Source

orange / Orange / OrangeWidgets / OWGraphTools.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.Qwt5 import *
import numpy

SelectionCurveRtti = QwtPlotCurve.Rtti_PlotUserItem + 123
LegendCurveRtti = QwtPlotCurve.Rtti_PlotUserItem + 124


# ####################################################################
# add val to sorted list list. if len > maxLen delete last element
def addToList(list, val, ind, maxLen):
    i = 0
    for i in range(len(list)):
        (val2, ind2) = list[i]
        if val < val2:
            list.insert(i, (val, ind))
            if len(list) > maxLen:
                list.remove(list[maxLen])
            return
    if len(list) < maxLen:
        list.insert(len(list), (val, ind))


#A dynamic tool tip class
class TooltipManager:
    # Creates a new dynamic tool tip.
    def __init__(self, qwtplot):
        self.qwtplot = qwtplot
        self.positions=[]
        self.texts=[]

    # Adds a tool tip. If a tooltip with the same name already exists, it updates it instead of adding a new one.
    def addToolTip(self, x, y, text, customX = 0, customY = 0):
        self.positions.append((x,y, customX, customY))
        self.texts.append(text)

    #Decides whether to pop up a tool tip and which text to pop up
    def maybeTip(self, x, y):
        if len(self.positions) == 0: return ("", -1, -1)
        dists = [max(abs(x-position[0])- position[2],0) + max(abs(y-position[1])-position[3], 0) for position in self.positions]
        nearestIndex = dists.index(min(dists))

        intX = abs(self.qwtplot.transform(self.qwtplot.xBottom, x) - self.qwtplot.transform(self.qwtplot.xBottom, self.positions[nearestIndex][0]))
        intY = abs(self.qwtplot.transform(self.qwtplot.yLeft, y) - self.qwtplot.transform(self.qwtplot.yLeft, self.positions[nearestIndex][1]))
        if self.positions[nearestIndex][2] == 0 and self.positions[nearestIndex][3] == 0:   # if we specified no custom range then assume 6 pixels
            if intX + intY < 6:  return (self.texts[nearestIndex], self.positions[nearestIndex][0], self.positions[nearestIndex][1])
            else:                return ("", None, None)
        else:
            if abs(self.positions[nearestIndex][0] - x) <= self.positions[nearestIndex][2] and abs(self.positions[nearestIndex][1] - y) <= self.positions[nearestIndex][3]:
                return (self.texts[nearestIndex], x, y)
            else:
                return ("", None, None)

    def removeAll(self):
        self.positions = []
        self.texts = []


# ####################################################################
# used in widgets that enable to draw a rectangle or a polygon to select a subset of data points
class SelectionCurve(QwtPlotCurve):
    def __init__(self, name = "", pen = Qt.SolidLine ):
        QwtPlotCurve.__init__(self, name)
        self.setStyle(QwtPlotCurve.Lines)
        self.setPen(QPen(QColor(128,128,128), 1, pen))
        self.setItemAttribute(QwtPlotItem.Legend, 0)

    def rtti(self):
        return SelectionCurveRtti

    def addPoint(self, xPoint, yPoint):
        self.setData([self.x(i) for i in range(self.dataSize())] + [xPoint], [self.y(i) for i in range(self.dataSize())] + [yPoint])

    def removeLastPoint(self):
        self.setData([self.x(i) for i in range(self.dataSize()-1)], [self.y(i) for i in range(self.dataSize()-1)])

    def replaceLastPoint(self, xPoint, yPoint):
        self.setData([self.x(i) for i in range(self.dataSize()-1)] + [xPoint], [self.y(i) for i in range(self.dataSize()-1)] + [yPoint])

    def getPointArray(self):
        return QPolygonF([QPointF(self.x(i), self.y(i)) for i in range(self.dataSize())] + [QPointF(self.x(0), self.y(0))])

    def getSelectedPoints(self, xData, yData, validData):
        pointArray = self.getPointArray()
        selected = numpy.zeros(len(xData))

        for i in range(len(xData)):
            if validData[i]:
                selected[i] = pointArray.containsPoint(QPointF(xData[i], yData[i]), Qt.OddEvenFill)
        return selected

