![]() |
Namespace of the Blaze C++ math library. More...
Namespaces | |
logging | |
Namespace for the logging module. | |
threadpool | |
Namespace for the threadpool module. | |
timing | |
Namespace for the time measurement module. | |
Classes | |
struct | Abs |
Generic wrapper for the abs() function. More... | |
class | Accuracy |
Computation accuracy for floating point data types.The Accuracy class is a wrapper class around the functionality of the blaze::Limits class. It represents the computation accuracy of the Blaze library for any floating point data type. In order to assign an accuracy value, the Accuracy class can be implicitly converted to the three built-in floating point data types float, double and long double. In order to handle accuracy values conveniently, the global Accuracy instance blaze::accuracy is provided, which can be used wherever a floating point data value is required. More... | |
struct | Acos |
Generic wrapper for the acos() function. More... | |
struct | Acosh |
Generic wrapper for the acosh() function. More... | |
struct | AddConst |
Addition of a top level 'const' qualifier.The AddConst type trait adds a top level 'const' qualifier to the given type T. More... | |
struct | AddCV |
Addition of a top level 'const' and 'volatile' qualifier.The AddCV type trait adds both a top level 'const' and 'volatile' qualifier to the given type T. More... | |
struct | AddExpr |
Base class for all addition expression templates.The AddExpr class serves as a tag for all expression templates that implement mathematical additions. All classes, that represent a mathematical addition (vector additions and matrix additions) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as addition expression template. Only in case a class is derived from the AddExpr base class, the IsAddExpr type trait recognizes the class as valid addition expression template. More... | |
struct | AddExprTrait |
Evaluation of the return type of an addition expression.Via this type trait it is possible to evaluate the return type of an addition expression between scalars, vectors, and matrices. Given the two types T1 and T2, which must either be scalar, vector, or matrix types, the nested type Type corresponds to the resulting return type. In case the types of T1 or T2 don't fit or if the two types cannot be added, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | AddPointer |
Addition of a top level pointer.The AddPointer type trait adds a top level pointer to the given type T. It has the same effect as blaze::RemovePointer<T>::Type* . More... | |
struct | AddReference |
Addition of a top level reference.In case the given type T is not a reference type, the AddReference type trait adds a top level reference to the given type T. Else the resulting type Type is T. More... | |
struct | AddTrait |
Base template for the AddTrait class. More... | |
struct | AddVolatile |
Addition of a top level 'volatile' qualifier.The AddVolatile type trait adds a top level 'volatile' qualifier to the given type T. More... | |
class | AlignedAllocator |
Allocator for type-specific aligned memory.The AlignedAllocator class template represents an implementation of the allocator concept of the standard library for the allocation of type-specific, aligned, uninitialized memory. The allocator performs its allocation via the blaze::allocate() and blaze::deallocate() functions to guarantee properly aligned memory based on the alignment restrictions of the specified type Type. For instance, in case the given type is a fundamental, built-in data type and in case SSE vectorization is possible, the returned memory is guaranteed to be at least 16-byte aligned. In case AVX is active, the memory is even guaranteed to be at least 32-byte aligned. More... | |
class | AlignedArray |
Implementation of a static array with a fixed alignment.The AlignedArray class template represents a static array with a guaranteed, fixed alignment. The type of the array elements, the number of elements and the alignment of the array can be specified via the three template parameters: More... | |
struct | AlignmentOf |
Evaluation of the required alignment of the given data type.The AlignmentOf type trait template evaluates the required alignment for the given data type. For instance, for fundamental data types that can be vectorized via SSE or AVX instructions, the proper alignment is 16 or 32 bytes, respectively. For all other data types, a multiple of the alignment chosen by the compiler is returned. The evaluated alignment can be queried via the nested value member. More... | |
struct | All |
Compile time type check.This type trait determines whether the given type trait TypeTrait evaluates to true for all given types Ts. If the expression. More... | |
struct | And |
Compile time logical and evaluation.The And class template performs at compile time a logical and ('&&') evaluation of at least two compile time conditions: More... | |
struct | Any |
Compile time type check.This type trait determines whether the given type trait TypeTrait evaluates to true for at least one of the given types Ts. If the expression. More... | |
class | Append |
Appending a type to a type list.The Append class can be used to append the data type Type to a type list TList. In order to append a data type, the Append class has to be instantiated for a particular type list and another type. The following example gives an impression of the use of the Append class: More... | |
class | Archive |
Binary archive for the portable serialization of data.The Archive class implements the functionality to create platform independent, portable, representations of arbitrary C++ data structures. The resulting binary data structures can be used to reconstitute the data structures in a different context, on another platform, etc. More... | |
struct | AreSIMDCombinable |
Compile time check for data types.This type trait tests whether or not the given types can be combined in the context of SIMD operations. By default, all numeric data types are considered combinable to themselves. Also, different integral types of the same size can be combined. If the types are determined to be SIMD combinable, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | ArrayDelete |
Array-delete policy class.The ArrayDelete policy functor class applies an array delete operation to the given argument. Note that the array delete operation is NOT permitted for inclomplete types (i.e. declared but undefined data types). The attempt to apply an ArrayDelete functor to a pointer to an array of objects of incomplete type results in a compile time error! More... | |
struct | Asin |
Generic wrapper for the asin() function. More... | |
struct | Asinh |
Generic wrapper for the asinh() function. More... | |
struct | Atan |
Generic wrapper for the atan() function. More... | |
struct | Atanh |
Generic wrapper for the atanh() function. More... | |
struct | Bool |
Compile time integral constant wrapper for bool.The Bool class template represents an integral wrapper for a compile time constant expression of type bool. The value of a Bool can be accessed via the nested value (which is guaranteed to be of type bool), the type can be accessed via the nested type definition ValueType. More... | |
struct | Cbrt |
Generic wrapper for the cbrt() function. More... | |
struct | Ceil |
Generic wrapper for the ceil() function. More... | |
struct | Char |
Compile time integral constant wrapper for char.The Char class template represents an integral wrapper for a compile time constant expression of type char. The value of an Char can be accessed via the nested value (which is guaranteed to be of type char), the type can be accessed via the nested type definition ValueType. More... | |
struct | Clip |
Generic wrapper for the clip() function. More... | |
class | Column |
Reference to a specific column of a dense or sparse matrix.The Column template represents a reference to a specific column of a dense or sparse matrix primitive. The type of the matrix is specified via the first template parameter: More... | |
struct | ColumnExprTrait |
Evaluation of the expression type type of a column operation.Via this type trait it is possible to evaluate the return type of a column operation. Given the dense or sparse matrix type MT, the nested type Type corresponds to the resulting return type. In case the given type is neither a dense nor a sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | Columns |
Compile time evaluation of the number of columns of a matrix.The Columns type trait evaluates the number of columns of the given matrix type at compile time. In case the given type T is a matrix type with a fixed number of columns (e.g. StaticMatrix), the value member constant is set to the according number of columns. In all other cases, value is set to 0. More... | |
struct | ColumnTrait |
Base template for the ColumnTrait class. More... | |
struct | CommonType |
Deduction of a type common to several types.The CommonType type trait deduces the result type of a mixed-mode arithmetic expression between all types T..., that is the type all T... can be implicitly converted to. Note that cv and reference qualifiers are generally ignored. More... | |
class | complex |
Complex data type of the Blaze library. More... | |
class | ComplexProxy |
Proxy backend for complex types.The ComplexProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a complex number and augments the Proxy interface by the complete interface required of complex numbers. More... | |
class | CompressedMatrix |
Efficient implementation of a ![]() ![]() | |
class | CompressedVector |
Efficient implementation of an arbitrary sized sparse vector.The CompressedVector class is the representation of an arbitrarily sized sparse vector, which stores only non-zero elements of arbitrary type. The type of the elements and the transpose flag of the vector can be specified via the two template parameters: More... | |
struct | Computation |
Base class for all compute expression templates.The Computation class serves as a tag for all computational expression templates. All classes, that represent a mathematical computation (addition, subtraction, multiplication, division, absolute value calculation, ...) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as computational expression template. Only in case a class is derived from the Computation base class, the IsComputation type trait recognizes the class as valid computational expression template. More... | |
struct | Conj |
Generic wrapper for the conj() function. More... | |
struct | ConstantGrowth |
Constant growth policy class.The ConstantGrowth policy class implements a constant growth strategy. It can be customized for any purpose: the Growth template argument specifies the constant increase of the given size. More... | |
class | Contains |
Searching a type list.The Contains class can be used to search the type list for a particular type Type. In contrast to the IndexOf class, the Contains class does not evaluate the index of the type but only checks whether or not the type is contained in the type list. Additionally, in contrast to the ContainsRelated class, the Contains class strictly searches for the given type Type and not for a related data type. In case the type is contained in the type list, the value member enumeration is set to 1, else it is set to 0. In order to check whether a type is part of a type list, the Contains class has to be instantiated for a particular type list and another type. The following example gives an impression of the use of the Contains class: More... | |
class | ContainsRelated |
Searching a type list.The ContainsRelated class can be used to search the type list for a type related to Type. In contrast to the Contains class, the ContainsRelated class only searches for a type the given data type Type can be converted to. In case a related type is found in the type list, the value member enumeration is set to 1, else it is set to 0. In order to check whether a related type is contained in the type list, the ContainsRelated class has to be instantiated for a particular type list and another type. The following example gives an impression of the use of the ContainsRelated class: More... | |
struct | Cos |
Generic wrapper for the cos() function. More... | |
struct | Cosh |
Generic wrapper for the cosh() function. More... | |
struct | CrossExpr |
Base class for all cross product expression templates.The CrossExpr class serves as a tag for all expression templates that implement mathematical cross products. All classes, that represent a mathematical cross product and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as cross product expression template. Only in case a class is derived from the CrossExpr base class, the IsCrossExpr type trait recognizes the class as valid cross product expression template. More... | |
struct | CrossExprTrait |
Evaluation of the return type of a cross product expression.Via this type trait it is possible to evaluate the return type of a cross product expression. Given the two types T1 and T2, which must be dense or sparse column vectors, the nested type Type corresponds to the resulting return type. In case the types of T1 or T2 don't fit or if the two types cannot be used in a cross product, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | CrossTrait |
Base template for the CrossTrait class. More... | |
struct | CTrans |
Generic wrapper for the ctrans() function. More... | |
struct | CTransExprTrait |
Evaluation of the return type of a conjugate transpose expression.Via this type trait it is possible to evaluate the return type of a conjugate transpose expression. Given the type T, which must either be a vector or matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no conjugate transpose operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | CustomMatrix |
Efficient implementation of a customizable matrix.The CustomMatrix class template provides the functionality to represent an external array of elements of arbitrary type and a fixed size as a native Blaze dense matrix data structure. Thus in contrast to all other dense matrix types a custom matrix does not perform any kind of memory allocation by itself, but it is provided with an existing array of element during construction. A custom matrix can therefore be considered an alias to the existing array. More... | |
class | CustomVector |
Efficient implementation of a customizable vector. More... | |
struct | Deallocate |
Deallocate policy class.The Deallocate deletion policy is the according deletion policy for arrays allocated via the blaze::allocate function. It uses deallocate to free the resource. Note that the delete operation is NOT permitted for inclomplete types (i.e. declared but undefined data types). The attempt to apply a PtrDelete functor to a pointer to an object of incomplete type results in a compile time error! More... | |
struct | Decay |
Applies the type conversions for by-value function arguments.This type trait applies the type conversions that are used for by-value function arguments. This conversions include lvalue-to-rvalue, array-to-pointer, and function-to-pointer implicit conversions to the type T , and the removal of top level cv-qualifiers. More... | |
struct | DefaultDelete |
Default C++ deletion policy class.The DefaultDelete deletion policy is the standard delete for resources allocated via the new operator. It uses delete or array delete (depending on the template argument) to free the resource: More... | |
class | DefaultProxy |
Default proxy backend for built-in and alternate user-specific class types.The DefaultProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a built-in or alternate user-specific class type. This proxy does not augment the Proxy interface by any additional interface. More... | |
class | DenseIterator |
Implementation of a generic iterator for dense vectors and matrices.The DenseIterator represents a generic random-access iterator that can be used for dense vectors and specific rows/columns of dense matrices. More... | |
struct | DenseMatrix |
Base class for dense matrices.The DenseMatrix class is a base class for all dense matrix classes. It provides an abstraction from the actual type of the dense matrix, but enables a conversion back to this type via the Matrix base class. More... | |
class | DenseMatrixProxy |
Proxy backend for dense matrix types.The DenseMatrixProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a dense matrix and augments the Proxy interface by the complete interface required of dense matrices. More... | |
struct | DenseVector |
Base class for N-dimensional dense vectors.The DenseVector class is a base class for all arbitrarily sized (N-dimensional) dense vectors. It provides an abstraction from the actual type of the dense vector, but enables a conversion back to this type via the Vector base class. More... | |
class | DenseVectorProxy |
Proxy backend for dense vector types.The DenseVectorProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a dense vector and augments the Proxy interface by the complete interface required of dense vectors. More... | |
class | Dependency |
Lifetime dependency on a singleton object.The Dependency template class represents a lifetime dependency on a singleton object based on the Blaze Singleton functionality. By use of the Dependency template, any class can by either public or non-public inheritance or composition define a single or multiple lifetime dependencies on one or several singletons, which guarantees that the singleton instance(s) will be destroyed after the dependent object. The following example demonstrates both the inheritance as well as the composition approach: More... | |
struct | DerestrictTrait |
Evaluation of the return type of the derestrict function.Via this type trait it is possible to evaluate the resulting return type of the derestrict function. Given the vector or matrix type T, the nested type Type corresponds to the resulting return type. In case T is neither a dense or sparse vector or matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DiagonalMatrix |
Matrix adapter for diagonal ![]() | |
class | DiagonalProxy |
Access proxy for diagonal matrices.The DiagonalProxy provides controlled access to the elements of a non-const diagonal matrix. It guarantees that the diagonal matrix invariant is not violated, i.e. that elements in the lower and upper part of the matrix remain default values. The following example illustrates this by means of a ![]() | |
struct | DisableIf |
Substitution Failure Is Not An Error (SFINAE) class.The DisableIf class template is an auxiliary tool for an intentional application of the Substitution Failure Is Not An Error (SFINAE) principle. It allows a function template or a class template specialization to include or exclude itself from a set of matching functions or specializations based on properties of its template arguments. For instance, it can be used to restrict the selection of a function template to specific data types. The following example illustrates this in more detail. More... | |
struct | DisableIfTrue |
Substitution Failure Is Not An Error (SFINAE) class.The DisableIfTrue class template is an auxiliary tool for an intentional application of the Substitution Failure Is Not An Error (SFINAE) principle. It allows a function template or a class template specialization to include or exclude itself from a set of matching functions or specializations based on properties of its template arguments. For instance, it can be used to restrict the selection of a function template to specific data types. The following example illustrates this in more detail. More... | |
struct | DivExpr |
Base class for all division expression templates.The DivExpr class serves as a tag for all expression templates that implement mathematical divisions. All classes, that represent a mathematical division (vector/scalar divisions and matrix/scalar division) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as division expression template. Only in case a class is derived from the DivExpr base class, the IsDivExpr type trait recognizes the class as valid division expression template. More... | |
struct | DivExprTrait |
Evaluation of the resulting expression type of a division.Via this type trait it is possible to evaluate the return type of a division expression between scalars, vectors, and matrices. Given the two types T1 and T2, where T1 must either be a scalar, vector, or matrix type and T2 which must be a scalar type, the nested type Type corresponds to the resulting return type. In case T1 or T2 don't fit or if the two types cannot be divided, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | DivTrait |
Base template for the DivTrait class. More... | |
struct | DMatCTransExprTrait |
Evaluation of the expression type of a dense matrix conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix conjugate transpose operation. Given the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatDMatAddExpr |
Expression object for dense matrix-dense matrix additions.The DMatDMatAddExpr class represents the compile time expression for additions between dense matrices with identical storage order. More... | |
struct | DMatDMatAddExprTrait |
Evaluation of the expression type of a dense matrix/dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/dense matrix addition. Given the two row-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatDMatMultExpr |
Expression object for dense matrix-dense matrix multiplications.The DMatDMatMultExpr class represents the compile time expression for multiplications between row-major dense matrices. More... | |
struct | DMatDMatMultExprTrait |
Evaluation of the expression type of a dense matrix/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/dense matrix multiplication. Given the two row-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatDMatSubExpr |
Expression object for dense matrix-dense matrix subtractions.The DMatDMatSubExpr class represents the compile time expression for subtractions between dense matrices with identical storage order. More... | |
struct | DMatDMatSubExprTrait |
Evaluation of the expression type of a dense matrix/dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/dense matrix subtraction. Given the two row-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatDVecMultExpr |
Expression object for dense matrix-dense vector multiplications.The DMatDVecMultExpr class represents the compile time expression for multiplications between row-major dense matrices and dense vectors. More... | |
struct | DMatDVecMultExprTrait |
Evaluation of the expression type of a dense matrix/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/dense vector multiplication. Given the row-major dense matrix type MT and the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major dense matrix type or VT is not a non-transpose dense vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatEvalExpr |
Expression object for the forced evaluation of dense matrices.The DMatEvalExpr class represents the compile time expression for the forced evaluation of a dense matrix. More... | |
struct | DMatEvalExprTrait |
Evaluation of the expression type of a dense matrix evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix evaluation operation. Given the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatForEachExpr |
Expression object for the dense matrix forEach() function.The DMatForEachExpr class represents the compile time expression for the evaluation of a custom operation on each element of a dense matrix via the forEach() function. More... | |
struct | DMatForEachExprTrait |
Evaluation of the expression type of a dense matrix custom operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix custom operation. Given the row-major dense matrix type MT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatInvExpr |
Expression object for dense matrix inversions.The DMatInvExpr class represents the compile time expression for inversions of dense matrices. More... | |
struct | DMatInvExprTrait |
Evaluation of the expression type of a dense matrix inversion operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix inversion operation. Given the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatScalarDivExpr |
Expression object for divisions of a dense matrix by a scalar.The DMatScalarDivExpr class represents the compile time expression for divisions of dense matrices and by scalar values. More... | |
struct | DMatScalarDivExprTrait |
Evaluation of the expression type of a dense matrix/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/scalar division. Given the row-major dense matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major dense matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatScalarMultExpr |
Expression object for dense matrix-scalar multiplications.The DMatScalarMultExpr class represents the compile time expression for multiplications between a dense matrix and a scalar value. More... | |
struct | DMatScalarMultExprTrait |
Evaluation of the expression type of a dense matrix/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/scalar multiplication. Given the row-major dense matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major dense matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatSerialExpr |
Expression object for the forced serial evaluation of dense matrices.The DMatSerialExpr class represents the compile time expression for the forced serial evaluation of a dense matrix. More... | |
struct | DMatSerialExprTrait |
Evaluation of the expression type of a dense matrix serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix serial evaluation operation. Given the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatSMatAddExpr |
Expression object for dense matrix-sparse matrix additions.The DMatSMatAddExpr class represents the compile time expression for additions between a dense matrix and a sparse matrix with identical storage order. More... | |
struct | DMatSMatAddExprTrait |
Evaluation of the expression type of a dense matrix/sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/sparse matrix addition. Given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatSMatMultExpr |
Expression object for dense matrix-sparse matrix multiplications.The DMatSMatMultExpr class represents the compile time expression for multiplications between a row-major dense matrix and a row-major sparse matrix. More... | |
struct | DMatSMatMultExprTrait |
Evaluation of the expression type of a dense matrix/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/sparse matrix multiplication. Given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatSMatSubExpr |
Expression object for dense matrix-sparse matrix subtractions.The DMatSMatSubExpr class represents the compile time expression for subtractions between a dense matrix and a sparse matrix with identical storage order. More... | |
struct | DMatSMatSubExprTrait |
Evaluation of the expression type of a dense matrix/sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/sparse matrix subtraction. Given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatSVecMultExpr |
Expression object for dense matrix-sparse vector multiplications.The DMatSVecMultExpr class represents the compile time expression for multiplications between row-major dense matrices and sparse vectors. More... | |
struct | DMatSVecMultExprTrait |
Evaluation of the expression type of a dense matrix/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/sparse vector multiplication. Given the row-major dense matrix type MT and the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major dense matrix type or VT is not a non-transpose sparse vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTDMatAddExpr |
Expression object for dense matrix-transpose dense matrix additions.The DMatTDMatAddExpr class represents the compile time expression for additions between a row-major dense matrix and column-major dense matrix. More... | |
struct | DMatTDMatAddExprTrait |
Evaluation of the expression type of a dense matrix/transpose dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/transpose dense matrix addition. Given the row-major dense matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTDMatMultExpr |
Expression object for dense matrix-transpose dense matrix multiplications.The DMatTDMatMultExpr class represents the compile time expression for multiplications between a row-major dense matrix and a column-major dense matrix. More... | |
struct | DMatTDMatMultExprTrait |
Evaluation of the expression type of a dense matrix/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/transpose dense matrix multiplication. Given the row-major dense matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTDMatSubExpr |
Expression object for dense matrix-transpose dense matrix subtractions.The DMatTDMatSubExpr class represents the compile time expression for subtractions between a row-major dense matrix and a column-major dense matrix. More... | |
struct | DMatTDMatSubExprTrait |
Evaluation of the expression type of a dense matrix/transpose dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/transpose dense matrix subtraction. Given the row-major dense matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTransExpr |
Expression object for dense matrix transpositions.The DMatTransExpr class represents the compile time expression for transpositions of dense matrices. More... | |
struct | DMatTransExprTrait |
Evaluation of the expression type of a dense matrix transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix transpose operation. Given the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | DMatTransposer |
Expression object for the transposition of a dense matrix.The DMatTransposer class is a wrapper object for the temporary transposition of a dense matrix. More... | |
class | DMatTSMatAddExpr |
Expression object for dense matrix-sparse matrix additions.The DMatTSMatAddExpr class represents the compile time expression for additions between a row-major dense matrix and a column-major sparse matrix. More... | |
struct | DMatTSMatAddExprTrait |
Evaluation of the expression type of a dense matrix/transpose sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/transpose sparse matrix addition. Given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTSMatMultExpr |
Expression object for dense matrix-transpose sparse matrix multiplications.The DMatTSMatMultExpr class represents the compile time expression for multiplications between a row-major dense matrix and a column-major sparse matrix. More... | |
struct | DMatTSMatMultExprTrait |
Evaluation of the expression type of a dense matrix/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/ transpose sparse matrix multiplication. Given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | DMatTSMatSubExpr |
Expression object for dense matrix-transpose sparse matrix subtractions.The DMatTSMatSubExpr class represents the compile time expression for subtractions between a row-major dense matrix and a column-major sparse matrix. More... | |
struct | DMatTSMatSubExprTrait |
Evaluation of the expression type of a dense matrix/transpose sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix/ transpose sparse matrix subtraction. Given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | DVecCTransExprTrait |
Evaluation of the expression type of a dense vector conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector conjugate transpose operation. Given the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecDVecAddExpr |
Expression object for dense vector-dense vector additions.The DVecDVecAddExpr class represents the compile time expression for additions between dense vectors. More... | |
struct | DVecDVecAddExprTrait |
Evaluation of the expression type of a dense vector/dense vector addition.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector addition. Given the two non-transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecDVecCrossExpr |
Expression object for dense vector-dense vector cross products.The DVecDVecCrossExpr class represents the compile time expression for cross products between dense vectors. More... | |
struct | DVecDVecCrossExprTrait |
Evaluation of the expression type of a dense vector/dense vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector cross product. Given the two non-transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecDVecDivExpr |
Expression object for dense vector-dense vector divisions.The DVecDVecDivExpr class represents the compile time expression for componentwise divisions between dense vectors. More... | |
struct | DVecDVecDivExprTrait |
Evaluation of the expression type of a dense vector/dense vector division.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector division. Given the two non-transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecDVecMultExpr |
Expression object for dense vector-dense vector multiplications.The DVecDVecMultExpr class represents the compile time expression for componentwise multiplications between dense vectors. More... | |
struct | DVecDVecMultExprTrait |
Evaluation of the expression type of a dense vector/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector multiplication. Given the two non-transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecDVecSubExpr |
Expression object for dense vector-dense vector subtractions.The DVecDVecSubExpr class represents the compile time expression for subtractions between dense vectors. More... | |
struct | DVecDVecSubExprTrait |
Evaluation of the expression type of a dense vector/dense vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector subtraction. Given the two non-transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecEvalExpr |
Expression object for the forced evaluation of dense vectors.The DVecEvalExpr class represents the compile time expression for the forced evaluation of a dense vector. More... | |
struct | DVecEvalExprTrait |
Evaluation of the expression type of a dense vector evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector evaluation operation. Given the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecForEachExpr |
Expression object for the dense vector forEach() function.The DVecForEachExpr class represents the compile time expression for the evaluation of a custom operation on each element of a dense vector via the forEach() function. More... | |
struct | DVecForEachExprTrait |
Evaluation of the expression type of a dense vector custom operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector custom operation. Given the non-transpose dense vector type VT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecScalarDivExpr |
Expression object for divisions of a dense vector by a scalar.The DVecScalarDivExpr class represents the compile time expression for divisions of dense vectors by scalar values. More... | |
struct | DVecScalarDivExprTrait |
Evaluation of the expression type of a dense vector/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/scalar division. Given the non-transpose dense vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a non-transpose dense vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecScalarMultExpr |
Expression object for dense vector-scalar multiplications.The DVecScalarMultExpr class represents the compile time expression for multiplications between a dense vector and a scalar value. More... | |
struct | DVecScalarMultExprTrait |
Evaluation of the expression type of a dense vector/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/scalar multiplication. Given the non-transpose dense vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a non-transpose dense vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecSerialExpr |
Expression object for the forced serial evaluation of dense vectors.The DVecSerialExpr class represents the compile time expression for the forced serial evaluation of a dense vector. More... | |
struct | DVecSerialExprTrait |
Evaluation of the expression type of a dense vector serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector serial evaluation operation. Given the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecSVecAddExpr |
Expression object for dense vector-sparse vector additions.The DVecSVecAddExpr class represents the compile time expression for additions between a dense vector and a sparse vector. More... | |
struct | DVecSVecAddExprTrait |
Evaluation of the expression type of a dense vector/sparse vector addition.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse vector addition. Given the non-transpose dense vector type VT1 and the non-transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecSVecCrossExpr |
Expression object for dense vector-sparse vector cross products.The DVecSVecCrossExpr class represents the compile time expression for cross products between a dense vector and a sparse vector. More... | |
struct | DVecSVecCrossExprTrait |
Evaluation of the expression type of a dense vector/sparse vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse vector cross product. Given the non-transpose dense vector type VT1 and the non-transpose sparse vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecSVecMultExpr |
Expression object for dense vector-sparse vector multiplications.The DVecSVecMultExpr class represents the compile time expression for componentwise multiplications between a dense vector and a sparse vector. More... | |
struct | DVecSVecMultExprTrait |
Evaluation of the expression type of a dense vector/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse vector multiplication. Given the non-transpose dense vector type VT1 and the non-transpose sparse vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecSVecSubExpr |
Expression object for dense vector-sparse vector subtractions.The DVecSVecSubExpr class represents the compile time expression for subtractions between a dense vector and a sparse vector. More... | |
struct | DVecSVecSubExprTrait |
Evaluation of the expression type of a dense vector/sparse vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse vector subtraction. Given the non-transpose dense vector type VT1 and the non-transpose sparse vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecTDVecMultExpr |
Expression object for outer products between two dense vectors.The DVecTDVecMultExpr class represents the compile time expression for outer products between dense vectors. More... | |
struct | DVecTDVecMultExprTrait |
Evaluation of the expression type of a dense vector/transpose dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/transpose dense vector multiplication (outer product). Given the non-transpose dense vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecTransExpr |
Expression object for dense vector transpositions.The DVecTransExpr class represents the compile time expression for transpositions of dense vectors. More... | |
struct | DVecTransExprTrait |
Evaluation of the expression type of a dense vector transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector transpose operation. Given the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DVecTransposer |
