Source

sphinx / Doc-26 / library / stdtypes.rst

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373

.. _bltin-types:

**************
Built-in Types
**************

The following sections describe the standard types that are built into the
interpreter.

.. note::

   Historically (until release 2.2), Python's built-in types have differed from
   user-defined types because it was not possible to use the built-in types as the
   basis for object-oriented inheritance. This limitation no longer
   exists.

.. index:: pair: built-in; types

The principal built-in types are numerics, sequences, mappings, files, classes,
instances and exceptions.

.. index:: statement: print

Some operations are supported by several object types; in particular,
practically all objects can be compared, tested for truth value, and converted
to a string (with the :func:`repr` function or the slightly different
:func:`str` function).  The latter function is implicitly used when an object is
written by the :func:`print` function.


.. _truth:

Truth Value Testing
===================

.. index::
   statement: if
   statement: while
   pair: truth; value
   pair: Boolean; operations
   single: false

Any object can be tested for truth value, for use in an :keyword:`if` or
:keyword:`while` condition or as operand of the Boolean operations below. The
following values are considered false:

  .. index:: single: None (Built-in object)

* ``None``

  .. index:: single: False (Built-in object)

* ``False``

* zero of any numeric type, for example, ``0``, ``0L``, ``0.0``, ``0j``.

* any empty sequence, for example, ``''``, ``()``, ``[]``.

* any empty mapping, for example, ``{}``.

* instances of user-defined classes, if the class defines a :meth:`__nonzero__`
  or :meth:`__len__` method, when that method returns the integer zero or
  :class:`bool` value ``False``. [#]_

.. index:: single: true

All other values are considered true --- so objects of many types are always
true.

.. index::
   operator: or
   operator: and
   single: False
   single: True

Operations and built-in functions that have a Boolean result always return ``0``
or ``False`` for false and ``1`` or ``True`` for true, unless otherwise stated.
(Important exception: the Boolean operations ``or`` and ``and`` always return
one of their operands.)


.. _boolean:

Boolean Operations --- :keyword:`and`, :keyword:`or`, :keyword:`not`
====================================================================

.. index:: pair: Boolean; operations

These are the Boolean operations, ordered by ascending priority:

+-------------+---------------------------------+-------+
| Operation   | Result                          | Notes |
+=============+=================================+=======+
| ``x or y``  | if *x* is false, then *y*, else | \(1)  |
|             | *x*                             |       |
+-------------+---------------------------------+-------+
| ``x and y`` | if *x* is false, then *x*, else | \(2)  |
|             | *y*                             |       |
+-------------+---------------------------------+-------+
| ``not x``   | if *x* is false, then ``True``, | \(3)  |
|             | else ``False``                  |       |
+-------------+---------------------------------+-------+

.. index::
   operator: and
   operator: or
   operator: not

Notes:

(1)
   This is a short-circuit operator, so it only evaluates the second
   argument if the first one is :const:`False`.

(2)
   This is a short-circuit operator, so it only evaluates the second
   argument if the first one is :const:`True`.

(3)
   ``not`` has a lower priority than non-Boolean operators, so ``not a == b`` is
   interpreted as ``not (a == b)``, and ``a == not b`` is a syntax error.


.. _stdcomparisons:

Comparisons
===========

.. index:: pair: chaining; comparisons

Comparison operations are supported by all objects.  They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, ``x < y <= z`` is equivalent to ``x < y and
y <= z``, except that *y* is evaluated only once (but in both cases *z* is not
evaluated at all when ``x < y`` is found to be false).

This table summarizes the comparison operations:

+------------+-------------------------+-------+
| Operation  | Meaning                 | Notes |
+============+=========================+=======+
| ``<``      | strictly less than      |       |
+------------+-------------------------+-------+
| ``<=``     | less than or equal      |       |
+------------+-------------------------+-------+
| ``>``      | strictly greater than   |       |
+------------+-------------------------+-------+
| ``>=``     | greater than or equal   |       |
+------------+-------------------------+-------+
| ``==``     | equal                   |       |
+------------+-------------------------+-------+
| ``!=``     | not equal               | \(1)  |
+------------+-------------------------+-------+
| ``is``     | object identity         |       |
+------------+-------------------------+-------+
| ``is not`` | negated object identity |       |
+------------+-------------------------+-------+

.. index::
   pair: operator; comparison
   operator: ==
   operator: is
   operator: is not

.. % XXX *All* others have funny characters < ! >

Notes:

(1)
    ``!=`` can also be written ``<>``, but this is an obsolete usage
    kept for backwards compatibility only. New code should always use
    ``!=``.

.. index::
   pair: object; numeric
   pair: objects; comparing

Objects of different types, except different numeric types and different string
types, never compare equal; such objects are ordered consistently but
arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate
notion of comparison where any two objects of that type are unequal.  Again,
such objects are ordered arbitrarily but consistently. The ``<``, ``<=``, ``>``
and ``>=`` operators will raise a :exc:`TypeError` exception when any operand is
a complex number.

.. index:: single: __cmp__() (instance method)

Instances of a class normally compare as non-equal unless the class defines the
:meth:`__cmp__` method.  Refer to :ref:`customization`) for information on the
use of this method to effect object comparisons.

**Implementation note:** Objects of different types except numbers are ordered
by their type names; objects of the same types that don't support proper
comparison are ordered by their address.

.. index::
   operator: in
   operator: not in

Two more operations with the same syntactic priority, ``in`` and ``not in``, are
supported only by sequence types (below).


.. _typesnumeric:

Numeric Types --- :class:`int`, :class:`float`, :class:`long`, :class:`complex`
===============================================================================

.. index::
   object: numeric
   object: Boolean
   object: integer
   object: long integer
   object: floating point
   object: complex number
   pair: C; language

There are four distinct numeric types: :dfn:`plain integers`, :dfn:`long
integers`,  :dfn:`floating point numbers`, and :dfn:`complex numbers`. In
addition, Booleans are a subtype of plain integers. Plain integers (also just
called :dfn:`integers`) are implemented using :ctype:`long` in C, which gives
them at least 32 bits of precision (``sys.maxint`` is always set to the maximum
plain integer value for the current platform, the minimum value is
``-sys.maxint - 1``).  Long integers have unlimited precision. Floating point
numbers are implemented using :ctype:`double` in C. All bets on their precision
are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using
:ctype:`double` in C.  To extract these parts from a complex number *z*, use
``z.real`` and ``z.imag``.

.. index::
   pair: numeric; literals
   pair: integer; literals
   triple: long; integer; literals
   pair: floating point; literals
   pair: complex number; literals
   pair: hexadecimal; literals
   pair: octal; literals

Numbers are created by numeric literals or as the result of built-in functions
and operators.  Unadorned integer literals (including hex and octal numbers)
yield plain integers unless the value they denote is too large to be represented
as a plain integer, in which case they yield a long integer.  Integer literals
with an ``'L'`` or ``'l'`` suffix yield long integers (``'L'`` is preferred
because ``1l`` looks too much like eleven!).  Numeric literals containing a
decimal point or an exponent sign yield floating point numbers.  Appending
``'j'`` or ``'J'`` to a numeric literal yields a complex number with a zero real
part. A complex numeric literal is the sum of a real and an imaginary part.

.. index::
   single: arithmetic
   builtin: int
   builtin: long
   builtin: float
   builtin: complex

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the "narrower" type is
widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between
numbers of mixed type use the same rule. [#]_ The constructors :func:`int`,
:func:`long`, :func:`float`, and :func:`complex` can be used to produce numbers
of a specific type.

All numeric types (except complex) support the following operations, sorted by
ascending priority (operations in the same box have the same priority; all
numeric operations have a higher priority than comparison operations):

+--------------------+---------------------------------+--------+
| Operation          | Result                          | Notes  |
+====================+=================================+========+
| ``x + y``          | sum of *x* and *y*              |        |
+--------------------+---------------------------------+--------+
| ``x - y``          | difference of *x* and *y*       |        |
+--------------------+---------------------------------+--------+
| ``x * y``          | product of *x* and *y*          |        |
+--------------------+---------------------------------+--------+
| ``x / y``          | quotient of *x* and *y*         | \(1)   |
+--------------------+---------------------------------+--------+
| ``x // y``         | (floored) quotient of *x* and   | \(5)   |
|                    | *y*                             |        |
+--------------------+---------------------------------+--------+
| ``x % y``          | remainder of ``x / y``          | \(4)   |
+--------------------+---------------------------------+--------+
| ``-x``             | *x* negated                     |        |
+--------------------+---------------------------------+--------+
| ``+x``             | *x* unchanged                   |        |
+--------------------+---------------------------------+--------+
| ``abs(x)``         | absolute value or magnitude of  |        |
|                    | *x*                             |        |
+--------------------+---------------------------------+--------+
| ``int(x)``         | *x* converted to integer        | \(2)   |
+--------------------+---------------------------------+--------+
| ``long(x)``        | *x* converted to long integer   | \(2)   |
+--------------------+---------------------------------+--------+
| ``float(x)``       | *x* converted to floating point |        |
+--------------------+---------------------------------+--------+
| ``complex(re,im)`` | a complex number with real part |        |
|                    | *re*, imaginary part *im*.      |        |
|                    | *im* defaults to zero.          |        |
+--------------------+---------------------------------+--------+
| ``c.conjugate()``  | conjugate of the complex number |        |
|                    | *c*                             |        |
+--------------------+---------------------------------+--------+
| ``divmod(x, y)``   | the pair ``(x // y, x % y)``    | (3)(4) |
+--------------------+---------------------------------+--------+
| ``pow(x, y)``      | *x* to the power *y*            |        |
+--------------------+---------------------------------+--------+
| ``x ** y``         | *x* to the power *y*            |        |
+--------------------+---------------------------------+--------+

.. index::
   triple: operations on; numeric; types
   single: conjugate() (complex number method)

Notes:

(1)
   .. index::
      pair: integer; division
      triple: long; integer; division

   For (plain or long) integer division, the result is an integer. The result is
   always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and
   (-1)/(-2) is 0.  Note that the result is a long integer if either operand is a
   long integer, regardless of the numeric value.

