Source

mana-core-gaudikernel / GaudiKernel / NTuple.h

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
// $Id: NTuple.h,v 1.23 2008/10/27 19:22:20 marcocle Exp $
// ============================================================================
#ifndef GAUDIKERNEL_NTUPLE_H
#define GAUDIKERNEL_NTUPLE_H
// ============================================================================
// STL include files
// ============================================================================
#include <string>
#include <limits>
#include <cfloat>
#include <stdexcept>
// ============================================================================
// Framework include files
// ============================================================================
#include "GaudiKernel/DataTypeInfo.h"
#include "GaudiKernel/DataObject.h"
#include "GaudiKernel/INTuple.h"
#include "GaudiKernel/SmartDataPtr.h"
#include "GaudiKernel/IOpaqueAddress.h"
// ============================================================================
// Forward declarations
// ============================================================================
class NTupleFile;
class NTupleDirectory;
// ============================================================================
/**
 * NTuple name space
 *
 *  Definition of helpers to access N tuple implementations
 *
 * @author Markus Frank
 * @author Sebastien Ponce
 */
namespace NTuple
{
  // local forward declarations
  template <class TYP> class Range;
  template <class TYP> class _Data;
  template <class TYP> class _Item;
  template <class TYP> class _Array;
  template <class TYP> class _Matrix;
  template <class TYP> class _Accessor;
  template <class TYP> class Item;
  template <class TYP> class Array;
  template <class TYP> class Matrix;
  // ==========================================================================
  /// Class defining a range
  template <class TYP>
  class Range  {
    /// Lower boundary of range
    /*const*/ TYP    m_lower;
    /// Upper boundary of range
    /*const*/ TYP    m_upper;
  public:
    /// Standard constructor
    Range(const TYP low, const TYP upper) : m_lower(low), m_upper(upper)   {
    }
    /// Copy constructor
    Range(const Range<TYP>& copy) : m_lower(copy.m_lower),
                                    m_upper(copy.m_upper) {
    }
    /// Adjust ranges
    Range& operator=(const Range<TYP>& copy)    {
      m_lower = copy.m_lower;
      m_upper = copy.m_upper;
      return *this;
    }
    /// Destructor
    virtual ~Range()       {                               }
    /// Lower boundary of range
    TYP lower()    const   { return m_lower;               }
    /// Upper boundary of range
    TYP upper()    const   { return m_upper;               }
    /// Distance between lower and upper range
    TYP distance() const   { return m_upper-m_lower;       }
    /// Minimal number of data
    static TYP min() { return std::numeric_limits<TYP>::min() ; }
    /// Maximal number of data
    static TYP max() { return std::numeric_limits<TYP>::max() ; }
  };
  // ==========================================================================
  template <> class Range<bool>
  {
  public:
    /// Standard constructor
    Range(const bool /* low */ , const bool /* upper */ )    {}
    /// Copy constructor
    Range(const Range<bool>& /* copy */ )  {}
    /// Destructor
    virtual ~Range()        {                               }
    /// Lower boundary of range
    bool lower()    const   { return false;                 }
    /// Upper boundary of range
    bool upper()    const   { return true;                  }
    /// Distance between lower and upper range
    bool distance() const   { return true;                  }
    /// Minimal number of data
    static bool min()       { return false;                 }
    /// Maximal number of data
    static bool max()       { return true;                  }
  };
  // ==========================================================================
  template <>
  inline IOpaqueAddress*
  Range<IOpaqueAddress* >::min()     { return (IOpaqueAddress*)0x0        ; }
  template <>
  inline IOpaqueAddress*
  Range<IOpaqueAddress* >::max()     { return (IOpaqueAddress*)0xffffffff ; }
  // ==========================================================================
  /** Abstract class describing basic data in an Ntuple.
   */
  template <class TYP> class GAUDI_API _Data : virtual public INTupleItem  {
  protected:
    /// Pointer to data buffer
    TYP* m_buffer;
  public:
    /// Set type definition to make life more easy easy
    typedef Range<TYP>  ItemRange;
    /// Set default value
    virtual void setDefault(const TYP d)          = 0;
    /// Access the range if specified