Expression object for the transposition of a dense vector.The DVecTransposer class is a wrapper object for the temporary transposition of a dense vector. More... | |
class | DVecTSVecMultExpr |
Expression object for dense vector-sparse vector outer products.The DVecTSVecMultExpr class represents the compile time expression for dense vector-sparse vector outer products. More... | |
struct | DVecTSVecMultExprTrait |
Evaluation of the expression type of a dense vector/transpose sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/transpose sparse vector multiplication (outer product). Given the non-transpose dense vector type VT1 and the transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose dense vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | DynamicMatrix |
Efficient implementation of a dynamic ![]() ![]() | |
class | DynamicVector |
Efficient implementation of an arbitrary sized vector.The DynamicVector class template is the representation of an arbitrary sized vector with dynamically allocated elements of arbitrary type. The type of the elements and the transpose flag of the vector can be specified via the two template parameters: More... | |
struct | EmptyType |
Empty data type for utility purposes. More... | |
struct | EnableIf |
Substitution Failure Is Not An Error (SFINAE) class.The EnableIf class template is an auxiliary tool for an intentional application of the Substitution Failure Is Not An Error (SFINAE) principle. It allows a function template or a class template specialization to include or exclude itself from a set of matching functions or specializations based on properties of its template arguments. For instance, it can be used to restrict the selection of a function template to specific data types. The following example illustrates this in more detail. More... | |
struct | EnableIfTrue |
Substitution Failure Is Not An Error (SFINAE) class.The EnableIfTrue class template is an auxiliary tool for an intentional application of the Substitution Failure Is Not An Error (SFINAE) principle. It allows a function template or a class template specialization to include or exclude itself from a set of matching functions or specializations based on properties of its template arguments. For instance, it can be used to restrict the selection of a function template to specific data types. The following example illustrates this in more detail. More... | |
class | Epsilon |
Numerical epsilon value for floating point data types.The Epsilon class is a wrapper class around the functionality of the blaze::Limits class. It represents the smallest difference between two values of any floating point data type. In order to assign an epsilon value, the Epsilon class can be implicitly converted to the three built-in floating point data types float, double and long double. In order to handle epsilon values conveniently, the global Epsilon instance blaze::epsilon is provided, which can be used wherever a floating point data type is required. More... | |
struct | Equal |
Compile time type comparison.The Equal class template compares the two given types using the equality operator ('=='). In case T1::value is equal to T2::value, the nested value member is set to true. Otherwise it is set to false. More... | |
class | Erase |
Erasing the first occurrence of a type from a type list.The Erase class can be used to erase the first occurrence of data type Type from a type list TList. In order to erase the first occurrence of a data type, the Erase class has to be instantiated for a particular type list and another type. The following example gives an impression of the use of the Erase class: More... | |
class | EraseAll |
Erasing all occurrences of a type from a type list.The EraseAll class can be used to erase all occurrences of data type Type from a type list TList. In order to erase all occurrences of a data type, the EraseAll class has to be instantiated for a particular type list and another type. The following example gives an impression of the use of the EraseAll class: More... | |
struct | Erf |
Generic wrapper for the erf() function. More... | |
struct | Erfc |
Generic wrapper for the erfc() function. More... | |
struct | Eval |
Generic wrapper for the eval() function. More... | |
struct | EvalExpr |
Base class for all evaluation expression templates.The EvalExpr class serves as a tag for all expression templates that implement an evaluation operation. All classes, that represent an evaluation operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as evaluation expression template. Only in case a class is derived from the EvalExpr base class, the IsEvalExpr type trait recognizes the class as valid evaluation expression template. More... | |
struct | EvalExprTrait |
Evaluation of the return type of an evaluation expression.Via this type trait it is possible to evaluate the return type of an evaluation expression. Given the type T, which must either be a vector or matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no evaluation operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | Exp |
Generic wrapper for the exp() function. More... | |
struct | Expression |
Base class for all expression templates.The Expression class is the base class for all expression templates. All classes, that represent a mathematical operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as expression template. Only in case a class is derived from the Expression base class, the IsExpression type trait recognizes the class as valid expression template. More... | |
struct | Extent |
Compile time check for the size of array bounds.Via this type trait it is possible to query at compile time for the size of a particular array extent. In case the given template argument is an array type with a rank greater than N, the value member constant is set to the number of elements of the N'th array dimension. In all other cases, and especially in case the N'th array dimension is incomplete, value is set to 0. More... | |
struct | Floor |
Generic wrapper for the floor() function. More... | |
struct | ForEachExpr |
Base class for all for-each expression templates.The ForEachExpr class serves as a tag for all expression templates that represent a unary, custom operation. All classes, that represent a custom operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as for-each expression template. Only in case a class is derived from the ForEachExpr base class, the IsForEachExpr type trait recognizes the class as valid for-each expression template. More... | |
struct | ForEachExprTrait |
Evaluation of the return type of a forEach expression.Via this type trait it is possible to evaluate the return type of a forEach expression. Given the type T, which must either be a scalar, vector, or matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no forEach operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | ForEachTrait |
Base template for the ForEachTrait class.The ForEachTrait class template offers the possibility to select the resulting data type of a generic forEach operation on the given type T. Given the type T, which must either be a vector or matrix type, the nested type Type corresponds to the resulting data type of the operation. In case the type of T doesn't fit or if no forEach operation exists for the type, the resulting data type Type is set to INVALID_TYPE. Note that const and volatile qualifiers and reference modifiers are generally ignored. More... | |
struct | Greater |
Compile time type comparison.The Greater class template compares the two given types using the greater-than operator ('>'). In case T1::value is greater than T2::value, the nested value member is set to 1. Otherwise it is set to 0. More... | |
struct | Has1Byte |
Compile time size check.This type trait offers the possibility to test whether a given type has a size of exactly one byte. If the type T has one byte, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | Has2Bytes |
Compile time size check.This type trait offers the possibility to test whether a given type has a size of exactly two bytes. If the type T has two bytes, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | Has4Bytes |
Compile time size check.This type trait offers the possibility to test whether a given type has a size of exactly four bytes. If the type T has four bytes, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | Has8Bytes |
Compile time size check.This type trait offers the possibility to test whether a given type has a size of exactly four bytes. If the type T has four bytes, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives fromTrueType. Otherwise value is set to false, Type is FalseType, and the classderives from FalseType. More... | |
struct | HasConstDataAccess |
Compile time check for low-level access to constant data.This type trait tests whether the given data type provides a low-level access to constant data via a const 'data' member function. In case the according member function is provided, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | HasCyclicDependency |
struct | HasMutableDataAccess |
Compile time check for low-level access to mutable data.This type trait tests whether the given data type provides a low-level access to mutable data via a non-const 'data' member function. In case the according member function is provided, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | HasSIMDAbs |
Availability of a SIMD absolute value operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD absolute value operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDAcos |
Availability of a SIMD inverse cosine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse cosine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDAcosh |
Availability of a SIMD inverse hyperbolic cosine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse hyperbolic cosine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDAdd |
Availability of a SIMD addition for the given data types.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...), and the used compiler, this type trait provides the information whether a SIMD addition operation exists for the two given data types T1 and T2 (ignoring the cv-qualifiers). In case the SIMD addition is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDAsin |
Availability of a SIMD inverse sine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse sine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDAsinh |
Availability of a SIMD inverse hyperbolic sine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD hyperbolic inverse sine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDAtan |
Availability of a SIMD inverse tangent operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse tangent operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDAtanh |
Availability of a SIMD inverse hyperbolic tangent operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse hyperbolic tangent operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDCbrt |
Availability of a SIMD cubic root operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD cubic root operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDCeil |
Availability of a SIMD ceil operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD ceil operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDConj |
Availability of a SIMD conjugate operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD conjugate operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDCos |
Availability of a SIMD cosine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD cosine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDCosh |
Availability of a SIMD hyperbolic cosine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD hyperbolic cosine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDDiv |
Availability of a SIMD division for the given data types.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD division operation exists for the two given data types T1 and T2 (ignoring the cv-qualifiers). In case the SIMD division is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDErf |
Availability of a SIMD error function (erf ) operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD error function (erf ) operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDErfc |
Availability of a SIMD complementary error function (erfc ) operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD complementary error function (erfc ) operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDExp |
Availability of a SIMD exponent operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD exponent operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDFloor |
Availability of a SIMD floor operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD floor operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDInvCbrt |
Availability of a SIMD inverse cubic root operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse cubic root operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDInvSqrt |
Availability of a SIMD inverse square root operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD inverse square root operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDLog |
Availability of a SIMD natural logarithm operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD natural logarithm operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDLog10 |
Availability of a SIMD common logarithm operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD common logarithm operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDMult |
Availability of a SIMD multiplication for the given data types.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD multiplication operation exists for the two given data types T1 and T2 (ignoring the cv-qualifiers). In case the SIMD multiplication is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDPow |
Availability of a SIMD power operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD power operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDSin |
Availability of a SIMD sine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD sine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDSinh |
Availability of a SIMD hyperbolic sine operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD hyperbolic sine operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDSqrt |
Availability of a SIMD square root operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD square root operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDSub |
Availability of a SIMD subtraction for the given data types.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD subtraction operation exists for the two given data types T1 and T2 (ignoring the cv-qualifiers). In case the SIMD subtraction is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that AVX is available: More... | |
struct | HasSIMDTan |
Availability of a SIMD tangent operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD tangent operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSIMDTanh |
Availability of a SIMD hyperbolic tangent operation for the given data type.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...) and the used compiler, this type trait provides the information whether a SIMD hyperbolic tangent operation exists for the given data type T (ignoring the cv-qualifiers). In case the SIMD operation is available, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example assumes that the Intel SVML is available: More... | |
struct | HasSize |
Compile time size check.This class offers the possibility to test the size of a type at compile time. If the type T is exactly Size bytes large, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
class | HaveSameSize |
Compile time size check.This class offers the possibility to test the size of two types at compile time. If an object of type T1 has the same size as an object of type T2, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
class | HermitianElement |
Representation of two synchronized elements within the sparse Hermitian matrix.The HermitianElement class represents two synchronized elements (i.e. two value/index pairs) within a sparse Hermitian matrix. It guarantees that a modification of element ![]() ![]() ![]() | |
class | HermitianMatrix |
Matrix adapter for Hermitian ![]() | |
class | HermitianProxy |
Access proxy for Hermitian matrices.The HermitianProxy provides controlled access to the elements of a non-const Hermitian matrix. It guarantees that a modification of element ![]() ![]() ![]() | |
class | HermitianValue |
Representation of two synchronized values within a sparse Hermitian matrix.The HermitianValue class represents two synchronized values within a sparse Hermitian matrix. It guarantees that a modification of value ![]() ![]() ![]() | |
class | HybridMatrix |
Efficient implementation of a dynamically sized matrix with static memory.The HybridMatrix class template combines the flexibility of a dynamically sized matrix with the efficiency and performance of a fixed-size matrix. It is implemented as a crossing between the blaze::StaticMatrix and the blaze::DynamicMatrix class templates: Similar to the static matrix it uses static stack memory instead of dynamically allocated memory and similar to the dynamic matrix it can be resized (within the extend of the static memory). The type of the elements, the maximum number of rows and columns and the storage order of the matrix can be specified via the four template parameters: More... | |
class | HybridVector |
Efficient implementation of a dynamically sized vector with static memory.The HybridVector class template combines the flexibility of a dynamically sized vector with the efficiency and performance of a fixed-size vector. It is implemented as a crossing between the blaze::StaticVector and the blaze::DynamicVector class templates: Similar to the static vector it uses static stack memory instead of dynamically allocated memory and similar to the dynamic vector it can be resized (within the extend of the static memory). The type of the elements, the maximum number of elements and the transpose flag of the vector can be specified via the three template parameters: More... | |
struct | If |
Compile time type selection.The If class template selects one of the two given types T2 and T3 depending on T1. In case T1::value evaluates to true, the member type definition Type is set to T2. In case T1::value evaluates to false, Type is set to T3. More... | |
struct | IfTrue |
Compile time type selection.The IfTrue class template selects one of the two given types T1 and T2 depending on the Condition template argument. In case the Condition compile time constant expression evaluates to true, the member type definition Type is set to T1. In case Condition evaluates to false, Type is set to T2. More... | |
struct | Imag |
Generic wrapper for the imag() function. More... | |
struct | ImagTrait |
Base template for the ImagTrait class.The ImagTrait class template offers the possibility to select the resulting data type of a generic imag operation on the given type T. Given the type T, which must either be a scalar, vector, or matrix type, the nested type Type corresponds to the resulting data type of the operation. In case the type of T doesn't fit or if no imag operation exists for the type, the resulting data type Type is set to INVALID_TYPE. Note that const and volatile qualifiers and reference modifiers are generally ignored. More... | |
class | IndexOf |
Searching a type list.The IndexOf class can be used to search the type list for a particular type Type. In contrast to the Contains and the ContainsRelated classes, the IndexOf class evaluates the index of the given type in the type list. In case the type is contained in the type list, the value member represents the index of the queried type. Otherwise the value member is set to -1. In order to search for a type, the IndexOf class has to be instantiated for a particular type list and a search type. The following example gives an impression of the use of the IndexOf class: More... | |
class | Indices |
Auxiliary class for the generation of random indices. More... | |
class | Infinity |
Positive infinity for built-in data types.The Infinity class is a wrapper class around the functionality of the blaze::Limits class to provide the possiblity to assign a positive infinity value to built-in data types. As positive infinity value, the largest possible positive value of the corresponding data type is used. In order to assign the positive infinity value, the Infinity class can be implicitly converted to the following 13 built-in integral and floating point data types: More... | |
class | initializer_list |
Initializer list type of the Blaze library. More... | |
class | InputString |
Implementation of a string wrapper.The InputString class is a wrapper class for the purpose to read input strings delimited by quotations from streams, like for instance "example input". All characters between the leading and the trailing quotation are extracted unchanged from the input stream, including whitespaces. The input string has to be in one single line. In case of input errors, the std::istream::failbit of the input stream is set. More... | |
struct | Int |
Compile time integral constant wrapper for int.The Int class template represents an integral wrapper for a compile time constant expression of type int. The value of an Int can be accessed via the nested value (which is guaranteed to be of type int), the type can be accessed via the nested type definition ValueType. More... | |
class | int16_t |
16-bit signed integer type of the Blaze library. More... | |
class | int32_t |
32-bit signed integer type of the Blaze library. More... | |
class | int64_t |
64-bit signed integer type of the Blaze library. More... | |
class | int8_t |
8-bit signed integer type of the Blaze library. More... | |
struct | IntegralConstant |
Generic wrapper for a compile time constant integral value.The IntegralConstant class template represents a generic wrapper for a compile time constant integral value. The value of an IntegralConstant can be accessed via the nested value (which is guaranteed to be of type T), the type can be accessed via the nested type definition ValueType. More... | |
struct | Inv |
Generic wrapper for the inv() function. More... | |
struct | InvCbrt |
Generic wrapper for the invcbrt() function. More... | |
struct | InvExprTrait |
Evaluation of the return type of an inversion expression.Via this type trait it is possible to evaluate the return type of an inversion expression. Given the type T, which must either a (complex) floating point type or a dense matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no inversion operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | InvSqrt |
Generic wrapper for the invsqrt() function. More... | |
struct | IsAdaptor |
Compile time check for adaptors.This type trait tests whether the given template parameter is an adaptor type (for instance LowerMatrix, UpperMatrix, or SymmetricMatrix). In case the type is an adaptor type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. The following example demonstrates this by means of the mentioned matrix adaptors: More... | |
struct | IsAddExpr |
Compile time check whether the given type is an addition expression template.This type trait class tests whether or not the given type Type is an addition expression template (i.e. an expression representing a vector addition or a matrix addition). In order to qualify as a valid addition expression template, the given type has to derive (publicly or privately) from the AddExpr base class. In case the given type is a valid addition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsAligned |
Compile time check for the alignment of data types.This type trait tests whether the given data type guarantees to provide aligned data values with respect to the requirements of the available instruction set. For instance, vectorizable data types such as built-in and complex data types are required to be 16-bit aligned for SSE, 32-bit aligned for AVX, and 64-bit aligned for MIC. In case the data type is properly aligned, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsArithmetic |
Compile time check for arithmetic data types.This type trait tests whether or not the given template parameter is a (possibly cv-qualified) arithmetic (integral or floating point) data type. In case the type is an arithmetic type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType and the class derives from FalseType. More... | |
struct | IsArray |
Compile time type check.The IsArray type trait tests whether or not the given template parameter is an array type. In case the given data type is an array type, the value member constant is set to true, the nested type definition Type is set to TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType and the class derives from FalseType. More... | |
struct | IsAssignable |
Compile time type check.The IsAssignable type trait tests whether the expression. More... | |
class | IsBaseOf |
Compile time analysis of an inheritance relationship.This type trait tests for an inheritance relationship between the two types Base and Derived. If Derived is a type derived from Base or the same type as Base the value member contant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsBLASCompatible |
Compile time check for data types.This type trait tests whether or not the given template parameter is a data type compatible to the BLAS standard. The BLAS standard supports float , double , complex<float> and complex<double> values. If the type is BLAS compatible, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsBoolean |
Compile time check for boolean types.This type trait tests whether or not the given template parameter is of boolean type. In case the type is a boolean (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsBuiltin |
Compile time check for built-in data types.This type trait tests whether or not the given template parameter is a built-in/fundamental data type. In case the type is a built-in type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsCharacter |
Compile time check for character types.This type trait tests whether or not the given template parameter is a character type (i.e., either char, signed char, unsigned char, or wchar_t, possibly cv-qualified). In case the type is a character type (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsClass |
Compile time type check.The IsClass type trait tests whether or not the given template parameter is a (possibly cv-qualified) class type. In case the given data type is a class type, the value member constant is set to true, the nested type definition Type is set to TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType and the class derives from FalseType. More... | |
struct | IsColumn |
Compile time check for columns.This type trait tests whether or not the given template parameter is a column (i.e. dense or sparse column). In case the type is a column, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsColumnMajorMatrix |
Compile time check for column-major matrix types.This type trait tests whether or not the given template argument is a column-major dense or sparse matrix type (i.e., a matrix whose storage order is set to true). In case the type is a column-major matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsColumnVector |
Compile time check for column vector types.This type trait tests whether or not the given template argument is a column dense or sparse vector type (i.e. a vector whose transposition flag is set to blaze::columnVector). In case the type is a column vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsComplex |
Compile time check for complex types.This type trait tests whether or not the given template parameter is a complex data type. In case the type is a complex data type (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsComplexDouble |
Compile time check for single precision complex types.This type trait tests whether or not the given template parameter is of type complex<double> . In case the type is complex<double> (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsComplexFloat |
Compile time check for single precision complex types.This type trait tests whether or not the given template parameter is of type complex<float> . In case the type is complex<float> (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsComputation |
Compile time check whether the given type is a computational expression template.This type trait class tests whether or not the given type Type is a computational expression template (i.e. a mathematical operation such as an addition, a subtraction, a multiplication, a division, an absolute value calculation, ...). In order to qualify as a valid computational expression template, the given type has to derive (publicly or privately) from the Computation base class. In case the given type is a valid computational expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsConst |
Compile time check for constant data types.The IsConst type trait tests whether or not the given template parameter is a (top level) const-qualified data type. In case the given data type is const-qualified, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsConstructible |
Compile time type check.The IsConstructible type trait tests whether the expression. More... | |
struct | IsConvertible |
Compile time pointer relationship constraint.This type traits tests whether the first given template argument can be converted to the second template argument via copy construction. If the first argument can be converted to the second argument, the value member constnt is set to true, the nested type definition type is TrueType, and the class derives from TrueType. Otherwise value is set to false, type is FalseType, and the class derives from FalseType. More... | |
struct | IsCopyAssignable |
Compile time type check.The IsCopyAssignable type trait tests whether the expression. More... | |
struct | IsCopyConstructible |
Compile time type check.The IsCopyConstructible type trait tests whether the expression. More... | |
struct | IsCrossExpr |
Compile time check whether the given type is a cross product expression template.This type trait class tests whether or not the given type Type is a cross product expression template. In order to qualify as a valid cross product expression template, the given type has to derive (publicly or privately) from the CrossExpr base class. In case the given type is a valid cross product expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsCustom |
Compile time check for custom data types.This type trait tests whether the given data type is a custom data type, i.e. a custom vector or a custom matrix. In case the data type a custom data type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsDefaultConstructible |
Compile time type check.The IsDefaultConstructible type trait tests whether the expression. More... | |
struct | IsDenseMatrix |
Compile time check for dense matrix types.This type trait tests whether or not the given template parameter is a dense, N-dimensional matrix type. In case the type is a dense matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsDenseVector |
Compile time check for dense vector types.This type trait tests whether or not the given template parameter is a dense, N-dimensional vector type. In case the type is a dense vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsDestructible |
Compile time type check.The IsDestructible type trait tests whether the expression. More... | |
struct | IsDiagonal |
Compile time check for diagonal matrices.This type trait tests whether or not the given template parameter is a diagonal matrix type (i.e. a matrix type that is guaranteed to be diagonal at compile time). In case the type is a diagonal matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsDivExpr |
Compile time check whether the given type is a division expression template.This type trait class tests whether or not the given type Type is a division expression template (i.e. an expression representing a vector/scalar division or a matrix/scalar division). In order to qualify as a valid division expression template, the given type has to derive (publicly or privately) from the DivExpr base class. In case the given type is a valid division expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsDouble |
Compile time check for double precision floating point types.This type trait tests whether or not the given template parameter is of double type. In case the type is double (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsEmpty |
Compile time type check.This class tests whether the given template parameter is an empty class type, i.e. a type without member data and virtual functions. If it is an empty class type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsEvalExpr |
Compile time check whether the given type is an evaluation expression template.This type trait class tests whether or not the given type Type is an evaluation expression template. In order to qualify as a valid evaluation expression template, the given type has to derive (publicly or privately) from the EvalExpr base class. In case the given type is a valid evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsEven |
Compile time check whether a compile time constant expression is even.This value trait tests whether the given integral value N is an even value. In case the value is even, the value member enumeration is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsExpression |
Compile time check whether the given type is an expression template.This type trait class tests whether or not the given type Type is a Blaze expression template. In order to qualify as a valid expression template, the given type has to derive (publicly or privately) from the Expression base class. In case the given type is a valid expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsFloat |
Compile time check for single precision floating point types.This type trait tests whether or not the given template parameter is of float type. In case the type is float (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsFloatingPoint |
Compile time check for floating point data types.This type trait tests whether or not the given template parameter is a floating point data type (ignoring the cv-qualifiers). In case the type is a floating point data type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsForEachExpr |
Compile time check whether the given type is a for-each expression template.This type trait class tests whether or not the given type Type is a for-each expression template. In order to qualify as a valid for-each expression template, the given type has to derive (publicly or privately) from the ForEachExpr base class. In case the given type is a valid for-each expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsGeneral |
Compile time check for general matrices.This type trait tests whether or not the given template parameter is a general matrix type (i.e. a matrix type that is neither symmetric, Hermitian, lower triangular or upper triangular at compile time). In case the type is a general matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsHermitian |
Compile time check for Hermitian matrices.This type trait tests whether or not the given template parameter is an Hermitian matrix type (i.e. a matrix type that is guaranteed to be Hermitian at compile time). In case the type is a Hermitian matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsIdentity |
Compile time check for identity matrices.This type trait tests whether or not the given template parameter is an identity matrix type (i.e. a matrix type that is guaranteed to be an identity matrix at compile time). In case the type is an identity matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsInteger |
Compile time check for integer types.This type trait tests whether or not the given template parameter is an integer type (i.e., either (signed) int or unsigned int, possibly cv-qualified). In case the type is an integer type (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsIntegral |
Compile time check for integral data types.This type trait tests whether or not the given template parameter is an integral data type. In case the type is an integral data type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsInvertible |
Compile time check for data types.This type trait tests whether or not the given template parameter is invertible. The type is considered to be invertible if it is either BLAS compatible (i.e. float , double , complex<float> , or complex<double> ), long double , complex<long double> or any dense matrix type with a BLAS compatible element type. If the given type is invertible, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsLong |
Compile time check for long integer types.This type trait tests whether or not the given template parameter is a long integer type (i.e., either (signed) long or unsigned long, possibly cv-qualified). In case the type is a long integer type (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsLongDouble |
Compile time check for extended precision floating point types.This type trait tests whether or not the given template parameter is of long double type. In case the type is long double (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsLower |
Compile time check for lower triangular matrices.This type trait tests whether or not the given template parameter is a lower triangular matrix type (i.e. a matrix type that is guaranteed to be lower triangular at compile time). This also includes lower unitriangular and strictly lower triangular matrices. In case the type is a lower triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatEvalExpr |
Compile time check whether the given type is a matrix evaluation expression template.This type trait class tests whether or not the given type Type is a matrix evaluation expression template. In order to qualify as a valid matrix evaluation expression template, the given type has to derive (publicly or privately) from the MatEvalExpr base class. In case the given type is a valid matrix evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatForEachExpr |
Compile time check whether the given type is a matrix for-each expression template.This type trait class tests whether or not the given type Type is a matrix for-each expression template. In order to qualify as a valid matrix for-each expression template, the given type has to derive (publicly or privately) from the MatForEachExpr base class. In case the given type is a valid matrix for-each expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatInvExpr |
Compile time check whether the given type is a matrix inversion expression template.This type trait class tests whether or not the given type Type is a matrix inversion expression template. In order to qualify as a valid matrix inversion expression template, the given type has to derive (publicly or privately) from the MatInvExpr base class. In case the given type is a valid matrix inversion expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatMatAddExpr |
Compile time check whether the given type is a matrix/matrix addition expression template.This type trait class tests whether or not the given type Type is a matrix/matrix addition expression template. In order to qualify as a valid matrix addition expression template, the given type has to derive (publicly or privately) from the MatMatAddExpr base class. In case the given type is a valid matrix addition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatMatMultExpr |
Compile time check whether the given type is a matrix/matrix multiplication expression template.This type trait class tests whether or not the given type Type is a matrix/matrix multiplication expression template. In order to qualify as a valid matrix multiplication expression template, the given type has to derive (publicly or privately) from the MatMatMultExpr base class. In case the given type is a valid matrix multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatMatSubExpr |
Compile time check whether the given type is a matrix/matrix subtraction expression template.This type trait class tests whether or not the given type Type is a matrix/matrix subtraction expression template. In order to qualify as a valid matrix subtraction expression template, the given type has to derive (publicly or privately) from the MatMatSubExpr base class. In case the given type is a valid matrix subtraction expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatrix |
Compile time check for matrix types.This type trait tests whether or not the given template parameter is a N-dimensional dense or sparse matrix type. In case the type is a matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatScalarDivExpr |
Compile time check whether the given type is a matrix/scalar division expression template.This type trait class tests whether or not the given type Type is a matrix/scalar division expression template. In order to qualify as a valid matrix/scalar division expression template, the given type has to derive (publicly or privately) from the MatScalarDivExpr base class. In case the given type is a valid matrix/scalar division expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatScalarMultExpr |
Compile time check whether the given type is a matrix/scalar multiplication expression template.This type trait class tests whether or not the given type Type is a matrix/scalar multiplication expression template. In order to qualify as a valid matrix/scalar multiplication expression template, the given type has to derive (publicly or privately) from the MatScalarMultExpr base class. In case the given type is a valid matrix/scalar multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatSerialExpr |
Compile time check whether the given type is a matrix serial evaluation expression template.This type trait class tests whether or not the given type Type is a matrix serial evaluation expression template. In order to qualify as a valid matrix serial evaluation expression template, the given type has to derive (publicly or privately) from the MatSerialExpr base class. In case the given type is a valid matrix serial evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatTransExpr |
Compile time check whether the given type is a matrix transposition expression template.This type trait class tests whether or not the given type Type is a matrix transposition expression template. In order to qualify as a valid matrix transposition expression template, the given type has to derive (publicly or privately) from the MatTransExpr base class. In case the given type is a valid matrix transposition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMatVecMultExpr |
Compile time check whether the given type is a matrix/vector multiplication expression template.This type trait class tests whether or not the given type Type is a matrix/vector multiplication expression template. In order to qualify as a valid matrix/vector multiplication expression template, the given type has to derive (publicly or privately) from the MatVecMultExpr base class. In case the given type is a valid matrix/vector multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMoveAssignable |
Compile time type check.The IsMoveAssignable type trait tests whether the expression. More... | |
struct | IsMoveConstructible |
Compile time type check.The IsMoveConstructible type trait tests whether the expression. More... | |
struct | IsMultExpr |
Compile time check whether the given type is a multiplication expression template.This type trait class tests whether or not the given type Type is a multiplication expression template (i.e. an expression representing an element-wise vector multiplication, a matrix/vector multiplication, a vector/matrix multiplication, or a matrix multiplication). In order to qualify as a valid multiplication expression template, the given type has to derive (publicly or privately) from the MultExpr base class. In case the given type is a valid multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsMultipleOf |
Compile time check for a multiplicative relationship of two integral values.This value trait tests whether the first given integral value M is a multiple of the second integral value N (i.e. if ![]() ![]() | |
struct | IsNothrowAssignable |
Compile time type check.The IsNothrowAssignable type trait tests whether the expression. More... | |
struct | IsNothrowConstructible |
Compile time type check.The IsNothrowConstructible type trait tests whether the expression. More... | |
struct | IsNothrowCopyAssignable |
Compile time type check.The IsNothrowCopyAssignable type trait tests whether the expression. More... | |
struct | IsNothrowCopyConstructible |
Compile time type check.The IsNothrowCopyConstructible type trait tests whether the expression. More... | |
struct | IsNothrowDefaultConstructible |
Compile time type check.The IsDefaultConstructible type trait tests whether the expression. More... | |
struct | IsNothrowDestructible |
Compile time type check.The IsDestructible type trait tests whether the expression. More... | |
struct | IsNothrowMoveAssignable |
Compile time type check.The IsNothrowMoveAssignable type trait tests whether the expression. More... | |
struct | IsNothrowMoveConstructible |
Compile time type check.The IsNothrowMoveConstructible type trait tests whether the expression. More... | |
struct | IsNumeric |
Compile time check for numeric types.This type trait tests whether or not the given template parameter is a numeric data type. Blaze considers all integral (except bool), floating point, and complex data types as numeric data types. In case the type is a numeric type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsNumericMatrix |
Compile time check for numeric matrix types.This type trait tests whether or not the given template parameter is a numeric matrix type, i.e. a matrix with numeric element type. In case the type is a numeric matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsNumericVector |
Compile time check for numeric vector types.This type trait tests whether or not the given template parameter is a numeric vector type, i.e. a vector with numeric element type. In case the type is a numeric vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsObject |
Compile time type check.This class tests whether the given template parameter T is an object type. All types are considered object types except references, void, and function types. If T is an object type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsOdd |
Compile time check whether a compile time constant expression is odd.This value trait tests whether the given integral value N is an odd value. In case the value is odd, the value member enumeration is set to 1, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to 0, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsOpposedView |
Compile time check for resizable data types.This type trait tests whether the given data type is an opposed view, i.e. a view that is opposed to the natural storage order of its underlying type. In case the data type is an opposed view, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsPadded |
Compile time check for data types with padding.This type trait tests whether the given data type employs or simulates padding such that no special treatment of remainder elements is necessary for vectorized operations on the type. In case the data type is padded, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsPod |
Compile time check for pod data types.This type trait tests whether or not the given template parameter is a POD (Plain Old Data). In case the type is a POD, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsPointer |
Compile time type check.This class tests whether the given template parameter is a pointer type (including function pointers, but excluding pointers to members) or not. If it is a pointer type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsPowerOf |
Compile time check for a power relationship of integral values to a given base.This value trait tests whether the given integral value N is a power of the base B according to the equation ![]() ![]() | |
struct | IsProxy |
Compile time check for proxy types.This type trait tests whether or not the given template parameter is a proxy type (i.e. derived from the blaze::Proxy class template). In case the type is a proxy, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsReference |
Compile time type check.This class tests whether the given template parameter T is a reference type (including references to functions). If it is a reference type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsResizable |
Compile time check for resizable data types.This type trait tests whether the given data type is a resizable data type. In case the data type can be resized (via the resize() function), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsRestricted |
Compile time check for data types with restricted data access.This type trait tests whether the given data type has a restricted data access. Examples are the LowerMatrix and UpperMatrix adaptors that don't allow write access to the elements in the upper or lower part of the matrix, respectively. In case the data type has a restricted data access, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. Examples: More... | |
struct | IsRow |
Compile time check for rows.This type trait tests whether or not the given template parameter is a row (i.e. dense or sparse row). In case the type is a row, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsRowMajorMatrix |
Compile time check for row-major matrix types.This type trait tests whether or not the given template argument is a row-major dense or sparse matrix type (i.e., a matrix whose storage order is set to true). In case the type is a row-major matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsRowVector |
Compile time check for row vector types.This type trait tests whether or not the given template argument is a row dense or sparse vector type (i.e. a vector whose transposition flag is set to blaze::rowVector). In case the type is a row vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSame |
Type relationship analysis.This class tests if the two data types A and B are equal. For this type comparison, the cv-qualifiers of both data types are ignored. If A and B are the same data type (ignoring the cv-qualifiers), then the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSerialExpr |
Compile time check whether the given type is a serial evaluation expression template.This type trait class tests whether or not the given type Type is a serial evaluation expression template. In order to qualify as a valid serial evaluation expression template, the given type has to derive (publicly or privately) from the SerialExpr base class. In case the given type is a valid serial evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsShort |
Compile time check for short integer types.This type trait tests whether or not the given template parameter is a short integer type (i.e., either (signed) short or unsigned short, possibly cv-qualified). In case the type is a short integer type (ignoring the cv-qualifiers), the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSigned |
Compile time check for signed data types.This type trait tests whether or not the given template parameter is a signed integral or a floating point data type. In case the type is a signed (possibly cv-qualified) data type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSIMDEnabled |
Compile time check for data types.This type trait tests whether or not the given data type T is a SIMD-enabled data type (i.e. provides the according SIMD-related member functions, such as load() , store(), etc). If the type is SIMD-enabled, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSIMDPack |
Compile time check for SIMD data types.This type trait tests whether the given data type is a Blaze SIMD packed data type. The following types are considered valid SIMD packed types: More... | |
struct | IsSMPAssignable |
Compile time check for data types.This type trait tests whether or not the given template parameter is an SMP-assignable data type (i.e. if it is a data type that can possibly and efficiently be assigned by several threads). In this context, built-in data types as well as complex numbers are non-SMP-assignable, whereas several vector and matrix types (as for instance DynamicVector and DynamicMatrix) can be SMP-assignable. If the type is SMP-assignable, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSparseElement |
Compile time check whether the given type is a sparse element type.This type trait class tests whether or not the given type Type is a Blaze sparse element type, i.e. if the type implements the sparse element concept by providing a value() and an index() member function. In order to qualify as a valid sparse element type, the given type has to derive (publicly or privately) from the SparseElement base class. In case the given type is a valid sparse element, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSparseMatrix |
Compile time check for sparse matrix types.This type trait tests whether or not the given template parameter is a sparse, N-dimensional matrix type. In case the type is a sparse matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSparseVector |
Compile time check for sparse vector types.This type trait tests whether or not the given template parameter is a sparse, N-dimensional vector type. In case the type is a sparse vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSquare |
Compile time check for square matrices.This type trait tests whether or not the given template parameter is a square matrix type (i.e. a matrix type that is guaranteed to be square at compile time). In case the type is a square matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsStrictlyLower |
Compile time check for strictly lower triangular matrices.This type trait tests whether or not the given template parameter is a strictly lower triangular matrix type (i.e. a matrix type that is guaranteed to be strictly lower triangular at compile time). In case the type is a strictly lower triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsStrictlySame |
Compile time type relationship analysis.This class tests if the two data types A and B are equal. For this type comparison, the cv-qualifiers of both data types are not ignored. If A and B are the same data type, then the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsStrictlyTriangular |
Compile time check for strictly triangular matrix types.This type trait tests whether or not the given template parameter is a strictly lower or upper triangular matrix type. In case the type is a triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsStrictlyUpper |
Compile time check for strictly upper triangular matrices.This type trait tests whether or not the given template parameter is a strictly upper triangular matrix type (i.e. a matrix type that is guaranteed to be strictly upper triangular at compile time). In case the type is a strictly upper triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSubExpr |
Compile time check whether the given type is a subtraction expression template.This type trait class tests whether or not the given type Type is a subtraction expression template (i.e. an expression representing a vector subtraction or a matrix subtraction). In order to qualify as a valid subtraction expression template, the given type has to derive (publicly or privately) from the SubExpr base class. In case the given type is a valid subtraction expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSubmatrix |
Compile time check for submatrices.This type trait tests whether or not the given template parameter is a submatrix (i.e. dense or sparse submatrix). In case the type is a submatrix, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSubvector |
Compile time check for subvectors.This type trait tests whether or not the given template parameter is a subvector (i.e. dense or sparse subvector). In case the type is a subvector, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsSymmetric |
Compile time check for symmetric matrices.This type trait tests whether or not the given template parameter is a symmetric matrix type (i.e. a matrix type that is guaranteed to be symmetric at compile time). In case the type is a symmetric matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsTemporary |
Compile time check whether the given type is a temporary vector or matrix type.This type trait class tests whether the given type is a temporary vector or matrix type, i.e. can be used for a temporary vector or matrix. In case the given type can be used as temporary, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsTransExpr |
Compile time check whether the given type is a transposition expression template.This type trait class tests whether or not the given type Type is a transposition expression template (i.e. an expression representing a vector transposition or a matrix transposition). In order to qualify as a valid transposition expression template, the given type has to derive (publicly or privately) from the TransExpr base class. In case the given type is a valid transposition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsTriangular |
Compile time check for triangular matrix types.This type trait tests whether or not the given template parameter is a lower or upper triangular matrix type. In case the type is a triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsTVecMatMultExpr |
Compile time check whether the given type is a vector/matrix multiplication expression template.This type trait class tests whether or not the given type Type is a vector/matrix multiplication expression template. In order to qualify as a valid vector/matrix multiplication expression template, the given type has to derive (publicly or privately) from the TVecMatMultExpr base class. In case the given type is a valid vector/matrix multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUniLower |
Compile time check for lower unitriangular matrices.This type trait tests whether or not the given template parameter is a lower unitriangular matrix type (i.e. a matrix type that is guaranteed to be lower unitriangular at compile time). In case the type is a lower unitriangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUnion |
Compile time check for union data types.This type trait tests whether or not the given template parameter is a union data type. In case the type is a union, the value member constant is set o true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUniTriangular |
Compile time check for unitriangular matrix types.This type trait tests whether or not the given template parameter is a lower or upper unitriangular matrix type. In case the type is an unitriangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise yes is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUniUpper |
Compile time check for upper unitriangular matrices.This type trait tests whether or not the given template parameter is an upper unitriangular matrix type (i.e. a matrix type that is guaranteed to be upper unitriangular at compile time). In case the type is an upper unitriangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUnsigned |
Compile time check for unsigned data types.This type trait tests whether or not the given template parameter is an unsigned, integral data type. In case the type is an unsigned (possibly cv-qualified) data type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsUpper |
Compile time check for upper triangular matrices.This type trait tests whether or not the given template parameter is an upper triangular matrix type (i.e. a matrix type that is guaranteed to be upper triangular at compile time). This also includes upper unitriangular and strictly upper triangular matrices. In case the type is an upper triangular matrix type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsValid |
Compile time type check.This class tests whether the given template parameter is a valid or invalid data type (i.e. if the type is the INVALID_TYPE). If T is not the INVALID_TYPE class type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecEvalExpr |
Compile time check whether the given type is a vector evaluation expression template.This type trait class tests whether or not the given type Type is a vector evaluation expression template. In order to qualify as a valid vector evaluation expression template, the given type has to derive (publicly or privately) from the VecEvalExpr base class. In case the given type is a valid vector evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecForEachExpr |
Compile time check whether the given type is a vector for-each expression template.This type trait class tests whether or not the given type Type is a vector for-each expression template. In order to qualify as a valid vector for-each expression template, the given type has to derive (publicly or privately) from the VecForEachExpr base class. In case the given type is a valid vector for-each expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecScalarDivExpr |
Compile time check whether the given type is a vector/scalar division expression template.This type trait class tests whether or not the given type Type is a vector/scalar division expression template. In order to qualify as a valid vector/scalar division expression template, the given type has to derive (publicly or privately) from the VecScalarDivExpr base class. In case the given type is a valid vector/scalar division expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecScalarMultExpr |
Compile time check whether the given type is a vector/scalar multiplication expression template.This type trait class tests whether or not the given type Type is a vector/scalar multiplication expression template. In order to qualify as a valid vector/scalar multiplication expression template, the given type has to derive (publicly or privately) from the VecScalarMultExpr base class. In case the given type is a valid vector/scalar multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecSerialExpr |
Compile time check whether the given type is a vector serial evaluation expression template.This type trait class tests whether or not the given type Type is a vector serial evaluation expression template. In order to qualify as a valid vector serial evaluation expression template, the given type has to derive (publicly or privately) from the VecSerialExpr base class. In case the given type is a valid vector serial evaluation expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVector |
Compile time check for vector types.This type trait tests whether or not the given template parameter is a N-dimensional dense or sparse vector type. In case the type is a vector type, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVectorizable |
Compile time check for vectorizable types.Depending on the available instruction set (SSE, SSE2, SSE3, SSE4, AVX, AVX2, MIC, ...), this type trait tests whether or not the given template parameter is a vectorizable type, i.e. a type for which intrinsic vector operations and optimizations can be used. Currently, all built-in data types except bool and the according complex numbers are considered to be vectorizable types. In case the type is vectorizable, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecTransExpr |
Compile time check whether the given type is a vector transposition expression template.This type trait class tests whether or not the given type Type is a vector transposition expression template. In order to qualify as a valid vector transposition expression template, the given type has to derive (publicly or privately) from the VecTransExpr base class. In case the given type is a valid vector transposition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecTVecMultExpr |
Compile time check whether the given type is an outer product expression template.This type trait class tests whether or not the given type Type is an outer product expression template (i.e. an expression representing the multiplication between a column vector and a row vector). In order to qualify as a valid outer product expression template, the given type has to derive (publicly or privately) from the VecTVecMultExpr base class. In case the given type is a valid outer product expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecVecAddExpr |
Compile time check whether the given type is a vector/vector addition expression template.This type trait class tests whether or not the given type Type is a vector/vector addition expression template. In order to qualify as a valid vector addition expression template, the given type has to derive (publicly or privately) from the VecVecAddExpr base class. In case the given type is a valid vector addition expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecVecDivExpr |
Compile time check whether the given type is a vector/vector division expression template.This type trait class tests whether or not the given type Type is a vector/vector division expression template. In order to qualify as a valid vector division expression template, the given type has to derive (publicly or privately) from the VecVecDivExpr base class. In case the given type is a valid vector division expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecVecMultExpr |
Compile time check whether the given type is a vector/vector multiplication expression template.This type trait class tests whether or not the given type Type is a vector/vector multiplication expression template. In order to qualify as a valid vector multiplication expression template, the given type has to derive (publicly or privately) from the VecVecMultExpr base class. In case the given type is a valid vector multiplication expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVecVecSubExpr |
Compile time check whether the given type is a vector/vector subtraction expression template.This type trait class tests whether or not the given type Type is a vector/vector subtraction expression template. In order to qualify as a valid vector subtraction expression template, the given type has to derive (publicly or privately) from the VecVecSubExpr base class. In case the given type is a valid vector subtraction expression template, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsView |
Compile time check for views.This type trait tests whether or not the given template parameter is a view (i.e. subvector, submatrix, row, column, ...). In case the type is a view, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVoid |
Compile time check for the void data type.This type trait tests whether or not the given template parameter is of type void (ignoring the cv-qualifiers). In case the type is of type void, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
struct | IsVolatile |
Compile time check for volatile data types.The IsVolatile type trait tests whether or not the given template parameter is a (top level) volatile-qualified data type. In case the given data type is volatile, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
class | Length |
Calculating the length of a type list.The Length class can be used to obtain the length of a type list (i.e. the number of contained types). In order to obtain the length of a type list, the Length class has to be instantiated for a particular type list. The length of the type list can be obtained using the member enumeration value. The following example gives an impression of the use of the Length class: More... | |
struct | Less |
Compile time type comparison.The Less class template compares the two given types using the less-than operator ('<'). In case T1::value is less than T2::value, the nested value member is set to 1. Otherwise it is set to 0. More... | |
struct | Limits |
Numerical limits of built-in data types.The Limits class provides numerical limits for the following built-in data types: More... | |
struct | LinearGrowth |
Linear growth policy class.The LinearGrowth policy class implements a linear growth strategy. It can be customized for any purpose: the Growth template argument specifies the factor of the size growth. More... | |
struct | Log |
Generic wrapper for the log() function. More... | |
struct | Log10 |
Generic wrapper for the log10() function. More... | |
struct | Long |
Compile time integral constant wrapper for long.The Long class template represents an integral wrapper for a compile time constant expression of type long. The value of an Long can be accessed via the nested value (which is guaranteed to be of type long), the type can be accessed via the nested type definition ValueType. More... | |
class | LowerMatrix |
Matrix adapter for lower triangular ![]() | |
class | LowerProxy |
Access proxy for lower triangular matrices.The LowerProxy provides controlled access to the elements of a non-const lower triangular matrix. It guarantees that the lower matrix invariant is not violated, i.e. that elements in the upper part of the matrix remain default values. The following example illustrates this by means of a ![]() | |
struct | MakeSigned |
Compile time type conversion into a signed integral type.This type trait provides the feature to convert the given integral or constant type T to the corresponding signed integral data type with the same size and with the same cv-qualifiers. Note that in case T is bool or a non-integral data type, a compilation error is created. More... | |
struct | MakeUnsigned |
Compile time type conversion into an unsigned integral type.This type trait provides the feature to convert the given integral or constant type T to the corresponding unsigned integral data type with the same size and with the same cv-qualifiers. Note that in case T is bool or a non-integral data type, a compilation error is created. More... | |
struct | MatEvalExpr |
Base class for all matrix evaluation expression templates.The MatEvalExpr class serves as a tag for all expression templates that implement a matrix evaluation operation. All classes, that represent a matrix evaluation operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix evaluation expression template. Only in case a class is derived from the MatEvalExpr base class, the IsMatEvalExpr type trait recognizes the class as valid matrix evaluation expression template. More... | |
struct | MatForEachExpr |
Base class for all matrix for-each expression templates.The MatForEachExpr class serves as a tag for all expression templates that represent a unary, custom operation on a matrix. All classes, that represent a matrix custom operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix for-each expression template. Only in case a class is derived from the MatForEachExpr base class, the IsMatForEachExpr type trait recognizes the class as valid matrix for-each expression template. More... | |
struct | MathTrait |
Base template for the MathTrait class. More... | |
struct | MatInvExpr |
Base class for all matrix inversion expression templates.The MatInvExpr class serves as a tag for all expression templates that implement a matrix inversion operation. All classes, that represent a matrix inversion operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix inversion expression template. Only in case a class is derived from the MatInvExpr base class, the IsMatInvExpr type trait recognizes the class as valid matrix inversion expression template. More... | |
struct | MatMatAddExpr |
Base class for all matrix/matrix addition expression templates.The MatMatAddExpr class serves as a tag for all expression templates that implement a matrix/matrix addition. All classes, that represent a matrix addition and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix addition expression template. Only in case a class is derived from the MatMatAddExpr base class, the IsMatMatAddExpr type trait recognizes the class as valid matrix addition expression template. More... | |
struct | MatMatMultExpr |
Base class for all matrix/matrix multiplication expression templates.The MatMatMultExpr class serves as a tag for all expression templates that implement a matrix/matrix multiplication. All classes, that represent a matrix multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix multiplication expression template. Only in case a class is derived from the MatMatMultExpr base class, the IsMatMatMultExpr type trait recognizes the class as valid matrix multiplication expression template. More... | |
struct | MatMatSubExpr |
Base class for all matrix/matrix subtraction expression templates.The MatMatSubExpr class serves as a tag for all expression templates that implement a matrix/matrix subtraction. All classes, that represent a matrix subtraction and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix subtraction expression template. Only in case a class is derived from the MatMatSubExpr base class, the IsMatMatSubExpr type trait recognizes the class as valid matrix subtraction expression template. More... | |
struct | Matrix |
Base class for matrices.The Matrix class is a base class for all dense and sparse matrix classes within the Blaze library. It provides an abstraction from the actual type of the matrix, but enables a conversion back to this type via the 'Curiously Recurring Template Pattern' (CRTP). More... | |
class | MatrixAccessProxy |
Access proxy for sparse, ![]() The proxied access to the elements of a sparse matrix is necessary since it may be possible that several insertion operations happen in the same statement. The following code illustrates this with two examples by means of the CompressedMatrix class: More... | |
class | MatrixSerializer |
Serializer for dense and sparse matrices.The MatrixSerializer implements the necessary logic to serialize dense and sparse matrices, i.e. to convert them into a portable, binary representation. The following example demonstrates the (de-)serialization process of matrices: More... | |
struct | MatScalarDivExpr |
Base class for all matrix/scalar divsion expression templates.The MatScalarDivExpr class serves as a tag for all expression templates that implement a matrix/scalar divsion. All classes, that represent a matrix/scalar divsion and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix/scalar divsion expression template. Only in case a class is derived from the MatScalarDivExpr base class, the IsMatScalarDivExpr type trait recognizes the class as valid matrix/scalar divsion expression template. More... | |
struct | MatScalarMultExpr |
Base class for all matrix/scalar multiplication expression templates.The MatScalarMultExpr class serves as a tag for all expression templates that implement a matrix/scalar multiplication. All classes, that represent a matrix/scalar multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix/scalar multiplication expression template. Only in case a class is derived from the MatScalarMultExpr base class, the IsMatScalarMultExpr type trait recognizes the class as valid matrix/scalar multiplication expression template. More... | |
struct | MatSerialExpr |
Base class for all matrix serial evaluation expression templates.The MatSerialExpr class serves as a tag for all expression templates that enforce a serial evaluation of a matrix. All classes, that represent a matrix serialization operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix serial evaluation expression template. Only in case a class is derived from the MatSerialExpr base class, the IsMatSerialExpr type trait recognizes the class as valid matrix serial evaluation expression template. More... | |
struct | MatTransExpr |
Base class for all matrix transposition expression templates.The MatTransExpr class serves as a tag for all expression templates that implement a matrix transposition operation. All classes, that represent a matrix transposition operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix transposition expression template. Only in case a class is derived from the MatTransExpr base class, the IsMatTransExpr type trait recognizes the class as valid matrix transposition expression template. More... | |
struct | MatVecMultExpr |
Base class for all matrix/vector multiplication expression templates.The MatVecMultExpr class serves as a tag for all expression templates that implement a matrix/vector multiplication. All classes, that represent a matrix/vector multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as matrix/vector multiplication expression template. Only in case a class is derived from the MatVecMultExpr base class, the IsMatVecMultExpr type trait recognizes the class as valid matrix/vector multiplication expression template. More... | |
struct | Max |
Compile time value evaluation.The Max class template selects the larger of the two given template arguments T1 and T2. In order for Max to be able to determine the larger type, both arguments are required to have a nested member value. In case T1::value is larger than T2::value, the nested type definition Type is set to T1, otherwise it is set to T2. More... | |
class | MemoryPool |
Memory pool for small objects.The memory pool efficiently improves the performance of dynamic memory allocations for small objects. By allocating a large block of memory that can be dynamically assigned to small objects, the memory allocation is reduced from a few hundred cycles to only a few cycles. The memory pool is build from memory blocks of type Block, which hold the memory for a specified number of objects. The memory of these blocks is managed as a single free list. More... | |
struct | Min |
Compile time value evaluation.The Min class template selects the smaller of the two given template arguments T1 and T2. In order for Min to be able to determine the smaller type, both arguments are required to have a nested member value. In case T1::value is smaller than T2::value, the nested type definition Type is set to T1, otherwise it is set to T2. More... | |
