first, Iterator last)
    {
      typedef typename std::iterator_traits<Iterator>::iterator_category tag;
      return distance_fw(first, last, tag());
    }
  
} // namespace CxxUtils_Internal sss

//----------------------------------------------------------------------
// Auxiliary types used for all instantiations of hashtable: nodes
// and iterators.

// Nodes, used to wrap elements stored in the hash table.  A policy
// template parameter of class template hashtable controls whether
// nodes also store a hash code. In some cases (e.g. strings) this may
// be a performance win.

namespace CxxUtils_Internal // sss Internal
{
  template<typename Value, bool cache_hash_code>
    struct hash_node;

  template<typename Value>
    struct hash_node<Value, true>
    {
      Value m_v;
      std::size_t hash_code;
      hash_node* m_next;
    };

  template<typename Value>
    struct hash_node<Value, false>
    {
      Value m_v;
      hash_node* m_next;
    };

  // Local iterators, used to iterate within a bucket but not between
  // buckets.

  template<typename Value, bool cache>
    struct node_iterator_base
    {
      node_iterator_base(hash_node<Value, cache>* p)
      : m_cur(p) { }
      
      void
      incr()
      { m_cur = m_cur->m_next; }

      hash_node<Value, cache>* m_cur;
    };

  template<typename Value, bool cache>
    inline bool
    operator==(const node_iterator_base<Value, cache>& x,
	       const node_iterator_base<Value, cache>& y)
    { return x.m_cur == y.m_cur; }

  template<typename Value, bool cache>
    inline bool
    operator!=(const node_iterator_base<Value, cache>& x,
	       const node_iterator_base<Value, cache>& y)
    { return x.m_cur != y.m_cur; }

  template<typename Value, bool constant_iterators, bool cache>
    struct node_iterator
    : public node_iterator_base<Value, cache>
    {
      typedef Value                                    value_type;
      typedef typename IF<constant_iterators, const Value*, Value*>::type
                                                       pointer;
      typedef typename IF<constant_iterators, const Value&, Value&>::type
                                                       reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      explicit
      node_iterator(hash_node<Value, cache>* p = 0)
      : node_iterator_base<Value, cache>(p) { }

      reference
      operator*() const
      { return this->m_cur->m_v; }
  
      pointer
      operator->() const
      { return &this->m_cur->m_v; }

      node_iterator&
      operator++()
      { 
	this->incr(); 
	return *this; 
      }
  
      node_iterator
      operator++(int)
      { 
	node_iterator tmp(*this);
	this->incr();
	return tmp;
      }
    };

  template<typename Value, bool constant_iterators, bool cache>
    struct node_const_iterator
    : public node_iterator_base<Value, cache>
    {
      typedef Value                                    value_type;
      typedef const Value*                             pointer;
      typedef const Value&                             reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      explicit
      node_const_iterator(hash_node<Value, cache>* p = 0)
      : node_iterator_base<Value, cache>(p) { }

      node_const_iterator(const node_iterator<Value, constant_iterators,
			  cache>& x)
      : node_iterator_base<Value, cache>(x.m_cur) { }

      reference
      operator*() const
      { return this->m_cur->m_v; }
  
      pointer
      operator->() const
      { return &this->m_cur->m_v; }

      node_const_iterator&
      operator++()
      { 
	this->incr(); 
	return *this; 
      }
  
      node_const_iterator
      operator++(int)
      { 
	node_const_iterator tmp(*this);
	this->incr();
	return tmp;
      }
    };

  template<typename Value, bool cache>
    struct hashtable_iterator_base
    {
      hashtable_iterator_base(hash_node<Value, cache>* node,
			      hash_node<Value, cache>** bucket)
      : m_cur_node(node), m_cur_bucket(bucket)
      { }

      void
      incr()
      {
	m_cur_node = m_cur_node->m_next;
	if (!m_cur_node)
	  m_incr_bucket();
      }

      void
      m_incr_bucket();

      hash_node<Value, cache>* m_cur_node;
      hash_node<Value, cache>** m_cur_bucket;
    };

  // Global iterators, used for arbitrary iteration within a hash
  // table.  Larger and more expensive than local iterators.
  template<typename Value, bool cache>
    void
    hashtable_iterator_base<Value, cache>::
    m_incr_bucket()
    {
      ++m_cur_bucket;

      // This loop requires the bucket array to have a non-null sentinel.
      while (!*m_cur_bucket)
	++m_cur_bucket;
      m_cur_node = *m_cur_bucket;
    }

  template<typename Value, bool cache>
    inline bool
    operator==(const hashtable_iterator_base<Value, cache>& x,
	       const hashtable_iterator_base<Value, cache>& y)
    { return x.m_cur_node == y.m_cur_node; }

  template<typename Value, bool cache>
    inline bool
    operator!=(const hashtable_iterator_base<Value, cache>& x,
	       const hashtable_iterator_base<Value, cache>& y)
    { return x.m_cur_node != y.m_cur_node; }

  template<typename Value, bool constant_iterators, bool cache>
    struct hashtable_iterator
    : public hashtable_iterator_base<Value, cache>
    {
      typedef Value                                    value_type;
      typedef typename IF<constant_iterators, const Value*, Value*>::type
                                                       pointer;
      typedef typename IF<constant_iterators, const Value&, Value&>::type
                                                       reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      // sss -- added default ctor.
      // Needed to fulfill ForwardIterator requirements.
      hashtable_iterator()
      : hashtable_iterator_base<Value, cache>(0, 0) { }

      hashtable_iterator(hash_node<Value, cache>* p,
			 hash_node<Value, cache>** b)
      : hashtable_iterator_base<Value, cache>(p, b) { }