    virtual const ItemRange& range() const        = 0;
  };
  // ==========================================================================
  /** Abstract class describing a column in a N tuple.
   */
  template <class TYP> class GAUDI_API _Item : virtual public _Data<TYP>  {
  public:
    /// Create instance
    static _Item* create(INTuple* tup,
                         const std::string& name,
                         const std::type_info& info,
                         TYP min,
                         TYP max,
                         TYP def);
    /// Assignment operator
    template <class T>
    _Item<TYP>& operator=(const _Item<T>& copy)   {
      *this->m_buffer = copy.get();
      return *this;
    }
    /// Access to data by reference
    void       set(const TYP& item) { *this->m_buffer = item;             }
    /// Access to data by reference (CONST)
    virtual TYP get() const   { return *this->m_buffer;             }
  };
  // ==========================================================================
  /** Abstract class describing a column-array in a N tuple.
   */
  template <class TYP> class GAUDI_API _Array : virtual public _Data<TYP>  {
  public:
    /// Create instance
    static _Array* create(INTuple* tup,
                          const std::string& name,
                          const std::type_info& info,
                          const std::string& index,
                          long len,
                          TYP min,
                          TYP max,
                          TYP def);
    /// Assignment operator
    template <class T>
    _Array<TYP>& operator=(const _Array<T>& copy)   {
      long len = this->length();
      if ( len == copy.length() )    {
        const T* source = (const T*)copy.buffer();
        for ( int i = 0; i < len; i++ )  {
          *(this->m_buffer + i) = *(source + i);
        }
        return *this;
      }
      throw std::out_of_range
        ("N-tuple matrix cannot be copied! The index range does not match!");
      return *this;
    }
    /// Access to data by reference (CONST)
    const TYP& data(long i)  const  { return *(this->m_buffer + i);        }
    /// Access to data by reference (CONST)
    TYP&       data(long i)         { return *(this->m_buffer + i);        }
  };
  // ==========================================================================
  /** Abstract class describing a matrix column in a N tuple.
   */
  template <class TYP> class GAUDI_API _Matrix : virtual public _Data<TYP>    {
  protected:
    /// Number of rows per column
    long  m_rows;
  public:
    /// Create instance
    static _Matrix* create(INTuple* tup,
                           const std::string& name,
                           const std::type_info& info,
                           const std::string& index,
                           long ncol,
                           long nrow,
                           TYP min,
                           TYP max,
                           TYP def);
    /// Assignment operator
    template <class T>
    _Matrix<TYP>& operator=(const _Matrix<T>& copy)   {
      long len = this->length();
      if ( len == copy.length() )    {
        const T* source = (const T*)copy.buffer();
        for ( int i = 0; i < len; i++ )  {
          *(this->m_buffer + i) = *(source + i);
        }
        return *this;
      }
      throw std::out_of_range
        ("N-tuple matrix cannot be copied! The index range does not match!");
      return *this;
    }
    /// Access to data by reference
    TYP*       column(long i)       { return (this->m_buffer + i*m_rows);  }
    /// Access to data by reference (CONST)
    const TYP* column(long i) const { return (this->m_buffer + i*m_rows);  }
  };
  // ==========================================================================
  /** Class acting as a smart pointer holding a N tuple entry.
   */
  template <class TYP> class _Accessor  {
    friend class Tuple;
  private:
    _Accessor<TYP>& operator=(const _Accessor<TYP>& copy)   {
      return *this;
    }
  protected:
    /// Pointer to instance
    mutable TYP*  m_ptr;
  public:
    /// Standard Constructor
    _Accessor() : m_ptr(0)           {                                }
    /// Standard Destructor
    virtual ~_Accessor()             {                                }
    /// Check if column is present
    bool          operator !() const { return m_ptr != 0;             }
    /// Check if column is present
    operator const void*()     const { return m_ptr;                  }
    /// Dereference operator
    TYP*         operator->()        { return m_ptr;                  }
    /// Dereference operator (CONST)
