orange-bioinformatics /

import Orange
import obiAssess
import Orange.misc
import orange
import obiGeneSets
import obiGene
import numpy
from collections import defaultdict
import statc
import stats

class SetSig(object):

    __new__ = Orange.misc._orange__new__(object)

    def __init__(self, matcher, geneSets, minSize=3, maxSize=1000, minPart=0.1, classValues=None):
        self.matcher = matcher
        self.geneSets = geneSets
        self.minSize = minSize
        self.maxSize = maxSize
        self.minPart = minPart
        self.classValues = classValues

    def __call__(self, data, weight_id=None):
        data, oknames, gsetsnum = obiAssess.selectGenesetsData(data, 
            self.matcher, self.geneSets,
            minSize=self.minSize, maxSize=self.maxSize, 
            minPart=self.minPart, classValues=self.classValues)

        def setSig_example_geneset(ex, data):
            """ ex contains only selected genes """

            distances = [ [], [] ]    

            def pearsonr(v1, v2):
                    return statc.pearsonr(v1, v2)[0]
                    return numpy.corrcoef([v1, v2])[0,1]

            def pearson(ex1, ex2):
                attrs = range(len(ex1.domain.attributes))
                vals1 = [ ex1[i].value for i in attrs ]
                vals2 = [ ex2[i].value for i in attrs ]
                return pearsonr(vals1, vals2)

            def ttest(ex1, ex2):
                    return stats.lttest_ind(ex1, ex2)[0]
                    return 0.0
            #maps class value to its index
            classValueMap = dict( [ (val,i) for i,val in enumerate(data.domain.classVar.values) ])
            #create distances to all learning data - save or other class
            for c in data:
                distances[classValueMap[c[-1].value]].append(pearson(c, ex))

            return ttest(distances[0], distances[1])

        attributes = []

        for name, gs in gsetsnum.items(): #for each geneset
            #for each gene set: take the attribute subset and work on the attribute subset only
            #only select the subset of genes from the learning data
            at = Orange.feature.Continuous(

            def t(ex, w, gs=gs, ldata=data):
                domain = orange.Domain([ldata.domain.attributes[ai] for ai in gs], ldata.domain.classVar)
                datao = orange.ExampleTable(domain, ldata)
                example = orange.Example(domain, ex) #domains need to be the same
                return setSig_example_geneset(example, datao)
            at.get_value_from = t
        newdomain =, data.domain.class_var)
        return, data)

if __name__ == "__main__":

    data ="iris")
    gsets = obiGeneSets.collections({
        "ALL": ['sepal length', 'sepal width', 'petal length', 'petal width'],
        "f3": ['sepal length', 'sepal width', 'petal length'],
        "l3": ['sepal width', 'petal length', 'petal width'],

    fp = 120
    ldata = orange.ExampleTable(data.domain, data[:fp])
    tdata = orange.ExampleTable(data.domain, data[fp:])

    matcher = obiGene.matcher([])

    choosen_cv = ["Iris-setosa", "Iris-versicolor"]
    def to_old_dic(d, data):
        ar = defaultdict(list)
        for ex1 in data:
            ex = d(ex1)
            for a,x in zip(d.attributes, ex):
        return ar

    def pp2(ar):
        ol =  sorted(ar.items())
        print '\n'.join([ a + ": " +str(b) for a,b in ol])

    ass = SetSig(ldata, matcher=matcher, geneSets=gsets, classValues=choosen_cv, minPart=0.0)
    print ass.domain
    ar = to_old_dic(ass.domain, data[:5])