(2)
   .. index::
      module: math
      single: floor() (in module math)
      single: ceil() (in module math)
      pair: numeric; conversions
      pair: C; language

   Conversion from floating point to (long or plain) integer may round or truncate
   as in C; see functions :func:`floor` and :func:`ceil` in the :mod:`math` module
   for well-defined conversions.

(3)
   See :ref:`built-in-funcs` for a full description.

(4)
   Complex floor division operator, modulo operator, and :func:`divmod`.

   .. deprecated:: 2.3
      Instead convert to float using :func:`abs` if appropriate.

(5)
   Also referred to as integer division.  The resultant value is a whole integer,
   though the result's type is not necessarily int.

.. % XXXJH exceptions: overflow (when? what operations?) zerodivision


.. _bitstring-ops:

Bit-string Operations on Integer Types
--------------------------------------

.. _bit-string operations:

Plain and long integer types support additional operations that make sense only
for bit-strings.  Negative numbers are treated as their 2's complement value
(for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation ``~`` has the
same priority as the other unary numeric operations (``+`` and ``-``).

This table lists the bit-string operations sorted in ascending priority
(operations in the same box have the same priority):

+------------+--------------------------------+----------+
| Operation  | Result                         | Notes    |
+============+================================+==========+
| ``x | y``  | bitwise :dfn:`or` of *x* and   |          |
|            | *y*                            |          |
+------------+--------------------------------+----------+
| ``x ^ y``  | bitwise :dfn:`exclusive or` of |          |
|            | *x* and *y*                    |          |
+------------+--------------------------------+----------+
| ``x & y``  | bitwise :dfn:`and` of *x* and  |          |
|            | *y*                            |          |
+------------+--------------------------------+----------+
| ``x << n`` | *x* shifted left by *n* bits   | (1), (2) |
+------------+--------------------------------+----------+
| ``x >> n`` | *x* shifted right by *n* bits  | (1), (3) |
+------------+--------------------------------+----------+
| ``~x``     | the bits of *x* inverted       |          |
+------------+--------------------------------+----------+

.. index::
   triple: operations on; integer; types
   pair: bit-string; operations
   pair: shifting; operations
   pair: masking; operations

Notes:

(1)
   Negative shift counts are illegal and cause a :exc:`ValueError` to be raised.

(2)
   A left shift by *n* bits is equivalent to multiplication by ``pow(2, n)``
   without overflow check.

(3)
   A right shift by *n* bits is equivalent to division by ``pow(2, n)`` without
   overflow check.


.. _typeiter:

Iterator Types
==============

.. versionadded:: 2.2

.. index::
   single: iterator protocol
   single: protocol; iterator
   single: sequence; iteration
   single: container; iteration over

Python supports a concept of iteration over containers.  This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration.  Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration
support:


.. method:: container.__iter__()

   Return an iterator object.  The object is required to support the iterator
   protocol described below.  If a container supports different types of
   iteration, additional methods can be provided to specifically request
   iterators for those iteration types.  (An example of an object supporting
   multiple forms of iteration would be a tree structure which supports both
   breadth-first and depth-first traversal.)  This method corresponds to the
   :attr:`tp_iter` slot of the type structure for Python objects in the Python/C
   API.

The iterator objects themselves are required to support the following two
methods, which together form the :dfn:`iterator protocol`:


.. method:: iterator.__iter__()

   Return the iterator object itself.  This is required to allow both containers
   and iterators to be used with the :keyword:`for` and :keyword:`in` statements.
   This method corresponds to the :attr:`tp_iter` slot of the type structure for
   Python objects in the Python/C API.


.. method:: iterator.next()

   Return the next item from the container.  If there are no further items, raise
   the :exc:`StopIteration` exception.  This method corresponds to the
   :attr:`tp_iternext` slot of the type structure for Python objects in the
   Python/C API.

Python defines several iterator objects to support iteration over general and
specific sequence types, dictionaries, and other more specialized forms.  The
specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator's :meth:`next` method
raises :exc:`StopIteration`, it will continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.  (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)

Python's generators provide a convenient way to implement the iterator protocol.
If a container object's :meth:`__iter__` method is implemented as a generator,
it will automatically return an iterator object (technically, a generator
object) supplying the :meth:`__iter__` and :meth:`next` methods.


.. _typesseq:

Sequence Types --- :class:`str`, :class:`unicode`, :class:`list`, :class:`tuple`, :class:`buffer`, :class:`xrange`
==================================================================================================================

There are six sequence types: strings, Unicode strings, lists, tuples, buffers,
and xrange objects.

.. index::
   object: sequence
   object: string
   object: Unicode
   object: tuple
   object: list

String literals are written in single or double quotes: ``'xyzzy'``,
``"frobozz"``.  See :ref:`strings` for more about string literals.  Unicode
strings are much like strings, but are specified in the syntax using a preceding
``'u'`` character: ``u'abc'``, ``u"def"``.  Lists are constructed with square
brackets, separating items with commas: ``[a, b, c]``.  Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, such as
``a, b, c`` or ``()``.  A single item tuple must have a trailing comma, such as
``(d,)``.

.. index::
   builtin: buffer
   object: buffer

Buffer objects are not directly supported by Python syntax, but can be created
by calling the builtin function :func:`buffer`.  They don't support
concatenation or repetition.

.. index::
   builtin: xrange
   object: xrange

Xrange objects are similar to buffers in that there is no specific syntax to
create them, but they are created using the :func:`xrange` function.  They don't
support slicing, concatenation or repetition, and using ``in``, ``not in``,
:func:`min` or :func:`max` on them is inefficient.

Most sequence types support the following operations.  The ``in`` and ``not in``
operations have the same priorities as the comparison operations.  The ``+`` and
``*`` operations have the same priority as the corresponding numeric operations.
[#]_

This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority).  In the table, *s* and *t*
are sequences of the same type; *n*, *i* and *j* are integers:

+------------------+--------------------------------+----------+
| Operation        | Result                         | Notes    |
+==================+================================+==========+
| ``x in s``       | ``True`` if an item of *s* is  | \(1)     |
|                  | equal to *x*, else ``False``   |          |
+------------------+--------------------------------+----------+
| ``x not in s``   | ``False`` if an item of *s* is | \(1)     |
|                  | equal to *x*, else ``True``    |          |
+------------------+--------------------------------+----------+
| ``s + t``        | the concatenation of *s* and   | \(6)     |
|                  | *t*                            |          |
+------------------+--------------------------------+----------+
| ``s * n, n * s`` | *n* shallow copies of *s*      | \(2)     |
|                  | concatenated                   |          |
+------------------+--------------------------------+----------+
| ``s[i]``         | *i*'th item of *s*, origin 0   | \(3)     |
+------------------+--------------------------------+----------+
| ``s[i:j]``       | slice of *s* from *i* to *j*   | (3), (4) |
+------------------+--------------------------------+----------+
| ``s[i:j:k]``     | slice of *s* from *i* to *j*   | (3), (5) |
|                  | with step *k*                  |          |
+------------------+--------------------------------+----------+
| ``len(s)``       | length of *s*                  |          |
+------------------+--------------------------------+----------+
| ``min(s)``       | smallest item of *s*           |          |
+------------------+--------------------------------+----------+
| ``max(s)``       | largest item of *s*            |          |
+------------------+--------------------------------+----------+

Sequence types also support comparisons. In particular, tuples and lists
are compared lexicographically by comparing corresponding
elements. This means that to compare equal, every element must compare
equal and the two sequences must be of the same type and have the same
length. (For full details see :ref:`comparisons` in the language
reference.)

.. index::
   triple: operations on; sequence; types
   builtin: len
   builtin: min
   builtin: max
   pair: concatenation; operation
   pair: repetition; operation
   pair: subscript; operation
   pair: slice; operation
   pair: extended slice; operation
   operator: in
   operator: not in

Notes:

(1)
   When *s* is a string or Unicode string object the ``in`` and ``not in``
   operations act like a substring test.  In Python versions before 2.3, *x* had to
   be a string of length 1. In Python 2.3 and beyond, *x* may be a string of any
   length.

(2)
   Values of *n* less than ``0`` are treated as ``0`` (which yields an empty
   sequence of the same type as *s*).  Note also that the copies are shallow;
   nested structures are not copied.  This often haunts new Python programmers;
   consider::

      >>> lists = [[]] * 3
      >>> lists
      [[], [], []]
      >>> lists[0].append(3)
      >>> lists
      [[3], [3], [3]]

   What has happened is that ``[[]]`` is a one-element list containing an empty
   list, so all three elements of ``[[]] * 3`` are (pointers to) this single empty
   list.  Modifying any of the elements of ``lists`` modifies this single list.
   You can create a list of different lists this way::

      >>> lists = [[] for i in range(3)]
      >>> lists[0].append(3)
      >>> lists[1].append(5)
      >>> lists[2].append(7)
      >>> lists
      [[3], [5], [7]]

(3)
   If *i* or *j* is negative, the index is relative to the end of the string:
   ``len(s) + i`` or ``len(s) + j`` is substituted.  But note that ``-0`` is still
   ``0``.