struct | Minus |
Compile time integral subtraction.The Minus class template returns the difference of the two given template arguments T1 and T2. In order for Minus to be able to subtract the two types, both arguments are required to have a nested member value. The result of the subtraction can be accessed via the nested member value, the resulting type is available via the nested type ValueType. More... | |
struct | Modulus |
Compile time integral modulus operation.The Modulus class template returns the result of a modulus operation between the two given template arguments T1 and T2. In order for Modulus to be able to perform the operation with the given two types, both arguments are required to have a nested member value. The result of the modulus operation can be accessed via the nested member value, the resulting type is available via the nested type ValueType. More... | |
struct | MultExpr |
Base class for all multiplication expression templates.The MultExpr class serves as a tag for all expression templates that implement mathematical multiplications. All classes, that represent a mathematical multiplication (element-wise vector multiplications, matrix/vector multiplications, vector/matrix multiplications and matrix/matrix multiplications) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as multiplication expression template. Only in case a class is derived from the MultExpr base class, the IsMultExpr type trait recognizes the class as valid multiplication expression template. More... | |
struct | MultExprTrait |
Evaluation of the resulting expression type of a multiplication.Via this type trait it is possible to evaluate the return type of a multiplication expression between scalars, vectors, and matrices. Given the two types T1 and T2, which must be either scalar, vector, or matrix types, the nested type Type corresponds to the resulting return type. In case T1 or T2 don't fit or if the two types cannot be multiplied, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | MultTrait |
Base template for the MultTrait class. More... | |
class | NegativeAccuracy |
Negative computation accuracy for floating point data types.The NegativeAccuracy class is a wrapper class around the functionality of the blaze::Limits class. It represents the negative computation accuracy of the Blaze library for any floating point data type. In order to assign a negative accuracy value, the NegativeAccuracy class can be implicitly converted to the three built-in floating point data types float, double and long double. More... | |
class | NegativeEpsilon |
Negative epsilon value for floating point data types.The NegativeEpsilon class is a wrapper class around the functionality of the blaze::Limits class. It represents the negative smallest difference between two values of any floating point data type. In order to assign a negative epsilon value, the Epsilon class can be implicitly converted to the three built-in floating point data types float, double and long double. More... | |
class | NegativeInfinity |
Negative infinity for built-in data types.The NegativeInfinity class is a wrapper class around the functionality of the blaze::Limits class to provide the possibility to assign negative infinity values to built-in data types. As negative infinity value, the largest possible negative value of the corresponding data type is used. In order to assign the negative infinity value, the NegativeInfinity class can be implicitly converted to all signed integral and floating point data types: More... | |
struct | NextMultiple |
Compile time integral round up operation.The NextMultiple class template rounds up the given template argument of type T1 to the next multiple of the given template argument of type T2. In case T1 already represents a multiple of T2, the result is T1. In order for NextMultiple to be able to perform the round up operation, both arguments are required to have a nested member value. The result of the operation can be accessed via the nested member value, the resulting type is available via the nested type ValueType. More... | |
struct | NoDelete |
No-delete policy class. More... | |
class | NonCopyable |
Base class for non-copyable class instances.The NonCopyable class is intended to work as a base class for non-copyable classes. Both the copy constructor and the copy assignment operator are explicitly deleted in order to prohibit copy operations of the derived classes. . More... | |
class | NonCreatable |
Base class for non-creatable (static) classes.The NonCreatable class is intended to work as a base class for non-creatable classes, i.e. classes that cannot be instantiated and exclusively offer static functions/data. Both the standard as well as the copy constructor and the copy assignment operator are declared private and left undefinded in order to prohibit the instantiation of objects of derived classes. . More... | |
class | NonNumericProxy |
Access proxy for symmetric, square matrices with non-numeric element types.The NonNumericProxy provides controlled access to the elements of a non-const symmetric matrix with non-numeric element type (e.g. vectors or matrices). It guarantees that a modification of element ![]() ![]() ![]() | |
struct | Not |
Compile time type negation.The Not class template negates the given compile time condition. In case the given condition would evaluate to true, the nested member enumeration is set to false and vice versa: More... | |
class | NullType |
Utility type for generic codes.The NullType class represents an invalid or terminating data type for generic codes. For instance, the TypeList class uses the NullType as terminating data type for the type list. More... | |
class | NumericProxy |
Access proxy for symmetric, square matrices with numeric element types.The NumericProxy provides controlled access to the elements of a non-const symmetric matrix with numeric element type (e.g. integral values, floating point values, and complex values). It guarantees that a modification of element ![]() ![]() ![]() | |
struct | OptimalGrowth |
Optimal growth policy class.The OptimalGrowth policy class implements the optimal growth strategy suggested by Andrew Koenig for the std::vector class (see Andrew Koenig's column in the September 1998 issue of JOOP (Journal of Object-Oriented Programming), or the Dr. Dobb's article 'C++ Made Easier: How Vectors Grow', 2001). It applies an exponential growth strategy using a factor of 1.5 and additionally ensures that the sizes returns are always multiples of four. More... | |
struct | Or |
Compile time logical or evaluation.The Or class template performs at compile time a logical or ('&&') evaluation of at least two compile time conditions: More... | |
class | ParallelSection |
Section for the debugging of the shared-memory parallelization.The ParallelSection class is an auxiliary helper class for the BLAZE_PARALLEL_SECTION macro. It provides the functionality to detected whether a parallel section has been started and with that serves as a utility for debugging the shared-memory parallelization. More... | |
struct | Plus |
Compile time integral addition.The Plus class template returns the sum of the two given template arguments T1 and T2. In order for Plus to be able to add the two types, both arguments are required to have a nested member value. The result of the addition can be accessed via the nested member value, the resulting type is available via the nested type ValueType. More... | |
struct | Pow |
Generic wrapper for the pow() function. More... | |
class | Proxy |
Proxy base class.The Proxy class is a base class for all proxy classes within the Blaze library that may represent non-numeric data types (vectors, matrices, ...). It augments the interface of the deriving proxy class depending on the data type represented by the proxy. In addition, it provides an abstraction from the actual type of the proxy, but enables a type-safe conversion back to this type via the 'Curiously Recurring Template Pattern' (CRTP). More... | |
struct | PtrDelete |
Pointer-delete policy class.The PtrDelete policy functor class applies a delete operation to the given argument. Note that the delete operation is NOT permitted for inclomplete types (i.e. declared but undefined data types). The attempt to apply a PtrDelete functor to a pointer to an object of incomplete type results in a compile time error! More... | |
class | ptrdiff_t |
Pointer difference type of the Blaze library. More... | |
class | PtrIterator |
Implementation of an iterator for pointer vectors.The PtrIterator class follows the example of the random-access iterator classes of the STL. However, the focus of this iterator implementation is the use with (polymorphic) pointers. The implementation of the Blaze library eases the use of iterators over a range of pointers and improves the semantics on these pointers. . More... | |
class | PtrVector |
Implementation of a vector for (polymorphic) pointers. More... | |
class | Rand |
Default implementation of the Rand class for integral data types.This default implementation of the Rand class creates random, integral numbers in the range ![]() | |
class | Random |
Random number generator.The Random class encapsulates the initialization of the given random number generator with a pseudo-random seed obtained by the std::time() function. Currently, the mersenne-twister mt19937 as provided by the C++ standard library is used per default. For more information see the for instance the following documentation of the random number functionality of the C++11 standard library: More... | |
struct | Rank |
Compile time check for array ranks.This type trait determines the rank of the given template argument. In case the given type is an array type, the nested value member constant is set to the number of dimensions of T. Otherwise value is set to 0. More... | |
struct | Real |
Generic wrapper for the real() function. More... | |
struct | RealTrait |
Base template for the RealTrait class.The RealTrait class template offers the possibility to select the resulting data type of a generic real operation on the given type T. Given the type T, which must either be a scalar, vector, or matrix type, the nested type Type corresponds to the resulting data type of the operation. In case the type of T doesn't fit or if no real operation exists for the type, the resulting data type Type is set to INVALID_TYPE. Note that const and volatile qualifiers and reference modifiers are generally ignored. More... | |
struct | Rebind |
Rebind mechanism to obtain a CompressedMatrix with different data/element type. More... | |
struct | RemoveAdaptor |
Removal of top level adaptor types.In case the given type is an adaptor type (SymmetricMatrix, LowerMatrix, UpperMatrix, ...), the RemoveAdaptor type trait removes the adaptor and extracts the contained general matrix type. Else the given type is returned as is. Note that cv-qualifiers are preserved. More... | |
struct | RemoveAllExtents |
Removal of all array extents.The RemoveAllExtents type trait removes all array extents from the given type T. More... | |
struct | RemoveConst |
Removal of const-qualifiers.The RemoveConst type trait removes all top level 'const' qualifiers from the given type T. More... | |
struct | RemoveCV |
Removal of top level cv-qualifiers.The RemoveCV type trait removes all top level cv-qualifiers from the given type T. More... | |
struct | RemoveExtent |
Removal of the top level array extent.The RemoveExtent type trait removes the top level array extent from the given type T. More... | |
struct | RemovePointer |
Removal of pointer modifiers.The RemovePointer type trait removes any pointer modifiers from the given type T. More... | |
struct | RemoveReference |
Removal of reference modifiers.The RemoveReference type trait removes any reference modifiers from the given type T. More... | |
struct | RemoveVolatile |
Removal of volatile-qualifiers.The RemoveVolatile type trait removes all top level 'volatile' qualifiers from the given type T. More... | |
struct | RequiresEvaluation |
Compile time check to query the requirement to evaluate an expression.Via this type trait it is possible to determine whether a given vector or matrix expression type requires an intermediate evaluation in the context of a compound expression. In case the given type requires an evaluation, the value member constant is set to true, the nested type definition Type is TrueType, and the class derives from TrueType. Otherwise value is set to false, Type is FalseType, and the class derives from FalseType. More... | |
class | Row |
Reference to a specific row of a dense or sparse matrix.The Row template represents a reference to a specific row of a dense or sparse matrix primitive. The type of the matrix is specified via the first template parameter: More... | |
struct | RowExprTrait |
Evaluation of the expression type type of a row operation.Via this type trait it is possible to evaluate the return type of a row operation. Given the dense or sparse matrix type MT, the nested type Type corresponds to the resulting return type. In case the given type is neither a dense nor a sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | Rows |
Compile time evaluation of the number of rows of a matrix.The Rows type trait evaluates the number of rows of the given matrix type at compile time. In case the given type T is a matrix type with a fixed number of rows (e.g. StaticMatrix), the value member constant is set to the according number of rows. In all other cases, value is set to 0. More... | |
struct | RowTrait |
Base template for the RowTrait class. More... | |
struct | Serial |
Generic wrapper for the Serial() function. More... | |
struct | SerialExpr |
Base class for all serial evaluation expression templates.The SerialExpr class serves as a tag for all expression templates that enforce a serial evaluation. All classes, that represent a serialization operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as serial evaluation expression template. Only in case a class is derived from the SerialExpr base class, the IsSerialExpr type trait recognizes the class as valid serial evaluation expression template. More... | |
struct | SerialExprTrait |
Evaluation of the return type of a serial evaluation expression.Via this type trait it is possible to evaluate the return type of a serial evaluation expression. Given the type T, which must either be a vector or matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no serial evaluation operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SerialSection |
Section to enforce the serial execution of operations.The SerialSection class is an auxiliary helper class for the BLAZE_SERIAL_SECTION macro. It provides the functionality to detect whether a serial section is active, i.e. if the currently executed code is inside a serial section. More... | |
class | SharedValue |
Value shared among several positions within a symmetric matrix.The SharedValue class template represents a single value of a symmetric matrix that is shared among several positions within the symmetric matrix. Changes to the value of one position are therefore applied to all positions sharing the same value. More... | |
class | SIMDcdouble |
SIMD type for 64-bit double precision complex values. More... | |
class | SIMDcfloat |
SIMD type for 32-bit single precision complex values. More... | |
class | SIMDcint16 |
SIMD type for 16-bit signed integral complex values. More... | |
class | SIMDcint32 |
SIMD type for 32-bit signed integral complex values. More... | |
class | SIMDcint64 |
SIMD type for 64-bit signed integral complex values. More... | |
class | SIMDcint8 |
SIMD type for 8-bit signed integral complex values. More... | |
class | SIMDcuint16 |
SIMD type for 16-bit unsigned integral complex values. More... | |
class | SIMDcuint32 |
SIMD type for 32-bit unsigned integral complex values. More... | |
class | SIMDcuint64 |
SIMD type for 64-bit unsigned integral complex values. More... | |
class | SIMDcuint8 |
SIMD type for 8-bit unsigned integral complex values. More... | |
class | SIMDdouble |
SIMD type for 64-bit double precision floating point data values. More... | |
struct | SIMDf32FmaddExpr |
Expression object for 32-bit floating point fused multiply-add operations.The SIMDf32FmaddExpr class represents the compile time expression for 32-bit floating point fused multiply-add operations. More... | |
struct | SIMDf32FmsubExpr |
Expression object for 32-bit floating point fused multiply-subtract operations.The SIMDf32FmsubExpr class represents the compile time expression for 32-bit floating point fused multiply-subtract operations. More... | |
struct | SIMDf32MultExpr |
Expression object for 32-bit floating point multiplication operations.The SIMDf32MultExpr class represents the compile time expression for 32-bit floating point multiplication operations. More... | |
struct | SIMDf64FmaddExpr |
Addition operator for fusing a 32-bit floating point multiplication and addition. More... | |
struct | SIMDf64FmsubExpr |
Expression object for 64-bit floating point fused multiply-subtract operations.The SIMDf64FmsubExpr class represents the compile time expression for 64-bit floating point fused multiply-subtract operations. More... | |
struct | SIMDf64MultExpr |
Expression object for 64-bit floating point multiplication operations.The SIMDf64MultExpr class represents the compile time expression for 64-bit floating point multiplication operations. More... | |
class | SIMDfloat |
SIMD type for 32-bit single precision floating point data values. More... | |
class | SIMDint16 |
SIMD type for 16-bit signed integral data values. More... | |
class | SIMDint32 |
SIMD type for 32-bit signed integral data values. More... | |
class | SIMDint64 |
SIMD type for 64-bit integral data values. More... | |
class | SIMDint8 |
SIMD type for 8-bit signed integral data values. More... | |
struct | SIMDPack |
Base class for all SIMD data types.The SIMDPack class template is a base class for all SIMD data types within the Blaze library. It provides an abstraction from the actual type of the SIMD pack, but enables a conversion back to this type via the 'Curiously Recurring Template Pattern' (CRTP). More... | |
class | SIMDTrait |
SIMD characteristics of data types.The SIMDTrait class template provides the SIMD characteristics of a specific data type: More... | |
class | SIMDuint16 |
SIMD type for 16-bit unsigned integral data values. More... | |
class | SIMDuint32 |
SIMD type for 32-bit unsigned integral data values. More... | |
class | SIMDuint64 |
SIMD type for 64-bit unsigned integral data values. More... | |
class | SIMDuint8 |
SIMD type for 8-bit unsigned integral data values. More... | |
struct | Sin |
Generic wrapper for the sin() function. More... | |
class | Singleton |
Base class for all lifetime managed singletons.The Singleton class represents the base class for all lifetime managed singletons of the Blaze library. Classes, which are supposed to be implemented in terms of the singleton pattern, only have to derive from this class in order to gain all basic characteristics of a singleton: More... | |
struct | Sinh |
Generic wrapper for the sinh() function. More... | |
struct | Size |
Compile time evaluation of the size of a vector.The Size type trait evaluates the size of the given vector type at compile time. In case the given type T is a vector type with a fixed size (e.g. StaticVector), the value member constant is set to the according size. In all other cases, value is set to 0. More... | |
class | size_t |
Size type of the Blaze library. More... | |
struct | SizeT |
Compile time integral constant wrapper for size_t.The SizeT class template represents an integral wrapper for a compile time constant expression of type size_t. The value of an SizeT can be accessed via the nested value (which is guaranteed to be of type size_t), the type can be accessed via the nested type definition ValueType. More... | |
struct | SMatCTransExprTrait |
Evaluation of the expression type of a sparse matrix conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix conjugate transpose operation. Given the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | SMatDMatAddExprTrait |
Evaluation of the expression type of a sparse matrix/dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/dense matrix addition. Given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatDMatMultExpr |
Expression object for sparse matrix-dense matrix multiplications.The SMatDMatMultExpr class represents the compile time expression for multiplications between a row-major sparse matrix and a row-major dense matrix. More... | |
struct | SMatDMatMultExprTrait |
Evaluation of the expression type of a sparse matrix/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/dense matrix multiplication. Given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatDMatSubExpr |
Expression object for sparse matrix-dense matrix subtractions.The SMatDMatSubExpr class represents the compile time expression for subtractions between a sparse matrix and a dense matrix with identical storage order. More... | |
struct | SMatDMatSubExprTrait |
Evaluation of the expression type of a sparse matrix/dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/dense matrix subtraction. Given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatDVecMultExpr |
Expression object for sparse matrix-dense vector multiplications.The SMatDVecMultExpr class represents the compile time expression for multiplications between row-major sparse matrices and dense vectors. More... | |
struct | SMatDVecMultExprTrait |
Evaluation of the expression type of a sparse matrix/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/dense vector multiplication. Given the row-major sparse matrix type MT and the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major sparse matrix type or VT is not a non-transpose dense vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatEvalExpr |
Expression object for the forced evaluation of sparse matrices.The SMatEvalExpr class represents the compile time expression for the forced evaluation of a sparse matrix. More... | |
struct | SMatEvalExprTrait |
Evaluation of the expression type of a sparse matrix evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix evaluation operation. Given the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatForEachExpr |
Expression object for the sparse matrix forEach() function.The SMatForEachExpr class represents the compile time expression for the evaluation of a custom operation on each element of a sparse matrix via the forEach() function. More... | |
struct | SMatForEachExprTrait |
Evaluation of the expression type of a sparse matrix for-each operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix for-each operation. Given the row-major sparse matrix type MT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatScalarDivExpr |
Expression object for sparse matrix-scalar divisions.The SMatScalarMult class represents the compile time expression for divisions between a sparse matrix and a scalar value. More... | |
struct | SMatScalarDivExprTrait |
Evaluation of the expression type of a sparse matrix/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/scalar division. Given the row-major sparse matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major sparse matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatScalarMultExpr |
Expression object for sparse matrix-scalar multiplications.The SMatScalarMult class represents the compile time expression for multiplications between a sparse matrix and a scalar value. More... | |
struct | SMatScalarMultExprTrait |
Evaluation of the expression type of a sparse matrix/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/scalar multiplication. Given the row-major sparse matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major sparse matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatSerialExpr |
Expression object for the forced serial evaluation of sparse matrices.The SMatSerialExpr class represents the compile time expression for the forced serial evaluation of a sparse matrix. More... | |
struct | SMatSerialExprTrait |
Evaluation of the expression type of a sparse matrix serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix serial evaluation operation. Given the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatSMatAddExpr |
Expression object for sparse matrix-sparse matrix additions.The SMatSMatAddExpr class represents the compile time expression for additions between two row-major sparse matrices. More... | |
struct | SMatSMatAddExprTrait |
Evaluation of the expression type of a sparse matrix/sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/sparse matrix addition. Given the two row-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatSMatMultExpr |
Expression object for sparse matrix-sparse matrix multiplications.The SMatSMatMultExpr class represents the compile time expression for multiplications between row-major sparse matrices. More... | |
struct | SMatSMatMultExprTrait |
Evaluation of the expression type of a sparse matrix/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/sparse matrix multiplication. Given the two row-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatSMatSubExpr |
Expression object for sparse matrix-sparse matrix subtractions.The SMatSMatSubExpr class represents the compile time expression for subtractions between sparse matrices. More... | |
struct | SMatSMatSubExprTrait |
Evaluation of the expression type of a sparse matrix/sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/sparse matrix subtraction. Given the two row-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a row-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatSVecMultExpr |
Expression object for sparse matrix-sparse vector multiplications.The SMatSVecMultExpr class represents the compile time expression for multiplications between row-major sparse matrices and sparse vectors. More... | |
struct | SMatSVecMultExprTrait |
Evaluation of the expression type of a sparse matrix/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/sparse vector multiplication. Given the row-major sparse matrix type MT and the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a row-major sparse matrix type or VT is not a non-transpose sparse vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | SMatTDMatAddExprTrait |
Evaluation of the expression type of a sparse matrix/transpose dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose dense matrix addition. Given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatTDMatMultExpr |
Expression object for sparse matrix-transpose dense matrix multiplications.The SMatTDMatMultExpr class represents the compile time expression for multiplications between a row-major sparse matrix and a column-major dense matrix. More... | |
struct | SMatTDMatMultExprTrait |
Evaluation of the expression type of a sparse matrix/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose dense matrix multiplication. Given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatTDMatSubExpr |
Expression object for sparse matrix-transpose dense matrix subtractions.The SMatTDMatSubExpr class represents the compile time expression for subtractions between a row-major sparse matrix and a column-major dense matrix. More... | |
struct | SMatTDMatSubExprTrait |
Evaluation of the expression type of a sparse matrix/transpose dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose dense matrix subtraction. Given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatTransExpr |
Expression object for sparse matrix transpositions.The SMatTransExpr class represents the compile time expression for transpositions of sparse matrices. More... | |
struct | SMatTransExprTrait |
Evaluation of the expression type of a sparse matrix transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix transpose operation. Given the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a row-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | SMatTransposer |
Expression object for the transposition of a sparse matrix.The SMatTransposer class is a wrapper object for the temporary transposition of a sparse matrix. More... | |
class | SMatTSMatAddExpr |
Expression object for sparse matrix-transpose sparse matrix additions.The SMatTSMatAddExpr class represents the compile time expression for additions between a row-major sparse matrix and a column-major sparse matrix. More... | |
struct | SMatTSMatAddExprTrait |
Evaluation of the expression type of a sparse matrix/transpose sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose sparse matrix addition. Given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatTSMatMultExpr |
Expression object for sparse matrix-transpose sparse matrix multiplications.The SMatTSMatMultExpr class represents the compile time expression for multiplications between a row-major and a column-major sparse matrix. More... | |
struct | SMatTSMatMultExprTrait |
Evaluation of the expression type of a sparse matrix/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose sparse matrix multiplication. Given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | SMatTSMatSubExpr |
Expression object for sparse matrix-transpose sparse matrix subtractions.The SMatTSMatSubExpr class represents the compile time expression for subtractions between a row-major sparse matrix and a column-major sparse matrix. More... | |
struct | SMatTSMatSubExprTrait |
Evaluation of the expression type of a sparse matrix/transpose sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix/transpose sparse matrix subtraction. Given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a row-major sparse matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | SparseElement |
Base class for all sparse element types.The SparseElement class is the base class for all sparse element types. All types that conceptually represent a sparse vector or matrix element and that provide a value() and an index() member function have to derive from this class in order to qualify as sparse element. Only in case a class is derived from the SparseElement base class, the IsSparseElement type trait recognizes the class as valid sparse element. More... | |
struct | SparseMatrix |
Base class for sparse matrices.The SparseMatrix class is a base class for all sparse matrix classes. It provides an abstraction from the actual type of the sparse matrix, but enables a conversion back to this type via the Matrix base class. More... | |
class | SparseMatrixProxy |
Proxy backend for sparse matrix types.The SparseMatrixProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a sparse matrix and augments the Proxy interface by the complete interface required of sparse matrices. More... | |
struct | SparseVector |
Base class for sparse vectors.The SparseVector class is a base class for all arbitrarily sized (N-dimensional) sparse vectors. It provides an abstraction from the actual type of the sparse vector, but enables a conversion back to this type via the Vector base class. More... | |
class | SparseVectorProxy |
Proxy backend for sparse vector types.The SparseVectorProxy class serves as a backend for the Proxy class. It is used in case the data type represented by the proxy is a sparse vector and augments the Proxy interface by the complete interface required of sparse vectors. More... | |
struct | Sqrt |
Generic wrapper for the sqrt() function. More... | |
class | StaticMatrix |
Efficient implementation of a fixed-sized matrix.The StaticMatrix class template is the representation of a fixed-size matrix with statically allocated elements of arbitrary type. The type of the elements, the number of rows and columns and the storage order of the matrix can be specified via the four template parameters: More... | |
class | StaticVector |
Efficient implementation of a fixed-sized vector.The StaticVector class template is the representation of a fixed-size vector with statically allocated elements of arbitrary type. The type of the elements, the number of elements and the transpose flag of the vector can be specified via the three template parameters: More... | |
struct | StorageOrder |
Evaluation of the storage order of a given matrix type.Via this type trait it is possible to evaluate the storage order of a given matrix type. In case the given type is a row-major matrix type the nested boolean value is set to rowMajor, in case it is a column-major matrix type it is set to columnMajor. If the given type is not a matrix type a compilation error is created. More... | |
class | StrictlyLowerMatrix |
Matrix adapter for strictly lower triangular ![]() | |
class | StrictlyLowerProxy |
Access proxy for strictly lower triangular matrices.The StrictlyLowerProxy provides controlled access to the elements of a non-const strictly lower triangular matrix. It guarantees that the strictly lower matrix invariant is not violated, i.e. that elements on the diagonal and in the upper part of the matrix remain 0. The following example illustrates this by means of a ![]() | |
class | StrictlyUpperMatrix |
Matrix adapter for strictly upper triangular ![]() | |
class | StrictlyUpperProxy |
Access proxy for strictly upper triangular matrices.The StrictlyUpperProxy provides controlled access to the elements of a non-const strictly upper triangular matrix. It guarantees that the strictly upper matrix invariant is not violated, i.e. that elements on the diagonal and in the lower part of the matrix remain 0. The following example illustrates this by means of a ![]() | |
struct | SubExpr |
Base class for all subtraction expression templates.The SubExpr class serves as a tag for all expression templates that implement mathematical subtractions. All classes, that represent a mathematical subtraction (vector subtractions and matrix subtractions) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as subtraction expression template. Only in case a class is derived from the SubExpr base class, the IsSubExpr type trait recognizes the class as valid subtraction expression template. More... | |
struct | SubExprTrait |
Evaluation of the return type of a subtraction expression.Via this type trait it is possible to evaluate the return type of a subtraction expression between scalar, vectors, and matrices. Given the two types T1 and T2, which must be either scalar, vector, or matrix types, the nested type Type corresponds to the resulting return type. In case T1 or T2 don't fit or if the two types cannot be subtracted, the resulting data type Type is set to INVALID_TYPE. More... | |
class | Submatrix |
View on a specific submatrix of a dense or sparse matrix.The Submatrix class template represents a view on a specific submatrix of a dense or sparse matrix primitive. The type of the matrix is specified via the first template parameter: More... | |
struct | SubmatrixExprTrait |
Evaluation of the expression type type of a submatrix operation.Via this type trait it is possible to evaluate the return type of a submatrix operation. Given the dense or sparse matrix type MT and the alignment flag AF, the nested type Type corresponds to the resulting return type. In case the given type is neither a dense nor a sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | SubmatrixTrait |
Base template for the SubmatrixTrait class. More... | |
struct | SubTrait |
Base template for the SubTrait class. More... | |
class | Subvector |
View on a specific subvector of a dense or sparse vector.The Subvector class template represents a view on a specific subvector of a dense or sparse vector primitive. The type of the vector is specified via the first template parameter: More... | |
struct | SubvectorExprTrait |
Evaluation of the expression type type of a subvector operation.Via this type trait it is possible to evaluate the return type of a subvector operation. Given the dense or sparse vector type VT and the alignment flag AF, the nested type Type corresponds to the resulting return type. In case the given type is neither a dense nor a sparse vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | SubvectorTrait |
Base template for the SubvectorTrait class. More... | |
struct | SVecCTransExprTrait |
Evaluation of the expression type of a sparse vector conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector conjugate transpose operation. Given the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | SVecDVecAddExprTrait |
Evaluation of the expression type of a sparse vector/dense vector addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector addition. Given the non-transpose sparse vector type VT1 and the non-transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecDVecCrossExpr |
Expression object for sparse vector-dense vector cross products.The SVecDVecCrossExpr class represents the compile time expression for cross products between a sparse vector and a dense vector. More... | |
struct | SVecDVecCrossExprTrait |
Evaluation of the expression type of a sparse vector/dense vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector cross product. Given the non-transpose sparse vector type VT1 and the non-transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecDVecDivExpr |
Expression object for sparse vector-dense vector divisions.The SVecDVecDivExpr class represents the compile time expression for componentwise divisions between a sparse vector and a dense vector. More... | |
struct | SVecDVecDivExprTrait |
Evaluation of the expression type of a sparse vector/dense vector division.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector division. Given the non-transpose sparse vector type VT1 and the non-transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecDVecMultExpr |
Expression object for sparse vector-dense vector multiplications.The SVecDVecMultExpr class represents the compile time expression for componentwise multiplications between a sparse vector and a dense vector. More... | |
struct | SVecDVecMultExprTrait |
Evaluation of the expression type of a sparse vector/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector multiplication. Given the non-transpose sparse vector type VT1 and the non-transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecDVecSubExpr |
Expression object for sparse vector-dense vector subtractions.The SVecDVecSubExpr class represents the compile time expression for subtractions between a sparse vector and a dense vector. More... | |
struct | SVecDVecSubExprTrait |
Evaluation of the expression type of a sparse vector/dense vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector subtraction. Given the non-transpose sparse vector type VT1 and the non-transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecEvalExpr |
Expression object for the forced evaluation of sparse vectors.The SVecEvalExpr class represents the compile time expression for the forced evaluation of a sparse vector. More... | |
struct | SVecEvalExprTrait |
Evaluation of the expression type of a sparse vector evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector evaluation operation. Given the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecForEachExpr |
Expression object for the sparse vector forEach() function.The SVecForEachExpr class represents the compile time expression for the evaluation of a custom operation on each element of a sparse vector via the forEach() function. More... | |
struct | SVecForEachExprTrait |
Evaluation of the expression type of a sparse vector for-each operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector custom operation. Given the non-transpose sparse vector type VT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecScalarDivExpr |
Expression object for divisions of a sparse vector by a scalar.The SVecScalarDivExpr class represents the compile time expression for divisions of sparse vectors by scalar values. More... | |
struct | SVecScalarDivExprTrait |
Evaluation of the expression type of a sparse vector/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/scalar division. Given the non-transpose sparse vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a non-transpose sparse vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecScalarMultExpr |
Expression object for sparse vector-scalar multiplications.The SVecScalarMultExpr class represents the compile time expression for multiplications between a sparse vector and a scalar value. More... | |
struct | SVecScalarMultExprTrait |
Evaluation of the expression type of a sparse vector/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/scalar multiplication. Given the non-transpose sparse vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a non-transpose sparse vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecSerialExpr |
Expression object for the forced serial evaluation of sparse vectors.The SVecSerialExpr class represents the compile time expression for the forced serial evaluation of a sparse vector. More... | |
struct | SVecSerialExprTrait |
Evaluation of the expression type of a sparse vector serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector serial evaluation operation. Given the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecSVecAddExpr |
Expression object for sparse vector-sparse vector additions.The SVecSVecAddExpr class represents the compile time expression for additions between sparse vectors. More... | |
struct | SVecSVecAddExprTrait |
Evaluation of the expression type of a sparse vector/sparse vector addition.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse vector addition. Given the two non-transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecSVecCrossExpr |
Expression object for sparse vector-sparse vector cross products.The SVecSVecCrossExpr class represents the compile time expression for cross products between sparse vectors. More... | |
struct | SVecSVecCrossExprTrait |
Evaluation of the expression type of a sparse vector/sparse vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse vector cross product. Given the two non-transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecSVecMultExpr |
Expression object for sparse vector-sparse vector multiplications.The SVecSVecMultExpr class represents the compile time expression for componentwise multiplications between sparse vectors. More... | |
struct | SVecSVecMultExprTrait |
Evaluation of the expression type of a sparse vector/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse vector multiplication. Given the two non-transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecSVecSubExpr |
Expression object for sparse vector-sparse vector subtractions.The SVecSVecSubExpr class represents the compile time expression for subtractions between sparse vectors. More... | |
struct | SVecSVecSubExprTrait |
Evaluation of the expression type of a sparse vector/sparse vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse vector subtraction. Given the two non-transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecTDVecMultExpr |
Expression object for sparse vector-dense vector outer products.The SVecTDVecMultExpr class represents the compile time expression for sparse vector-dense vector outer products. More... | |
struct | SVecTDVecMultExprTrait |
Evaluation of the expression type of a sparse vector/transpose dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/transpose dense vector multiplication (outer product). Given the non-transpose sparse vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecTransExpr |
Expression object for sparse vector transpositions.The SVecTransExpr class represents the compile time expression for transpositions of sparse vectors. More... | |
struct | SVecTransExprTrait |
Evaluation of the expression type of a sparse vector transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector transpose operation. Given the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SVecTransposer |
Expression object for the transposition of a sparse vector.The SVecTransposer class is a wrapper object for the temporary transposition of a sparse vector. More... | |
class | SVecTSVecMultExpr |
Expression object for sparse vector-sparse vector outer products.The SVecTSVecMultExpr class represents the compile time expression for sparse vector-sparse vector outer products. More... | |
struct | SVecTSVecMultExprTrait |
Evaluation of the expression type of a sparse vector/transpose sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/transpose sparse vector multiplication (outer product). Given the non-transpose sparse vector type VT1 and the transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a non-transpose sparse vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | SymmetricElement |
Representation of two synchronized elements within the sparse symmetric matrix.The SymmetricElement class represents two synchronized elements (i.e. two value/index pairs) within a sparse symmetric matrix. It guarantees that a modification of element ![]() ![]() ![]() | |
class | SymmetricMatrix |
Matrix adapter for symmetric ![]() | |
class | SymmetricValue |
Representation of two synchronized values within a sparse symmetric matrix.The SymmetricValue class represents two synchronized values within a sparse symmetric matrix. It guarantees that a modification of value ![]() ![]() ![]() | |
class | SystemClock |
System clock of the Blaze library.The SystemClock class represents the system clock of the Blaze library. The system clock is the central timing functionality that can be used to query for the start time of the process, the current timestamp and the elapsed time since the start of the process. The following example demonstrates how the single system clock instance is acquired via the theSystemClock() functcion and how the system clock can be used: More... | |
struct | Tan |
Generic wrapper for the tan() function. More... | |
struct | Tanh |
Generic wrapper for the tanh() function. More... | |
struct | TDMatCTransExprTrait |
Evaluation of the expression type of a dense matrix conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix conjugate transpose operation. Given the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatDMatAddExprTrait |
Evaluation of the expression type of a transpose dense matrix/dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/dense matrix addition. Given the column-major dense matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatDMatMultExpr |
Expression object for transpose dense matrix-dense matrix multiplications.The TDMatDMatMultExpr class represents the compile time expression for multiplications between a column-major dense matrix and a row-major dense matrix. More... | |
struct | TDMatDMatMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/dense matrix multiplication. Given the column-major dense matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatDMatSubExprTrait |
Evaluation of the expression type of a transpose dense matrix/dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/dense matrix subtraction. Given the column-major dense matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatDVecMultExpr |
Expression object for transpose dense matrix-dense vector multiplications.The TDMatDVecMultExpr class represents the compile time expression for multiplications between column-major dense matrices and dense vectors. More... | |
struct | TDMatDVecMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/dense vector multiplication. Given the column-major dense matrix type MT and the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major dense matrix type or VT is not a non-transpose dense vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatEvalExprTrait |
Evaluation of the expression type of a dense matrix evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix evaluation operation. Given the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatForEachExprTrait |
Evaluation of the expression type of a dense matrix custom operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix custom operation. Given the column-major dense matrix type MT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatInvExprTrait |
Evaluation of the expression type of a dense matrix inversion operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix inversion operation. Given the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatScalarDivExprTrait |
Evaluation of the expression type of a transpose dense matrix/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/scalar division. Given the column-major dense matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major dense matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatScalarMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/scalar multiplication. Given the column-major dense matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major dense matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatSerialExprTrait |
Evaluation of the expression type of a dense matrix serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix serial evaluation operation. Given the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | TDMatSMatAddExpr |
Expression object for dense matrix-sparse matrix additions.The TDMatSMatAddExpr class represents the compile time expression for additions between a column-major dense matrix and a row-major sparse matrix. More... | |
struct | TDMatSMatAddExprTrait |
Evaluation of the expression type of a transpose dense matrix/sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/sparse matrix addition. Given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatSMatMultExpr |
Expression object for transpose dense matrix-sparse matrix multiplications.The TDMatSMatMultExpr class represents the compile time expression for multiplications between a column-major dense matrix and a row-major sparse matrix. More... | |
struct | TDMatSMatMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/sparse matrix multiplication. Given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatSMatSubExpr |
Expression object for transpose dense matrix-sparse matrix subtractions.The TDMatSMatSubExpr class represents the compile time expression for subtractions between a row-major dense matrix and a column-major sparse matrix. More... | |
struct | TDMatSMatSubExprTrait |
Evaluation of the expression type of a transpose dense matrix/sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/sparse matrix subtraction. Given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatSVecMultExpr |
Expression object for transpose dense matrix-sparse vector multiplications.The TDMatSVecMultExpr class represents the compile time expression for multiplications between column-major dense matrices and sparse vectors. More... | |
struct | TDMatSVecMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/sparse vector multiplication. Given the column-major dense matrix type MT and the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major dense matrix type or VT is not a non-transpose sparse vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatTDMatAddExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose dense matrix addition. Given the two column-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatTDMatMultExpr |
Expression object for transpose dense matrix-transpose dense matrix multiplications.The TDMatTDMatMultExpr class represents the compile time expression for multiplications between two column-major dense matrices. More... | |
struct | TDMatTDMatMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose dense matrix multiplication. Given the two column-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatTDMatSubExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose dense matrix subtraction. Given the two column-major dense matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major dense matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatTransExprTrait |
Evaluation of the expression type of a dense matrix transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense matrix transpose operation. Given the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major dense matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDMatTSMatAddExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose sparse matrix addition. Given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TDMatTSMatMultExpr |
Expression object for transpose dense matrix-transpose sparse matrix multiplications.The TDMatTSMatMultExpr class represents the compile time expression for multiplications between a column-major dense matrix and a column-major sparse matrix. More... | |
struct | TDMatTSMatMultExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose sparse matrix multiplication. Given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDMatTSMatSubExprTrait |
Evaluation of the expression type of a transpose dense matrix/transpose sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense matrix/transpose sparse matrix subtraction. Given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major dense matrix type or MT2 is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDVecCTransExprTrait |
Evaluation of the expression type of a dense vector conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector conjugate transpose operation. Given the transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TDVecDMatMultExpr |
Expression object for transpose dense vector-dense matrix multiplications.The TDVecDMatMultExpr class represents the compile time expression for multiplications between transpose dense vectors and dense matrices. More... | |
struct | TDVecDMatMultExprTrait |
Evaluation of the expression type of a dense vector/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense matrix multiplication. Given the transpose dense vector type VT and the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or MT is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDVecDVecMultExprTrait |
Evaluation of the expression type of a transpose dense vector/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/dense vector multiplication (inner product). Given the transpose dense vector type VT1 and the non-transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecEvalExprTrait |
Evaluation of the expression type of a dense vector evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector evaluation operation. Given the transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecForEachExprTrait |
Evaluation of the expression type of a dense vector custom operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector custom operation. Given the transpose dense vector type VT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecScalarDivExprTrait |
Evaluation of the expression type of a transpose dense vector/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/scalar division. Given the transpose dense vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecScalarMultExprTrait |
Evaluation of the expression type of a transpose dense vector/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/scalar multiplication. Given the transpose dense vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecSerialExprTrait |
Evaluation of the expression type of a dense vector serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector serial evaluation operation. Given the transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TDVecSMatMultExpr |
Expression object for transpose dense vector-sparse matrix multiplications.The TDVecSMatMultExpr class represents the compile time expression for multiplications between transpose dense vectors and row-major sparse matrices. More... | |
struct | TDVecSMatMultExprTrait |
Evaluation of the expression type of a dense vector/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse matrix multiplication. Given the transpose dense vector type VT and the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or MT is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDVecSVecMultExprTrait |
Evaluation of the expression type of a transpose dense vector/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/sparse vector multiplication (inner product). Given the transpose dense vector type VT1 and the non-transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TDVecTDMatMultExpr |
Expression object for transpose dense vector-transpose dense matrix multiplications.The TDVecTDMatMultExpr class represents the compile time expression for multiplications between transpose dense vectors and column-major dense matrices. More... | |
struct | TDVecTDMatMultExprTrait |
Evaluation of the expression type of a dense vector/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/transpose dense matrix multiplication. Given the transpose dense vector type VT and the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or MT is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDVecTDVecAddExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose dense vector addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose dense vector addition. Given the two transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTDVecCrossExprTrait |
Evaluation of the expression type of a dense vector/dense vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/dense vector cross product. Given the two transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTDVecDivExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose dense vector division.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose dense vector division. Given the two transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTDVecMultExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose dense vector multiplication. Given the two transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTDVecSubExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose dense vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose dense vector subtraction. Given the two transpose dense vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTransExprTrait |
Evaluation of the expression type of a dense vector transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a dense vector transpose operation. Given the transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TDVecTSMatMultExpr |
Expression object for transpose dense vector-transpose sparse matrix multiplications.The TDVecTSMatMultExpr class represents the compile time expression for multiplications between transpose dense vectors and column-major sparse matrices. More... | |
struct | TDVecTSMatMultExprTrait |
Evaluation of the expression type of a dense vector/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/transpose sparse matrix multiplication. Given the transpose dense vector type VT and the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose dense vector type or MT is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TDVecTSVecAddExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose sparse vector addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose sparse vector addition. Given the transpose dense vector type VT1 and the transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTSVecCrossExprTrait |
Evaluation of the expression type of a dense vector/sparse vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a dense vector/sparse vector cross product. Given the transpose dense vector type VT1 and the transpose sparse vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTSVecMultExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose sparse vector multiplication. Given the transpose dense vector type VT1 and the transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TDVecTSVecSubExprTrait |
Evaluation of the expression type of a transpose dense vector/transpose sparse vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose dense vector/transpose sparse vector subtraction. Given the transpose dense vector type VT1 and the transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose dense vector type or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | Thread |
Implementation of a single thread of execution. More... | |
class | ThreadPool |
Implementation of a thread pool. More... | |
struct | Times |
Compile time integral multiplication.The Times class template returns the product of the two given template arguments T1 and T2. In order for Times to be able to multiply the two types, both arguments are required to have a nested member value. The result of the multiplication can be accessed via the nested member value, the resulting type is available via the nested type ValueType. More... | |
struct | Trans |
Generic wrapper for the trans() function. More... | |
struct | TransExpr |
Base class for all transposition expression templates.The TransExpr class serves as a tag for all expression templates that implement mathematical transpositions. All classes, that represent a mathematical transposition (vector transpositions and matrix transpositions) and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as transposition expression template. Only in case a class is derived from the TransExpr base class, the IsTransExpr type trait recognizes the class as valid transposition expression template. More... | |
struct | TransExprTrait |
Evaluation of the return type of a transpose expression.Via this type trait it is possible to evaluate the return type of a transpose expression. Given the type T, which must either be a vector or matrix type, the nested type Type corresponds to the resulting return type. In case the type of T doesn't fit or if no transpose operation exists for the type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TransposeFlag |
Evaluation of the transpose flag of a given matrix type.Via this type trait it is possible to evaluate the transpose flag of a given vector type. In case the given type is a row vector type the nested boolean value is set to rowVector, in case it is a column vector type it is set to columnVector. If the given type is not a vector type a compilation error is created. More... | |
struct | TSMatCTransExprTrait |
Evaluation of the expression type of a sparse matrix conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix conjugate transpose operation. Given the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatDMatAddExprTrait |
Evaluation of the expression type of a transpose sparse matrix/dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/dense matrix addition. Given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatDMatMultExpr |
Expression object for transpose sparse matrix-dense matrix multiplications.The TSMatDMatMultExpr class represents the compile time expression for multiplications between a column-major sparse matrix and a row-major dense matrix. More... | |
struct | TSMatDMatMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/dense matrix multiplication. Given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatDMatSubExpr |
Expression object for transpose sparse matrix-dense matrix subtractions.The TSMatDMatSubExpr class represents the compile time expression for subtractions between a column-major sparse matrix and a row-major dense matrix. More... | |
struct | TSMatDMatSubExprTrait |
Evaluation of the expression type of a transpose sparse matrix/dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/dense matrix subtraction. Given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatDVecMultExpr |
Expression object for transpose sparse matrix-dense vector multiplications.The TSMatDVecMultExpr class represents the compile time expression for multiplications between column-major sparse matrices and dense vectors. More... | |
struct | TSMatDVecMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/dense vector multiplication. Given the column-major sparse matrix type MT and the non-transpose dense vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major sparse matrix type or VT is not a non-transpose dense vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSMatEvalExprTrait |
Evaluation of the expression type of a sparse matrix evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix evaluation operation. Given the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatForEachExprTrait |
Evaluation of the expression type of a sparse matrix for-each operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix for-each operation. Given the column-major sparse matrix type MT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatScalarDivExprTrait |
Evaluation of the expression type of a transpose sparse matrix/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/scalar division. Given the column-major sparse matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major sparse matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatScalarMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/scalar multiplication. Given the column-major sparse matrix type MT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major sparse matrix type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatSerialExprTrait |
Evaluation of the expression type of a sparse matrix serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix serial evaluation operation. Given the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSMatSMatAddExprTrait |
Evaluation of the expression type of a transpose sparse matrix/sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/sparse matrix addition. Given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatSMatMultExpr |
Expression object for transpose sparse matrix-sparse matrix multiplications.The TSMatSMatMultExpr class represents the compile time expression for multiplications between a column-major and a row-major sparse matrix. More... | |
struct | TSMatSMatMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/sparse matrix multiplication. Given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatSMatSubExpr |
Expression object for transpose sparse matrix-sparse matrix subtractions.The TSMatSMatSubExpr class represents the compile time expression for subtractions between a column-major sparse matrix and a row-major sparse matrix. More... | |
struct | TSMatSMatSubExprTrait |
Evaluation of the expression type of a transpose sparse matrix/sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/sparse matrix subtraction. Given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatSVecMultExpr |
Expression object for sparse matrix-sparse vector multiplications.The TSMatSVecMultExpr class represents the compile time expression for multiplications between column-major sparse matrices and sparse vectors. More... | |
struct | TSMatSVecMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/sparse vector multiplication. Given the column-major sparse matrix type MT and the non-transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case either MT is not a column-major sparse matrix type or VT is not a non-transpose sparse vector type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSMatTDMatAddExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose dense matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose dense matrix addition. Given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatTDMatMultExpr |
Expression object for transpose sparse matrix-transpose dense matrix multiplications.The TSMatTDMatMultExpr class represents the compile time expression for multiplications between a column-major sparse matrix and a column-major dense matrix. More... | |
struct | TSMatTDMatMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose dense matrix multiplication. Given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSMatTDMatSubExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose dense matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose dense matrix subtraction. Given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 is not a column-major sparse matrix type or MT2 is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSMatTransExprTrait |
Evaluation of the expression type of a sparse matrix transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse matrix transpose operation. Given the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case MT is not a column-major sparse matrix type, the resulting Type is set to INVALID_TYPE. More... | |
class | TSMatTSMatAddExpr |
Expression object for transpose sparse matrix-transpose sparse matrix additions.The TSMatTSMatAddExpr class represents the compile time expression for additions between two column-major sparse matrices. More... | |
struct | TSMatTSMatAddExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose sparse matrix addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose sparse matrix addition. Given the two column-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatTSMatMultExpr |
Expression object for transpose sparse matrix-transpose sparse matrix multiplications.The TSMatTSMatMultExpr class represents the compile time expression for multiplications between two column-major sparse matrices. More... | |
struct | TSMatTSMatMultExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose sparse matrix multiplication. Given the two column-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
class | TSMatTSMatSubExpr |
Expression object for transpose sparse matrix-transpose sparse matrix subtractions.The TSMatTSMatSubExpr class represents the compile time expression for subtractions between two column-major sparse matrices. More... | |
struct | TSMatTSMatSubExprTrait |
Evaluation of the expression type of a transpose sparse matrix/transpose sparse matrix subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse matrix/transpose sparse matrix subtraction. Given the two column-major sparse matrix types MT1 and MT2, the nested type Type corresponds to the resulting expression type. In case either MT1 or MT2 is not a column-major sparse matrix, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSVecCTransExprTrait |
Evaluation of the expression type of a sparse vector conjugate transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector conjugate transpose operation. Given the transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TSVecDMatMultExpr |
Expression object for transpose sparse vector-dense matrix multiplications.The TSVecDMatMultExpr class represents the compile time expression for multiplications between transpose sparse vectors and row-major dense matrices. More... | |
struct | TSVecDMatMultExprTrait |
Evaluation of the expression type of a sparse vector/dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense matrix multiplication. Given the transpose sparse vector type VT and the row-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or MT is not a row-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSVecDVecMultExprTrait |
Evaluation of the expression type of a transpose sparse vector/dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/dense vector multiplication (inner product). Given the transpose sparse vector type VT1 and the non-transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a non-transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecEvalExprTrait |
Evaluation of the expression type of a sparse vector evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector evaluation operation. Given the transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecForEachExprTrait |
Evaluation of the expression type of a sparse vector for-each operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector custom operation. Given the transpose sparse vector type VT and the custom operation type OP, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecScalarDivExprTrait |
Evaluation of the expression type of a transpose sparse vector/scalar division.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/scalar division. Given the transpose sparse vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecScalarMultExprTrait |
Evaluation of the expression type of a transpose sparse vector/scalar multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/scalar multiplication. Given the transpose sparse vector type VT and the scalar type ST, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or ST is not a scalar type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecSerialExprTrait |
Evaluation of the expression type of a sparse vector serial evaluation operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector serial evaluation operation. Given the transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TSVecSMatMultExpr |
Expression object for sparse vector-sparse matrix multiplications.The TSVecSMatMultExpr class represents the compile time expression for multiplications between transpose sparse vectors and row-major sparse matrices. More... | |
struct | TSVecSMatMultExprTrait |
Evaluation of the expression type of a sparse vector/sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse matrix multiplication. Given the transpose sparse vector type VT and the row-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or MT is not a row-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSVecSVecMultExprTrait |
Evaluation of the expression type of a transpose sparse vector/sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/sparse vector multiplication (inner product). Given the transpose sparse vector type VT1 and the non-transpose sparse vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a non-transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TSVecTDMatMultExpr |
Expression object for transpose sparse vector-transpose dense matrix multiplications.The TSVecTDMatMultExpr class represents the compile time expression for multiplications between transpose sparse vectors and column-major dense matrices. More... | |
struct | TSVecTDMatMultExprTrait |
Evaluation of the expression type of a sparse vector/transpose dense matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/transpose dense matrix multiplication. Given the transpose sparse vector type VT and the column-major dense matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or MT is not a column-major dense matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSVecTDVecAddExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose dense vector addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose dense vector addition. Given the transpose sparse vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTDVecCrossExprTrait |
Evaluation of the expression type of a sparse vector/dense vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/dense vector cross product. Given the transpose sparse vector type VT1 and the transpose dense vector typeVT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTDVecDivExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose dense vector division.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose dense vector division. Given the transpose sparse vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTDVecMultExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose dense vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose dense vector multiplication. Given the transpose sparse vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTDVecSubExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose dense vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose dense vector subtraction. Given the transpose sparse vector type VT1 and the transpose dense vector type VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 is not a transpose sparse vector type or VT2 is not a transpose dense vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTransExprTrait |
Evaluation of the expression type of a sparse vector transpose operation.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector transpose operation. Given the transpose sparse vector type VT, the nested type Type corresponds to the resulting expression type. In case VT is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
class | TSVecTSMatMultExpr |
Expression object for sparse vector-sparse matrix multiplications.The TSVecTSMatMultExpr class represents the compile time expression for multiplications between transpose sparse vectors and column-major sparse matrices. More... | |
struct | TSVecTSMatMultExprTrait |
Evaluation of the expression type of a sparse vector/transpose sparse matrix multiplication.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/transpose sparse matrix multiplication. Given the transpose sparse vector type VT and the column-major sparse matrix type MT, the nested type Type corresponds to the resulting expression type. In case either VT is not a transpose sparse vector type or MT is not a column-major sparse matrix type, the resulting data type Type is set to INVALID_TYPE. More... | |
struct | TSVecTSVecAddExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose sparse vector addition.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose sparse vector addition. Given the two transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTSVecCrossExprTrait |
Evaluation of the expression type of a sparse vector/sparse vector cross product.Via this type trait it is possible to evaluate the resulting expression type of a sparse vector/sparse vector cross product. Given the two transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTSVecMultExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose sparse vector multiplication.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose sparse vector multiplication. Given the two transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TSVecTSVecSubExprTrait |
Evaluation of the expression type of a transpose sparse vector/transpose sparse vector subtraction.Via this type trait it is possible to evaluate the resulting expression type of a transpose sparse vector/transpose sparse vector subtraction. Given the two transpose sparse vector types VT1 and VT2, the nested type Type corresponds to the resulting expression type. In case either VT1 or VT2 is not a transpose sparse vector type, the resulting Type is set to INVALID_TYPE. More... | |
struct | TVecMatMultExpr |