      explicit
      hashtable_iterator(hash_node<Value, cache>** b)
      : hashtable_iterator_base<Value, cache>(*b, b) { }
  
      reference
      operator*() const
      { return this->m_cur_node->m_v; }
  
      pointer
      operator->() const
      { return &this->m_cur_node->m_v; }

      hashtable_iterator&
      operator++()
      { 
	this->incr();
	return *this;
      }
  
      hashtable_iterator
      operator++(int)
      { 
	hashtable_iterator tmp(*this);
	this->incr();
	return tmp;
      }
    };

  template<typename Value, bool constant_iterators, bool cache>
    struct hashtable_const_iterator
    : public hashtable_iterator_base<Value, cache>
    {
      typedef Value                                    value_type;
      typedef const Value*                             pointer;
      typedef const Value&                             reference;
      typedef std::ptrdiff_t                           difference_type;
      typedef std::forward_iterator_tag                iterator_category;

      // sss -- added default ctor.
      // Needed to fulfill ForwardIterator requirements.
      hashtable_const_iterator()
      : hashtable_iterator_base<Value, cache>(0, 0) { }

      hashtable_const_iterator(hash_node<Value, cache>* p,
			       hash_node<Value, cache>** b)
      : hashtable_iterator_base<Value, cache>(p, b) { }

      explicit
      hashtable_const_iterator(hash_node<Value, cache>** b)
      : hashtable_iterator_base<Value, cache>(*b, b) { }
  
      hashtable_const_iterator(const hashtable_iterator<Value,
			       constant_iterators, cache>& x)
      : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }

      reference
      operator*() const
      { return this->m_cur_node->m_v; }
  
      pointer
      operator->() const
      { return &this->m_cur_node->m_v; }

      hashtable_const_iterator&
      operator++()
      { 
	this->incr();
	return *this;
      }
  
      hashtable_const_iterator
      operator++(int)
      { 
	hashtable_const_iterator tmp(*this);
	this->incr();
	return tmp;
      }
    };
} // namespace CxxUtils_Internal sss

// ----------------------------------------------------------------------
// Many of class template hashtable's template parameters are policy
// classes.  These are defaults for the policies.

namespace CxxUtils_Internal // sss Internal
{
  // The two key extraction policies used by the *set and *map variants.
  template<typename T>
    struct identity
    {
      T
      operator()(const T& t) const
      { return t; }
    };

  template<typename Pair>
    struct extract1st
    {
      // sss remove const to prevent warnings with gcc 4.3
      typename
        boost::remove_const<typename Pair::first_type>::type
      operator()(const Pair& p) const
      { return p.first; }
    };

  // Default range hashing function: use division to fold a large number
  // into the range [0, N).
  struct mod_range_hashing
  {
    typedef std::size_t first_argument_type;
    typedef std::size_t second_argument_type;
    typedef std::size_t result_type;

    result_type
    operator() (first_argument_type r, second_argument_type N) const
    { return r % N; }
  };

  // Default ranged hash function H.  In principle it should be a
  // function object composed from objects of type H1 and H2 such that
  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
  // h1 and h2.  So instead we'll just use a tag to tell class template
  // hashtable to do that composition.
  struct default_ranged_hash { };

  // Default value for rehash policy.  Bucket size is (usually) the
  // smallest prime that keeps the load factor small enough.
  struct prime_rehash_policy
  {
    prime_rehash_policy(float z = 1.0);
    
    float
    max_load_factor() const;

    // Return a bucket size no smaller than n.
    std::size_t
    next_bkt(std::size_t n) const;
    
    // Return a bucket count appropriate for n elements
    std::size_t
    bkt_for_elements(std::size_t n) const;
    
    // n_bkt is current bucket count, n_elt is current element count,
    // and n_ins is number of elements to be inserted.  Do we need to
    // increase bucket count?  If so, return make_pair(true, n), where n
    // is the new bucket count.  If not, return make_pair(false, 0).
    std::pair<bool, std::size_t>
    need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;
    
    float m_max_load_factor;
    float m_growth_factor;
    mutable std::size_t m_next_resize;
  };

  // XXX This is a hack.  prime_rehash_policy's member functions, and
  // certainly the list of primes, should be defined in a .cc file.
  // We're temporarily putting them in a header because we don't have a
  // place to put TR1 .cc files yet.  There's no good reason for any of
  // prime_rehash_policy's member functions to be inline, and there's
  // certainly no good reason for X<> to exist at all.
  // sss: Moved the prime table to hashtable.cxx.  
  //      gcc 3.2.3 chokes on the original code.
  
  struct lt
  {
    template<typename X, typename Y>
      bool
      operator()(X x, Y y)
      { return x < y; }
  };

  //template<int dummy> // sss
    struct X
    {
      static const int n_primes = 256;
      static const unsigned long primes[n_primes + 1];
    };

#if 0 // sss
  template<int dummy>
    const int X<dummy>::n_primes;

  template<int dummy>
    const unsigned long X<dummy>::primes[n_primes + 1] =
    {
      2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
      37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
      83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
      157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
      277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
      503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
      953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
      1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
      3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
      5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
      11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
      19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
      33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
      57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
      99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
      159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
      256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
      410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
      658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
      1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
      1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
      2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
      4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
      6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
      11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
      16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
      24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
      36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
      54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
      80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
      118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
      176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
      260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
      386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
      573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
      849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
      1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
      1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
      2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
      3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
      4294967291ul,
      4294967291ul // sentinel so we don't have to test result of lower_bound
    };
#endif // sss

  inline
  prime_rehash_policy::
  prime_rehash_policy(float z)
  : m_max_load_factor(z), m_growth_factor(2.f), m_next_resize(0)
  { }

  inline float
  prime_rehash_policy::
  max_load_factor() const
  { return m_max_load_factor; }