(4)
   The slice of *s* from *i* to *j* is defined as the sequence of items with index
   *k* such that ``i <= k < j``.  If *i* or *j* is greater than ``len(s)``, use
   ``len(s)``.  If *i* is omitted or ``None``, use ``0``.  If *j* is omitted or
   ``None``, use ``len(s)``.  If *i* is greater than or equal to *j*, the slice is
   empty.

(5)
   The slice of *s* from *i* to *j* with step *k* is defined as the sequence of
   items with index  ``x = i + n*k`` such that 0 ≤n < (j-i)/(k).  In other words,
   the indices are ``i``, ``i+k``, ``i+2*k``, ``i+3*k`` and so on, stopping when
   *j* is reached (but never including *j*).  If *i* or *j* is greater than
   ``len(s)``, use ``len(s)``.  If *i* or *j* are omitted or ``None``, they become
   "end" values (which end depends on the sign of *k*).  Note, *k* cannot be zero.
   If *k* is ``None``, it is treated like ``1``.

(6)
   If *s* and *t* are both strings, some Python implementations such as CPython can
   usually perform an in-place optimization for assignments of the form ``s=s+t``
   or ``s+=t``.  When applicable, this optimization makes quadratic run-time much
   less likely.  This optimization is both version and implementation dependent.
   For performance sensitive code, it is preferable to use the :meth:`str.join`
   method which assures consistent linear concatenation performance across versions
   and implementations.

   .. versionchanged:: 2.4
      Formerly, string concatenation never occurred in-place.


.. _string-methods:

String Methods
--------------

.. index:: pair: string; methods

Below are listed the string methods which both 8-bit strings and Unicode
objects support. In addition, Python's strings support the 
sequence type methods described in the
:ref:`typesseq` section (above). To output formatted strings use
template strings or the ``%`` operator described in the
:ref:`typesseq-strings` section (below). Also, see the :mod:`re` module for
string functions based on regular expressions.

.. method:: str.capitalize()

   Return a copy of the string with only its first character capitalized.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.center(width[, fillchar])

   Return centered in a string of length *width*. Padding is done using the
   specified *fillchar* (default is a space).

   .. versionchanged:: 2.4
      Support for the *fillchar* argument.


.. method:: str.count(sub[, start[, end]])

   Return the number of occurrences of substring *sub* in string S\
   ``[start:end]``.  Optional arguments *start* and *end* are interpreted as in
   slice notation.


.. method:: str.decode([encoding[, errors]])

   Decodes the string using the codec registered for *encoding*. *encoding*
   defaults to the default string encoding.  *errors* may be given to set a
   different error handling scheme.  The default is ``'strict'``, meaning that
   encoding errors raise :exc:`UnicodeError`.  Other possible values are
   ``'ignore'``, ``'replace'`` and any other name registered via
   :func:`codecs.register_error`, see section :ref:`codec-base-classes`.

   .. versionadded:: 2.2

   .. versionchanged:: 2.3
      Support for other error handling schemes added.


.. method:: str.encode([encoding[,errors]])

   Return an encoded version of the string.  Default encoding is the current
   default string encoding.  *errors* may be given to set a different error
   handling scheme.  The default for *errors* is ``'strict'``, meaning that
   encoding errors raise a :exc:`UnicodeError`.  Other possible values are
   ``'ignore'``, ``'replace'``, ``'xmlcharrefreplace'``, ``'backslashreplace'`` and
   any other name registered via :func:`codecs.register_error`, see section
   :ref:`codec-base-classes`. For a list of possible encodings, see section
   :ref:`standard-encodings`.

   .. versionadded:: 2.0

   .. versionchanged:: 2.3
      Support for ``'xmlcharrefreplace'`` and ``'backslashreplace'`` and other error
      handling schemes added.


.. method:: str.endswith(suffix[, start[, end]])

   Return ``True`` if the string ends with the specified *suffix*, otherwise return
   ``False``.  *suffix* can also be a tuple of suffixes to look for.  With optional
   *start*, test beginning at that position.  With optional *end*, stop comparing
   at that position.

   .. versionchanged:: 2.5
      Accept tuples as *suffix*.


.. method:: str.expandtabs([tabsize])

   Return a copy of the string where all tab characters are expanded using spaces.
   If *tabsize* is not given, a tab size of ``8`` characters is assumed.


.. method:: str.find(sub[, start[, end]])

   Return the lowest index in the string where substring *sub* is found, such that
   *sub* is contained in the range [*start*, *end*].  Optional arguments *start*
   and *end* are interpreted as in slice notation.  Return ``-1`` if *sub* is not
   found.


.. method:: str.index(sub[, start[, end]])

   Like :meth:`find`, but raise :exc:`ValueError` when the substring is not found.


.. method:: str.isalnum()

   Return true if all characters in the string are alphanumeric and there is at
   least one character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.isalpha()

   Return true if all characters in the string are alphabetic and there is at least
   one character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.isdigit()

   Return true if all characters in the string are digits and there is at least one
   character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.islower()

   Return true if all cased characters in the string are lowercase and there is at
   least one cased character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.isspace()

   Return true if there are only whitespace characters in the string and there is
   at least one character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.istitle()

   Return true if the string is a titlecased string and there is at least one
   character, for example uppercase characters may only follow uncased characters
   and lowercase characters only cased ones.  Return false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.isupper()

   Return true if all cased characters in the string are uppercase and there is at
   least one cased character, false otherwise.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.join(seq)

   Return a string which is the concatenation of the strings in the sequence *seq*.
   The separator between elements is the string providing this method.


.. method:: str.ljust(width[, fillchar])

   Return the string left justified in a string of length *width*. Padding is done
   using the specified *fillchar* (default is a space).  The original string is
   returned if *width* is less than ``len(s)``.

   .. versionchanged:: 2.4
      Support for the *fillchar* argument.


.. method:: str.lower()

   Return a copy of the string converted to lowercase.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.lstrip([chars])

   Return a copy of the string with leading characters removed.  The *chars*
   argument is a string specifying the set of characters to be removed.  If omitted
   or ``None``, the *chars* argument defaults to removing whitespace.  The *chars*
   argument is not a prefix; rather, all combinations of its values are stripped::

      >>> '   spacious   '.lstrip()
      'spacious   '
      >>> 'www.example.com'.lstrip('cmowz.')
      'example.com'

   .. versionchanged:: 2.2.2
      Support for the *chars* argument.


.. method:: str.partition(sep)

   Split the string at the first occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself, and the part
   after the separator.  If the separator is not found, return a 3-tuple containing
   the string itself, followed by two empty strings.

   .. versionadded:: 2.5


.. method:: str.replace(old, new[, count])

   Return a copy of the string with all occurrences of substring *old* replaced by
   *new*.  If the optional argument *count* is given, only the first *count*
   occurrences are replaced.


.. method:: str.rfind(sub [,start [,end]])

   Return the highest index in the string where substring *sub* is found, such that
   *sub* is contained within s[start,end].  Optional arguments *start* and *end*
   are interpreted as in slice notation.  Return ``-1`` on failure.


.. method:: str.rindex(sub[, start[, end]])

   Like :meth:`rfind` but raises :exc:`ValueError` when the substring *sub* is not
   found.


.. method:: str.rjust(width[, fillchar])

   Return the string right justified in a string of length *width*. Padding is done
   using the specified *fillchar* (default is a space). The original string is
   returned if *width* is less than ``len(s)``.

   .. versionchanged:: 2.4
      Support for the *fillchar* argument.


.. method:: str.rpartition(sep)

   Split the string at the last occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself, and the part
   after the separator.  If the separator is not found, return a 3-tuple containing
   two empty strings, followed by the string itself.

   .. versionadded:: 2.5


.. method:: str.rsplit([sep [,maxsplit]])

   Return a list of the words in the string, using *sep* as the delimiter string.
   If *maxsplit* is given, at most *maxsplit* splits are done, the *rightmost*
   ones.  If *sep* is not specified or ``None``, any whitespace string is a
   separator.  Except for splitting from the right, :meth:`rsplit` behaves like
   :meth:`split` which is described in detail below.

   .. versionadded:: 2.4


.. method:: str.rstrip([chars])

   Return a copy of the string with trailing characters removed.  The *chars*
   argument is a string specifying the set of characters to be removed.  If omitted
   or ``None``, the *chars* argument defaults to removing whitespace.  The *chars*
   argument is not a suffix; rather, all combinations of its values are stripped::

      >>> '   spacious   '.rstrip()
      '   spacious'
      >>> 'mississippi'.rstrip('ipz')
      'mississ'

   .. versionchanged:: 2.2.2
      Support for the *chars* argument.


.. method:: str.split([sep [,maxsplit]])

   Return a list of the words in the string, using *sep* as the delimiter string.
   If *maxsplit* is given, at most *maxsplit* splits are done. (thus, the list will
   have at most ``maxsplit+1`` elements).  If *maxsplit* is not specified, then
   there is no limit on the number of splits (all possible splits are made).
   Consecutive delimiters are not grouped together and are deemed to delimit empty
   strings (for example, ``'1,,2'.split(',')`` returns ``['1', '', '2']``).  The
   *sep* argument may consist of multiple characters (for example, ``'1, 2,
   3'.split(', ')`` returns ``['1', '2', '3']``).  Splitting an empty string with a
   specified separator returns ``['']``.

   If *sep* is not specified or is ``None``, a different splitting algorithm is
   applied.  First, whitespace characters (spaces, tabs, newlines, returns, and
   formfeeds) are stripped from both ends.  Then, words are separated by arbitrary
   length strings of whitespace characters. Consecutive whitespace delimiters are
   treated as a single delimiter (``'1  2  3'.split()`` returns ``['1', '2',
   '3']``). Splitting an empty string or a string consisting of just whitespace
   returns an empty list.