Base class for all vector/matrix multiplication expression templates.The TVecMatMultExpr class serves as a tag for all expression templates that implement a vector/matrix multiplication. All classes, that represent a vector/matrix multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector/matrix multiplication expression template. Only in case a class is derived from the TVecMatMultExpr base class, the IsTVecMatMultExpr type trait recognizes the class as valid vector/matrix multiplication expression template. More... | |
class | TypeAt |
Indexing a type list.The TypeAt class can be used to access a type list at a specified position to query the according type. In order to index a type list, the TypeAt class has to be instantiated for a particular type list and an index value. The indexed type is available via the member type definition Result. The following example gives an impression of the use of the TypeAt class: More... | |
struct | TypeList |
Implementation of a type list.The TypeList class is an implementation of a type list according to the example of Andrei Alexandrescu. The type list merely consists of the two data types Head and Tail. In order to create type lists of more data types, the TypeList class is used recursively: More... | |
struct | TypeValueMapping |
Conversion from a data type to a serial representation.This class template converts the given data type into an integral representation suited for serialization. Depending on the given data type, the value member enumeration is set to the according serial representation. More... | |
class | uint16_t |
16-bit unsigned integer type of the Blaze library. More... | |
class | uint32_t |
32-bit unsigned integer type of the Blaze library. More... | |
class | uint64_t |
64-bit unsigned integer type of the Blaze library. More... | |
class | uint8_t |
8-bit unsigned integer type of the Blaze library. More... | |
struct | UnderlyingBuiltin |
Evaluation of the underlying builtin element type of a given data type.Via this type trait it is possible to evaluate the underlying fundamental element type at the heart of a given data type. Examples: More... | |
struct | UnderlyingElement |
Evaluation of the element type of a given data type.Via this type trait it is possible to evaluate the element type of a given data type. Examples: More... | |
struct | UnderlyingNumeric |
Evaluation of the underlying numeric element type of a given data type.Via this type trait it is possible to evaluate the underlying numeric (fundamental or complex) element type at the heart of a given data type. Examples: More... | |
class | UniLowerElement |
Representation of an element within a sparse lower unitriangular matrix.The UniLowerElement class represents an element (i.e. value/index pair) within a sparse lower unitriangular matrix. It guarantees that the unilower matrix invariant is not violated, i.e. that elements in the upper part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | UniLowerMatrix |
Matrix adapter for lower unitriangular ![]() | |
class | UniLowerProxy |
Access proxy for lower unitriangular matrices.The UniLowerProxy provides controlled access to the elements of a non-const lower unitriangular matrix. It guarantees that the unilower matrix invariant is not violated, i.e. that elements in the upper part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | UniLowerValue |
Representation of a value within a sparse lower unitriangular matrix.The UniLowerValue class represents a single value within a sparse lower unitriangular matrix. It guarantees that the unilower matrix invariant is not violated, i.e. that elements in the upper part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | Unique |
Erasing all duplicates from a type list.The Unique class can be used to erase all duplicates from a type list TList. In order to erase all duplicates, the Unique class has to be instantiated for a particular type list. The following example gives an impression of the use of the Unique class: More... | |
class | UniUpperElement |
Representation of an element within a sparse upper unitriangular matrix.The UniUpperElement class represents an element (i.e. value/index pair) within a sparse upper unitriangular matrix. It guarantees that the uniupper matrix invariant is not violated, i.e. that elements in the lower part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | UniUpperMatrix |
Matrix adapter for upper unitriangular ![]() | |
class | UniUpperProxy |
Access proxy for upper unitriangular matrices.The UniUpperProxy provides controlled access to the elements of a non-const upper unitriangular matrix. It guarantees that the uniupper matrix invariant is not violated, i.e. that elements in the lower part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | UniUpperValue |
Representation of a value within a sparse upper unitriangular matrix.The UniUpperValue class represents a single value within a sparse upper unitriangular matrix. It guarantees that the uniupper matrix invariant is not violated, i.e. that elements in the upper part of the matrix remain 0 and the diagonal elements remain 1. The following example illustrates this by means of a ![]() | |
class | UnsignedValue |
Implementation of a wrapper for built-in unsigned integral values.This class wraps a value of built-in unsigned integral type in order to be able to extract non-negative unsigned integral values from an input stream. More... | |
class | UpperMatrix |
Matrix adapter for upper triangular ![]() | |
class | UpperProxy |
Access proxy for upper triangular matrices.The UpperProxy provides controlled access to the elements of a non-const upper triangular matrix. It guarantees that the upper matrix invariant is not violated, i.e. that elements in the lower part of the matrix remain default values. The following example illustrates this by means of a ![]() | |
class | ValueIndexPair |
Index-value-pair for sparse vectors and matrices.The ValueIndexPair class represents a single index-value-pair of a sparse vector or sparse matrix. More... | |
struct | VecEvalExpr |
Base class for all vector evaluation expression templates.The VecEvalExpr class serves as a tag for all expression templates that implement a vector evaluation operation. All classes, that represent a vector evaluation operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector evaluation expression template. Only in case a class is derived from the VecEvalExpr base class, the IsVecEvalExpr type trait recognizes the class as valid vector evaluation expression template. More... | |
struct | VecForEachExpr |
Base class for all vector for-each expression templates.The VecForEachExpr class serves as a tag for all expression templates that represent a unary, custom operation on a vector. All classes, that represent a vector custom operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector for-each expression template. Only in case a class is derived from the VecForEachExpr base class, the IsVecForEachExpr type trait recognizes the class as valid vector for-each expression template. More... | |
struct | VecScalarDivExpr |
Base class for all vector/scalar division expression templates.The VecScalarDivExpr class serves as a tag for all expression templates that implement a vector/scalar division. All classes, that represent a vector/scalar division and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector/scalar division expression template. Only in case a class is derived from the VecScalarDivExpr base class, the IsVecScalarDivExpr type trait recognizes the class as valid vector/scalar division expression template. More... | |
struct | VecScalarMultExpr |
Base class for all vector/scalar multiplication expression templates.The VecScalarMultExpr class serves as a tag for all expression templates that implement a vector/scalar multiplication. All classes, that represent a vector/scalar multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector/scalar multiplication expression template. Only in case a class is derived from the VecScalarMultExpr base class, the IsVecScalarMultExpr type trait recognizes the class as valid vector/scalar multiplication expression template. More... | |
struct | VecSerialExpr |
Base class for all vector serial evaluation expression templates.The VecSerialExpr class serves as a tag for all expression templates that enforce a serial evaluation of a vector. All classes, that represent a vector serialization operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector serial evaluation expression template. Only in case a class is derived from the VecSerialExpr base class, the IsVecSerialExpr type trait recognizes the class as valid vector serial evaluation expression template. More... | |
struct | Vector |
Base class for N-dimensional vectors.The Vector class is a base class for all arbitrarily sized (N-dimensional) dense and sparse vector classes within the Blaze library. It provides an abstraction from the actual type of the vector, but enables a conversion back to this type via the 'Curiously Recurring Template Pattern' (CRTP). More... | |
class | VectorAccessProxy |
Access proxy for sparse, N-dimensional vectors.The VectorAccessProxy provides safe access to the elements of a non-const sparse vector. The proxied access to the elements of a sparse vector is necessary since it may be possible that several insertion operations happen in the same statement. The following code illustrates this with two examples by means of the CompressedVector class: More... | |
class | VectorSerializer |
Serializer for dense and sparse vectors.The VectorSerializer implements the necessary logic to serialize dense and sparse vectors, i.e. to convert them into a portable, binary representation. The following example demonstrates the (de-)serialization process of vectors: More... | |
struct | VecTransExpr |
Base class for all vector transposition expression templates.The VecTransExpr class serves as a tag for all expression templates that implement a vector transposition operation. All classes, that represent a vector transposition operation and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector transposition expression template. Only in case a class is derived from the VecTransExpr base class, the IsVecTransExpr type trait recognizes the class as valid vector transposition expression template. More... | |
struct | VecTVecMultExpr |
Base class for all outer product expression templates.The VecTVecMultExpr class serves as a tag for all expression templates that implement mathematical outer products (i.e. multiplications between a column vector and a row vector). All classes, that represent a mathematical outer product and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as outer product expression template. Only in case a class is derived from the VecTVecMultExpr base class, the IsVecTVecMultExpr type trait recognizes the class as valid outer product expression template. More... | |
struct | VecVecAddExpr |
Base class for all vector/vector addition expression templates.The VecVecAddExpr class serves as a tag for all expression templates that implement a vector/vector addition. All classes, that represent a vector addition and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector addition expression template. Only in case a class is derived from the VecVecAddExpr base class, the IsVecVecAddExpr type trait recognizes the class as valid vector addition expression template. More... | |
struct | VecVecDivExpr |
Base class for all vector/vector division expression templates.The VecVecDivExpr class serves as a tag for all expression templates that implement a vector/vector division. All classes, that represent a vector division and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector division expression template. Only in case a class is derived from the VecVecDivExpr base class, the IsVecVecDivExpr type trait recognizes the class as valid vector division expression template. More... | |
struct | VecVecMultExpr |
Base class for all vector/vector multiplication expression templates.The VecVecMultExpr class serves as a tag for all expression templates that implement a vector/vector multiplication. All classes, that represent a vector multiplication and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector multiplication expression template. Only in case a class is derived from the VecVecMultExpr base class, the IsVecVecMultExpr type trait recognizes the class as valid vector multiplication expression template. More... | |
struct | VecVecSubExpr |
Base class for all vector/vector subtraction expression templates.The VecVecSubExpr class serves as a tag for all expression templates that implement a vector/vector subtraction. All classes, that represent a vector subtraction and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as vector subtraction expression template. Only in case a class is derived from the VecVecSubExpr base class, the IsVecVecSubExpr type trait recognizes the class as valid vector subtraction expression template. More... | |
struct | View |
Base class for all views.The View class serves as a tag for all views (subvectors, submatrices, rows, columns, ...). All classes that represent a view and that are used within the expression template environment of the Blaze library have to derive from this class in order to qualify as a view. Only in case a class is derived from the View base class, the IsView type trait recognizes the class as valid view. More... | |
struct | Xor |
Compile time logical xor evaluation.The Xor class template performs at compile time a logical xor evaluation of the two given compile time conditions: More... | |
Typedefs | |
typedef double | real_t |
Floating point data type of the Blaze library.This type definition offers the possibility to switch the floating point precision of the Blaze library between float, double and long double. More... | |
typedef std::mt19937 | RNG |
Type of the random number generator of the Blaze library.This type definition represents the type of the random number generated used in the Blaze library. The default random number generator is the std::mt19937 mersenne-twister pseudo random number generator. For more information see the following reference documentation: More... | |
template<typename T > | |
using | BaseType_ = typename T::BaseType |
Alias declaration for nested BaseType type definitions.The BaseType_ alias declaration provides a convenient shortcut to access the nested BaseType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | CompositeType_ = typename T::CompositeType |
Alias declaration for nested CompositeType type definitions.The CompositeType_ alias declaration provides a convenient shortcut to access the nested CompositeType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ConstIterator_ = typename T::ConstIterator |
Alias declaration for nested ConstIterator type definitions.The ConstIterator_ alias declaration provides a convenient shortcut to access the nested ConstIterator type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ConstPointer_ = typename T::ConstPointer |
Alias declaration for nested ConstPointer type definitions.The ConstPointer_ alias declaration provides a convenient shortcut to access the nested ConstPointer type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ConstReference_ = typename T::ConstReference |
Alias declaration for nested ConstReference type definitions.The ConstReference_ alias declaration provides a convenient shortcut to access the nested ConstReference type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ElementType_ = typename T::ElementType |
Alias declaration for nested ElementType type definitions.The ElementType_ alias declaration provides a convenient shortcut to access the nested ElementType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | Iterator_ = typename T::Iterator |
Alias declaration for nested Iterator type definitions.The Iterator_ alias declaration provides a convenient shortcut to access the nested Iterator type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | LeftOperand_ = typename T::LeftOperand |
Alias declaration for nested LeftOperand type definitions.The LeftOperand_ alias declaration provides a convenient shortcut to access the nested LeftOperand type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | Operand_ = typename T::Operand |
Alias declaration for nested Operand type definitions.The Operand_ alias declaration provides a convenient shortcut to access the nested Operand type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | OppositeType_ = typename T::OppositeType |
Alias declaration for nested OppositeType type definitions.The OppositeType_ alias declaration provides a convenient shortcut to access the nested OppositeType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | Pointer_ = typename T::Pointer |
Alias declaration for nested Pointer type definitions.The Pointer_ alias declaration provides a convenient shortcut to access the nested Pointer type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | Reference_ = typename T::Reference |
Alias declaration for nested Reference type definitions.The Reference_ alias declaration provides a convenient shortcut to access the nested Reference type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | RepresentedType_ = typename T::RepresentedType |
Alias declaration for nested RepresentedType type definitions.The RepresentedType_ alias declaration provides a convenient shortcut to access the nested RepresentedType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ResultType_ = typename T::ResultType |
Alias declaration for nested ResultType type definitions.The ResultType_ alias declaration provides a convenient shortcut to access the nested ResultType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ReturnType_ = typename T::ReturnType |
Alias declaration for nested ReturnType type definitions.The ReturnType_ alias declaration provides a convenient shortcut to access the nested ReturnType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | RightOperand_ = typename T::RightOperand |
Alias declaration for nested RightOperand type definitions.The RightOperand_ alias declaration provides a convenient shortcut to access the nested RightOperand type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | SIMDType_ = typename T::SIMDType |
Alias declaration for nested SIMDType type definitions.The SIMDType_ alias declaration provides a convenient shortcut to access the nested SIMDType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | TransposeType_ = typename T::TransposeType |
Alias declaration for nested TransposeType type definitions.The TransposeType_ alias declaration provides a convenient shortcut to access the nested TransposeType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
template<typename T > | |
using | ValueType_ = typename T::ValueType |
Alias declaration for nested ValueType type definitions.The ValueType_ alias declaration provides a convenient shortcut to access the nested ValueType type definition of the given type T. The following code example shows both ways to access the nested type definition: More... | |
typedef SIMDTrait< char >::Type | SIMDchar |
The SIMD data type for 'char'. | |
typedef SIMDTrait< signed char >::Type | SIMDschar |
The SIMD data type for 'signed char'. | |
typedef SIMDTrait< unsigned char >::Type | SIMDuchar |
The SIMD data type for 'unsigned char'. | |
typedef SIMDTrait< wchar_t >::Type | SIMDwchar |
The SIMD data type for 'wchar_t'. | |
typedef SIMDTrait< complex< char > >::Type | SIMDcchar |
The SIMD data type for 'complex<char>'. | |
typedef SIMDTrait< complex< signed char > >::Type | SIMDcschar |
The SIMD data type for 'complex<signed char>'. | |
typedef SIMDTrait< complex< unsigned char > >::Type | SIMDcuchar |
The SIMD data type for 'complex<unsigned char>'. | |
typedef SIMDTrait< complex< wchar_t > >::Type | SIMDcwchar |
The SIMD data type for 'complex<wchar_t>'. | |
typedef SIMDTrait< short >::Type | SIMDshort |
The SIMD data type for 'short'. | |
typedef SIMDTrait< unsigned short >::Type | SIMDushort |
The SIMD data type for 'unsigned short'. | |
typedef SIMDTrait< complex< short > >::Type | SIMDcshort |
The SIMD data type for 'complex<short>'. | |
typedef SIMDTrait< complex< unsigned short > >::Type | SIMDcushort |
The SIMD data type for 'complex<unsigned short>'. | |
typedef SIMDTrait< int >::Type | SIMDint |
The SIMD data type for 'int'. | |
typedef SIMDTrait< unsigned int >::Type | SIMDuint |
The SIMD data type for 'unsigned int'. | |
typedef SIMDTrait< complex< int > >::Type | SIMDcint |
The SIMD data type for 'complex<int>'. | |
typedef SIMDTrait< complex< unsigned int > >::Type | SIMDcuint |
The SIMD data type for 'complex<unsigned int>'. | |
typedef SIMDTrait< long >::Type | SIMDlong |
The SIMD data type for 'long int'. | |
typedef SIMDTrait< unsigned long >::Type | SIMDulong |
The SIMD data type for 'unsigned long int'. | |
typedef SIMDTrait< complex< long > >::Type | SIMDclong |
The SIMD data type for 'complex<long int>'. | |
typedef SIMDTrait< complex< unsigned long > >::Type | SIMDculong |
The SIMD data type for 'complex<unsigned long int>'. | |
template<typename T > | |
using | SIMDTrait_ = typename SIMDTrait< T >::Type |
Auxiliary alias declaration for the SIMDTrait class template.The SIMDTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SIMDTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
typedef CompressedMatrix< Type, true > | This |
Type of this CompressedMatrix instance. | |
typedef SparseMatrix< This, true > | BaseType |
Base type of this CompressedMatrix instance. | |
typedef This | ResultType |
Result type for expression template evaluations. | |
typedef CompressedMatrix< Type, false > | OppositeType |
Result type with opposite storage order for expression template evaluations. | |
typedef CompressedMatrix< Type, false > | TransposeType |
Transpose type for expression template evaluations. | |
typedef Type | ElementType |
Type of the sparse matrix elements. | |
typedef const Type & | ReturnType |
Return type for expression template evaluations. | |
typedef const This & | CompositeType |
Data type for composite expression templates. | |
typedef MatrixAccessProxy< This > | Reference |
Reference to a non-constant matrix value. | |
typedef const Type & | ConstReference |
Reference to a constant matrix value. | |
typedef Element * | Iterator |
Iterator over non-constant elements. | |
typedef const Element * | ConstIterator |
Iterator over constant elements. | |
template<typename T1 , typename T2 > | |
using | AddExprTrait_ = typename AddExprTrait< T1, T2 >::Type |
Auxiliary alias declaration for the AddExprTrait class template.The AddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the AddExprTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | AddTrait_ = typename AddTrait< T1, T2 >::Type |
Auxiliary alias declaration for the AddTrait class template.The AddTrait_ alias declaration provides a convenient shortcut to access the nested Type of the AddTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | ColumnExprTrait_ = typename ColumnExprTrait< MT >::Type |
Auxiliary alias declaration for the ColumnExprTrait type trait.The ColumnExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the ColumnExprTrait class template. For instance, given the matrix type MT the following two type definitions are identical: More... | |
template<typename MT > | |
using | ColumnTrait_ = typename ColumnTrait< MT >::Type |
Auxiliary alias declaration for the ColumnTrait type trait.The ColumnTrait_ alias declaration provides a convenient shortcut to access the nested Type of the ColumnTrait class template. For instance, given the matrix type MT the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | CrossExprTrait_ = typename CrossExprTrait< T1, T2 >::Type |
Auxiliary alias declaration for the CrossExprTrait class template.The CrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the CrossExprTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | CrossTrait_ = typename CrossTrait< T1, T2 >::Type |
Auxiliary alias declaration for the CrossTrait class template.The CrossTrait_ alias declaration provides a convenient shortcut to access the nested Type of the CrossTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T > | |
using | CTransExprTrait_ = typename CTransExprTrait< T >::Type |
Auxiliary alias declaration for the CTransExprTrait class template.The CTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the CTransExprTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | DerestrictTrait_ = typename DerestrictTrait< T >::Type |
Auxiliary alias declaration for the DerestrictTrait type trait.The DerestrictTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DerestrictTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | DivExprTrait_ = typename DivExprTrait< T1, T2 >::Type |
Auxiliary alias declaration for the DivExprTrait class template.The DivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DivExprTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | DivTrait_ = typename DivTrait< T1, T2 >::Type |
Auxiliary alias declaration for the DivTrait class template.The DivTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DivTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | DMatCTransExprTrait_ = typename DMatCTransExprTrait< MT >::Type |
Auxiliary alias declaration for the DMatCTransExprTrait class template.The DMatCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatCTransExprTrait class template. For instance, given the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatDMatAddExprTrait_ = typename DMatDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatDMatAddExprTrait class template.The DMatDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatDMatAddExprTrait class template. For instance, given the row-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatDMatMultExprTrait_ = typename DMatDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatDMatMultExprTrait class template.The DMatDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatDMatMultExprTrait class template. For instance, given the row-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatDMatSubExprTrait_ = typename DMatDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatDMatSubExprTrait class template.The DMatDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatDMatSubExprTrait class template. For instance, given the row-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | DMatDVecMultExprTrait_ = typename DMatDVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the DMatDVecMultExprTrait class template.The DMatDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatDVecMultExprTrait class template. For instance, given the row-major dense matrix type MT and the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename MT > | |
using | DMatEvalExprTrait_ = typename DMatEvalExprTrait< MT >::Type |
Auxiliary alias declaration for the DMatEvalExprTrait class template.The DMatEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatEvalExprTrait class template. For instance, given the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename OP > | |
using | DMatForEachExprTrait_ = typename DMatForEachExprTrait< MT, OP >::Type |
Auxiliary alias declaration for the DMatForEachExprTrait class template.The DMatForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatForEachExprTrait class template. For instance, given the row-major dense matrix type MT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename MT > | |
using | DMatInvExprTrait_ = typename DMatInvExprTrait< MT >::Type |
Auxiliary alias declaration for the DMatInvExprTrait class template.The DMatInvExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatInvExprTrait class template. For instance, given the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | DMatScalarDivExprTrait_ = typename DMatScalarDivExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the DMatScalarDivExprTrait class template.The DMatScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatScalarDivExprTrait class template. For instance, given the row-major dense matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | DMatScalarMultExprTrait_ = typename DMatScalarMultExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the DMatScalarMultExprTrait class template.The DMatScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatScalarMultExprTrait class template. For instance, given the row-major dense matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT > | |
using | DMatSerialExprTrait_ = typename DMatSerialExprTrait< MT >::Type |
Auxiliary alias declaration for the DMatSerialExprTrait class template.The DMatSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatSerialExprTrait class template. For instance, given the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatSMatAddExprTrait_ = typename DMatSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatSMatAddExprTrait class template.The DMatSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatSMatAddExprTrait class template. For instance, given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatSMatMultExprTrait_ = typename DMatSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatSMatMultExprTrait class template.The DMatSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatSMatMultExprTrait class template. For instance, given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatSMatSubExprTrait_ = typename DMatSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatSMatSubExprTrait class template.The DMatSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatSMatSubExprTrait class template. For instance, given the row-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | DMatSVecMultExprTrait_ = typename DMatSVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the DMatSVecMultExprTrait class template.The DMatSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatSVecMultExprTrait class template. For instance, given the row-major dense matrix type MT and the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTDMatAddExprTrait_ = typename DMatTDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTDMatAddExprTrait class template.The DMatTDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTDMatAddExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTDMatMultExprTrait_ = typename DMatTDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTDMatMultExprTrait class template.The DMatTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTDMatMultExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTDMatSubExprTrait_ = typename DMatTDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTDMatSubExprTrait class template.The DMatTDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTDMatSubExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | DMatTransExprTrait_ = typename DMatTransExprTrait< MT >::Type |
Auxiliary alias declaration for the DMatTransExprTrait class template.The DMatTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTransExprTrait class template. For instance, given the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTSMatAddExprTrait_ = typename DMatTSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTSMatAddExprTrait class template.The DMatTSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTSMatAddExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTSMatMultExprTrait_ = typename DMatTSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTSMatMultExprTrait class template.The DMatTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTSMatMultExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | DMatTSMatSubExprTrait_ = typename DMatTSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the DMatTSMatSubExprTrait class template.The DMatTSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DMatTSMatSubExprTrait class template. For instance, given the row-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | DVecCTransExprTrait_ = typename DVecCTransExprTrait< VT >::Type |
Auxiliary alias declaration for the DVecCTransExprTrait class template.The DVecCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecCTransExprTrait class template. For instance, given the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecDVecAddExprTrait_ = typename DVecDVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecDVecAddExprTrait class template.The DVecDVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecDVecAddExprTrait class template. For instance, given the non-transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecDVecCrossExprTrait_ = typename DVecDVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecDVecCrossExprTrait class template.The DVecDVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecDVecCrossExprTrait class template. For instance, given the non-transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecDVecDivExprTrait_ = typename DVecDVecDivExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecDVecDivExprTrait class template.The DVecDVecDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecDVecDivExprTrait class template. For instance, given the non-transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecDVecMultExprTrait_ = typename DVecDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecDVecMultExprTrait class template.The DVecDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecDVecMultExprTrait class template. For instance, given the non-transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecDVecSubExprTrait_ = typename DVecDVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecDVecSubExprTrait class template.The DVecDVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecDVecSubExprTrait class template. For instance, given the non-transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | DVecEvalExprTrait_ = typename DVecEvalExprTrait< VT >::Type |
Auxiliary alias declaration for the DVecEvalExprTrait class template.The DVecEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecEvalExprTrait class template. For instance, given the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename OP > | |
using | DVecForEachExprTrait_ = typename DVecForEachExprTrait< VT, OP >::Type |
Auxiliary alias declaration for the DVecForEachExprTrait class template.The DVecForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecForEachExprTrait class template. For instance, given the non-transpose dense vector type VT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | DVecScalarDivExprTrait_ = typename DVecScalarDivExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the DVecScalarDivExprTrait class template.The DVecScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecScalarDivExprTrait class template. For instance, given the non-transpose dense vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | DVecScalarMultExprTrait_ = typename DVecScalarMultExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the DVecScalarMultExprTrait class template.The DVecScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecScalarMultExprTrait class template. For instance, given the non-transpose dense vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT > | |
using | DVecSerialExprTrait_ = typename DVecSerialExprTrait< VT >::Type |
Auxiliary alias declaration for the DVecSerialExprTrait class template.The DVecSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecSerialExprTrait class template. For instance, given the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecSVecAddExprTrait_ = typename DVecSVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecSVecAddExprTrait class template.The DVecSVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecSVecAddExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecSVecCrossExprTrait_ = typename DVecSVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecSVecCrossExprTrait class template.The DVecSVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecSVecCrossExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecSVecMultExprTrait_ = typename DVecSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecSVecMultExprTrait class template.The DVecSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecSVecMultExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecSVecSubExprTrait_ = typename DVecSVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecSVecSubExprTrait class template.The DVecSVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecSVecSubExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecTDVecMultExprTrait_ = typename DVecTDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecTDVecMultExprTrait class template.The DVecTDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecTDVecMultExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | DVecTransExprTrait_ = typename DVecTransExprTrait< VT >::Type |
Auxiliary alias declaration for the DVecTransExprTrait class template.The DVecTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecTransExprTrait class template. For instance, given the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | DVecTSVecMultExprTrait_ = typename DVecTSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the DVecTSVecMultExprTrait class template.The DVecTSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the DVecTSVecMultExprTrait class template. For instance, given the non-transpose dense vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename T > | |
using | EvalExprTrait_ = typename EvalExprTrait< T >::Type |
Auxiliary alias declaration for the EvalExprTrait class template.The EvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the EvalExprTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T , typename OP > | |
using | ForEachExprTrait_ = typename ForEachExprTrait< T, OP >::Type |
Auxiliary alias declaration for the ForEachExprTrait class template.The ForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the ForEachExprTrait class template. For instance, given the data type T and custom operation type OP the following two type definitions are identical: More... | |
template<typename T , typename OP > | |
using | ForEachTrait_ = typename ForEachTrait< T, OP >::Type |
Auxiliary alias declaration for the ForEachTrait class template.The ForEachTrait_ alias declaration provides a convenient shortcut to access the nested Type of the ForEachTrait class template. For instance, given the type T and the custom operation type OP the following two type definitions are identical: More... | |
template<typename T > | |
using | ImagTrait_ = typename ImagTrait< T >::Type |
Auxiliary alias declaration for the ImagTrait class template.The ImagTrait_ alias declaration provides a convenient shortcut to access the nested Type of the ImagTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | InvExprTrait_ = typename InvExprTrait< T >::Type |
Auxiliary alias declaration for the InvExprTrait class template.The InvExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the InvExprTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | MultExprTrait_ = typename MultExprTrait< T1, T2 >::Type |
Auxiliary alias declaration for the MultExprTrait class template.The MultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the MultExprTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | MultTrait_ = typename MultTrait< T1, T2 >::Type |
Auxiliary alias declaration for the MultTrait class template.The MultTrait_ alias declaration provides a convenient shortcut to access the nested Type of the MultTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T > | |