    const TYP*   operator->() const  { return m_ptr;                  }
    /// Access the range
    const Range<TYP>& range()  const { return m_ptr->range();         }
  };
  // ==========================================================================
  /** Class acting as a smart pointer holding a N tuple _Item.
   */
  template <class TYP> class Item : virtual public _Accessor< _Item<TYP> > {
    typedef Item<TYP> _My;
  public:
    /// Standard Constructor
    Item()                          {    }
    /// Automatic type conversion
    operator const TYP () const     { return this->m_ptr->get();       }
    /// Dereference operator for pointers
    TYP          operator*()       { return this->m_ptr->get();       }
    /// Dereference operator for pointers(CONST)
    const TYP    operator*() const { return this->m_ptr->get();       }
    // Arithmetic operators defined on NTuple column entries
    Item& operator ++ ()            { return *this += TYP(1);          }
    Item& operator ++ (int)         { return *this += TYP(1);          }
    Item& operator -- ()            { return *this -= TYP(1);          }
    Item& operator -- (int)         { return *this -= TYP(1);          }
    /// Assignment operator
    Item& operator=(const TYP data) {
      this->m_ptr->set( data );
      return *this;
    }
    /// Assignment operator
    template<class T>
    Item& operator=(const Item<T>& data) {
      this->m_ptr->set( data->get() );
      return *this;
    }
    Item<TYP>& operator += (const TYP data)    {
      this->m_ptr->set ( this->m_ptr->get() + data );
      return *this;
    }
    Item<TYP>& operator -= (const TYP data)    {
      this->m_ptr->set ( this->m_ptr->get() - data );
      return *this;
    }
    Item<TYP>& operator *= (const TYP data)    {
      this->m_ptr->set ( this->m_ptr->get() * data );
      return *this;
    }
    Item<TYP>& operator /= (const TYP data)    {
      this->m_ptr->set ( this->m_ptr->get() / data );
      return *this;
    }
  };
  // ==========================================================================
  /** Specialization acting as a smart pointer holding a N tuple _Item.
   */
  template <> class Item<bool> : virtual public _Accessor< _Item<bool> > {
    typedef Item<bool> _My;
  public:
    /// Standard Constructor
    Item()                          {    }
    /// Automatic type conversion
    operator bool () const     { return this->m_ptr->get();             }
    /// Assignment operator
    Item& operator=(const bool data) {
      this->m_ptr->set( data );
      return *this;
    }
    /// Assignment operator
    template<class T>
    Item& operator=(const Item<T>& data) {
      this->m_ptr->set( data->get() );
      return *this;
    }
  };
  // ==========================================================================
  /** Class acting as a smart pointer holding a N tuple _Item.
   */
  template <class TYP> class Array  : virtual public _Accessor < _Array<TYP> > {
  public:
    /// Standard Constructor
    Array()                                  {    }
    /// Assignment operator
    template <class T>
    Array& operator=(const Array<T>& copy)  {
      *(this->m_ptr) = *(copy.operator->());
      return *this;
    }
    /// Array operator
    template <class T>
    TYP&       operator[] (const T i)        { return this->m_ptr->data(i);  }
    /// Array operator
    template <class T>
    const TYP& operator[] (const T i) const  { return this->m_ptr->data(i);  }
    virtual ~Array() {}
  };
  // =========================================================================
  /** Class acting as a smart pointer holding a N tuple _Item.
   */
  template <class TYP> class Matrix : virtual public _Accessor< _Matrix<TYP> > {
  public:
    /// Standard Constructor
    Matrix()                                  {    }
    /// Assignment operator
    template <class T>
    Matrix& operator=(const Matrix<T>& copy) {
      *(this->m_ptr) = *(copy.operator->());
      return *this;
    }
    /// Array operator
    template <class T>
    TYP*       operator[] (const T i)         { return this->m_ptr->column(i); }
    /// Array operator
    template <class T>
    const TYP* operator[] (const T i)  const  { return this->m_ptr->column(i); }
    virtual ~Matrix() {}
  };
  // =========================================================================
  /** Abstract base class which allows the user to interact with the
      actual N tuple implementation.
      The class is abstract, because the template methods must
      be instantiated by the compiler at compile time. Otherwise the
      references would be unresolved.
  */
  class Tuple : public DataObject, virtual public INTuple  {