.. method:: str.splitlines([keepends])

   Return a list of the lines in the string, breaking at line boundaries.  Line
   breaks are not included in the resulting list unless *keepends* is given and
   true.


.. method:: str.startswith(prefix[, start[, end]])

   Return ``True`` if string starts with the *prefix*, otherwise return ``False``.
   *prefix* can also be a tuple of prefixes to look for.  With optional *start*,
   test string beginning at that position.  With optional *end*, stop comparing
   string at that position.

   .. versionchanged:: 2.5
      Accept tuples as *prefix*.


.. method:: str.strip([chars])

   Return a copy of the string with the leading and trailing characters removed.
   The *chars* argument is a string specifying the set of characters to be removed.
   If omitted or ``None``, the *chars* argument defaults to removing whitespace.
   The *chars* argument is not a prefix or suffix; rather, all combinations of its
   values are stripped::

      >>> '   spacious   '.strip()
      'spacious'
      >>> 'www.example.com'.strip('cmowz.')
      'example'

   .. versionchanged:: 2.2.2
      Support for the *chars* argument.


.. method:: str.swapcase()

   Return a copy of the string with uppercase characters converted to lowercase and
   vice versa.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.title()

   Return a titlecased version of the string: words start with uppercase
   characters, all remaining cased characters are lowercase.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.translate(table[, deletechars])

   Return a copy of the string where all characters occurring in the optional
   argument *deletechars* are removed, and the remaining characters have been
   mapped through the given translation table, which must be a string of length
   256.

   You can use the :func:`maketrans` helper function in the :mod:`string` module to
   create a translation table. For string objects, set the *table* argument to
   ``None`` for translations that only delete characters::

      >>> 'read this short text'.translate(None, 'aeiou')
      'rd ths shrt txt'

   .. versionadded:: 2.6
      Support for a ``None`` *table* argument.

   For Unicode objects, the :meth:`translate` method does not accept the optional
   *deletechars* argument.  Instead, it returns a copy of the *s* where all
   characters have been mapped through the given translation table which must be a
   mapping of Unicode ordinals to Unicode ordinals, Unicode strings or ``None``.
   Unmapped characters are left untouched. Characters mapped to ``None`` are
   deleted.  Note, a more flexible approach is to create a custom character mapping
   codec using the :mod:`codecs` module (see :mod:`encodings.cp1251` for an
   example).


.. method:: str.upper()

   Return a copy of the string converted to uppercase.

   For 8-bit strings, this method is locale-dependent.


.. method:: str.zfill(width)

   Return the numeric string left filled with zeros in a string of length *width*.
   The original string is returned if *width* is less than ``len(s)``.

   .. versionadded:: 2.2.2


.. _typesseq-strings:

String Formatting Operations
----------------------------

.. index::
   single: formatting, string (%)
   single: interpolation, string (%)
   single: string; formatting
   single: string; interpolation
   single: printf-style formatting
   single: sprintf-style formatting
   single: % formatting
   single: % interpolation

String and Unicode objects have one unique built-in operation: the ``%``
operator (modulo).  This is also known as the string *formatting* or
*interpolation* operator.  Given ``format % values`` (where *format* is a string
or Unicode object), ``%`` conversion specifications in *format* are replaced
with zero or more elements of *values*.  The effect is similar to the using
:cfunc:`sprintf` in the C language.  If *format* is a Unicode object, or if any
of the objects being converted using the ``%s`` conversion are Unicode objects,
the result will also be a Unicode object.

If *format* requires a single argument, *values* may be a single non-tuple
object. [#]_  Otherwise, *values* must be a tuple with exactly the number of
items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following
components, which must occur in this order:

#. The ``'%'`` character, which marks the start of the specifier.

#. Mapping key (optional), consisting of a parenthesised sequence of characters
   (for example, ``(somename)``).

#. Conversion flags (optional), which affect the result of some conversion
   types.

#. Minimum field width (optional).  If specified as an ``'*'`` (asterisk), the
   actual width is read from the next element of the tuple in *values*, and the
   object to convert comes after the minimum field width and optional precision.

#. Precision (optional), given as a ``'.'`` (dot) followed by the precision.  If
   specified as ``'*'`` (an asterisk), the actual width is read from the next
   element of the tuple in *values*, and the value to convert comes after the
   precision.

#. Length modifier (optional).

#. Conversion type.

When the right argument is a dictionary (or other mapping type), then the
formats in the string *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping.  For example::

   >>> print '%(language)s has %(#)03d quote types.' % \
             {'language': "Python", "#": 2}
   Python has 002 quote types.

In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).

The conversion flag characters are:

+---------+-----------------------------------------------+
| Flag    | Meaning                                       |
+=========+===============================================+
| ``'#'`` | The value conversion will use the "alternate  |
|         | form" (where defined below).                  |
+---------+-----------------------------------------------+
| ``'0'`` | The conversion will be zero padded for        |
|         | numeric values.                               |
+---------+-----------------------------------------------+
| ``'-'`` | The converted value is left adjusted          |
|         | (overrides the ``'0'`` conversion if both are |
|         | given).                                       |
+---------+-----------------------------------------------+
| ``' '`` | (a space) A blank should be left before a     |
|         | positive number (or empty string) produced by |
|         | a signed conversion.                          |
+---------+-----------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will    |
|         | precede the conversion (overrides a "space"   |
|         | flag).                                        |
+---------+-----------------------------------------------+

A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python.

The conversion types are:

+------------+---------------------------------+-------+
| Conversion | Meaning                         | Notes |
+============+=================================+=======+
| ``'d'``    | Signed integer decimal.         |       |
+------------+---------------------------------+-------+
| ``'i'``    | Signed integer decimal.         |       |
+------------+---------------------------------+-------+
| ``'o'``    | Unsigned octal.                 | \(1)  |
+------------+---------------------------------+-------+
| ``'u'``    | Unsigned decimal.               |       |
+------------+---------------------------------+-------+
| ``'x'``    | Unsigned hexadecimal            | \(2)  |
|            | (lowercase).                    |       |
+------------+---------------------------------+-------+
| ``'X'``    | Unsigned hexadecimal            | \(2)  |
|            | (uppercase).                    |       |
+------------+---------------------------------+-------+
| ``'e'``    | Floating point exponential      | \(3)  |
|            | format (lowercase).             |       |
+------------+---------------------------------+-------+
| ``'E'``    | Floating point exponential      | \(3)  |
|            | format (uppercase).             |       |
+------------+---------------------------------+-------+
| ``'f'``    | Floating point decimal format.  | \(3)  |
+------------+---------------------------------+-------+
| ``'F'``    | Floating point decimal format.  | \(3)  |
+------------+---------------------------------+-------+
| ``'g'``    | Floating point format. Uses     | \(4)  |
|            | exponential format if exponent  |       |
|            | is greater than -4 or less than |       |
|            | precision, decimal format       |       |
|            | otherwise.                      |       |
+------------+---------------------------------+-------+
| ``'G'``    | Floating point format. Uses     | \(4)  |
|            | exponential format if exponent  |       |
|            | is greater than -4 or less than |       |
|            | precision, decimal format       |       |
|            | otherwise.                      |       |
+------------+---------------------------------+-------+
| ``'c'``    | Single character (accepts       |       |
|            | integer or single character     |       |
|            | string).                        |       |
+------------+---------------------------------+-------+
| ``'r'``    | String (converts any python     | \(5)  |
|            | object using :func:`repr`).     |       |
+------------+---------------------------------+-------+
| ``'s'``    | String (converts any python     | \(6)  |
|            | object using :func:`str`).      |       |
+------------+---------------------------------+-------+
| ``'%'``    | No argument is converted,       |       |
|            | results in a ``'%'`` character  |       |
|            | in the result.                  |       |
+------------+---------------------------------+-------+

Notes:

(1)
   The alternate form causes a leading zero (``'0'``) to be inserted between
   left-hand padding and the formatting of the number if the leading character
   of the result is not already a zero.

(2)
   The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
   the ``'x'`` or ``'X'`` format was used) to be inserted between left-hand padding
   and the formatting of the number if the leading character of the result is not
   already a zero.

(3)
   The alternate form causes the result to always contain a decimal point, even if
   no digits follow it.

   The precision determines the number of digits after the decimal point and
   defaults to 6.

(4)
   The alternate form causes the result to always contain a decimal point, and
   trailing zeroes are not removed as they would otherwise be.

   The precision determines the number of significant digits before and after the
   decimal point and defaults to 6.

(5)
   The ``%r`` conversion was added in Python 2.0.

   The precision determines the maximal number of characters used.

(6)
   If the object or format provided is a :class:`unicode` string, the resulting
   string will also be :class:`unicode`.

   The precision determines the maximal number of characters used.

Since Python strings have an explicit length, ``%s`` conversions do not assume
that ``'\0'`` is the end of the string.

.. % XXX Examples?

For safety reasons, floating point precisions are clipped to 50; ``%f``
conversions for numbers whose absolute value is over 1e25 are replaced by ``%g``
conversions. [#]_  All other errors raise exceptions.

.. index::
   module: string
   module: re

Additional string operations are defined in standard modules :mod:`string` and
:mod:`re`.


.. _typesseq-xrange:

XRange Type
-----------

.. index:: object: xrange

The :class:`xrange` type is an immutable sequence which is commonly used for
looping.  The advantage of the :class:`xrange` type is that an :class:`xrange`
object will always take the same amount of memory, no matter the size of the
range it represents.  There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration,
and the :func:`len` function.