using | RealTrait_ = typename RealTrait< T >::Type |
Auxiliary alias declaration for the RealTrait class template.The RealTrait_ alias declaration provides a convenient shortcut to access the nested Type of the RealTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename MT > | |
using | RowExprTrait_ = typename RowExprTrait< MT >::Type |
Auxiliary alias declaration for the RowExprTrait type trait.The RowExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the RowExprTrait class template. For instance, given the matrix type MT the following two type definitions are identical: More... | |
template<typename MT > | |
using | RowTrait_ = typename RowTrait< MT >::Type |
Auxiliary alias declaration for the RowTrait type trait.The RowTrait_ alias declaration provides a convenient shortcut to access the nested Type of the RowTrait class template. For instance, given the matrix type MT the following two type definitions are identical: More... | |
template<typename T > | |
using | SerialExprTrait_ = typename SerialExprTrait< T >::Type |
Auxiliary alias declaration for the SerialExprTrait class template.The SerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SerialExprTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename MT > | |
using | SMatCTransExprTrait_ = typename SMatCTransExprTrait< MT >::Type |
Auxiliary alias declaration for the SMatCTransExprTrait class template.The SMatCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatCTransExprTrait class template. For instance, given the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatDMatAddExprTrait_ = typename SMatDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatDMatAddExprTrait class template.The SMatDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatDMatAddExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatDMatMultExprTrait_ = typename SMatDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatDMatMultExprTrait class template.The SMatDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatDMatMultExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatDMatSubExprTrait_ = typename SMatDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatDMatSubExprTrait class template.The SMatDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatDMatSubExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | SMatDVecMultExprTrait_ = typename SMatDVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the SMatDVecMultExprTrait class template.The SMatDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatDVecMultExprTrait class template. For instance, given the row-major sparse matrix type MT and the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename MT > | |
using | SMatEvalExprTrait_ = typename SMatEvalExprTrait< MT >::Type |
Auxiliary alias declaration for the SMatEvalExprTrait class template.The SMatEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatEvalExprTrait class template. For instance, given the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename OP > | |
using | SMatForEachExprTrait_ = typename SMatForEachExprTrait< MT, OP >::Type |
Auxiliary alias declaration for the SMatForEachExprTrait class template.The SMatForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatForEachExprTrait class template. For instance, given the row-major sparse matrix type MT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | SMatScalarDivExprTrait_ = typename SMatScalarDivExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the SMatScalarDivExprTrait class template.The SMatScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatScalarDivExprTrait class template. For instance, given the row-major sparse matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | SMatScalarMultExprTrait_ = typename SMatScalarMultExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the SMatScalarMultExprTrait class template.The SMatScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatScalarMultExprTrait class template. For instance, given the row-major sparse matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT > | |
using | SMatSerialExprTrait_ = typename SMatSerialExprTrait< MT >::Type |
Auxiliary alias declaration for the SMatSerialExprTrait class template.The SMatSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatSerialExprTrait class template. For instance, given the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatSMatAddExprTrait_ = typename SMatSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatSMatAddExprTrait class template.The SMatSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatSMatAddExprTrait class template. For instance, given the row-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatSMatMultExprTrait_ = typename SMatSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatSMatMultExprTrait class template.The SMatSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatSMatMultExprTrait class template. For instance, given the row-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatSMatSubExprTrait_ = typename SMatSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatSMatSubExprTrait class template.The SMatSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatSMatSubExprTrait class template. For instance, given the row-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | SMatSVecMultExprTrait_ = typename SMatSVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the SMatSVecMultExprTrait class template.The SMatSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatSVecMultExprTrait class template. For instance, given the row-major sparse matrix type MT and the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTDMatAddExprTrait_ = typename SMatTDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTDMatAddExprTrait class template.The SMatTDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTDMatAddExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTDMatMultExprTrait_ = typename SMatTDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTDMatMultExprTrait class template.The SMatTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTDMatMultExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTDMatSubExprTrait_ = typename SMatTDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTDMatSubExprTrait class template.The SMatTDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTDMatSubExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | SMatTransExprTrait_ = typename SMatTransExprTrait< MT >::Type |
Auxiliary alias declaration for the SMatTransExprTrait class template.The SMatTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTransExprTrait class template. For instance, given the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTSMatAddExprTrait_ = typename SMatTSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTSMatAddExprTrait class template.The SMatTSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTSMatAddExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTSMatMultExprTrait_ = typename SMatTSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTSMatMultExprTrait class template.The SMatTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTSMatMultExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | SMatTSMatSubExprTrait_ = typename SMatTSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the SMatTSMatSubExprTrait class template.The SMatTSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatTSMatSubExprTrait class template. For instance, given the row-major sparse matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | SubExprTrait_ = typename SubExprTrait< T1, T2 >::Type |
Auxiliary alias declaration for the SubExprTrait class template.The SubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubExprTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename MT , bool AF> | |
using | SubmatrixExprTrait_ = typename SubmatrixExprTrait< MT, AF >::Type |
Auxiliary alias declaration for the SubmatrixExprTrait type trait.The SubmatrixExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubmatrixExprTrait class template. For instance, given the matrix type MT and the alignment flag AF the following two type definitions are identical: More... | |
template<typename MT > | |
using | SubmatrixTrait_ = typename SubmatrixTrait< MT >::Type |
Auxiliary alias declaration for the SubmatrixTrait type trait.The SubmatrixTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubmatrixTrait class template. For instance, given the matrix type MT the following two type definitions are identical: More... | |
template<typename T1 , typename T2 > | |
using | SubTrait_ = typename SubTrait< T1, T2 >::Type |
Auxiliary alias declaration for the SubTrait class template.The SubTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubTrait class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename VT , bool AF> | |
using | SubvectorExprTrait_ = typename SubvectorExprTrait< VT, AF >::Type |
Auxiliary alias declaration for the SubvectorExprTrait type trait.The SubvectorExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubvectorExprTrait class template. For instance, given the vector type VT the following two type definitions are identical: More... | |
template<typename VT > | |
using | SubvectorTrait_ = typename SubvectorTrait< VT >::Type |
Auxiliary alias declaration for the SubvectorTrait type trait.The SubvectorTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SubvectorTrait class template. For instance, given the vector type VT the following two type definitions are identical: More... | |
template<typename VT > | |
using | SVecCTransExprTrait_ = typename SVecCTransExprTrait< VT >::Type |
Auxiliary alias declaration for the SVecCTransExprTrait class template.The SVecCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecCTransExprTrait class template. For instance, given the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecDVecAddExprTrait_ = typename SVecDVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecDVecAddExprTrait class template.The SVecDVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecDVecAddExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and the non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecDVecCrossExprTrait_ = typename SVecDVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecDVecCrossExprTrait class template.The SVecDVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecDVecCrossExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and the non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecDVecDivExprTrait_ = typename SVecDVecDivExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecDVecDivExprTrait class template.The SVecDVecDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecDVecDivExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and the non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecDVecMultExprTrait_ = typename SVecDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecDVecMultExprTrait class template.The SVecDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecDVecMultExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and the non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecDVecSubExprTrait_ = typename SVecDVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecDVecSubExprTrait class template.The SVecDVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecDVecSubExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and the non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | SVecEvalExprTrait_ = typename SVecEvalExprTrait< VT >::Type |
Auxiliary alias declaration for the SVecEvalExprTrait class template.The SVecEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecEvalExprTrait class template. For instance, given the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename OP > | |
using | SVecForEachExprTrait_ = typename SVecForEachExprTrait< VT, OP >::Type |
Auxiliary alias declaration for the SVecForEachExprTrait class template.The SVecForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecForEachExprTrait class template. For instance, given the non-transpose sparse vector type VT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | SVecScalarDivExprTrait_ = typename SVecScalarDivExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the SVecScalarDivExprTrait class template.The SVecScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecScalarDivExprTrait class template. For instance, given the non-transpose sparse vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | SVecScalarMultExprTrait_ = typename SVecScalarMultExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the SVecScalarMultExprTrait class template.The SVecScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecScalarMultExprTrait class template. For instance, given the non-transpose sparse vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT > | |
using | SVecSerialExprTrait_ = typename SVecSerialExprTrait< VT >::Type |
Auxiliary alias declaration for the SVecSerialExprTrait class template.The SVecSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecSerialExprTrait class template. For instance, given the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecSVecAddExprTrait_ = typename SVecSVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecSVecAddExprTrait class template.The SVecSVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecSVecAddExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecSVecCrossExprTrait_ = typename SVecSVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecSVecCrossExprTrait class template.The SVecSVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecSVecCrossExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecSVecMultExprTrait_ = typename SVecSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecSVecMultExprTrait class template.The SVecSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecSVecMultExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecSVecSubExprTrait_ = typename SVecSVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecSVecSubExprTrait class template.The SVecSVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecSVecSubExprTrait class template. For instance, given the non-transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecTDVecMultExprTrait_ = typename SVecTDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecTDVecMultExprTrait class template.The SVecTDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecTDVecMultExprTrait class template. For instance, given the non-transpose sparse vector type VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | SVecTransExprTrait_ = typename SVecTransExprTrait< VT >::Type |
Auxiliary alias declaration for the SVecTransExprTrait class template.The SVecTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecTransExprTrait class template. For instance, given the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | SVecTSVecMultExprTrait_ = typename SVecTSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the SVecTSVecMultExprTrait class template.The SVecTSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SVecTSVecMultExprTrait class template. For instance, given the non-transpose sparse vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | TDMatCTransExprTrait_ = typename TDMatCTransExprTrait< MT >::Type |
Auxiliary alias declaration for the TDMatCTransExprTrait class template.The TDMatCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatCTransExprTrait class template. For instance, given the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatDMatAddExprTrait_ = typename TDMatDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatDMatAddExprTrait class template.The TDMatDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatDMatAddExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatDMatMultExprTrait_ = typename TDMatDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatDMatMultExprTrait class template.The TDMatDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatDMatMultExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatDMatSubExprTrait_ = typename TDMatDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatDMatSubExprTrait class template.The TDMatDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatDMatSubExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | TDMatDVecMultExprTrait_ = typename TDMatDVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the TDMatDVecMultExprTrait class template.The TDMatDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatDVecMultExprTrait class template. For instance, given the column-major dense matrix type MT and the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename MT > | |
using | TDMatEvalExprTrait_ = typename TDMatEvalExprTrait< MT >::Type |
Auxiliary alias declaration for the TDMatEvalExprTrait class template.The TDMatEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatEvalExprTrait class template. For instance, given the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename OP > | |
using | TDMatForEachExprTrait_ = typename TDMatForEachExprTrait< MT, OP >::Type |
Auxiliary alias declaration for the TDMatForEachExprTrait class template.The TDMatForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatForEachExprTrait class template. For instance, given the column-major dense matrix type MT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename MT > | |
using | TDMatInvExprTrait_ = typename TDMatInvExprTrait< MT >::Type |
Auxiliary alias declaration for the TDMatInvExprTrait class template.The TDMatInvExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatInvExprTrait class template. For instance, given the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | TDMatScalarDivExprTrait_ = typename TDMatScalarDivExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the TDMatScalarDivExprTrait class template.The TDMatScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatScalarDivExprTrait class template. For instance, given the column-major dense matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | TDMatScalarMultExprTrait_ = typename TDMatScalarMultExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the TDMatScalarMultExprTrait class template.The TDMatScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatScalarMultExprTrait class template. For instance, given the column-major dense matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT > | |
using | TDMatSerialExprTrait_ = typename TDMatSerialExprTrait< MT >::Type |
Auxiliary alias declaration for the TDMatSerialExprTrait class template.The TDMatSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatSerialExprTrait class template. For instance, given the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatSMatAddExprTrait_ = typename TDMatSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatSMatAddExprTrait class template.The TDMatSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatSMatAddExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatSMatMultExprTrait_ = typename TDMatSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatSMatMultExprTrait class template.The TDMatSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatSMatMultExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatSMatSubExprTrait_ = typename TDMatSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatSMatSubExprTrait class template.The TDMatSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatSMatSubExprTrait class template. For instance, given the column-major dense matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | TDMatSVecMultExprTrait_ = typename TDMatSVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the TDMatSVecMultExprTrait class template.The TDMatSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatSVecMultExprTrait class template. For instance, given the column-major dense matrix type MT and the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTDMatAddExprTrait_ = typename TDMatTDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTDMatAddExprTrait class template.The TDMatTDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTDMatAddExprTrait class template. For instance, given the column-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTDMatMultExprTrait_ = typename TDMatTDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTDMatMultExprTrait class template.The TDMatTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTDMatMultExprTrait class template. For instance, given the column-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTDMatSubExprTrait_ = typename TDMatTDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTDMatSubExprTrait class template.The TDMatTDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTDMatSubExprTrait class template. For instance, given the column-major dense matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | TDMatTransExprTrait_ = typename TDMatTransExprTrait< MT >::Type |
Auxiliary alias declaration for the TDMatTransExprTrait class template.The TDMatTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTransExprTrait class template. For instance, given the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTSMatAddExprTrait_ = typename TDMatTSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTSMatAddExprTrait class template.The TDMatTSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTSMatAddExprTrait class template. For instance, given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTSMatMultExprTrait_ = typename TDMatTSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTSMatMultExprTrait class template.The TDMatTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTSMatMultExprTrait class template. For instance, given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TDMatTSMatSubExprTrait_ = typename TDMatTSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TDMatTSMatSubExprTrait class template.The TDMatTSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDMatTSMatSubExprTrait class template. For instance, given the column-major dense matrix type MT1 and the column-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TDVecCTransExprTrait_ = typename TDVecCTransExprTrait< VT >::Type |
Auxiliary alias declaration for the TDVecCTransExprTrait class template.The TDVecCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecCTransExprTrait class template. For instance, given the transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TDVecDMatMultExprTrait_ = typename TDVecDMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TDVecDMatMultExprTrait class template.The TDVecDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecDMatMultExprTrait class template. For instance, given the transpose dense vector type VT and the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecDVecMultExprTrait_ = typename TDVecDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecDVecMultExprTrait class template.The TDVecDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecDVecMultExprTrait class template. For instance, given the transpose dense vector type VT1 and non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TDVecEvalExprTrait_ = typename TDVecEvalExprTrait< VT >::Type |
Auxiliary alias declaration for the TDVecEvalExprTrait class template.The TDVecEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecEvalExprTrait class template. For instance, given the transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename OP > | |
using | TDVecForEachExprTrait_ = typename TDVecForEachExprTrait< VT, OP >::Type |
Auxiliary alias declaration for the TDVecForEachExprTrait class template.The TDVecForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecForEachExprTrait class template. For instance, given the transpose dense vector type VT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | TDVecScalarDivExprTrait_ = typename TDVecScalarDivExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the TDVecScalarDivExprTrait class template.The TDVecScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecScalarDivExprTrait class template. For instance, given the transpose dense vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | TDVecScalarMultExprTrait_ = typename TDVecScalarMultExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the TDVecScalarMultExprTrait class template.The TDVecScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecScalarMultExprTrait class template. For instance, given the transpose dense vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT > | |
using | TDVecSerialExprTrait_ = typename TDVecSerialExprTrait< VT >::Type |
Auxiliary alias declaration for the TDVecSerialExprTrait class template.The TDVecSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecSerialExprTrait class template. For instance, given the transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TDVecSMatMultExprTrait_ = typename TDVecSMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TDVecSMatMultExprTrait class template.The TDVecSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecSMatMultExprTrait class template. For instance, given the transpose dense vector type VT and the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecSVecMultExprTrait_ = typename TDVecSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecSVecMultExprTrait class template.The TDVecSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecSVecMultExprTrait class template. For instance, given the transpose dense vector type VT1 and non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TDVecTDMatMultExprTrait_ = typename TDVecTDMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TDVecTDMatMultExprTrait class template.The TDVecTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDMatMultExprTrait class template. For instance, given the transpose dense vector type VT and the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTDVecAddExprTrait_ = typename TDVecTDVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTDVecAddExprTrait class template.The TDVecTDVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDVecAddExprTrait class template. For instance, given the transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTDVecCrossExprTrait_ = typename TDVecTDVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTDVecCrossExprTrait class template.The TDVecTDVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDVecCrossExprTrait class template. For instance, given the transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTDVecDivExprTrait_ = typename TDVecTDVecDivExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTDVecDivExprTrait class template.The TDVecTDVecDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDVecDivExprTrait class template. For instance, given the transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTDVecMultExprTrait_ = typename TDVecTDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTDVecMultExprTrait class template.The TDVecTDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDVecMultExprTrait class template. For instance, given the transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTDVecSubExprTrait_ = typename TDVecTDVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTDVecSubExprTrait class template.The TDVecTDVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTDVecSubExprTrait class template. For instance, given the transpose dense vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TDVecTransExprTrait_ = typename TDVecTransExprTrait< VT >::Type |
Auxiliary alias declaration for the TDVecTransExprTrait class template.The TDVecTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTransExprTrait class template. For instance, given the transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TDVecTSMatMultExprTrait_ = typename TDVecTSMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TDVecTSMatMultExprTrait class template.The TDVecTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTSMatMultExprTrait class template. For instance, given the transpose dense vector type VT and the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTSVecAddExprTrait_ = typename TDVecTSVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTSVecAddExprTrait class template.The TDVecTSVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTSVecAddExprTrait class template. For instance, given the transpose dense vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTSVecCrossExprTrait_ = typename TDVecTSVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTSVecCrossExprTrait class template.The TDVecTSVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTSVecCrossExprTrait class template. For instance, given the transpose dense vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTSVecMultExprTrait_ = typename TDVecTSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTSVecMultExprTrait class template.The TDVecTSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTSVecMultExprTrait class template. For instance, given the transpose dense vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TDVecTSVecSubExprTrait_ = typename TDVecTSVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TDVecTSVecSubExprTrait class template.The TDVecTSVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TDVecTSVecSubExprTrait class template. For instance, given the transpose dense vector type VT1 and the transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename T > | |
using | TransExprTrait_ = typename TransExprTrait< T >::Type |
Auxiliary alias declaration for the TransExprTrait class template.The TransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TransExprTrait class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename MT > | |
using | TSMatCTransExprTrait_ = typename TSMatCTransExprTrait< MT >::Type |
Auxiliary alias declaration for the TSMatCTransExprTrait class template.The TSMatCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatCTransExprTrait class template. For instance, given the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatDMatAddExprTrait_ = typename TSMatDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatDMatAddExprTrait class template.The TSMatDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatDMatAddExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatDMatMultExprTrait_ = typename TSMatDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatDMatMultExprTrait class template.The TSMatDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatDMatMultExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatDMatSubExprTrait_ = typename TSMatDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatDMatSubExprTrait class template.The TSMatDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatDMatSubExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | TSMatDVecMultExprTrait_ = typename TSMatDVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the TSMatDVecMultExprTrait class template.The TSMatDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatDVecMultExprTrait class template. For instance, given the column-major sparse matrix type MT and the non-transpose dense vector type VT the following two type definitions are identical: More... | |
template<typename MT > | |
using | TSMatEvalExprTrait_ = typename TSMatEvalExprTrait< MT >::Type |
Auxiliary alias declaration for the TSMatEvalExprTrait class template.The TSMatEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatEvalExprTrait class template. For instance, given the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT , typename OP > | |
using | TSMatForEachExprTrait_ = typename TSMatForEachExprTrait< MT, OP >::Type |
Auxiliary alias declaration for the TSMatForEachExprTrait class template.The SMatForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the SMatForEachExprTrait class template. For instance, given the column-major sparse matrix type MT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | TSMatScalarDivExprTrait_ = typename TSMatScalarDivExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the TSMatScalarDivExprTrait class template.The TSMatScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatScalarDivExprTrait class template. For instance, given the column-major sparse matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT , typename ST > | |
using | TSMatScalarMultExprTrait_ = typename TSMatScalarMultExprTrait< MT, ST >::Type |
Auxiliary alias declaration for the TSMatScalarMultExprTrait class template.The TSMatScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatScalarMultExprTrait class template. For instance, given the column-major sparse matrix type MT and the scalar type ST the following two type definitions are identical: More... | |
template<typename MT > | |
using | TSMatSerialExprTrait_ = typename TSMatSerialExprTrait< MT >::Type |
Auxiliary alias declaration for the TSMatSerialExprTrait class template.The TSMatSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatSerialExprTrait class template. For instance, given the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatSMatAddExprTrait_ = typename TSMatSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatSMatAddExprTrait class template.The TSMatSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatSMatAddExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatSMatMultExprTrait_ = typename TSMatSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatSMatMultExprTrait class template.The TSMatSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatSMatMultExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatSMatSubExprTrait_ = typename TSMatSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatSMatSubExprTrait class template.The TSMatSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatSMatSubExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the row-major sparse matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT , typename VT > | |
using | TSMatSVecMultExprTrait_ = typename TSMatSVecMultExprTrait< MT, VT >::Type |
Auxiliary alias declaration for the TSMatSVecMultExprTrait class template.The TSMatSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatSVecMultExprTrait class template. For instance, given the column-major sparse matrix type MT and the non-transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTDMatAddExprTrait_ = typename TSMatTDMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTDMatAddExprTrait class template.The TSMatTDMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTDMatAddExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTDMatMultExprTrait_ = typename TSMatTDMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTDMatMultExprTrait class template.The TSMatTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTDMatMultExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTDMatSubExprTrait_ = typename TSMatTDMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTDMatSubExprTrait class template.The TSMatTDMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTDMatSubExprTrait class template. For instance, given the column-major sparse matrix type MT1 and the column-major dense matrix type MT2 the following two type definitions are identical: More... | |
template<typename MT > | |
using | TSMatTransExprTrait_ = typename TSMatTransExprTrait< MT >::Type |
Auxiliary alias declaration for the TSMatTransExprTrait class template.The TSMatTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTransExprTrait class template. For instance, given the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTSMatAddExprTrait_ = typename TSMatTSMatAddExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTSMatAddExprTrait class template.The TSMatTSMatAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTSMatAddExprTrait class template. For instance, given the column-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTSMatMultExprTrait_ = typename TSMatTSMatMultExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTSMatMultExprTrait class template.The TSMatTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTSMatMultExprTrait class template. For instance, given the column-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename MT1 , typename MT2 > | |
using | TSMatTSMatSubExprTrait_ = typename TSMatTSMatSubExprTrait< MT1, MT2 >::Type |
Auxiliary alias declaration for the TSMatTSMatSubExprTrait class template.The TSMatTSMatSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSMatTSMatSubExprTrait class template. For instance, given the column-major sparse matrix types MT1 and MT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TSVecCTransExprTrait_ = typename TSVecCTransExprTrait< VT >::Type |
Auxiliary alias declaration for the TSVecCTransExprTrait class template.The TSVecCTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecCTransExprTrait class template. For instance, given the transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TSVecDMatMultExprTrait_ = typename TSVecDMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TSVecDMatMultExprTrait class template.The TSVecDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecDMatMultExprTrait class template. For instance, given the transpose sparse vector type VT and the row-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecDVecMultExprTrait_ = typename TSVecDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecDVecMultExprTrait class template.The TSVecDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecDVecMultExprTrait class template. For instance, given the transpose sparse vector type VT1 and non-transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TSVecEvalExprTrait_ = typename TSVecEvalExprTrait< VT >::Type |
Auxiliary alias declaration for the TSVecEvalExprTrait class template.The TSVecEvalExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecEvalExprTrait class template. For instance, given the transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename OP > | |
using | TSVecForEachExprTrait_ = typename TSVecForEachExprTrait< VT, OP >::Type |
Auxiliary alias declaration for the TSVecForEachExprTrait class template.The TSVecForEachExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecForEachExprTrait class template. For instance, given the transpose sparse vector type VT and the custom operation type OP the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | TSVecScalarDivExprTrait_ = typename TSVecScalarDivExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the TSVecScalarDivExprTrait class template.The TSVecScalarDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecScalarDivExprTrait class template. For instance, given the transpose sparse vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT , typename ST > | |
using | TSVecScalarMultExprTrait_ = typename TSVecScalarMultExprTrait< VT, ST >::Type |
Auxiliary alias declaration for the TSVecScalarMultExprTrait class template.The TSVecScalarMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecScalarMultExprTrait class template. For instance, given the transpose sparse vector type VT and the scalar type ST the following two type definitions are identical: More... | |
template<typename VT > | |
using | TSVecSerialExprTrait_ = typename TSVecSerialExprTrait< VT >::Type |