  protected:
    /// Locate a _Column of data to the N tuple type safe
    template <class TYPE> StatusCode i_item(const std::string& name,
                                            _Item<TYPE>*& result)  const   {
      try   {
        result = dynamic_cast< _Item<TYPE>* > (i_find(name));
      }
      catch (...)   {
        result = 0;
      }
      return (0==result) ? StatusCode::FAILURE : StatusCode::SUCCESS;
    }
    /// Locate a _Column of data to the N tuple type unsafe for objects
    template <class TYPE> StatusCode i_item(const std::string& name,
                                            _Item<TYPE*>*& result)  const   {
      try   {
        _Item<void*>* p = dynamic_cast< _Item<void*>* > (i_find(name));
        result = (_Item<TYPE*>*)p;
      }
      catch (...)   {
        result = 0;
      }
      return (0==result) ? StatusCode::FAILURE : StatusCode::SUCCESS;
    }
    /// Locate a _Column of data to the N tuple type safe
    StatusCode i_item(const std::string& name,
                                            _Item<IOpaqueAddress*>*& result)  const   {
      try   {
        result = dynamic_cast< _Item<IOpaqueAddress*>* > (i_find(name));
      }
      catch (...)   {
        result = 0;
      }
      return (0==result) ? StatusCode::FAILURE : StatusCode::SUCCESS;
    }
    /// Locate a _Array of data to the N tuple type safe
    template <class TYPE> StatusCode i_item(const std::string& name,
                                            _Array<TYPE>*& result)  const   {
      try   {
        if ( clID() == CLID_ColumnWiseTuple )   {
          result = dynamic_cast< _Array<TYPE>* > (i_find(name));
        }
      }
      catch (...)   {
        result = 0;
      }
      return (0==result) ? StatusCode::FAILURE : StatusCode::SUCCESS;
    }
    /// Locate a _Matrix of data to the N tuple type safe
    template <class TYPE> StatusCode i_item(const std::string& name,
                                            _Matrix<TYPE>*& result)  const   {
      try   {
        if ( clID() == CLID_ColumnWiseTuple )   {
          result = dynamic_cast< _Matrix<TYPE>* > (i_find(name));
        }
      }
      catch (...)   {
        result = 0;
      }
      return (0==result) ? StatusCode::FAILURE : StatusCode::SUCCESS;
    }
    /// Add a _Item of data to the N tuple
    template <class TYPE>
    StatusCode i_addItem(const std::string& name,
                         long,
                         const std::string&,
                         TYPE low,
                         TYPE high,
                         _Item<TYPE>*& result)   {
      if ( !i_find(name) )    {
        TYPE nil;
        nil = 0;
        return add( result = _Item<TYPE>::create(this, name, typeid(TYPE), low, high, nil) );
      }
      return StatusCode::FAILURE;
    }
    /// Add a _Item of data to the N tuple
    template <class TYPE>
    StatusCode i_addItem(const std::string& name,
                         long dim,
                         const std::string& index,
                         TYPE low,
                         TYPE high,
                         _Array<TYPE>*& result)   {
      if ( !i_find(name) && clID() == CLID_ColumnWiseTuple )    {
        return add( result = _Array<TYPE>::create(this,
                                                  name,
                                                  typeid(TYPE),
                                                  index,
                                                  dim,
                                                  low,
                                                  high,
                                                  TYPE(0)) );
      }
      return StatusCode::FAILURE;
    }
    /// Add a _Item of data to the N tuple
    template <class TYPE>
    StatusCode i_addItem(const std::string& name,
                         long dim1,
                         long dim2,
                         const std::string& index,
                         TYPE low,
                         TYPE high,
                         _Matrix<TYPE>*& result)   {
      if ( !i_find(name) && clID() == CLID_ColumnWiseTuple )    {
        return add( result = _Matrix<TYPE>::create(this,
                                                   name,
                                                   typeid(TYPE),
                                                   index,
                                                   dim1,
                                                   dim2,
                                                   low,
                                                   high,
                                                   TYPE(0)) );
      }
      return StatusCode::FAILURE;
    }
    template <class TYPE> StatusCode
    i_addObject(const std::string& name,_Item<TYPE*>*& result,const std::type_info& /* typ */)  {
      if ( !i_find(name) && clID() == CLID_ColumnWiseTuple )    {
        return add( result = (_Item<TYPE*>*)_Item<void*>::create(this, name, typeid(TYPE),0,0,0) );
      }
      return StatusCode::FAILURE;
    }