  // Return a prime no smaller than n.
  inline std::size_t
  prime_rehash_policy::
  next_bkt(std::size_t n) const
  {
    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, n); // sss
    m_next_resize = static_cast<std::size_t>(std::ceil(static_cast<float>(*p) * m_max_load_factor)); // sss
    return *p;
  }

  // Return the smallest prime p such that alpha p >= n, where alpha
  // is the load factor.
  inline std::size_t
  prime_rehash_policy::
  bkt_for_elements(std::size_t n) const
  {
    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
    const float min_bkts = static_cast<float>(n) / m_max_load_factor; // sss
    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, // sss
					       min_bkts, lt());
    m_next_resize = static_cast<std::size_t>(std::ceil(static_cast<float>(*p) * m_max_load_factor)); // sss
    return *p;
  }

  // Finds the smallest prime p such that alpha p > n_elt + n_ins.
  // If p > n_bkt, return make_pair(true, p); otherwise return
  // make_pair(false, 0).  In principle this isn't very different from 
  // bkt_for_elements.
  
  // The only tricky part is that we're caching the element count at
  // which we need to rehash, so we don't have to do a floating-point
  // multiply for every insertion.
  
  inline std::pair<bool, std::size_t>
  prime_rehash_policy::
  need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
  {
    if (n_elt + n_ins > m_next_resize)
      {
	float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
	if (min_bkts > n_bkt)
	  {
	    min_bkts = std::max (min_bkts, m_growth_factor * static_cast<float>(n_bkt)); // sss
	    const unsigned long* const last = X/*<0>*/::primes + X/*<0>*/::n_primes; // sss
	    const unsigned long* p = std::lower_bound (X/*<0>*/::primes, last, // sss
						       min_bkts, lt());
	    m_next_resize = 
	      static_cast<std::size_t>(std::ceil(static_cast<float>(*p) * m_max_load_factor)); // sss
	    return std::make_pair(true, *p);
	  }
	else 
	  {
	    m_next_resize = 
	      static_cast<std::size_t>(std::ceil(static_cast<float>(n_bkt) * m_max_load_factor));  // sss
	    return std::make_pair(false, 0);
	  }
      }
    else
      return std::make_pair(false, 0);
  }

} // namespace CxxUtils_Internal sss

//----------------------------------------------------------------------
// Base classes for std::tr1::hashtable.  We define these base classes
// because in some cases we want to do different things depending on
// the value of a policy class.  In some cases the policy class affects
// which member functions and nested typedefs are defined; we handle that
// by specializing base class templates.  Several of the base class templates
// need to access other members of class template hashtable, so we use
// the "curiously recurring template pattern" for them.

namespace CxxUtils_Internal // sss Internal
{
  // class template map_base.  If the hashtable has a value type of the
  // form pair<T1, T2> and a key extraction policy that returns the
  // first part of the pair, the hashtable gets a mapped_type typedef.
  // If it satisfies those criteria and also has unique keys, then it
  // also gets an operator[].
  
  template<typename K, typename V, typename Ex, bool unique, typename Hashtable>
    struct map_base { };
	  
  template<typename K, typename Pair, typename Hashtable>
    struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
    {
      typedef typename Pair::second_type mapped_type;
    };

  template<typename K, typename Pair, typename Hashtable>
    struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
    {
      typedef typename Pair::second_type mapped_type;
      
      mapped_type&
      operator[](const K& k)
      {
	Hashtable* h = static_cast<Hashtable*>(this);
	typename Hashtable::iterator it = 
	  h->insert(std::make_pair(k, mapped_type())).first;
	return it->second;
      }
    };

  // class template rehash_base.  Give hashtable the max_load_factor
  // functions iff the rehash policy is prime_rehash_policy.
  template<typename RehashPolicy, typename Hashtable>
    struct rehash_base { };

  template<typename Hashtable>
    struct rehash_base<prime_rehash_policy, Hashtable>
    {
      float
      max_load_factor() const
      {
	const Hashtable* This = static_cast<const Hashtable*>(this);
	return This->rehash_policy().max_load_factor();
      }

      void
      max_load_factor(float z)
      {
	Hashtable* This = static_cast<Hashtable*>(this);
	This->rehash_policy(prime_rehash_policy(z));    
      }
    };

  // Class template hash_code_base.  Encapsulates two policy issues that
  // aren't quite orthogonal.
  //   (1) the difference between using a ranged hash function and using
  //       the combination of a hash function and a range-hashing function.
  //       In the former case we don't have such things as hash codes, so
  //       we have a dummy type as placeholder.
  //   (2) Whether or not we cache hash codes.  Caching hash codes is
  //       meaningless if we have a ranged hash function.
  // We also put the key extraction and equality comparison function 
  // objects here, for convenience.
  
  // Primary template: unused except as a hook for specializations.
  
  template<typename Key, typename Value,
	   typename ExtractKey, typename Equal,
	   typename H1, typename H2, typename H,
	   bool cache_hash_code>
    struct hash_code_base;

  // Specialization: ranged hash function, no caching hash codes.  H1
  // and H2 are provided but ignored.  We define a dummy hash code type.
  template<typename Key, typename Value,
	   typename ExtractKey, typename Equal,
	   typename H1, typename H2, typename H>
    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, false>
    {
    protected:
      hash_code_base(const ExtractKey& ex, const Equal& eq,
		     const H1&, const H2&, const H& h)
      : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }

      typedef void* hash_code_t;
  
      hash_code_t
      m_hash_code(const Key& /*k*/) const
      { return 0; }
  
      std::size_t
      bucket_index(const Key& k, hash_code_t, std::size_t N) const
      { return m_ranged_hash (k, N); }

      std::size_t
      bucket_index(const hash_node<Value, false>* p, std::size_t N) const
      { return m_ranged_hash (m_extract (p->m_v), N); }
  
      bool
      compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
      { return m_eq (k, m_extract(n->m_v)); }

      void
      store_code(hash_node<Value, false>*, hash_code_t) const
      { }

      void
      copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
      { }
      
      void
      m_swap(hash_code_base& x)
      {
	std::swap(m_extract, x.m_extract);
	std::swap(m_eq, x.m_eq);
	std::swap(m_ranged_hash, x.m_ranged_hash);
      }

    protected:
      ExtractKey m_extract;
      Equal m_eq;
      H m_ranged_hash;
    };


  // No specialization for ranged hash function while caching hash codes.
  // That combination is meaningless, and trying to do it is an error.
  