    # is point defined at x,y inside a rectangle defined with this curve
    def isInside(self, x, y):
        return self.getPointArray().containsPoint(QPointF(x, y), Qt.OddEvenFill)

    def moveBy(self, dx, dy):
        xData = [self.x(i) + dx for i in range(self.dataSize())]
        yData = [self.y(i) + dy for i in range(self.dataSize())]
        self.setData(xData, yData)


    # test if the line going from before last and last point intersect any lines before
    # if yes, then add the intersection point and remove the outer points
    def closed(self):
        if self.dataSize() < 5: return 0
        x1 = self.x(self.dataSize()-3)
        x2 = self.x(self.dataSize()-2)
        y1 = self.y(self.dataSize()-3)
        y2 = self.y(self.dataSize()-2)
        for i in range(self.dataSize()-5, -1, -1):
            X1 = self.x(i)
            X2 = self.x(i+1)
            Y1 = self.y(i)
            Y2 = self.y(i+1)
            (intersect, xi, yi) = self.lineIntersection(x1, y1, x2, y2, X1, Y1, X2, Y2)
            if intersect:
                xData = [xi]; yData = [yi]
                for j in range(i+1, self.dataSize()-2): xData.append(self.x(j)); yData.append(self.y(j))
                xData.append(xi); yData.append(yi)
                self.setData(xData, yData)
                return 1
        return 0

    def lineIntersection(self, x1, y1, x2, y2, X1, Y1, X2, Y2):
        if min(x1,x2) > max(X1, X2) or max(x1,x2) < min(X1,X2): return (0, 0, 0)
        if min(y1,y2) > max(Y1, Y2) or max(y1,y2) < min(Y1,Y2): return (0, 0, 0)

        if x2-x1 != 0: k1 = (y2-y1)/(x2-x1)
        else:          k1 = 1e+12

        if X2-X1 != 0: k2 = (Y2-Y1)/(X2-X1)
        else:          k2 = 1e+12

        c1 = (y1-k1*x1)
        c2 = (Y1-k2*X1)

        if k1 == 1e+12:
            yTest = k2*x1 + c2
            if yTest > min(y1,y2) and yTest  < max(y1,y2): return (1, x1, yTest)
            else: return (0,0,0)

        if k2 == 1e+12:
            yTest = k1*X1 + c1
            if yTest > min(Y1,Y2) and yTest < max(Y1,Y2): return (1, X1, yTest)
            else: return (0,0,0)

        det_inv = 1/(k2 - k1)

        xi=((c1 - c2)*det_inv)
        yi=((k2*c1 - k1*c2)*det_inv)

        if xi >= min(x1, x2) and xi <= max(x1,x2) and xi >= min(X1, X2) and xi <= max(X1, X2) and yi >= min(y1,y2) and yi <= max(y1, y2) and yi >= min(Y1, Y2) and yi <= max(Y1, Y2):
            return (1, xi, yi)
        else:
            return (0, xi, yi)
        
    def isOnEdge(self, x, y):
        return 0

class RectangleSelectionCurve(SelectionCurve):
    def __init__(self, name = "", pen = Qt.SolidLine):
        SelectionCurve.__init__(self, name, pen)
        self.point1 = (0,0)
        self.point2 = (0,0)
        self.appropriateCursor = Qt.ArrowCursor
    
    def setPoints(self, x1, y1, x2, y2):
        self.point1, self.point2 = (x1,y1), (x2,y2)
        self.setData([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1])
        
    def approxEqual(self, p1, p2, axis = None):
        if type(p1) == tuple and type(p2) == tuple:
            x1, y1 = self.plot().transform(self.plot().xBottom, p1[0]), self.plot().transform(self.plot().yLeft, p1[1])
            x2, y2 = self.plot().transform(self.plot().xBottom, p2[0]), self.plot().transform(self.plot().yLeft, p2[1])
            return abs(x1-x2) + abs(y1-y2) <= 4
        else:
            v1, v2 = self.plot().transform(axis, p1), self.plot().transform(axis, p2)
            return abs(v1-v2) <= 2
    
    def between(self, val, v1, v2):
        return val >= min(v1, v2) and val <= max(v1, v2)
        