  public:
    /// Standard destructor
    virtual ~Tuple()   {
    }
    /// Locate a scalar Item of data to the N tuple type safe
    template <class TYPE> StatusCode item(const std::string& name,
                                          Item<TYPE>& result)
    {
      return i_item(name, result.m_ptr);
    }
    /// Locate a scalar Item of data to the N tuple type safe (CONST)
    template <class TYPE> StatusCode item(const std::string& name,
                                          const Item<TYPE>& result)  const
    {
      return i_item(name, result.m_ptr);
    }
    /// Locate a Array of data to the N tuple type safe
    template <class TYPE> StatusCode
      item(const std::string& name, Array<TYPE>& result)
    {
      return i_item(name, result.m_ptr);
    }
    /// Locate a Array of data to the N tuple type safe (CONST)
    template <class TYPE> StatusCode item(const std::string& name,
                                          const Array<TYPE>& result)  const
    {
      return i_item(name, result.m_ptr);
    }
    /// Locate a Matrix of data to the N tuple type safe
    template <class TYPE> StatusCode item(const std::string& name,
                                          Matrix<TYPE>& result)
    {
      return i_item(name, result.m_ptr);
    }

    /// Locate a Matrix of data to the N tuple type safe (CONST)
    template <class TYPE> StatusCode item( const std::string& name,
                                           const Matrix<TYPE>& result)  const
    {
      return i_item(name, result.m_ptr);
    }

    /** Add a scalar data item a N tuple.

        Use this entry point to connect any allowed scalar data type
        to an N-tuple. The value filled, may have any range.
        Do NOT use this entry point to specify an index
        column in a column wise N-tuple.

        @param  name       Name of the column in the column wise N-tuple
        @param  itm        Reference to the Item<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE> StatusCode
    addItem(const std::string& name, Item<TYPE>& itm)  {
      typedef Range<TYPE> _R;
      return i_addItem(name, 1, "", _R::min(), _R::max(), itm.m_ptr);
    }

    /** Add an simple object item to an N tuple.

        @param  name       Name of the column in the column wise N-tuple
        @param  itm        Reference to the Item<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE> StatusCode
    addItem(const std::string& name, Item<TYPE*>& itm) {
      return i_addObject(name,itm.m_ptr,typeid(TYPE));
    }

    /** Add an address object item to an N tuple: specialized call

        @param  name       Name of the column in the column wise N-tuple
        @param  itm        Reference to the Item<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    StatusCode
    addItem(const std::string& name, Item<IOpaqueAddress*>& itm) {
      typedef Range<IOpaqueAddress*> _R;
      return i_addItem(name, 1, "", _R::min(), _R::max(), itm.m_ptr);
    }

    /** Add a scalar data item a N tuple with a range.

        Typically this entry point is used to specuify
        index column with a fixed data range for a column wise N-tuple.

        Note: Checks on the data range are not implemented!

        @param  name       Name of the column in the column wise N-tuple
        @param  itm        Reference to the Item<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple array.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple array.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class RANGE> StatusCode
      addItem(const std::string& name,
              Item<TYPE>& itm,
              const RANGE low,
              const RANGE high)
    {
      return i_addItem( name, 1, "", TYPE(low), TYPE(high), itm.m_ptr);
    }

    /** Add an fixed-size Array of data to a column wise N tuple.

        You should use this entry point to add a FIXED SIZE ARRAY
        to a column wise N-tuple. The dimension of the array must
        be specified.

        @param  name       Name of the column in the column wise N-tuple
        @param  dim        Length of the array to be added to the N-tuple
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE> StatusCode
      addItem(const std::string& name,
              long dim,
              Array<TYPE>& array)
    {
      return i_addItem(name,
                       dim,
                       "",
                       Range<TYPE>::min(),
                       Range<TYPE>::max(),
                       array.m_ptr);
    }

    /** Add an fixed-size Array of data to a column wise N tuple with a range.

        You should use this entry point to add a FIXED SIZE ARRAY
        to a column wise N-tuple. The dimension of the array must
        be specified.

        Note: Checks on the data range are not implemented!

        @param  name       Name of the column in the column wise N-tuple
        @param  dim        Length of the array to be added to the N-tuple
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple array.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple array.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class RANGE> StatusCode
      addItem(const std::string& name,
              long dim,
              Array<TYPE>& array,
              const RANGE low,
              const RANGE high)
    {
      return i_addItem(name,
                       dim,
                       "",
                       TYPE(low),
                       TYPE(high),
                       array.m_ptr);
    }

    /** Add an indexed Array of data to a column wise N tuple with a range.

        You should use this entry point to add a VARIABLE SIZE ARRAY
        to a column wise N-tuple. The dimension of the array is
        unspecified and depends on the data range, which you allowed
        for the index column.

        Hence you have to be careful on the allowed data range of the
        index column, because the index column determines the total
        allocated memory.

        Note: Checks on the data range are not implemented!