  
  // Specialization: ranged hash function, cache hash codes.  This
  // combination is meaningless, so we provide only a declaration
  // and no definition.
  
  template<typename Key, typename Value,
	    typename ExtractKey, typename Equal,
	    typename H1, typename H2, typename H>
    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, true>;


  // Specialization: hash function and range-hashing function, no
  // caching of hash codes.  H is provided but ignored.  Provides
  // typedef and accessor required by TR1.
  
  template<typename Key, typename Value,
	   typename ExtractKey, typename Equal,
	   typename H1, typename H2>
    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
			  default_ranged_hash, false>
    {
      typedef H1 hasher;
      
      hasher
      hash_function() const
      { return m_h1; }

    protected:
      hash_code_base(const ExtractKey& ex, const Equal& eq,
		     const H1& h1, const H2& h2, const default_ranged_hash&)
      : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }

      typedef std::size_t hash_code_t;
      
      hash_code_t
      m_hash_code(const Key& k) const
      { return m_h1(k); }
      
      std::size_t
      bucket_index(const Key&, hash_code_t c, std::size_t N) const
      { return m_h2 (c, N); }

      std::size_t
      bucket_index(const hash_node<Value, false>* p, std::size_t N) const
      { return m_h2 (m_h1 (m_extract (p->m_v)), N); }

      bool
      compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
      { return m_eq (k, m_extract(n->m_v)); }

      void
      store_code(hash_node<Value, false>*, hash_code_t) const
      { }

      void
      copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
      { }

      void
      m_swap(hash_code_base& x)
      {
	std::swap(m_extract, x.m_extract);
	std::swap(m_eq, x.m_eq);
	std::swap(m_h1, x.m_h1);
	std::swap(m_h2, x.m_h2);
      }

    protected:
      ExtractKey m_extract;
      Equal m_eq;
      H1 m_h1;
      H2 m_h2;
    };

  // Specialization: hash function and range-hashing function, 
  // caching hash codes.  H is provided but ignored.  Provides
  // typedef and accessor required by TR1.
  template<typename Key, typename Value,
	   typename ExtractKey, typename Equal,
	   typename H1, typename H2>
    struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
			  default_ranged_hash, true>
    {
      typedef H1 hasher;
      
      hasher
      hash_function() const
      { return m_h1; }

    protected:
      hash_code_base(const ExtractKey& ex, const Equal& eq,
		     const H1& h1, const H2& h2, const default_ranged_hash&)
      : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }

      typedef std::size_t hash_code_t;
  
      hash_code_t
      m_hash_code(const Key& k) const
      { return m_h1(k); }
  
      std::size_t
      bucket_index(const Key&, hash_code_t c, std::size_t N) const
      { return m_h2 (c, N); }

      std::size_t
      bucket_index(const hash_node<Value, true>* p, std::size_t N) const
      { return m_h2 (p->hash_code, N); }

      bool
      compare(const Key& k, hash_code_t c, hash_node<Value, true>* n) const
      { return c == n->hash_code && m_eq(k, m_extract(n->m_v)); }

      void
      store_code(hash_node<Value, true>* n, hash_code_t c) const
      { n->hash_code = c; }

      void
      copy_code(hash_node<Value, true>* to,
		const hash_node<Value, true>* from) const
      { to->hash_code = from->hash_code; }

      void
      m_swap(hash_code_base& x)
      {
	std::swap(m_extract, x.m_extract);
	std::swap(m_eq, x.m_eq);
	std::swap(m_h1, x.m_h1);
	std::swap(m_h2, x.m_h2);
      }
      
    protected:
      ExtractKey m_extract;
      Equal m_eq;
      H1 m_h1;
      H2 m_h2;
    };

} // namespace CxxUtils_Internal sss

//namespace std      sss
//{                  sss
namespace SG // tr1  sss
{
#define Internal CxxUtils_Internal // sss
  //----------------------------------------------------------------------
  // Class template hashtable, class definition.
  
  // Meaning of class template hashtable's template parameters
  
  // Key and Value: arbitrary CopyConstructible types.
  
  // Allocator: an allocator type ([lib.allocator.requirements]) whose
  // value type is Value.
  
  // ExtractKey: function object that takes a object of type Value
  // and returns a value of type Key.
  
  // Equal: function object that takes two objects of type k and returns
  // a bool-like value that is true if the two objects are considered equal.
  
  // H1: the hash function.  A unary function object with argument type
  // Key and result type size_t.  Return values should be distributed
  // over the entire range [0, numeric_limits<size_t>:::max()].
  
  // H2: the range-hashing function (in the terminology of Tavori and
  // Dreizin).  A binary function object whose argument types and result
  // type are all size_t.  Given arguments r and N, the return value is
  // in the range [0, N).
  
  // H: the ranged hash function (Tavori and Dreizin). A binary function
  // whose argument types are Key and size_t and whose result type is
  // size_t.  Given arguments k and N, the return value is in the range
  // [0, N).  Default: h(k, N) = h2(h1(k), N).  If H is anything other
  // than the default, H1 and H2 are ignored.
  