    # check if based on the mouse position (x,y) we should show a different cursor and enable resizing
    def isOnEdge(self, x, y):
        xData = [self.x(i) for i in range(self.dataSize())]
        yData = [self.y(i) for i in range(self.dataSize())]
        if len(xData) == 0: return 0
        x1, y1 = min(xData), min(yData)
        x2, y2 = max(xData), max(yData)
        
        if self.approxEqual((min(x1,x2), min(y1,y2)), (x,y)):
            self.point1, self.point2 = (max(x1,x2), max(y1,y2)), (min(x1,x2), min(y1,y2))
            self.appropriateCursor = Qt.SizeBDiagCursor
        elif self.approxEqual((max(x1,x2), max(y1,y2)), (x,y)):
            self.point1, self.point2 = (min(x1,x2), min(y1,y2)), (max(x1,x2), max(y1,y2))
            self.appropriateCursor = Qt.SizeBDiagCursor
        elif self.approxEqual((min(x1,x2), max(y1,y2)), (x,y)):
            self.point1, self.point2 = (max(x1,x2), min(y1,y2)), (min(x1,x2), max(y1,y2))
            self.appropriateCursor = Qt.SizeFDiagCursor
        elif self.approxEqual((max(x1,x2), min(y1,y2)), (x,y)):
            self.point1, self.point2 = (min(x1,x2), max(y1,y2)), (max(x1,x2), min(y1,y2))
            self.appropriateCursor = Qt.SizeFDiagCursor
        elif self.approxEqual(x1, x, self.plot().xBottom) and self.between(y, y1, y2):
            self.point1, self.point2 = (x2, y2), (x1,y1)
            self.appropriateCursor = Qt.SizeHorCursor
        elif self.approxEqual(x2, x, self.plot().xBottom) and self.between(y, y1, y2) :
            self.point1, self.point2 = (x1, y1), (x2,y2)
            self.appropriateCursor = Qt.SizeHorCursor
        elif self.approxEqual(y1, y, self.plot().yLeft) and self.between(x, x1, x2):
            self.point1, self.point2 = (x2, y2), (x1,y1)
            self.appropriateCursor = Qt.SizeVerCursor
        elif self.approxEqual(y2, y, self.plot().yLeft) and self.between(x, x1, x2):
            self.point1, self.point2 = (x1, y1), (x2,y2)
            self.appropriateCursor = Qt.SizeVerCursor
        else:
            self.appropriateCursor = Qt.ArrowCursor
        return self.appropriateCursor != Qt.ArrowCursor
    
    # update the curve with new x and y coordinates of one edge
    # here we assume that the isOnEdge was called first since it takes care of preparing the values in point1 and point2
    def updateCurve(self, x, y):
        if self.appropriateCursor in [Qt.SizeBDiagCursor, Qt.SizeFDiagCursor]:
            self.setPoints(self.point1[0], self.point1[1], x, y)
        elif self.appropriateCursor == Qt.SizeHorCursor:
            self.setPoints(self.point1[0], self.point1[1], x, self.point2[1])
        elif self.appropriateCursor == Qt.SizeVerCursor:
            self.setPoints(self.point1[0], self.point1[1], self.point2[0], y)