        Note: Due to confusion with the entry point to connecting
              a fixed size array the use of this function is
                  *** DEPRECATED ***
              please use addIndexedItem(...) instead.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the size of the array.
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple array.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple array.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX, class RANGE> StatusCode
      addItem(const std::string& name,
              Item<INDEX>& index,
              Array<TYPE>& array,
              const RANGE low,
              const RANGE high)
    {
      return i_addItem( name,
                        index->range().distance(),
                        index->name(),
                        TYPE(low),
                        TYPE(high),
                        array.m_ptr);
    }

    /** Add an indexed Array of data to a column wise N tuple with a range.

        You should use this entry point to add a VARIABLE SIZE ARRAY
        to a column wise N-tuple. The dimension of the array is
        unspecified and depends on the data range, which you allowed
        for the index column.

        Hence you have to be careful on the allowed data range of the
        index column, because the index column determines the total
        allocated memory.

        Note: Checks on the data range are not implemented!

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the size of the array.
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple array.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple array.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX, class RANGE> StatusCode
      addIndexedItem( const std::string& name,
                      Item<INDEX>& index,
                      Array<TYPE>& array,
                      const RANGE low,
                      const RANGE high)
    {
      return i_addItem( name,
                        index->range().distance(),
                        index->name(),
                        TYPE(low),
                        TYPE(high),
                        array.m_ptr);
    }

    /** Add an indexed Array of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE ARRAY
        to a column wise N-tuple. The dimension of the array is
        unspecified and depends on the data range, which you allowed
        for the index column.

        Hence, you have to be careful on the allowed data range of the
        index column, because the index column determines the total
        allocated memory.

        Note: Due to confusion with the entry point to connecting
              a fixed size array the use of this member function is
                  *** DEPRECATED ***
              please use addIndexedItem(...) instead.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the size of the array.
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX> StatusCode
      addItem(const std::string& name,
              Item<INDEX>& index,
              Array<TYPE>& array)
    {
      return i_addItem( name,
                        index->range().distance(),
                        index->name(),
                        Range<TYPE>::min(),
                        Range<TYPE>::max(),
                        array.m_ptr);
    }

    /** Add an indexed Array of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE ARRAY
        to a column wise N-tuple. The dimension of the array is
        unspecified and depends on the data range, which you allowed
        for the index column.

        Hence, you have to be careful on the allowed data range of the
        index column, because the index column determines the total
        allocated memory.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the size of the array.
        @param  array      Reference to the Array<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX> StatusCode
      addIndexedItem( const std::string& name,
                      Item<INDEX>& index,
                      Array<TYPE>& array)
    {
      return i_addItem( name,
                        index->range().distance(),
                        index->name(),
                        Range<TYPE>::min(),
                        Range<TYPE>::max(),
                        array.m_ptr);
    }

    /** Add an fixed size Matrix of data to a column wise N tuple.

        You should use this entry point to add a FIXED SIZE MATRIX
        to a column wise N-tuple. The dimension of the matrix must
        be specified.

        Attention: Do not confuse with entry point to add a
                   VARIABLE SIZE MATRIX!

        @param  name       Name of the column in the column wise N-tuple
        @param  cols       Number of data columns in the Matrix.
        @param  rows       Number of data rows in the Matrix.
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE> StatusCode
      addItem(const std::string& name,
              long cols,
              long rows,
              Matrix<TYPE>& matrix)
    {
      return i_addItem(name,
                       cols,
                       rows,
                       "",
                       Range<TYPE>::min(),
                       Range<TYPE>::max(),
                       matrix.m_ptr);
    }

    /** Add an fixed size Matrix of data to a column wise N tuple.

        You should use this entry point to add a FIXED SIZE MATRIX
        to a column wise N-tuple. The dimension of the matrix must
        be specified.

        Note: Checks on the data range are not implemented!
        Attention: Do not confuse with entry point to add a
                   VARIABLE SIZE MATRIX!

        @param  name       Name of the column in the column wise N-tuple
        @param  cols       Number of data columns in the Matrix.
        @param  rows       Number of data rows in the Matrix.
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple matrix.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple matrix.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class RANGE> StatusCode
      addItem(const std::string& name,
              long cols,
              long rows,
              Matrix<TYPE>& result,
              const RANGE low,
              const RANGE high)
    {
      return i_addItem(name,
                       cols,
                       rows,
                       "",
                       TYPE(low),
                       TYPE(high),
                       result.m_ptr);
    }

    /** Add an variable size Matrix of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE MATRIX
        to a column wise N-tuple. The number of columns of the
        matrix is given by the allowed data range of the index column.
        The number of rows however, which are allowed in the matrix
        must be specified explicitly and cannot be variable.