  // RehashPolicy: Policy class with three members, all of which govern
  // the bucket count. n_bkt(n) returns a bucket count no smaller
  // than n.  bkt_for_elements(n) returns a bucket count appropriate
  // for an element count of n.  need_rehash(n_bkt, n_elt, n_ins)
  // determines whether, if the current bucket count is n_bkt and the
  // current element count is n_elt, we need to increase the bucket
  // count.  If so, returns make_pair(true, n), where n is the new
  // bucket count.  If not, returns make_pair(false, <anything>).
  
  // ??? Right now it is hard-wired that the number of buckets never
  // shrinks.  Should we allow RehashPolicy to change that?
  
  // cache_hash_code: bool.  true if we store the value of the hash
  // function along with the value.  This is a time-space tradeoff.
  // Storing it may improve lookup speed by reducing the number of times
  // we need to call the Equal function.
  
  // constant_iterators: bool.  true if iterator and const_iterator are
  // both constant iterator types.  This is true for unordered_set and
  // unordered_multiset, false for unordered_map and unordered_multimap.
  
  // unique_keys: bool.  true if the return value of hashtable::count(k)
  // is always at most one, false if it may be an arbitrary number.  This
  // true for unordered_set and unordered_map, false for unordered_multiset
  // and unordered_multimap.
  
  template<typename Key, typename Value, 
	   typename Allocator,
	   typename ExtractKey, typename Equal,
	   typename H1, typename H2,
	   typename H, typename RehashPolicy,
	   bool cache_hash_code,
	   bool constant_iterators,
	   bool unique_keys>
    class hashtable
    : public Internal::rehash_base<RehashPolicy,
				   hashtable<Key, Value, Allocator, ExtractKey,
					     Equal, H1, H2, H, RehashPolicy,
					     cache_hash_code, constant_iterators,
					     unique_keys> >,
      public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H,
				      cache_hash_code>,
      public Internal::map_base<Key, Value, ExtractKey, unique_keys,
				hashtable<Key, Value, Allocator, ExtractKey,
					  Equal, H1, H2, H, RehashPolicy,
					  cache_hash_code, constant_iterators,
					  unique_keys> >
    {
    public:
      typedef Allocator                                      allocator_type;
      typedef Value                                          value_type;
      typedef Key                                            key_type;
      typedef Equal                                          key_equal;
      // mapped_type, if present, comes from map_base.
      // hasher, if present, comes from hash_code_base.
      typedef typename Allocator::difference_type            difference_type;
      typedef typename Allocator::size_type                  size_type;
      typedef typename Allocator::reference                  reference;
      typedef typename Allocator::const_reference            const_reference;
      
      typedef Internal::node_iterator<value_type, constant_iterators,
				      cache_hash_code>
        local_iterator;
      typedef Internal::node_const_iterator<value_type, constant_iterators,
					    cache_hash_code>
        const_local_iterator;

      typedef Internal::hashtable_iterator<value_type, constant_iterators,
					   cache_hash_code>
        iterator;
      typedef Internal::hashtable_const_iterator<value_type, constant_iterators,
						 cache_hash_code>
        const_iterator;

    private:
      typedef Internal::hash_node<Value, cache_hash_code>    node;
      typedef typename Allocator::template rebind<node>::other
        node_allocator_t;
      typedef typename Allocator::template rebind<node*>::other
        bucket_allocator_t;

    private:
      node_allocator_t m_node_allocator;
      // sss -- Some of our allocators have non-trivial state, and
      // thus a non-trivial copy ctor.  However, m_allocate_node
      // will do a copy conversion of node_allocator_t to allocator_type
      // for each node allocated.  Instead, do the conversion once
      // and cache it.  Note: in newer gcc versions, extensions to the
      // allocator model allow dispensing with the conversions.  So once
      // we go to c++0x, this shouldn't be an issue.
      allocator_type m_payload_allocator;
      node** m_buckets;
      size_type m_bucket_count;
      size_type m_element_count;
      RehashPolicy m_rehash_policy;
      
      node*
      m_allocate_node(const value_type& v);
  
      void
      m_deallocate_node(node* n);
  
      void
      m_deallocate_nodes(node**, size_type);

      node**
      m_allocate_buckets(size_type n);
  
      void
      m_deallocate_buckets(node**, size_type n);

    public:			    // Constructor, destructor, assignment, swap
      hashtable(size_type bucket_hint,
		const H1&, const H2&, const H&,
		const Equal&, const ExtractKey&,
		const allocator_type&);
  
      template<typename InIter>
        hashtable(InIter first, InIter last,
		  size_type bucket_hint,
		  const H1&, const H2&, const H&,
		  const Equal&, const ExtractKey&,
		  const allocator_type&);
  
      hashtable(const hashtable&);
      
      hashtable&
      operator=(const hashtable&);
  
      ~hashtable();

      void swap(hashtable&);

    public:				// Basic container operations
      iterator
      begin()
      {
	iterator i(m_buckets);
	if (!i.m_cur_node)
	  i.m_incr_bucket();
	return i;
      }

      const_iterator
      begin() const
      {
	const_iterator i(m_buckets);
	if (!i.m_cur_node)
	  i.m_incr_bucket();
	return i;
      }

      iterator
      end()
      { return iterator(m_buckets + m_bucket_count); }

      const_iterator
      end() const
      { return const_iterator(m_buckets + m_bucket_count); }

      size_type
      size() const
      { return m_element_count; }
  
      bool
      empty() const
      { return size() == 0; }

      allocator_type
      get_allocator() const
      { return m_node_allocator; }
  
      size_type
      max_size() const
      { return m_node_allocator.max_size(); }

    public:                             // Observers
      key_equal
      key_eq() const
      { return this->m_eq; }