.. _typesseq-mutable:

Mutable Sequence Types
----------------------

.. index::
   triple: mutable; sequence; types
   object: list

List objects support additional operations that allow in-place modification of
the object. Other mutable sequence types (when added to the language) should
also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are
defined on mutable sequence types (where *x* is an arbitrary object):

+------------------------------+--------------------------------+---------------------+
| Operation                    | Result                         | Notes               |
+==============================+================================+=====================+
| ``s[i] = x``                 | item *i* of *s* is replaced by |                     |
|                              | *x*                            |                     |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j] = t``               | slice of *s* from *i* to *j*   |                     |
|                              | is replaced by the contents of |                     |
|                              | the iterable *t*               |                     |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j]``               | same as ``s[i:j] = []``        |                     |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j:k] = t``             | the elements of ``s[i:j:k]``   | \(1)                |
|                              | are replaced by those of *t*   |                     |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j:k]``             | removes the elements of        |                     |
|                              | ``s[i:j:k]`` from the list     |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.append(x)``              | same as ``s[len(s):len(s)] =   | \(2)                |
|                              | [x]``                          |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.extend(x)``              | same as ``s[len(s):len(s)] =   | \(3)                |
|                              | x``                            |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.count(x)``               | return number of *i*'s for     |                     |
|                              | which ``s[i] == x``            |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.index(x[, i[, j]])``     | return smallest *k* such that  | \(4)                |
|                              | ``s[k] == x`` and ``i <= k <   |                     |
|                              | j``                            |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.insert(i, x)``           | same as ``s[i:i] = [x]``       | \(5)                |
+------------------------------+--------------------------------+---------------------+
| ``s.pop([i])``               | same as ``x = s[i]; del s[i];  | \(6)                |
|                              | return x``                     |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.remove(x)``              | same as ``del s[s.index(x)]``  | \(4)                |
+------------------------------+--------------------------------+---------------------+
| ``s.reverse()``              | reverses the items of *s* in   | \(7)                |
|                              | place                          |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.sort([cmp[, key[,        | sort the items of *s* in place | (7), (8), (9), (10) |
| reverse]]])``                |                                |                     |
+------------------------------+--------------------------------+---------------------+

.. index::
   triple: operations on; sequence; types
   triple: operations on; list; type
   pair: subscript; assignment
   pair: slice; assignment
   pair: extended slice; assignment
   statement: del
   single: append() (list method)
   single: extend() (list method)
   single: count() (list method)
   single: index() (list method)
   single: insert() (list method)
   single: pop() (list method)
   single: remove() (list method)
   single: reverse() (list method)
   single: sort() (list method)

Notes:

(1)
   *t* must have the same length as the slice it is  replacing.

(2)
   The C implementation of Python has historically accepted multiple parameters and
   implicitly joined them into a tuple; this no longer works in Python 2.0.  Use of
   this misfeature has been deprecated since Python 1.4.

(3)
   *x* can be any iterable object.

(4)
   Raises :exc:`ValueError` when *x* is not found in *s*. When a negative index is
   passed as the second or third parameter to the :meth:`index` method, the list
   length is added, as for slice indices.  If it is still negative, it is truncated
   to zero, as for slice indices.

   .. versionchanged:: 2.3
      Previously, :meth:`index` didn't have arguments for specifying start and stop
      positions.

(5)
   When a negative index is passed as the first parameter to the :meth:`insert`
   method, the list length is added, as for slice indices.  If it is still
   negative, it is truncated to zero, as for slice indices.

   .. versionchanged:: 2.3
      Previously, all negative indices were truncated to zero.

(6)
   The :meth:`pop` method is only supported by the list and array types.  The
   optional argument *i* defaults to ``-1``, so that by default the last item is
   removed and returned.

(7)
   The :meth:`sort` and :meth:`reverse` methods modify the list in place for
   economy of space when sorting or reversing a large list.  To remind you that
   they operate by side effect, they don't return the sorted or reversed list.

(8)
   The :meth:`sort` method takes optional arguments for controlling the
   comparisons.

   *cmp* specifies a custom comparison function of two arguments (list items) which
   should return a negative, zero or positive number depending on whether the first
   argument is considered smaller than, equal to, or larger than the second
   argument: ``cmp=lambda x,y: cmp(x.lower(), y.lower())``

   *key* specifies a function of one argument that is used to extract a comparison
   key from each list element: ``key=str.lower``

   *reverse* is a boolean value.  If set to ``True``, then the list elements are
   sorted as if each comparison were reversed.

   In general, the *key* and *reverse* conversion processes are much faster than
   specifying an equivalent *cmp* function.  This is because *cmp* is called
   multiple times for each list element while *key* and *reverse* touch each
   element only once.

   .. versionchanged:: 2.3
      Support for ``None`` as an equivalent to omitting *cmp* was added.

   .. versionchanged:: 2.4
      Support for *key* and *reverse* was added.

(9)
   Starting with Python 2.3, the :meth:`sort` method is guaranteed to be stable.  A
   sort is stable if it guarantees not to change the relative order of elements
   that compare equal --- this is helpful for sorting in multiple passes (for
   example, sort by department, then by salary grade).

(10)
   While a list is being sorted, the effect of attempting to mutate, or even
   inspect, the list is undefined.  The C implementation of Python 2.3 and newer
   makes the list appear empty for the duration, and raises :exc:`ValueError` if it
   can detect that the list has been mutated during a sort.


.. _types-set:

Set Types --- :class:`set`, :class:`frozenset`
==============================================

.. index:: object: set

A :dfn:`set` object is an unordered collection of distinct hashable objects.
Common uses include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference.

.. versionadded:: 2.4

Like other collections, sets support ``x in set``, ``len(set)``, and ``for x in
set``.  Being an unordered collection, sets do not record element position or
order of insertion.  Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two builtin set types, :class:`set` and :class:`frozenset`.
The :class:`set` type is mutable --- the contents can be changed using methods
like :meth:`add` and :meth:`remove`.  Since it is mutable, it has no hash value
and cannot be used as either a dictionary key or as an element of another set.
The :class:`frozenset` type is immutable and hashable --- its contents cannot be
altered after is created; however, it can be used as a dictionary key or as an
element of another set.

Instances of :class:`set` and :class:`frozenset` provide the following
operations:

+-------------------------------+------------+---------------------------------+
| Operation                     | Equivalent | Result                          |
+===============================+============+=================================+
| ``len(s)``                    |            | cardinality of set *s*          |
+-------------------------------+------------+---------------------------------+
| ``x in s``                    |            | test *x* for membership in *s*  |
+-------------------------------+------------+---------------------------------+
| ``x not in s``                |            | test *x* for non-membership in  |
|                               |            | *s*                             |
+-------------------------------+------------+---------------------------------+
| ``s.issubset(t)``             | ``s <= t`` | test whether every element in   |
|                               |            | *s* is in *t*                   |
+-------------------------------+------------+---------------------------------+
| ``s.issuperset(t)``           | ``s >= t`` | test whether every element in   |
|                               |            | *t* is in *s*                   |
+-------------------------------+------------+---------------------------------+
| ``s.union(t)``                | *s* \| *t* | new set with elements from both |
|                               |            | *s* and *t*                     |
+-------------------------------+------------+---------------------------------+
| ``s.intersection(t)``         | *s* & *t*  | new set with elements common to |
|                               |            | *s* and *t*                     |
+-------------------------------+------------+---------------------------------+
| ``s.difference(t)``           | *s* - *t*  | new set with elements in *s*    |
|                               |            | but not in *t*                  |
+-------------------------------+------------+---------------------------------+
| ``s.symmetric_difference(t)`` | *s* ^ *t*  | new set with elements in either |
|                               |            | *s* or *t* but not both         |
+-------------------------------+------------+---------------------------------+
| ``s.copy()``                  |            | new set with a shallow copy of  |
|                               |            | *s*                             |
+-------------------------------+------------+---------------------------------+

Note, the non-operator versions of :meth:`union`, :meth:`intersection`,
:meth:`difference`, and :meth:`symmetric_difference`, :meth:`issubset`, and
:meth:`issuperset` methods will accept any iterable as an argument.  In
contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like ``set('abc') & 'cbs'`` in favor of
the more readable ``set('abc').intersection('cbs')``.

Both :class:`set` and :class:`frozenset` support set to set comparisons. Two
sets are equal if and only if every element of each set is contained in the
other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but is
not equal). A set is greater than another set if and only if the first set is a
proper superset of the second set (is a superset, but is not equal).

Instances of :class:`set` are compared to instances of :class:`frozenset` based
on their members.  For example, ``set('abc') == frozenset('abc')`` returns
``True``.

The subset and equality comparisons do not generalize to a complete ordering
function.  For example, any two disjoint sets are not equal and are not subsets
of each other, so *all* of the following return ``False``:  ``a<b``, ``a==b``,
or ``a>b``. Accordingly, sets do not implement the :meth:`__cmp__` method.

Since sets only define partial ordering (subset relationships), the output of
the :meth:`list.sort` method is undefined for lists of sets.

Set elements are like dictionary keys; they need to define both :meth:`__hash__`
and :meth:`__eq__` methods.

Binary operations that mix :class:`set` instances with :class:`frozenset` return
the type of the first operand.  For example: ``frozenset('ab') | set('bc')``
returns an instance of :class:`frozenset`.