        Attention: Do not confuse with entry point to add a
                   FIXED SIZE MATRIX.

        Note: Due to confusion with the entry point to connecting
              a fixed size matrix the use of this member function is
                  *** DEPRECATED ***
              please use addIndexedItem(...) instead.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the number of data columns in the matrix
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  rows       Number of data rows in the Matrix.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX> StatusCode
      addItem(const std::string& name,
              Item<INDEX>& index,
              Matrix<TYPE>& matrix,
              long rows)
    {
      return i_addItem( name,
                        index->range().distance(),
                        rows,
                        index->name(),
                        Range<TYPE>::min(),
                        Range<TYPE>::max(),
                        matrix.m_ptr);
    }

    /** Add an variable size Matrix of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE MATRIX
        to a column wise N-tuple. The number of columns of the
        matrix is given by the allowed data range of the index column.
        The number of rows however, which are allowed in the matrix
        must be specified explicitly and cannot be variable.

        Attention: Do not confuse with entry point to add a
                   FIXED SIZE MATRIX.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the number of data columns in the matrix
        @param  rows       Number of data rows in the Matrix.
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX> StatusCode
      addIndexedItem( const std::string& name,
                      Item<INDEX>& col_index,
                      long rows,
                      Matrix<TYPE>& matrix)
    {
      return i_addItem( name,
                        col_index->range().distance(),
                        rows,
                        col_index->name(),
                        Range<TYPE>::min(),
                        Range<TYPE>::max(),
                        matrix.m_ptr);
    }

    /** Add an variable size Matrix of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE MATRIX
        to a column wise N-tuple. The number of columns of the
        matrix is given by the allowed data range of the index column.
        The number of rows however, which are allowed in the matrix
        must be specified explicitly and cannot be variable. Also the
        range of allowed data values to be filled into the data area
        of the matrix can be specified.

        Note: Checks on the data range are not implemented!
        Attention: Do not confuse with entry point to add a
                   FIXED SIZE MATRIX.

        Note: Due to confusion with the entry point to connecting
              a fixed size matrix the use of this member function is
                  *** DEPRECATED ***
              please use addIndexedItem(...) instead.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the number of data columns in the matrix
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  rows       Number of data rows in the Matrix.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple matrix.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple matrix.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX, class RANGE> StatusCode
      addItem(const std::string& name,
              Item<INDEX>& index,
              Matrix<TYPE>& matrix,
              long rows,
              const RANGE low,
              const RANGE high)
    {
      return i_addItem( name,
                        index->range().distance(),
                        rows,
                        index->name(),
                        TYPE(low),
                        TYPE(high),
                        matrix.m_ptr);
    }

    /** Add an variable size Matrix of data to a column wise N tuple.

        You should use this entry point to add a VARIABLE SIZE MATRIX
        to a column wise N-tuple. The number of columns of the
        matrix is given by the allowed data range of the index column.
        The number of rows however, which are allowed in the matrix
        must be specified explicitly and cannot be variable. Also the
        range of allowed data values to be filled into the data area
        of the matrix can be specified.

        Note: Checks on the data range are not implemented!
        Attention: Do not confuse with entry point to add a
                   FIXED SIZE MATRIX.

        @param  name       Name of the column in the column wise N-tuple
        @param  index      Reference to the scalar index column used to
                           determine the number of data columns in the matrix
        @param  rows       Number of data rows in the Matrix.
        @param  matrix     Reference to the Matrix<TYPE> datatype, which
                           should be connected to the N-tuple.
        @param  low        Lower edge of client data values allowed
                           to fill into the N-tuple matrix.
        @param  high       Upper edge of client data values allowed
                           to fill into the N-tuple matrix.

        @return StatusCode indicating success or failure.
    */
    template <class TYPE, class INDEX, class RANGE> StatusCode
      addIndexedItem( const std::string& name,
                      Item<INDEX>& index,
                      long rows,
                      Matrix<TYPE>& matrix,
                      const RANGE low,
                      const RANGE high)
    {
      return i_addItem( name,
                        index->range().distance(),
                        rows,
                        index->name(),
                        TYPE(low),
                        TYPE(high),
                        matrix.m_ptr);
    }
  };

  /** Small class representing an N tuple directory in the transient store
  */
  class Directory : public DataObject    {
  public:
    /// Standard constructor
    Directory()   {
    }
    /// Standard destructor
    virtual ~Directory()   {
    }
    /// class ID of the object
    static const CLID& classID()    {
      return CLID_NTupleDirectory;
    }
    /// class ID of the object
    virtual const CLID& clID()    const   {
      return Directory::classID();
    }
  };