      // hash_function, if present, comes from hash_code_base.

    public:				// Bucket operations
      size_type
      bucket_count() const
      { return m_bucket_count; }
  
      size_type
      max_bucket_count() const
      { return max_size(); }
  
      size_type
      bucket_size(size_type n) const
      { return std::distance(begin(n), end(n)); }
  
      size_type
      bucket(const key_type& k) const
      { 
	return this->bucket_index(k, this->m_hash_code(k),
				  this->m_bucket_count);
      }

      local_iterator
      begin(size_type n)
      { return local_iterator(m_buckets[n]); }
  
      local_iterator
      end(size_type)
      { return local_iterator(0); }
  
      const_local_iterator
      begin(size_type n) const
      { return const_local_iterator(m_buckets[n]); }
  
      const_local_iterator
      end(size_type) const
      { return const_local_iterator(0); }

      float
      load_factor() const
      { 
	return static_cast<float>(size()) / static_cast<float>(bucket_count());
      }
      // max_load_factor, if present, comes from rehash_base.

      // Generalization of max_load_factor.  Extension, not found in TR1.  Only
      // useful if RehashPolicy is something other than the default.
      const RehashPolicy&
      rehash_policy() const
      { return m_rehash_policy; }
      
      void 
      rehash_policy(const RehashPolicy&);

    public:				// lookup
      iterator
      find(const key_type&);

      const_iterator
      find(const key_type& k) const;

      size_type
      count(const key_type& k) const;

      std::pair<iterator, iterator>
      equal_range(const key_type& k);

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& k) const;

    private:			// Insert and erase helper functions
      // ??? This dispatching is a workaround for the fact that we don't
      // have partial specialization of member templates; it would be
      // better to just specialize insert on unique_keys.  There may be a
      // cleaner workaround.
      typedef typename Internal::IF<unique_keys,
				    std::pair<iterator, bool>, iterator>::type
        Insert_Return_Type;

      typedef typename Internal::IF<unique_keys,
				    Internal::extract1st<Insert_Return_Type>,
				    Internal::identity<Insert_Return_Type>
                                   >::type
        Insert_Conv_Type;

      node*
      find_node(node* p, const key_type& k,
		typename hashtable::hash_code_t c) const;

      std::pair<iterator, bool>
      insert(const value_type&, CxxUtils_Internal/*std::tr1*/::true_type); // sss
  
      iterator
      insert(const value_type&, CxxUtils_Internal/*std::tr1*/::false_type); // sss

      void
      erase_node(node*, node**);

    public:				// Insert and erase
      Insert_Return_Type
      insert(const value_type& v) 
      { 
	return this->insert(v, CxxUtils_Internal/*std::tr1*/::integral_constant<bool,//sss
			    unique_keys>());
      }

      iterator
      insert(iterator, const value_type& v)
      { return iterator(Insert_Conv_Type()(this->insert(v))); }
      
      const_iterator
      insert(const_iterator, const value_type& v)
      { return const_iterator(Insert_Conv_Type()(this->insert(v))); }

      template<typename InIter>
        void
        insert(InIter first, InIter last);

      iterator
      erase(iterator);

      const_iterator
      erase(const_iterator);

      size_type
      erase(const key_type&);

      iterator
      erase(iterator, iterator);

      const_iterator
      erase(const_iterator, const_iterator);

      void
      clear();

    public:
      // Set number of buckets to be appropriate for container of n element.
      void rehash(size_type n);
      
    private:
      // Unconditionally change size of bucket array to n.
      void m_rehash(size_type n);
    };

  //----------------------------------------------------------------------
  // Definitions of class template hashtable's out-of-line member functions.
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node*
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_allocate_node(const value_type& v)
    {
      node* n = m_node_allocator.allocate(1);
      try
      {
          m_payload_allocator.construct(&n->m_v, v);
	  n->m_next = 0;
	  return n;
	}
      catch(...)
	{
	  m_node_allocator.deallocate(n, 1);
	  __throw_exception_again;
	}
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_deallocate_node(node* n)
    {
      m_payload_allocator.destroy(&n->m_v);
      m_node_allocator.deallocate(n, 1);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_deallocate_nodes(node** array, size_type n)
    {
      for (size_type i = 0; i < n; ++i)
	{
	  node* p = array[i];
	  while (p)
	    {
	      node* tmp = p;
	      p = p->m_next;
	      m_deallocate_node (tmp);
	    }
	  array[i] = 0;
	}
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node**
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_allocate_buckets(size_type n)
    {
      bucket_allocator_t alloc(m_node_allocator);