# a class that draws unconnected lines. first two points in the xData and yData are considered as the first line,
# the second two points as the second line, etc.
class UnconnectedLinesCurve(QwtPlotCurve):
    def __init__(self, name, pen = QPen(Qt.black), xData = None, yData = None):
        QwtPlotCurve.__init__(self, name)
        if pen.width() == 0:
            pen.setWidth(1)
        self.setPen(pen)
        self.Pen = pen
        self.setStyle(QwtPlotCurve.Lines)
        self.setItemAttribute(QwtPlotItem.Legend, 0)
        if xData != None and yData != None:
            self.setData(xData, yData)

    def drawCurve(self, painter, style, xMap, yMap, start, stop):
        start = max(start + start%2, 0)
        if stop == -1:
            stop = self.dataSize()
        for i in range(start, stop, 2):
            QwtPlotCurve.drawLines(self, painter, xMap, yMap, i, i+1)


class RectangleCurve(QwtPlotCurve):
    def __init__(self, pen = QPen(Qt.black), brush = QBrush(Qt.white), xData = None, yData = None):
        QwtPlotCurve.__init__(self)
        if pen:
            self.setPen(pen)
        if brush:
            self.setBrush(brush)
        self.Pen = pen
        self.Brush = brush
        self.setStyle(QwtPlotCurve.Lines)
        self.setItemAttribute(QwtPlotItem.Legend, 0)
        if xData != None and yData != None:
            self.setData(xData, yData)


    # To show a rectangle, we have to create a closed polygon.
    # Therefore we add to each rectangle the first point (each rect therefore contains 5 points in the xData and yData)
    def setData(self, xData, yData):
        startsX = xData[::4]
        startsY = yData[::4]
        for i in range(len(startsX))[::-1]:
            xData.insert(4+i*4, startsX[i])
            yData.insert(4+i*4, startsY[i])
        QwtPlotCurve.setData(self, xData, yData)

    def drawCurve(self, painter, style, xMap, yMap, start, stop):
        for i in range(start, stop, 5):
            QwtPlotCurve.drawLines(self, painter, xMap, yMap, i, i+4)


# ###########################################################
# a class that is able to draw arbitrary polygon curves.
# data points are specified by a standard call to graph.setCurveData(key, xArray, yArray)
# brush and pen can also be set by calls to setPen and setBrush functions
class PolygonCurve(QwtPlotCurve):
    def __init__(self, pen = QPen(Qt.black), brush = QBrush(Qt.white), xData = None, yData = None, tooltip = None):
        QwtPlotCurve.__init__(self)
        if pen:
            self.setPen(pen)
        if brush:
            self.setBrush(brush)
        self.Pen = pen
        self.Brush = brush
        self.setStyle(QwtPlotCurve.Lines)
        self.setItemAttribute(QwtPlotItem.Legend, 0)
        self.tooltip = tooltip
        if xData != None and yData != None:
            self.setData(xData, yData)


class errorBarQwtPlotCurve(QwtPlotCurve):
    def __init__(self, text = "", connectPoints = 0, tickXw = 0.1, tickYw = 0.1, showVerticalErrorBar = 1, showHorizontalErrorBar = 0):
        QwtPlotCurve.__init__(self, text)
        self.connectPoints = connectPoints
        self.tickXw = tickXw
        self.tickYw = tickYw
        self.showVerticalErrorBar = showVerticalErrorBar
        self.showHorizontalErrorBar = showHorizontalErrorBar
        self.setItemAttribute(QwtPlotItem.Legend, 0)

    def draw(self, p, xMap, yMap, f, t=-1):
        # save ex settings
        pen = p.pen()

        if type(f)==QRect:
            f = 0

        self.setPen( self.symbol().pen() )
        p.setPen( self.symbol().pen() )
        if self.style() == QwtPlotCurve.UserCurve:
            back = p.backgroundMode()

            p.setBackgroundMode(Qt.OpaqueMode)
            if t < 0: t = self.dataSize() - 1

            if divmod(f, 3)[1] != 0: f -= f % 3
            if divmod(t, 3)[1] == 0:  t += 1
            first = 1
            for i in range(f, t+1, 3):
                px = xMap.transform(self.x(i))
                py = yMap.transform(self.y(i))