  /** Small class representing an N tuple file in the transient store
  */
  class File : public Directory    {
  protected:
    /// Physical file name
    std::string   m_name;
    /// Logical file name
    std::string   m_logName;
    /// Access type
    long          m_type;
    /// Flag to indicate wether the file was opened already
    bool          m_isOpen;
  public:
    File() : m_type(0), m_isOpen(false)   {
    }
    /// Standard constructor
    File(long type, const std::string name, const std::string& logName)
    : m_name(name), m_logName(logName), m_type(type), m_isOpen(false)  {
    }
    /// Standard destructor
    virtual ~File()   {
    }
    /// class ID of the object
    static const CLID& classID()    {
      return CLID_NTupleFile;
    }
    /// class ID of the object
    virtual const CLID& clID()    const   {
      return File::classID();
    }
    /// Set access type
    void setType(const long typ)   {
      m_type = typ;
    }
    /// Return access type
    long type()      const {
      return m_type;
    }
    /// Retrun physical file name
    const std::string& name()    const   {
      return m_name;
    }
    /// Set access type
    void setName(const std::string& nam)    {
      m_name = nam;
    }
    //// Return logical file name
    const std::string& logicalName()    const   {
      return m_logName;
    }
    //// Return logical file name
    void setLogicalName( const std::string& l)  {
      m_logName = l;
    }
    /// Set "open" flag
      void setOpen(bool flag)   {
      m_isOpen = flag;
    }
      /// Access "open" flag
    bool isOpen()   const   {
      return m_isOpen;
    }
  };
  // =========================================================================
  // inhibit certain types by defining specialized templates which do not
  // allow for construction.
  template <>
  class Array <IOpaqueAddress*>
  {
  private:
    Array(){}
  public:
    virtual ~Array() {}
    virtual void dummy() = 0;
  };
  template <>
  class Matrix<IOpaqueAddress*>
  {
  private:
    Matrix(){}
  public:
    virtual ~Matrix() {}
    virtual void dummy() = 0;
  };
  // =========================================================================
#ifndef ALLOW_ALL_TYPES
#else
  typedef Item<bool>              BoolItem;
  typedef Item<char>              CharItem;
  typedef Item<unsigned char>     UCharItem;
  typedef Item<short>             ShortItem;
  typedef Item<unsigned short>    UShortItem;
  typedef Item<long>              LongItem;
  typedef Item<unsigned long>     ULongItem;
  typedef Item<int>               IntItem;
  typedef Item<unsigned int>      UIntItem;
  typedef Item<float>             FloatItem;
  typedef Item<double>            DoubleItem;
  typedef Array<bool>             BoolArray;
  typedef Array<char>             CharArray;
  typedef Array<unsigned char>    UCharArray;
  typedef Array<short>            ShortArray;
  typedef Array<unsigned short>   UShortArray;
  typedef Array<long>             LongArray;
  typedef Array<unsigned long>    ULongArray;
  typedef Array<int>              IntArray;
  typedef Array<unsigned int>     UIntArray;
  typedef Array<float>            FloatArray;
  typedef Array<double>           DoubleArray;
  typedef Matrix<bool>            BoolMatrix;
  typedef Matrix<char>            CharMatrix;
  typedef Matrix<unsigned char>   UCharMatrix;
  typedef Matrix<short>           ShortMatrix;
  typedef Matrix<unsigned short>  UShortMatrix;
  typedef Matrix<long>            LongMatrix;
  typedef Matrix<unsigned long>   ULongMatrix;
  typedef Matrix<int>             IntMatrix;
  typedef Matrix<unsigned int>    UIntMatrix;
  typedef Matrix<float>           FloatMatrix;
  typedef Matrix<double>          DoubleMatrix;
#endif
} // end of namespace NTuple

// Useful:
typedef SmartDataPtr<NTuple::Tuple>     NTuplePtr;
typedef SmartDataPtr<NTuple::Directory> NTupleDirPtr;
typedef SmartDataPtr<NTuple::File>      NTupleFilePtr;

template <class T>
std::ostream& operator<<(std::ostream& s, const NTuple::Item<T>& obj)
{
  return s << T(obj);
}

#endif // GAUDIKERNEL_NTUPLE_H
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.