      // We allocate one extra bucket to hold a sentinel, an arbitrary
      // non-null pointer.  Iterator increment relies on this.
      node** p = alloc.allocate(n+1);
      std::fill(p, p+n, (node*) 0);
      p[n] = reinterpret_cast<node*>(0x1000);
      return p;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_deallocate_buckets(node** p, size_type n)
    {
      bucket_allocator_t alloc(m_node_allocator);
      alloc.deallocate(p, n+1);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    hashtable(size_type bucket_hint,
	      const H1& h1, const H2& h2, const H& h,
	      const Eq& eq, const Ex& exk,
	      const allocator_type& a)
    : Internal::rehash_base<RP,hashtable>(),
      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(exk, eq, h1, h2, h),
      Internal::map_base<K, V, Ex, u, hashtable>(),
      m_node_allocator(a),
      m_payload_allocator(a),
      m_bucket_count(0),
      m_element_count(0),
      m_rehash_policy()
    {
      m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
      m_buckets = m_allocate_buckets(m_bucket_count);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    template<typename InIter>
      hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
      hashtable(InIter f, InIter l,
		size_type bucket_hint,
		const H1& h1, const H2& h2, const H& h,
		const Eq& eq, const Ex& exk,
		const allocator_type& a)
      : Internal::rehash_base<RP,hashtable>(),
	Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c> (exk, eq,
							      h1, h2, h),
	Internal::map_base<K,V,Ex,u,hashtable>(),
	m_node_allocator(a),
	m_bucket_count (0),
	m_element_count(0),
	m_rehash_policy()
      {
	m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
				  m_rehash_policy.
				  bkt_for_elements(Internal::
						   distance_fw(f, l)));
	m_buckets = m_allocate_buckets(m_bucket_count);
	try
	  {
	    for (; f != l; ++f)
	      this->insert(*f);
	  }
	catch(...)
	  {
	    clear();
	    m_deallocate_buckets(m_buckets, m_bucket_count);
	    __throw_exception_again;
	  }
      }
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    hashtable(const hashtable& ht)
    : Internal::rehash_base<RP, hashtable>(ht),
      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(ht),
      Internal::map_base<K, V, Ex, u, hashtable>(ht),
      m_node_allocator(ht.get_allocator()),
      m_payload_allocator(ht.get_allocator()),
      m_bucket_count(ht.m_bucket_count),
      m_element_count(ht.m_element_count),
      m_rehash_policy(ht.m_rehash_policy)
    {
      m_buckets = m_allocate_buckets (m_bucket_count);
      try
	{
	  for (size_t i = 0; i < ht.m_bucket_count; ++i)
	    {
	      node* n = ht.m_buckets[i];
	      node** tail = m_buckets + i;
	      while (n)
		{
		  *tail = m_allocate_node(n->m_v);
		  this->copy_code(*tail, n);
		  tail = &((*tail)->m_next);
		  n = n->m_next;
		}
	    }
	}
      catch (...)
	{
	  clear();
	  m_deallocate_buckets (m_buckets, m_bucket_count);
	  __throw_exception_again;
	}
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>&
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    operator=(const hashtable& ht)
    {
      hashtable tmp(ht);
      this->swap(tmp);
      return *this;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    ~hashtable()
    {
      clear();
      m_deallocate_buckets(m_buckets, m_bucket_count);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    swap(hashtable& x)
    {
      // The only base class with member variables is hash_code_base.  We
      // define hash_code_base::m_swap because different specializations
      // have different members.
      Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);

      // open LWG issue 431
      // std::swap(m_node_allocator, x.m_node_allocator);
      std::swap(m_rehash_policy, x.m_rehash_policy);
      std::swap(m_buckets, x.m_buckets);
      std::swap(m_bucket_count, x.m_bucket_count);
      std::swap(m_element_count, x.m_element_count);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    rehash_policy(const RP& pol)
    {
      m_rehash_policy = pol;
      size_type n_bkt = pol.bkt_for_elements(m_element_count);
      if (n_bkt > m_bucket_count)
	m_rehash (n_bkt);
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    find(const key_type& k)
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      std::size_t n = this->bucket_index(k, code, this->bucket_count());
      node* p = find_node(m_buckets[n], k, code);
      return p ? iterator(p, m_buckets + n) : this->end();
    }
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    find(const key_type& k) const
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      std::size_t n = this->bucket_index(k, code, this->bucket_count());
      node* p = find_node(m_buckets[n], k, code);
      return p ? const_iterator(p, m_buckets + n) : this->end();
    }
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::size_type
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    count(const key_type& k) const
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      std::size_t n = this->bucket_index(k, code, this->bucket_count());
      size_t result = 0;
      for (node* p = m_buckets[n]; p ; p = p->m_next)
	if (this->compare(k, code, p))
	  ++result;
      return result;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
				 H2, H, RP, c, ci, u>::iterator,
	      typename hashtable<K, V, A, Ex, Eq, H1,
				 H2, H, RP, c, ci, u>::iterator>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    equal_range(const key_type& k)
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      std::size_t n = this->bucket_index(k, code, this->bucket_count());
      node** head = m_buckets + n;
      node* p = find_node (*head, k, code);
      
      if (p)
	{
	  node* p1 = p->m_next;
	  for (; p1 ; p1 = p1->m_next)
	    if (!this->compare (k, code, p1))
	      break;

	  iterator first(p, head);
	  iterator last(p1, head);
	  if (!p1)
	    last.m_incr_bucket();
	  return std::make_pair(first, last);
	}
      else
	return std::make_pair(this->end(), this->end());
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
				 H2, H, RP, c, ci, u>::const_iterator,
	      typename hashtable<K, V, A, Ex, Eq, H1,
				 H2, H, RP, c, ci, u>::const_iterator>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    equal_range(const key_type& k) const
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      std::size_t n = this->bucket_index(k, code, this->bucket_count());
      node** head = m_buckets + n;
      node* p = find_node(*head, k, code);

      if (p)
	{
	  node* p1 = p->m_next;
	  for (; p1 ; p1 = p1->m_next)
	    if (!this->compare(k, code, p1))
	      break;

	  const_iterator first(p, head);
	  const_iterator last(p1, head);
	  if (!p1)
	    last.m_incr_bucket();
	  return std::make_pair(first, last);
	}
      else
	return std::make_pair(this->end(), this->end());
    }

  // Find the node whose key compares equal to k, beginning the search
  // at p (usually the head of a bucket).  Return nil if no node is found.
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::node* 
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    find_node(node* p, const key_type& k,
	      typename hashtable::hash_code_t code) const
    {
      for ( ; p ; p = p->m_next)
	if (this->compare (k, code, p))
	  return p;
      return 0;
    }