The following table lists operations available for :class:`set` that do not
apply to immutable instances of :class:`frozenset`:

+--------------------------------------+-------------+---------------------------------+
| Operation                            | Equivalent  | Result                          |
+======================================+=============+=================================+
| ``s.update(t)``                      | *s* \|= *t* | update set *s*, adding elements |
|                                      |             | from *t*                        |
+--------------------------------------+-------------+---------------------------------+
| ``s.intersection_update(t)``         | *s* &= *t*  | update set *s*, keeping only    |
|                                      |             | elements found in both *s* and  |
|                                      |             | *t*                             |
+--------------------------------------+-------------+---------------------------------+
| ``s.difference_update(t)``           | *s* -= *t*  | update set *s*, removing        |
|                                      |             | elements found in *t*           |
+--------------------------------------+-------------+---------------------------------+
| ``s.symmetric_difference_update(t)`` | *s* ^= *t*  | update set *s*, keeping only    |
|                                      |             | elements found in either *s* or |
|                                      |             | *t* but not in both             |
+--------------------------------------+-------------+---------------------------------+
| ``s.add(x)``                         |             | add element *x* to set *s*      |
+--------------------------------------+-------------+---------------------------------+
| ``s.remove(x)``                      |             | remove *x* from set *s*; raises |
|                                      |             | :exc:`KeyError` if not present  |
+--------------------------------------+-------------+---------------------------------+
| ``s.discard(x)``                     |             | removes *x* from set *s* if     |
|                                      |             | present                         |
+--------------------------------------+-------------+---------------------------------+
| ``s.pop()``                          |             | remove and return an arbitrary  |
|                                      |             | element from *s*; raises        |
|                                      |             | :exc:`KeyError` if empty        |
+--------------------------------------+-------------+---------------------------------+
| ``s.clear()``                        |             | remove all elements from set    |
|                                      |             | *s*                             |
+--------------------------------------+-------------+---------------------------------+

Note, the non-operator versions of the :meth:`update`,
:meth:`intersection_update`, :meth:`difference_update`, and
:meth:`symmetric_difference_update` methods will accept any iterable as an
argument.

The design of the set types was based on lessons learned from the :mod:`sets`
module.


.. seealso::

   `Comparison to the built-in set types <comparison-to-builtin-set.html>`_
      Differences between the :mod:`sets` module and the built-in set types.


.. _typesmapping:

Mapping Types --- :class:`dict`
===============================

.. index::
   object: mapping
   object: dictionary

A :dfn:`mapping` object maps  immutable values to arbitrary objects.  Mappings
are mutable objects.  There is currently only one standard mapping type, the
:dfn:`dictionary`.  A dictionary's keys are almost arbitrary values.  Only
values containing lists, dictionaries or other mutable types (that are compared
by value rather than by object identity) may not be used as keys. Numeric types
used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (such as ``1`` and ``1.0``) then they can be used interchangeably
to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of ``key: value``
pairs within braces, for example: ``{'jack': 4098, 'sjoerd': 4127}`` or ``{4098:
'jack', 4127: 'sjoerd'}``.

.. index::
   triple: operations on; mapping; types
   triple: operations on; dictionary; type
   statement: del
   builtin: len
   single: clear() (dictionary method)
   single: copy() (dictionary method)
   single: has_key() (dictionary method)
   single: fromkeys() (dictionary method)
   single: items() (dictionary method)
   single: keys() (dictionary method)
   single: update() (dictionary method)
   single: values() (dictionary method)
   single: get() (dictionary method)
   single: setdefault() (dictionary method)
   single: pop() (dictionary method)
   single: popitem() (dictionary method)
   single: iteritems() (dictionary method)
   single: iterkeys() (dictionary method)
   single: itervalues() (dictionary method)

The following operations are defined on mappings (where *a* and *b* are
mappings, *k* is a key, and *v* and *x* are arbitrary objects):

+--------------------------------+---------------------------------+-----------+
| Operation                      | Result                          | Notes     |
+================================+=================================+===========+
| ``len(a)``                     | the number of items in *a*      |           |
+--------------------------------+---------------------------------+-----------+
| ``a[k]``                       | the item of *a* with key *k*    | (1), (10) |
+--------------------------------+---------------------------------+-----------+
| ``a[k] = v``                   | set ``a[k]`` to *v*             |           |
+--------------------------------+---------------------------------+-----------+
| ``del a[k]``                   | remove ``a[k]`` from *a*        | \(1)      |
+--------------------------------+---------------------------------+-----------+
| ``a.clear()``                  | remove all items from ``a``     |           |
+--------------------------------+---------------------------------+-----------+
| ``a.copy()``                   | a (shallow) copy of ``a``       |           |
+--------------------------------+---------------------------------+-----------+
| ``k in a``                     | ``True`` if *a* has a key *k*,  | \(2)      |
|                                | else ``False``                  |           |
+--------------------------------+---------------------------------+-----------+
| ``k not in a``                 | Equivalent to ``not`` *k* in    | \(2)      |
|                                | *a*                             |           |
+--------------------------------+---------------------------------+-----------+
| ``a.has_key(k)``               | Equivalent to *k* ``in`` *a*,   |           |
|                                | use that form in new code       |           |
+--------------------------------+---------------------------------+-----------+
| ``a.items()``                  | a copy of *a*'s list of (*key*, | \(3)      |
|                                | *value*) pairs                  |           |
+--------------------------------+---------------------------------+-----------+
| ``a.keys()``                   | a copy of *a*'s list of keys    | \(3)      |
+--------------------------------+---------------------------------+-----------+
| ``a.update([b])``              | updates *a* with key/value      | \(9)      |
|                                | pairs from *b*, overwriting     |           |
|                                | existing keys, returns ``None`` |           |
+--------------------------------+---------------------------------+-----------+
| ``a.fromkeys(seq[, value])``   | Creates a new dictionary with   | \(7)      |
|                                | keys from *seq* and values set  |           |
|                                | to *value*                      |           |
+--------------------------------+---------------------------------+-----------+
| ``a.values()``                 | a copy of *a*'s list of values  | \(3)      |
+--------------------------------+---------------------------------+-----------+
| ``a.get(k[, x])``              | ``a[k]`` if ``k in a``, else    | \(4)      |
|                                | *x*                             |           |
+--------------------------------+---------------------------------+-----------+
| ``a.setdefault(k[, x])``       | ``a[k]`` if ``k in a``, else    | \(5)      |
|                                | *x* (also setting it)           |           |
+--------------------------------+---------------------------------+-----------+
| ``a.pop(k[, x])``              | ``a[k]`` if ``k in a``, else    | \(8)      |
|                                | *x* (and remove k)              |           |
+--------------------------------+---------------------------------+-----------+
| ``a.popitem()``                | remove and return an arbitrary  | \(6)      |
|                                | (*key*, *value*) pair           |           |
+--------------------------------+---------------------------------+-----------+
| ``a.iteritems()``              | return an iterator over (*key*, | (2), (3)  |
|                                | *value*) pairs                  |           |
+--------------------------------+---------------------------------+-----------+
| ``a.iterkeys()``               | return an iterator over the     | (2), (3)  |
|                                | mapping's keys                  |           |
+--------------------------------+---------------------------------+-----------+
| ``a.itervalues()``             | return an iterator over the     | (2), (3)  |
|                                | mapping's values                |           |
+--------------------------------+---------------------------------+-----------+

Notes:

(1)
   Raises a :exc:`KeyError` exception if *k* is not in the map.

(2)
   .. versionadded:: 2.2

(3)
   Keys and values are listed in an arbitrary order which is non-random, varies
   across Python implementations, and depends on the dictionary's history of
   insertions and deletions. If :meth:`items`, :meth:`keys`, :meth:`values`,
   :meth:`iteritems`, :meth:`iterkeys`, and :meth:`itervalues` are called with no
   intervening modifications to the dictionary, the lists will directly correspond.
   This allows the creation of ``(value, key)`` pairs using :func:`zip`: ``pairs =
   zip(a.values(), a.keys())``.  The same relationship holds for the
   :meth:`iterkeys` and :meth:`itervalues` methods: ``pairs = zip(a.itervalues(),
   a.iterkeys())`` provides the same value for ``pairs``. Another way to create the
   same list is ``pairs = [(v, k) for (k, v) in a.iteritems()]``.

(4)
   Never raises an exception if *k* is not in the map, instead it returns *x*.  *x*
   is optional; when *x* is not provided and *k* is not in the map, ``None`` is
   returned.

(5)
   :func:`setdefault` is like :func:`get`, except that if *k* is missing, *x* is
   both returned and inserted into the dictionary as the value of *k*. *x* defaults
   to ``None``.

(6)
   :func:`popitem` is useful to destructively iterate over a dictionary, as often
   used in set algorithms.  If the dictionary is empty, calling :func:`popitem`
   raises a :exc:`KeyError`.

(7)
   :func:`fromkeys` is a class method that returns a new dictionary. *value*
   defaults to ``None``.

   .. versionadded:: 2.3

(8)
   :func:`pop` raises a :exc:`KeyError` when no default value is given and the key
   is not found.

   .. versionadded:: 2.3

(9)
   :func:`update` accepts either another mapping object or an iterable of key/value
   pairs (as a tuple or other iterable of length two).  If keyword arguments are
   specified, the mapping is then is updated with those key/value pairs:
   ``d.update(red=1, blue=2)``.

   .. versionchanged:: 2.4
      Allowed the argument to be an iterable of key/value pairs and allowed keyword
      arguments.

(10)
   If a subclass of dict defines a method :meth:`__missing__`, if the key *k* is
   not present, the ``a[k]`` operation calls that method with the key *k* as
   argument.  The ``a[k]`` operation then returns or raises whatever is returned
   or raised by the ``__missing__(k)`` call if the key is not present. No other
   operations or methods invoke :meth:`__missing__`. If :meth:`__missing__` is
   not defined, :exc:`KeyError` is raised.  :meth:`__missing__` must be a
   method; it cannot be an instance variable. For an example, see
   :class:`collections.defaultdict`.