                if self.showVerticalErrorBar:
                    vbxl = xMap.transform(self.x(i) - self.tickXw/2.0)
                    vbxr = xMap.transform(self.x(i) + self.tickXw/2.0)

                    vbyt = yMap.transform(self.y(i + 1))
                    vbyb = yMap.transform(self.y(i + 2))

                if self.showHorizontalErrorBar:
                    hbxl = xMap.transform(self.x(i + 1))
                    hbxr = xMap.transform(self.x(i + 2))

                    hbyt = yMap.transform(self.y(i) + self.tickYw/2.0)
                    hbyb = yMap.transform(self.y(i) - self.tickYw/2.0)

                if self.connectPoints:
                    if first:
                        first = 0
                    else:
                        p.drawLine(ppx, ppy, px, py)
                    ppx = px
                    ppy = py

                if self.showVerticalErrorBar:
                    p.drawLine(px,   vbyt, px,   vbyb)   ## |
                    p.drawLine(vbxl, vbyt, vbxr, vbyt) ## T
                    p.drawLine(vbxl, vbyb, vbxr, vbyb) ## _

                if self.showHorizontalErrorBar:
                    p.drawLine(hbxl, py,   hbxr, py)   ## -
                    p.drawLine(hbxl, hbyt, hbxl, hbyb) ## |-
                    p.drawLine(hbxr, hbyt, hbxr, hbyb) ## -|

                self.symbol().draw(p, px, py)

            p.setBackgroundMode(back)
        else:
            QwtPlotCurve.draw(self, p, xMap, yMap, f, t)

        # restore ex settings
        p.setPen(pen)


# ####################################################################
# create a marker in QwtPlot, that doesn't have a transparent background. Currently used in parallel coordinates widget.
class nonTransparentMarker(QwtPlotMarker):
    def __init__(self, backColor, *args):
        QwtPlotMarker.__init__(self, *args)
        self.backColor = backColor

    def draw(self, p, x, y, rect):
        p.setPen(self.labelPen())
        p.setFont(self.font())

        th = p.fontMetrics().height();
        tw = p.fontMetrics().width(self.label());
        r = QRect(x + 4, y - th/2 - 2, tw + 4, th + 4)
        p.fillRect(r, QBrush(self.backColor))
        p.drawText(r, Qt.AlignHCenter + Qt.AlignVCenter, self.label());



class RotatedMarker(QwtPlotMarker):
    def __init__(self, parent, label = "", x = 0.0, y = 0.0, rotation = 0):
        QwtPlotMarker.__init__(self, parent)
        self.rotation = rotation
        self.parent = parent
        self.x = x
        self.y = y
        self.setXValue(x)
        self.setYValue(y)
        self.parent = parent

        if rotation != 0: self.setLabel(label + "  ")
        else:             self.setLabel(label)

    def setRotation(self, rotation):
        self.rotation = rotation

    def draw(self, painter, x, y, rect):
        rot = math.radians(self.rotation)

        x2 = x * math.cos(rot) - y * math.sin(rot)
        y2 = x * math.sin(rot) + y * math.cos(rot)

        painter.rotate(-self.rotation)
        QwtPlotMarker.draw(self, painter, x2, y2, rect)
        painter.rotate(self.rotation)


# ####################################################################
# draw labels for discrete attributes
class DiscreteAxisScaleDraw(QwtScaleDraw):
    def __init__(self, labels):
        apply(QwtScaleDraw.__init__, (self,))
        self.labels = labels

    def label(self, value):
        index = int(round(value))
        if index != value: return QwtText("")    # if value not an integer value return ""
        if index >= len(self.labels) or index < 0: return QwtText("")
        return QwtText(str(self.labels[index]))

# ####################################################################
# use this class if you want to hide labels on the axis
class HiddenScaleDraw(QwtScaleDraw):
    def __init__(self, *args):
        QwtScaleDraw.__init__(self, *args)

    def label(self, value):
        return QwtText()