  // Insert v if no element with its key is already present.
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
				 H2, H, RP, c, ci, u>::iterator, bool>
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    insert(const value_type& v, CxxUtils_Internal/*std::tr1*/::true_type) // sss
    {
      const key_type& k = this->m_extract(v);
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      size_type n = this->bucket_index(k, code, m_bucket_count);
      
      if (node* p = find_node(m_buckets[n], k, code))
	return std::make_pair(iterator(p, m_buckets + n), false);

      std::pair<bool, size_t> do_rehash
	= m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);

      // Allocate the new node before doing the rehash so that we don't
      // do a rehash if the allocation throws.
      node* new_node = m_allocate_node (v);
      
      try
	{
	  if (do_rehash.first)
	    {
	      n = this->bucket_index(k, code, do_rehash.second);
	      m_rehash(do_rehash.second);
	    }

	  new_node->m_next = m_buckets[n];
	  this->store_code(new_node, code);
	  m_buckets[n] = new_node;
	  ++m_element_count;
	  return std::make_pair(iterator(new_node, m_buckets + n), true);
	}
      catch (...)
	{
	  m_deallocate_node (new_node);
	  __throw_exception_again;
	}
    }
  
  // Insert v unconditionally.
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    insert(const value_type& v, CxxUtils_Internal/*std::tr1*/::false_type) // sss
    {
      std::pair<bool, std::size_t> do_rehash
	= m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
      if (do_rehash.first)
	m_rehash(do_rehash.second);

      const key_type& k = this->m_extract(v);
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      size_type n = this->bucket_index(k, code, m_bucket_count);
      
      node* new_node = m_allocate_node (v);
      node* prev = find_node(m_buckets[n], k, code);
      if (prev)
	{
	  new_node->m_next = prev->m_next;
	  prev->m_next = new_node;
	}
      else
	{
	  new_node->m_next = m_buckets[n];
	  m_buckets[n] = new_node;
	}
      this->store_code(new_node, code);

      ++m_element_count;
      return iterator(new_node, m_buckets + n);
    }

  // For erase(iterator) and erase(const_iterator).
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase_node(node* p, node** b)
    {
      node* cur = *b;
      if (cur == p)
	*b = cur->m_next;
      else
	{
	  node* next = cur->m_next;
	  while (next != p)
	    {
	      cur = next;
	      next = cur->m_next;
	    }
	  cur->m_next = next->m_next;
	}

      m_deallocate_node (p);
      --m_element_count;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    template<typename InIter>
      void 
      hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
      insert(InIter first, InIter last)
      {
	size_type n_elt = Internal::distance_fw (first, last);
	std::pair<bool, std::size_t> do_rehash
	  = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
	if (do_rehash.first)
	  m_rehash(do_rehash.second);

	for (; first != last; ++first)
	  this->insert (*first);
      }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase(iterator i)
    {
      iterator result = i;
      ++result;
      erase_node(i.m_cur_node, i.m_cur_bucket);
      return result;
    }
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase(const_iterator i)
    {
      const_iterator result = i;
      ++result;
      erase_node(i.m_cur_node, i.m_cur_bucket);
      return result;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::size_type
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase(const key_type& k)
    {
      typename hashtable::hash_code_t code = this->m_hash_code(k);
      size_type n = this->bucket_index(k, code, m_bucket_count);
      size_type result = 0;
      
      node** slot = m_buckets + n;
      while (*slot && ! this->compare(k, code, *slot))
	slot = &((*slot)->m_next);

      while (*slot && this->compare(k, code, *slot))
	{
	  node* n = *slot;
	  *slot = n->m_next;
	  m_deallocate_node (n);
	  --m_element_count;
	  ++result;
	}

      return result;
    }

  // ??? This could be optimized by taking advantage of the bucket
  // structure, but it's not clear that it's worth doing.  It probably
  // wouldn't even be an optimization unless the load factor is large.
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase(iterator first, iterator last)
    {
      while (first != last)
	first = this->erase(first);
      return last;
    }
  
  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::const_iterator
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    erase(const_iterator first, const_iterator last)
    {
      while (first != last)
	first = this->erase(first);
      return last;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    clear()
    {
      m_deallocate_nodes(m_buckets, m_bucket_count);
      m_element_count = 0;
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    rehash(size_type n)
    {
      m_rehash(std::max(m_rehash_policy.next_bkt(n),
			m_rehash_policy.bkt_for_elements(m_element_count
							 + 1)));
    }

  template<typename K, typename V, 
	   typename A, typename Ex, typename Eq,
	   typename H1, typename H2, typename H, typename RP,
	   bool c, bool ci, bool u>
    void
    hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
    m_rehash(size_type N)
    {
      node** new_array = m_allocate_buckets (N);
      try
	{
	  for (size_type i = 0; i < m_bucket_count; ++i)
	    while (node* p = m_buckets[i])
	      {
		size_type new_index = this->bucket_index (p, N);
		m_buckets[i] = p->m_next;
		p->m_next = new_array[new_index];
		new_array[new_index] = p;
	      }
	  m_deallocate_buckets(m_buckets, m_bucket_count);
	  m_bucket_count = N;
	  m_buckets = new_array;
	}
      catch (...)
	{
	  // A failure here means that a hash function threw an exception.
	  // We can't restore the previous state without calling the hash
	  // function again, so the only sensible recovery is to delete
	  // everything.
	  m_deallocate_nodes(new_array, N);
	  m_deallocate_buckets(new_array, N);
	  m_deallocate_nodes(m_buckets, m_bucket_count);
	  m_element_count = 0;
	  __throw_exception_again;
	}
    }
#undef Internal // sss
//} sss
}				// Namespace std::tr1

#endif /* GNU_LIBSTDCXX_TR1_HASHTABLE_ */