   .. versionadded:: 2.5


.. _bltin-file-objects:

File Objects
============

.. index::
   object: file
   builtin: file
   module: os
   module: socket

File objects are implemented using C's ``stdio`` package and can be
created with the built-in :func:`file` and (more usually) :func:`open`
constructors described in the :ref:`built-in-funcs` section. [#]_ File
objects are also returned by some other built-in functions and methods,
such as :func:`os.popen` and :func:`os.fdopen` and the :meth:`makefile`
method of socket objects.

When a file operation fails for an I/O-related reason, the exception
:exc:`IOError` is raised.  This includes situations where the operation is not
defined for some reason, like :meth:`seek` on a tty device or writing a file
opened for reading.

Files have the following methods:


.. method:: file.close()

   Close the file.  A closed file cannot be read or written any more. Any operation
   which requires that the file be open will raise a :exc:`ValueError` after the
   file has been closed.  Calling :meth:`close` more than once is allowed.

   As of Python 2.5, you can avoid having to call this method explicitly if you use
   the :keyword:`with` statement.  For example, the following code will
   automatically close ``f`` when the :keyword:`with` block is exited::

      from __future__ import with_statement

      with open("hello.txt") as f:
          for line in f:
              print line

   In older versions of Python, you would have needed to do this to get the same
   effect::

      f = open("hello.txt")
      try:
          for line in f:
              print line
      finally:
          f.close()

   .. note::

      Not all "file-like" types in Python support use as a context manager for the
      :keyword:`with` statement.  If your code is intended to work with any file-like
      object, you can use the function :func:`contextlib.closing` instead of using
      the object directly.


.. method:: file.flush()

   Flush the internal buffer, like ``stdio``'s :cfunc:`fflush`.  This may be a
   no-op on some file-like objects.


.. method:: file.fileno()

   .. index::
      single: file descriptor
      single: descriptor, file
      module: fcntl

   Return the integer "file descriptor" that is used by the underlying
   implementation to request I/O operations from the operating system.  This can be
   useful for other, lower level interfaces that use file descriptors, such as the
   :mod:`fcntl` module or :func:`os.read` and friends.

   .. note::

      File-like objects which do not have a real file descriptor should *not* provide
      this method!


.. method:: file.isatty()

   Return ``True`` if the file is connected to a tty(-like) device, else ``False``.

   .. note::

      If a file-like object is not associated with a real file, this method should
      *not* be implemented.


.. method:: file.next()

   A file object is its own iterator, for example ``iter(f)`` returns *f* (unless
   *f* is closed).  When a file is used as an iterator, typically in a
   :keyword:`for` loop (for example, ``for line in f: print line``), the
   :meth:`next` method is called repeatedly.  This method returns the next input
   line, or raises :exc:`StopIteration` when EOF is hit when the file is open for
   reading (behavior is undefined when the file is open for writing).  In order to
   make a :keyword:`for` loop the most efficient way of looping over the lines of a
   file (a very common operation), the :meth:`next` method uses a hidden read-ahead
   buffer.  As a consequence of using a read-ahead buffer, combining :meth:`next`
   with other file methods (like :meth:`readline`) does not work right.  However,
   using :meth:`seek` to reposition the file to an absolute position will flush the
   read-ahead buffer.

   .. versionadded:: 2.3


.. method:: file.read([size])

   Read at most *size* bytes from the file (less if the read hits EOF before
   obtaining *size* bytes).  If the *size* argument is negative or omitted, read
   all data until EOF is reached.  The bytes are returned as a string object.  An
   empty string is returned when EOF is encountered immediately.  (For certain
   files, like ttys, it makes sense to continue reading after an EOF is hit.)  Note
   that this method may call the underlying C function :cfunc:`fread` more than
   once in an effort to acquire as close to *size* bytes as possible. Also note
   that when in non-blocking mode, less data than what was requested may be
   returned, even if no *size* parameter was given.


.. method:: file.readline([size])

   Read one entire line from the file.  A trailing newline character is kept in the
   string (but may be absent when a file ends with an incomplete line). [#]_  If
   the *size* argument is present and non-negative, it is a maximum byte count
   (including the trailing newline) and an incomplete line may be returned. An
   empty string is returned *only* when EOF is encountered immediately.

   .. note::

      Unlike ``stdio``'s :cfunc:`fgets`, the returned string contains null characters
      (``'\0'``) if they occurred in the input.


.. method:: file.readlines([sizehint])

   Read until EOF using :meth:`readline` and return a list containing the lines
   thus read.  If the optional *sizehint* argument is present, instead of
   reading up to EOF, whole lines totalling approximately *sizehint* bytes
   (possibly after rounding up to an internal buffer size) are read.  Objects
   implementing a file-like interface may choose to ignore *sizehint* if it
   cannot be implemented, or cannot be implemented efficiently.


.. method:: file.xreadlines()

   This method returns the same thing as ``iter(f)``.

   .. versionadded:: 2.1

   .. deprecated:: 2.3
      Use ``for line in file`` instead.


.. method:: file.seek(offset[, whence])

   Set the file's current position, like ``stdio``'s :cfunc:`fseek`. The *whence*
   argument is optional and defaults to  ``os.SEEK_SET`` or ``0`` (absolute file
   positioning); other values are ``os.SEEK_CUR`` or ``1`` (seek relative to the
   current position) and ``os.SEEK_END`` or ``2``  (seek relative to the file's
   end).  There is no return value.  Note that if the file is opened for appending
   (mode ``'a'`` or ``'a+'``), any :meth:`seek` operations will be undone at the
   next write.  If the file is only opened for writing in append mode (mode
   ``'a'``), this method is essentially a no-op, but it remains useful for files
   opened in append mode with reading enabled (mode ``'a+'``).  If the file is
   opened in text mode (without ``'b'``), only offsets returned by :meth:`tell` are
   legal.  Use of other offsets causes undefined behavior.

   Note that not all file objects are seekable.

   .. versionchanged:: 2.6
      Passing float values as offset has been deprecated


.. method:: file.tell()

   Return the file's current position, like ``stdio``'s :cfunc:`ftell`.

   .. note::

      On Windows, :meth:`tell` can return illegal values (after an :cfunc:`fgets`)
      when reading files with Unix-style line-endings. Use binary mode (``'rb'``) to
      circumvent this problem.


.. method:: file.truncate([size])

   Truncate the file's size.  If the optional *size* argument is present, the file
   is truncated to (at most) that size.  The size defaults to the current position.
   The current file position is not changed.  Note that if a specified size exceeds
   the file's current size, the result is platform-dependent:  possibilities
   include that the file may remain unchanged, increase to the specified size as if
   zero-filled, or increase to the specified size with undefined new content.
   Availability:  Windows, many Unix variants.


.. method:: file.write(str)

   Write a string to the file.  There is no return value.  Due to buffering, the
   string may not actually show up in the file until the :meth:`flush` or
   :meth:`close` method is called.


.. method:: file.writelines(sequence)

   Write a sequence of strings to the file.  The sequence can be any iterable
   object producing strings, typically a list of strings. There is no return value.
   (The name is intended to match :meth:`readlines`; :meth:`writelines` does not
   add line separators.)

Files support the iterator protocol.  Each iteration returns the same result as
``file.readline()``, and iteration ends when the :meth:`readline` method returns
an empty string.

File objects also offer a number of other interesting attributes. These are not
required for file-like objects, but should be implemented if they make sense for
the particular object.


.. attribute:: file.closed

   bool indicating the current state of the file object.  This is a read-only
   attribute; the :meth:`close` method changes the value. It may not be available
   on all file-like objects.


.. attribute:: file.encoding

   The encoding that this file uses. When Unicode strings are written to a file,
   they will be converted to byte strings using this encoding. In addition, when
   the file is connected to a terminal, the attribute gives the encoding that the
   terminal is likely to use (that  information might be incorrect if the user has
   misconfigured the  terminal). The attribute is read-only and may not be present
   on all file-like objects. It may also be ``None``, in which case the file uses
   the system default encoding for converting Unicode strings.

   .. versionadded:: 2.3


.. attribute:: file.mode

   The I/O mode for the file.  If the file was created using the :func:`open`
   built-in function, this will be the value of the *mode* parameter.  This is a
   read-only attribute and may not be present on all file-like objects.


.. attribute:: file.name

   If the file object was created using :func:`open`, the name of the file.
   Otherwise, some string that indicates the source of the file object, of the
   form ``<...>``.  This is a read-only attribute and may not be present on all
   file-like objects.


.. attribute:: file.newlines

   If Python was built with the :option:`--with-universal-newlines` option to
   :program:`configure` (the default) this read-only attribute exists, and for
   files opened in universal newline read mode it keeps track of the types of
   newlines encountered while reading the file. The values it can take are
   ``'\r'``, ``'\n'``, ``'\r\n'``, ``None`` (unknown, no newlines read yet) or a
   tuple containing all the newline types seen, to indicate that multiple newline
   conventions were encountered. For files not opened in universal newline read
   mode the value of this attribute will be ``None``.


.. attribute:: file.softspace

   Boolean that indicates whether a space character needs to be printed before
   another value when using the :keyword:`print` statement. Classes that are trying
   to simulate a file object should also have a writable :attr:`softspace`
   attribute, which should be initialized to zero.  This will be automatic for most
   classes implemented in Python (care may be needed for objects that override
   attribute access); types implemented in C will have to provide a writable
   :attr:`softspace` attribute.

   .. note::

      This attribute is not used to control the :keyword:`print` statement, but to
      allow the implementation of :keyword:`print` to keep track of its internal
      state.


.. _typecontextmanager:

Context Manager Types
=====================

.. versionadded:: 2.5

.. index::
   single: context manager
   single: context management protocol
   single: protocol; context management

Python's :keyword:`with` statement supports the concept of a runtime context
defined by a context manager.  This is implemented using two separate methods
that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends.

The :dfn:`context management protocol` consists of a pair of methods that need
to be provided for a context manager object to define a runtime context:


.. method:: contextmanager.__enter__()

   Enter the runtime context and return either this object or another object
   related to the runtime context. The value returned by this method is bound to
   the identifier in the :keyword:`as` clause of :keyword:`with` statements using
   this context manager.

   An example of a context manager that returns itself is a file object. File
   objects return themselves from __enter__() to allow :func:`open` to be used as
   the context expression in a :keyword:`with` statement.

   An example of a context manager that returns a related object is the one
   returned by ``decimal.Context.get_manager()``. These managers set the active
   decimal context to a copy of the original decimal context and then return the
   copy. This allows changes to be made to the current decimal context in the body
   of the :keyword:`with` statement without affecting code outside the
   :keyword:`with` statement.


.. method:: contextmanager.__exit__(exc_type, exc_val, exc_tb)

   Exit the runtime context and return a Boolean flag indicating if any expection
   that occurred should be suppressed. If an exception occurred while executing the
   body of the :keyword:`with` statement, the arguments contain the exception type,
   value and traceback information. Otherwise, all three arguments are ``None``.

   Returning a true value from this method will cause the :keyword:`with` statement
   to suppress the exception and continue execution with the statement immediately
   following the :keyword:`with` statement. Otherwise the exception continues
   propagating after this method has finished executing. Exceptions that occur
   during execution of this method will replace any exception that occurred in the
   body of the :keyword:`with` statement.

   The exception passed in should never be reraised explicitly - instead, this
   method should return a false value to indicate that the method completed
   successfully and does not want to suppress the raised exception. This allows
   context management code (such as ``contextlib.nested``) to easily detect whether
   or not an :meth:`__exit__` method has actually failed.

Python defines several context managers to support easy thread synchronisation,
prompt closure of files or other objects, and simpler manipulation of the active
decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol.

Python's generators and the ``contextlib.contextfactory`` decorator provide a
convenient way to implement these protocols.  If a generator function is
decorated with the ``contextlib.contextfactory`` decorator, it will return a
context manager implementing the necessary :meth:`__enter__` and
:meth:`__exit__` methods, rather than the iterator produced by an undecorated
generator function.

Note that there is no specific slot for any of these methods in the type
structure for Python objects in the Python/C API. Extension types wanting to
define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a
single class dictionary lookup is negligible.


.. _typesother:

Other Built-in Types
====================

The interpreter supports several other kinds of objects. Most of these support
only one or two operations.


.. _typesmodules:

Modules
-------

The only special operation on a module is attribute access: ``m.name``, where
*m* is a module and *name* accesses a name defined in *m*'s symbol table.
Module attributes can be assigned to.  (Note that the :keyword:`import`
statement is not, strictly speaking, an operation on a module object; ``import
foo`` does not require a module object named *foo* to exist, rather it requires
an (external) *definition* for a module named *foo* somewhere.)

A special member of every module is :attr:`__dict__`. This is the dictionary
containing the module's symbol table. Modifying this dictionary will actually
change the module's symbol table, but direct assignment to the :attr:`__dict__`
attribute is not possible (you can write ``m.__dict__['a'] = 1``, which defines
``m.a`` to be ``1``, but you can't write ``m.__dict__ = {}``).  Modifying
:attr:`__dict__` directly is not recommended.

Modules built into the interpreter are written like this: ``<module 'sys'
(built-in)>``.  If loaded from a file, they are written as ``<module 'os' from
'/usr/local/lib/pythonX.Y/os.pyc'>``.


.. _typesobjects:

Classes and Class Instances
---------------------------

.. _classes and instances:

See :ref:`objects` and :ref:`class` for these.


.. _typesfunctions:

Functions
---------

Function objects are created by function definitions.  The only operation on a
function object is to call it: ``func(argument-list)``.

There are really two flavors of function objects: built-in functions and
user-defined functions.  Both support the same operation (to call the function),
but the implementation is different, hence the different object types.

See :ref:`function` for more information.


.. _typesmethods:

Methods
-------

.. index:: object: method

Methods are functions that are called using the attribute notation. There are
two flavors: built-in methods (such as :meth:`append` on lists) and class
instance methods.  Built-in methods are described with the types that support
them.

The implementation adds two special read-only attributes to class instance
methods: ``m.im_self`` is the object on which the method operates, and
``m.im_func`` is the function implementing the method.  Calling ``m(arg-1,
arg-2, ..., arg-n)`` is completely equivalent to calling ``m.im_func(m.im_self,
arg-1, arg-2, ..., arg-n)``.

Class instance methods are either *bound* or *unbound*, referring to whether the
method was accessed through an instance or a class, respectively.  When a method
is unbound, its ``im_self`` attribute will be ``None`` and if called, an
explicit ``self`` object must be passed as the first argument.  In this case,
``self`` must be an instance of the unbound method's class (or a subclass of
that class), otherwise a :exc:`TypeError` is raised.

Like function objects, methods objects support getting arbitrary attributes.
However, since method attributes are actually stored on the underlying function
object (``meth.im_func``), setting method attributes on either bound or unbound
methods is disallowed.  Attempting to set a method attribute results in a
:exc:`TypeError` being raised.  In order to set a method attribute, you need to
explicitly set it on the underlying function object::

   class C:
       def method(self):
           pass

   c = C()
   c.method.im_func.whoami = 'my name is c'

See :ref:`types` for more information.


.. _bltin-code-objects:

Code Objects
------------

.. index:: object: code

.. index::
   builtin: compile
   single: func_code (function object attribute)

Code objects are used by the implementation to represent "pseudo-compiled"
executable Python code such as a function body. They differ from function
objects because they don't contain a reference to their global execution
environment.  Code objects are returned by the built-in :func:`compile` function
and can be extracted from function objects through their :attr:`func_code`
attribute.

.. index::
   statement: exec
   builtin: eval

A code object can be executed or evaluated by passing it (instead of a source
string) to the :keyword:`exec` statement or the built-in :func:`eval` function.

See :ref:`types` for more information.


.. _bltin-type-objects:

Type Objects
------------

.. index::
   builtin: type
   module: types

Type objects represent the various object types.  An object's type is accessed
by the built-in function :func:`type`.  There are no special operations on
types.  The standard module :mod:`types` defines names for all standard built-in
types.

Types are written like this: ``<type 'int'>``.


.. _bltin-null-object:

The Null Object
---------------

This object is returned by functions that don't explicitly return a value.  It
supports no special operations.  There is exactly one null object, named
``None`` (a built-in name).

It is written as ``None``.


.. _bltin-ellipsis-object:

The Ellipsis Object
-------------------

This object is used by extended slice notation (see :ref:`slicings`).  It
supports no special operations.  There is exactly one ellipsis object, named
:const:`Ellipsis` (a built-in name).

It is written as ``Ellipsis``.


Boolean Values
--------------

Boolean values are the two constant objects ``False`` and ``True``.  They are
used to represent truth values (although other values can also be considered
false or true).  In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively.
The built-in function :func:`bool` can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value (see section Truth Value
Testing above).

.. index::
   single: False
   single: True
   pair: Boolean; values

They are written as ``False`` and ``True``, respectively.


.. _typesinternal:

Internal Objects
----------------

See :ref:`types` for this information.  It describes stack frame objects,
traceback objects, and slice objects.


.. _specialattrs:

Special Attributes
==================

The implementation adds a few special read-only attributes to several object
types, where they are relevant.  Some of these are not reported by the
:func:`dir` built-in function.


.. attribute:: object.__dict__

   A dictionary or other mapping object used to store an object's (writable)
   attributes.


.. attribute:: object.__methods__

   .. deprecated:: 2.2
      Use the built-in function :func:`dir` to get a list of an object's attributes.
      This attribute is no longer available.


.. attribute:: object.__members__

   .. deprecated:: 2.2
      Use the built-in function :func:`dir` to get a list of an object's attributes.
      This attribute is no longer available.


.. attribute:: instance.__class__

   The class to which a class instance belongs.


.. attribute:: class.__bases__

   The tuple of base classes of a class object.  If there are no base classes, this
   will be an empty tuple.


.. attribute:: class.__name__

   The name of the class or type.

.. rubric:: Footnotes

.. [#] Additional information on these special methods may be found in the Python
   Reference Manual (:ref:`customization`).

.. [#] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
   similarly for tuples.

.. [#] They must have since the parser can't tell the type of the operands.

.. [#] To format only a tuple you should therefore provide a singleton tuple whose only
   element is the tuple to be formatted.

.. [#] These numbers are fairly arbitrary.  They are intended to avoid printing endless
   strings of meaningless digits without hampering correct use and without having
   to know the exact precision of floating point values on a particular machine.

.. [#] :func:`file` is new in Python 2.2.  The older built-in :func:`open` is an alias
   for :func:`file`.

.. [#] The advantage of leaving the newline on is that returning an empty string is
   then an unambiguous EOF indication.  It is also possible (in cases where it
   might matter, for example, if you want to make an exact copy of a file while
   scanning its lines) to tell whether the last line of a file ended in a newline
   or not (yes this happens!).