Auxiliary alias declaration for the TSVecSerialExprTrait class template.The TSVecSerialExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecSerialExprTrait class template. For instance, given the transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TSVecSMatMultExprTrait_ = typename TSVecSMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TSVecSMatMultExprTrait class template.The TSVecSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecSMatMultExprTrait class template. For instance, given the transpose sparse vector type VT and the row-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecSVecMultExprTrait_ = typename TSVecSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecSVecMultExprTrait class template.The TSVecSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecSVecMultExprTrait class template. For instance, given the transpose sparse vector type VT1 and non-transpose sparse vector type VT2 the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TSVecTDMatMultExprTrait_ = typename TSVecTDMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TSVecTDMatMultExprTrait class template.The TSVecTDMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDMatMultExprTrait class template. For instance, given the transpose sparse vector type VT and the column-major dense matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTDVecAddExprTrait_ = typename TSVecTDVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTDVecAddExprTrait class template.The TSVecTDVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDVecAddExprTrait class template. For instance, given the transpose sparse vector types VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTDVecCrossExprTrait_ = typename TSVecTDVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTDVecCrossExprTrait class template.The TSVecTDVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDVecCrossExprTrait class template. For instance, given the transpose sparse vector types VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTDVecDivExprTrait_ = typename TSVecTDVecDivExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTDVecDivExprTrait class template.The TSVecTDVecDivExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDVecDivExprTrait class template. For instance, given the transpose sparse vector types VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTDVecMultExprTrait_ = typename TSVecTDVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTDVecMultExprTrait class template.The TSVecTDVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDVecMultExprTrait class template. For instance, given the transpose sparse vector types VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTDVecSubExprTrait_ = typename TSVecTDVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTDVecSubExprTrait class template.The TSVecTDVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTDVecSubExprTrait class template. For instance, given the transpose sparse vector types VT1 and the transpose dense vector type VT2 the following two type definitions are identical: More... | |
template<typename VT > | |
using | TSVecTransExprTrait_ = typename TSVecTransExprTrait< VT >::Type |
Auxiliary alias declaration for the TSVecTransExprTrait class template.The TSVecTransExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTransExprTrait class template. For instance, given the transpose sparse vector type VT the following two type definitions are identical: More... | |
template<typename VT , typename MT > | |
using | TSVecTSMatMultExprTrait_ = typename TSVecTSMatMultExprTrait< VT, MT >::Type |
Auxiliary alias declaration for the TSVecTSMatMultExprTrait class template.The TSVecTSMatMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTSMatMultExprTrait class template. For instance, given the transpose sparse vector type VT and the column-major sparse matrix type MT the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTSVecAddExprTrait_ = typename TSVecTSVecAddExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTSVecAddExprTrait class template.The TSVecTSVecAddExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTSVecAddExprTrait class template. For instance, given the transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTSVecCrossExprTrait_ = typename TSVecTSVecCrossExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTSVecCrossExprTrait class template.The TSVecTSVecCrossExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTSVecCrossExprTrait class template. For instance, given the transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTSVecMultExprTrait_ = typename TSVecTSVecMultExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTSVecMultExprTrait class template.The TSVecTSVecMultExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTSVecMultExprTrait class template. For instance, given the transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename VT1 , typename VT2 > | |
using | TSVecTSVecSubExprTrait_ = typename TSVecTSVecSubExprTrait< VT1, VT2 >::Type |
Auxiliary alias declaration for the TSVecTSVecSubExprTrait class template.The TSVecTSVecSubExprTrait_ alias declaration provides a convenient shortcut to access the nested Type of the TSVecTSVecSubExprTrait class template. For instance, given the transpose sparse vector types VT1 and VT2 the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveAdaptor_ = typename RemoveAdaptor< T >::Type |
Auxiliary alias declaration for the RemoveAdaptor type trait.The RemoveAdaptor_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveAdaptor class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | UnderlyingBuiltin_ = typename UnderlyingBuiltin< T >::Type |
Auxiliary alias declaration for the UnderlyingBuiltin type trait.The UnderlyingBuiltin_ alias declaration provides a convenient shortcut to access the nested Type of the UnderlyingBuiltin class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | UnderlyingElement_ = typename UnderlyingElement< T >::Type |
Auxiliary alias declaration for the UnderlyingElement type trait.The UnderlyingElement_ alias declaration provides a convenient shortcut to access the nested Type of the UnderlyingElement class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | UnderlyingNumeric_ = typename UnderlyingNumeric< T >::Type |
Auxiliary alias declaration for the UnderlyingNumeric type trait.The UnderlyingNumeric_ alias declaration provides a convenient shortcut to access the nested Type of the UnderlyingNumeric class template. For instance, given the type T the following two type definitions are identical: More... | |
template<bool Condition, typename T = void> | |
using | DisableIfTrue_ = typename DisableIfTrue< Condition, T >::Type |
Auxiliary type for the DisableIfTrue class template.The DisableIfTrue_ alias declaration provides a convenient shortcut to access the nested Type of the DisableIfTrue class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename Condition , typename T = void> | |
using | DisableIf_ = typename DisableIf< Condition, T >::Type |
Auxiliary type for the DisableIf class template.The DisableIf_ alias declaration provides a convenient shortcut to access the nested Type of the DisableIf class template. For instance, given the type T the following two type definitions are identical: More... | |
template<bool Condition, typename T = void> | |
using | EnableIfTrue_ = typename EnableIfTrue< Condition, T >::Type |
Auxiliary type for the EnableIfTrue class template.The EnableIfTrue_ alias declaration provides a convenient shortcut to access the nested Type of the EnableIfTrue class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename Condition , typename T = void> | |
using | EnableIf_ = typename EnableIf< Condition, T >::Type |
Auxiliary alias declaration for the EnableIf class template.The EnableIf_ alias declaration provides a convenient shortcut to access the nested Type of the EnableIf class template. For instance, given the type T the following two type definitions are identical: More... | |
using | FalseType = BoolConstant< false > |
Type/value traits base class.The FalseType class is used as base class for type traits and value traits that evaluate to false. | |
template<bool B> | |
using | BoolConstant = IntegralConstant< bool, B > |
Generic wrapper for a compile time constant boolean value.The BoolConstant class template represents a generic wrapper for a compile time constant boolean value. The value of a BoolConstant can be accessed via the nested value (which is guaranteed to be of type bool ), the type can be accessed via the nested type definition ValueType. More... | |
template<bool Condition, typename T1 , typename T2 > | |
using | IfTrue_ = typename IfTrue< Condition, T1, T2 >::Type |
Auxiliary alias declaration for the IfTrue class template.The IfTrue_ alias declaration provides a convenient shortcut to access the nested Type of the IfTrue class template. For instance, given the types C, T1, and T2 the following two type definitions are identical: More... | |
template<typename T1 , typename T2 , typename T3 > | |
using | If_ = typename If< T1, T2, T3 >::Type |
Auxiliary alias declaration for the If class template.The If_ alias declaration provides a convenient shortcut to access the nested Type of the If class template. For instance, given the types T1, T2, and T3 the following two type definitions are identical: More... | |
typedef std::shared_ptr< SystemClock > | SystemClockID |
Handle for the system clock of the Blaze library. | |
typedef std::shared_ptr< const SystemClock > | ConstSystemClockID |
Handle for the system clock of the Blaze library. | |
using | TrueType = BoolConstant< true > |
Type traits base class.The TrueType class is used as base class for type traits and value traits that evaluate to true. | |
using | byte_t = unsigned char |
Byte data type of the Blaze library.The byte data type is guaranteed to be an integral data type of size 1. | |
using | large_t = int64_t |
The largest available signed integer data type. | |
using | ularge_t = uint64_t |
The largest available unsigned integer data type. | |
using | id_t = ularge_t |
Unsigned integer data type for integral IDs. | |
template<typename T > | |
using | AddConst_ = typename AddConst< T >::Type |
Auxiliary alias declaration for the AddConst type trait.The AddConst_ alias declaration provides a convenient shortcut to access the nested Type of the AddConst class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | AddCV_ = typename AddCV< T >::Type |
Auxiliary alias declaration for the AddCV type trait.The AddCV_ alias declaration provides a convenient shortcut to access the nested Type of the AddCV class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | AddPointer_ = typename AddPointer< T >::Type |
Auxiliary alias declaration for the AddPointer type trait.The AddPointer_ alias declaration provides a convenient shortcut to access the nested Type of the AddPointer class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | AddReference_ = typename AddReference< T >::Type |
Auxiliary alias declaration for the AddReference type trait.The AddReference_ alias declaration provides a convenient shortcut to access the nested Type of the AddReference class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | AddVolatile_ = typename AddVolatile< T >::Type |
Auxiliary alias declaration for the AddVolatile type trait.The AddVolatile_ alias declaration provides a convenient shortcut to access the nested Type of the AddVolatile class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename... T> | |
using | CommonType_ = typename CommonType< T... >::Type |
Auxiliary alias declaration for the CommonType type trait.The CommonType_ alias declaration provides a convenient shortcut to access the nested Type of the CommonType class template. For instance, given the types T1 and T2 the following two type definitions are identical: More... | |
template<typename T > | |
using | Decay_ = typename Decay< T >::Type |
Auxiliary alias declaration for the Decay type trait.The Decay_ alias declaration provides a convenient shortcut to access the nested Type of the Decay class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | MakeSigned_ = typename MakeSigned< T >::Type |
Auxiliary alias declaration for the MakeSigned type trait.The MakeSigned_ alias declaration provides a convenient shortcut to access the nested Type of the MakeSigned class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | MakeUnsigned_ = typename MakeUnsigned< T >::Type |
Auxiliary alias declaration for the MakeUnsigned type trait.The MakeUnsigned_ alias declaration provides a convenient shortcut to access the nested Type of the MakeUnsigned class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveAllExtents_ = typename RemoveAllExtents< T >::Type |
Auxiliary alias declaration for the RemoveAllExtents type trait.The RemoveAllExtents_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveAllExtents class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveConst_ = typename RemoveConst< T >::Type |
Auxiliary alias declaration for the RemoveConst type trait.The RemoveConst_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveConst class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveCV_ = typename RemoveCV< T >::Type |
Auxiliary alias declaration for the RemoveCV type trait.The RemoveCV_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveCV class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveExtent_ = typename RemoveExtent< T >::Type |
Auxiliary alias declaration for the RemoveExtent type trait.The RemoveExtent_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveExtent class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemovePointer_ = typename RemovePointer< T >::Type |
Auxiliary alias declaration for the RemovePointer type trait.The RemovePointer_ alias declaration provides a convenient shortcut to access the nested Type of the RemovePointer class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveReference_ = typename RemoveReference< T >::Type |
Auxiliary alias declaration for the RemoveReference type trait.The RemoveReference_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveReference class template. For instance, given the type T the following two type definitions are identical: More... | |
template<typename T > | |
using | RemoveVolatile_ = typename RemoveVolatile< T >::Type |
Auxiliary alias declaration for the RemoveVolatile type trait.The RemoveVolatile_ alias declaration provides a convenient shortcut to access the nested Type of the RemoveVolatile class template. For instance, given the type T the following two type definitions are identical: More... | |
Enumerations | |
enum | InversionFlag { byLU = 0, byLDLT = 1, byLDLH = 2, byLLH = 3, asGeneral = 4, asSymmetric = 5, asHermitian = 6, asLower = 7, asUniLower = 8, asUpper = 9, asUniUpper = 10, asDiagonal = 11 } |
Inversion flag.The InversionFlag type enumeration represents the different types of matrix inversion algorithms that are available within the Blaze library. The following flags are available: More... | |
enum | : bool { smpAssignable = !IsSMPAssignable<Type>::value } |
Compilation flag for SMP assignments. More... | |
Functions | |
template<typename A , typename T > | |
bool | operator<= (const NegativeAccuracy< A > &, const T &rhs) |
Less-or-equal-than comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator<= (const T &lhs, const NegativeAccuracy< A > &) |
Less-or-equal-than comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename A , typename T > | |
bool | operator>= (const NegativeAccuracy< A > &, const T &rhs) |
Greater-or-equal-than comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator>= (const T &lhs, const NegativeAccuracy< A > &) |
Less-or-equal-than comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename T1 , typename T2 , bool SO> | |
EnableIf_< IsNumeric< T1 >, bool > | operator== (T1 scalar, const DenseMatrix< T2, SO > &mat) |
Equality operator for the comparison of a scalar value and a dense matrix. More... | |
template<typename T1 , typename T2 , bool SO> | |
EnableIf_< IsNumeric< T1 >, bool > | operator!= (T1 scalar, const DenseMatrix< T2, SO > &mat) |
Inequality operator for the comparison of a scalar value and a dense matrix. More... | |
template<typename E , typename T > | |
bool | operator<= (const NegativeEpsilon< E > &, const T &rhs) |
Less-or-equal-than comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator<= (const T &lhs, const NegativeEpsilon< E > &) |
Less-or-equal-than comparison between a floating point value and a NegativeEpsilon object. More... | |
template<typename E , typename T > | |
bool | operator>= (const NegativeEpsilon< E > &, const T &rhs) |
Greater-or-equal-than comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator>= (const T &lhs, const NegativeEpsilon< E > &) |
Less-or-equal-than comparison between a floating point value and a NegativeEpsilon object. More... | |
template<typename T1 , typename T2 , bool SO> | |
const DMatDMatAddExpr< T1, T2, SO > | operator+ (const DenseMatrix< T1, SO > &lhs, const DenseMatrix< T2, SO > &rhs) |
Addition operator for the addition of two dense matrices with identical storage order ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatDMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, false > &lhs, const DenseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of two row-major dense matrices ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const DMatDMatSubExpr< T1, T2, SO > | operator- (const DenseMatrix< T1, SO > &lhs, const DenseMatrix< T2, SO > &rhs) |
Subtraction operator for the subtraction of two dense matrices with identical storage order ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T1 >, DMatDVecMultExpr< T1, T2 > > | operator* (const DenseMatrix< T1, false > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a row-major dense matrix and a dense vector ( ![]() | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsMatMatMultExpr< T1 >, MultExprTrait_< T1, T2 > > | operator* (const DenseMatrix< T1, SO > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a dense matrix-matrix multiplication expression and a dense vector ( ![]() | |
template<typename MT , bool SO> | |
const DMatEvalExpr< MT, SO > | eval (const DenseMatrix< MT, SO > &dm) |
Forces the evaluation of the given dense matrix expression dm. More... | |
template<typename MT , bool SO, typename OP > | |
const DMatForEachExpr< MT, OP, SO > | forEach (const DenseMatrix< MT, SO > &dm, OP op) |
Evaluates the given custom operation on each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Abs, SO > | abs (const DenseMatrix< MT, SO > &dm) |
Applies the abs() function to each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Floor, SO > | floor (const DenseMatrix< MT, SO > &dm) |
Applies the floor() function to each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Ceil, SO > | ceil (const DenseMatrix< MT, SO > &dm) |
Applies the ceil() function to each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Conj, SO > | conj (const DenseMatrix< MT, SO > &dm) |
Returns a matrix containing the complex conjugate of each single element of dm. More... | |
template<typename MT , bool SO> | |
const CTransExprTrait_< MT > | ctrans (const DenseMatrix< MT, SO > &dm) |
Returns the conjugate transpose matrix of dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Real, SO > | real (const DenseMatrix< MT, SO > &dm) |
Returns a matrix containing the real part of each single element of dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Imag, SO > | imag (const DenseMatrix< MT, SO > &dm) |
Returns a matrix containing the imaginary part of each single element of dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Sqrt, SO > | sqrt (const DenseMatrix< MT, SO > &dm) |
Computes the square root of each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, InvSqrt, SO > | invsqrt (const DenseMatrix< MT, SO > &dm) |
Computes the inverse square root of each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Cbrt, SO > | cbrt (const DenseMatrix< MT, SO > &dm) |
Computes the cubic root of each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, InvCbrt, SO > | invcbrt (const DenseMatrix< MT, SO > &dm) |
Computes the inverse cubic root of each single element of the dense matrix dm. More... | |
template<typename MT , bool SO, typename DT > | |
const DMatForEachExpr< MT, Clip< DT >, SO > | clip (const DenseMatrix< MT, SO > &dm, const DT &min, const DT &max) |
Restricts each single element of the dense matrix dm to the range ![]() | |
template<typename MT , bool SO, typename ET > | |
const DMatForEachExpr< MT, Pow< ET >, SO > | pow (const DenseMatrix< MT, SO > &dm, ET exp) |
Computes the exponential value for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Exp, SO > | exp (const DenseMatrix< MT, SO > &dm) |
Computes ![]() | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Log, SO > | log (const DenseMatrix< MT, SO > &dm) |
Computes the natural logarithm for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Log10, SO > | log10 (const DenseMatrix< MT, SO > &dm) |
Computes the common logarithm for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Sin, SO > | sin (const DenseMatrix< MT, SO > &dm) |
Computes the sine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Asin, SO > | asin (const DenseMatrix< MT, SO > &dm) |
Computes the inverse sine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Sinh, SO > | sinh (const DenseMatrix< MT, SO > &dm) |
Computes the hyperbolic sine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Asinh, SO > | asinh (const DenseMatrix< MT, SO > &dm) |
Computes the inverse hyperbolic sine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Cos, SO > | cos (const DenseMatrix< MT, SO > &dm) |
Computes the cosine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Acos, SO > | acos (const DenseMatrix< MT, SO > &dm) |
Computes the inverse cosine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Cosh, SO > | cosh (const DenseMatrix< MT, SO > &dm) |
Computes the hyperbolic cosine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Acosh, SO > | acosh (const DenseMatrix< MT, SO > &dm) |
Computes the inverse hyperbolic cosine for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Tan, SO > | tan (const DenseMatrix< MT, SO > &dm) |
Computes the tangent for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Atan, SO > | atan (const DenseMatrix< MT, SO > &dm) |
Computes the inverse tangent for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Tanh, SO > | tanh (const DenseMatrix< MT, SO > &dm) |
Computes the hyperbolic tangent for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Atanh, SO > | atanh (const DenseMatrix< MT, SO > &dm) |
Computes the inverse hyperbolic tangent for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Erf, SO > | erf (const DenseMatrix< MT, SO > &dm) |
Computes the error function for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatForEachExpr< MT, Erfc, SO > | erfc (const DenseMatrix< MT, SO > &dm) |
Computes the complementary error function for each single element of the dense matrix dm. More... | |
template<typename MT , bool SO> | |
const DMatInvExpr< MT, SO > | inv (const DenseMatrix< MT, SO > &dm) |
Calculation of the inverse of the given dense matrix. More... | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsNumeric< T2 >, DivExprTrait_< T1, T2 > > | operator/ (const DenseMatrix< T1, SO > &mat, T2 scalar) |
Division operator for the division of a dense matrix by a scalar value ( ![]() | |
template<typename MT , bool SO> | |
const DMatScalarMultExpr< MT, UnderlyingBuiltin_< MT >, SO > | operator- (const DenseMatrix< MT, SO > &dm) |
Unary minus operator for the negation of a dense matrix ( ![]() | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsNumeric< T2 >, MultExprTrait_< T1, T2 > > | operator* (const DenseMatrix< T1, SO > &mat, T2 scalar) |
Multiplication operator for the multiplication of a dense matrix and a scalar value ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsNumeric< T1 >, MultExprTrait_< T1, T2 > > | operator* (T1 scalar, const DenseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a scalar value and a dense matrix ( ![]() | |
template<typename MT , bool SO> | |
const DMatSerialExpr< MT, SO > | serial (const DenseMatrix< MT, SO > &dm) |
Forces the serial evaluation of the given dense matrix expression dm. More... | |
template<typename T1 , typename T2 , bool SO> | |
const DMatSMatAddExpr< T1, T2, SO > | operator+ (const DenseMatrix< T1, SO > &lhs, const SparseMatrix< T2, SO > &rhs) |
Addition operator for the addition of a dense matrix and a sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const DMatSMatAddExpr< T2, T1, SO > | operator+ (const SparseMatrix< T1, SO > &lhs, const DenseMatrix< T2, SO > &rhs) |
Addition operator for the addition of a sparse matrix and a dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatSMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a row-major dense matrix and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const DMatSMatSubExpr< T1, T2, SO > | operator- (const DenseMatrix< T1, SO > &lhs, const SparseMatrix< T2, SO > &rhs) |
Subtraction operator for the subtraction of a dense matrix and a sparse matrix with identical storage order ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T1 >, IsMatMatMultExpr< T1 > >, DMatSVecMultExpr< T1, T2 > > | operator* (const DenseMatrix< T1, false > &mat, const SparseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a row-major dense matrix and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
EnableIf_< And< Not< IsSymmetric< T1 > >, Not< IsSymmetric< T2 > > >, const DMatTDMatAddExpr< T1, T2 > > | operator+ (const DenseMatrix< T1, false > &lhs, const DenseMatrix< T2, true > &rhs) |
Addition operator for the addition of a row-major and a colum-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
EnableIf_< And< Not< IsSymmetric< T1 > >, Not< IsSymmetric< T2 > > >, const DMatTDMatAddExpr< T2, T1 > > | operator+ (const DenseMatrix< T1, true > &lhs, const DenseMatrix< T2, false > &rhs) |
Addition operator for the addition of a column-major and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatTDMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, false > &lhs, const DenseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a row-major dense matrix and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
EnableIf_< And< Not< IsSymmetric< T1 > >, Not< IsSymmetric< T2 > > >, const DMatTDMatSubExpr< T1, T2 > > | operator- (const DenseMatrix< T1, false > &lhs, const DenseMatrix< T2, true > &rhs) |
Subtraction operator for the subtraction of a row-major and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
EnableIf_< And< Not< IsSymmetric< T1 > >, Not< IsSymmetric< T2 > > >, const DMatTDMatSubExpr< T1, T2 > > | operator- (const DenseMatrix< T1, true > &lhs, const DenseMatrix< T2, false > &rhs) |
Subtraction operator for the subtraction of a column-major and a row-major dense matrix ( ![]() | |
template<typename MT , bool SO> | |
const DMatTransExpr< MT,!SO > | trans (const DenseMatrix< MT, SO > &dm) |
Calculation of the transpose of the given dense matrix. More... | |
template<typename T1 , typename T2 > | |
const DMatTSMatAddExpr< T1, T2 > | operator+ (const DenseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Addition operator for the addition of a row-major dense matrix and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatTSMatAddExpr< T1, T2 > | operator+ (const SparseMatrix< T2, true > &lhs, const DenseMatrix< T1, false > &rhs) |
Addition operator for the addition of a column-major sparse matrix and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatTSMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a row-major dense matrix and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DMatTSMatSubExpr< T1, T2 > | operator- (const DenseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Subtraction operator for the subtraction of a row-major dense matrix and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecAddExpr< T1, T2, TF > | operator+ (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Addition operator for the addition of two dense vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecCrossExpr< T1, T2, TF > | operator% (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Operator for the cross product of two dense vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecCrossExpr< T1, T2, TF > | cross (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Cross product of two dense vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecDivExpr< T1, T2, TF > | operator/ (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Division operator for the componentwise product of two dense vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecMultExpr< T1, T2, TF > | operator* (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Multiplication operator for the componentwise product of two dense vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecDVecSubExpr< T1, T2, TF > | operator- (const DenseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Subtraction operator for the subtraction of two dense vectors ( ![]() | |
template<typename VT , bool TF> | |
const DVecEvalExpr< VT, TF > | eval (const DenseVector< VT, TF > &dv) |
Forces the evaluation of the given dense vector expression dv. More... | |
template<typename VT , bool TF, typename OP > | |
const DVecForEachExpr< VT, OP, TF > | forEach (const DenseVector< VT, TF > &dv, OP op) |
Evaluates the given custom operation on each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Abs, TF > | abs (const DenseVector< VT, TF > &dv) |
Applies the abs() function to each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Floor, TF > | floor (const DenseVector< VT, TF > &dv) |
Applies the floor() function to each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Ceil, TF > | ceil (const DenseVector< VT, TF > &dv) |
Applies the ceil() function to each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Conj, TF > | conj (const DenseVector< VT, TF > &dv) |
Returns a vector containing the complex conjugate of each single element of dv. More... | |
template<typename VT , bool TF> | |
const CTransExprTrait_< VT > | ctrans (const DenseVector< VT, TF > &dv) |
Returns the conjugate transpose vector of dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Real, TF > | real (const DenseVector< VT, TF > &dv) |
Returns a vector containing the real part of each single element of dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Imag, TF > | imag (const DenseVector< VT, TF > &dv) |
Returns a vector containing the imaginary part of each single element of dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Sqrt, TF > | sqrt (const DenseVector< VT, TF > &dv) |
Computes the square root of each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, InvSqrt, TF > | invsqrt (const DenseVector< VT, TF > &dv) |
Computes the inverse square root of each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Cbrt, TF > | cbrt (const DenseVector< VT, TF > &dv) |
Computes the cubic root of each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, InvCbrt, TF > | invcbrt (const DenseVector< VT, TF > &dv) |
Computes the inverse cubic root of each single element of the dense vector dv. More... | |
template<typename VT , bool TF, typename DT > | |
const DVecForEachExpr< VT, Clip< DT >, TF > | clip (const DenseVector< VT, TF > &dv, const DT &min, const DT &max) |
Restricts each single element of the dense vector dv to the range ![]() | |
template<typename VT , bool TF, typename ET > | |
const DVecForEachExpr< VT, Pow< ET >, TF > | pow (const DenseVector< VT, TF > &dv, ET exp) |
Computes the exponential value for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Exp, TF > | exp (const DenseVector< VT, TF > &dv) |
Computes ![]() | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Log, TF > | log (const DenseVector< VT, TF > &dv) |
Computes the natural logarithm for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Log10, TF > | log10 (const DenseVector< VT, TF > &dv) |
Computes the common logarithm for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Sin, TF > | sin (const DenseVector< VT, TF > &dv) |
Computes the sine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Asin, TF > | asin (const DenseVector< VT, TF > &dv) |
Computes the inverse sine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Sinh, TF > | sinh (const DenseVector< VT, TF > &dv) |
Computes the hyperbolic sine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Asinh, TF > | asinh (const DenseVector< VT, TF > &dv) |
Computes the inverse hyperbolic sine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Cos, TF > | cos (const DenseVector< VT, TF > &dv) |
Computes the cosine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Acos, TF > | acos (const DenseVector< VT, TF > &dv) |
Computes the inverse cosine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Cosh, TF > | cosh (const DenseVector< VT, TF > &dv) |
Computes the hyperbolic cosine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Acosh, TF > | acosh (const DenseVector< VT, TF > &dv) |
Computes the inverse hyperbolic cosine for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Tan, TF > | tan (const DenseVector< VT, TF > &dv) |
Computes the tangent for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Atan, TF > | atan (const DenseVector< VT, TF > &dv) |
Computes the inverse tangent for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Tanh, TF > | tanh (const DenseVector< VT, TF > &dv) |
Computes the hyperbolic tangent for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Atanh, TF > | atanh (const DenseVector< VT, TF > &dv) |
Computes the inverse hyperbolic tangent for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Erf, TF > | erf (const DenseVector< VT, TF > &dv) |
Computes the error function for each single element of the dense vector dv. More... | |
template<typename VT , bool TF> | |
const DVecForEachExpr< VT, Erfc, TF > | erfc (const DenseVector< VT, TF > &dv) |
Computes the complementary error function for each single element of the dense vector dv. More... | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T2 >, DivExprTrait_< T1, T2 > > | operator/ (const DenseVector< T1, TF > &vec, T2 scalar) |
Division operator for the divison of a dense vector by a scalar value ( ![]() | |
template<typename VT , bool TF> | |
const DVecScalarMultExpr< VT, UnderlyingBuiltin_< VT >, TF > | operator- (const DenseVector< VT, TF > &dv) |
Unary minus operator for the negation of a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T2 >, MultExprTrait_< T1, T2 > > | operator* (const DenseVector< T1, TF > &vec, T2 scalar) |
Multiplication operator for the multiplication of a dense vector and a scalar value ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T1 >, MultExprTrait_< T1, T2 > > | operator* (T1 scalar, const DenseVector< T2, TF > &vec) |
Multiplication operator for the multiplication of a scalar value and a dense vector ( ![]() | |
template<typename VT , bool TF> | |
const DVecScalarMultExpr< VT, ElementType_< VT >, TF > | normalize (const DenseVector< VT, TF > &vec) |
Normalization of the dense vector ( ![]() | |
template<typename VT , bool TF> | |
const DVecSerialExpr< VT, TF > | serial (const DenseVector< VT, TF > &dv) |
Forces the serial evaluation of the given dense vector expression dv. More... | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecAddExpr< T1, T2, TF > | operator+ (const DenseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Addition operator for the addition of a dense vector and a sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecAddExpr< T2, T1, TF > | operator+ (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Addition operator for the addition of a sparse vector and a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecCrossExpr< T1, T2, TF > | operator% (const DenseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Operator for the cross product of a dense vector and a sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecCrossExpr< T1, T2, TF > | cross (const DenseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Cross product of a dense vector and a sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecMultExpr< T1, T2, TF > | operator* (const DenseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Multiplication operator for the componentwise product of a dense vector and a sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const DVecSVecSubExpr< T1, T2, TF > | operator- (const DenseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Subtraction operator for the subtraction of a dense vector and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
const DVecTDVecMultExpr< T1, T2 > | operator* (const DenseVector< T1, false > &lhs, const DenseVector< T2, true > &rhs) |
Multiplication operator for the outer product of two dense vectors ( ![]() | |
template<typename VT , bool TF> | |
const DVecTransExpr< VT,!TF > | trans (const DenseVector< VT, TF > &dv) |
Calculation of the transpose of the given dense vector. More... | |
template<typename T1 , typename T2 > | |
const DVecTSVecMultExpr< T1, T2 > | operator* (const DenseVector< T1, false > &lhs, const SparseVector< T2, true > &rhs) |
Multiplication operator for the dense vector-sparse vector outer product ( ![]() | |
template<typename VT , bool TF> | |
const SVecTransExpr< VT,!TF > | trans (const SparseVector< VT, TF > &sv) |
Calculation of the transpose of the given sparse vector. More... | |
template<typename MT , bool SO> | |
const SMatTransExpr< MT,!SO > | trans (const SparseMatrix< MT, SO > &sm) |
Calculation of the transpose of the given sparse matrix. More... | |
template<typename VT , bool TF> | |
const SVecSerialExpr< VT, TF > | serial (const SparseVector< VT, TF > &sv) |
Forces the serial evaluation of the given sparse vector expression sv. More... | |
template<typename MT , bool SO> | |
const SMatSerialExpr< MT, SO > | serial (const SparseMatrix< MT, SO > &sm) |
Forces the serial evaluation of the given sparse matrix expression sm. More... | |
template<typename VT , bool TF, typename OP > | |
const SVecForEachExpr< VT, OP, TF > | forEach (const SparseVector< VT, TF > &sv, OP op) |
Evaluates the given custom operation on each non-zero element of the sparse vector sv. More... | |
template<typename MT , bool SO, typename OP > | |
const SMatForEachExpr< MT, OP, SO > | forEach (const SparseMatrix< MT, SO > &sm, OP op) |
Evaluates the given custom operation on each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE void | ctranspose (Matrix< MT, SO > &matrix) |
In-place conjugate transpose of the given matrix. More... | |
template<typename T1 , typename T2 > | |
const SMatDMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, false > &lhs, const DenseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a row-major sparse matrix and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const SMatDMatSubExpr< T1, T2, SO > | operator- (const SparseMatrix< T1, SO > &lhs, const DenseMatrix< T2, SO > &rhs) |
Subtraction operator for the subtraction of a sparse matrix and a dense matrix with identical storage order ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T1 >, SMatDVecMultExpr< T1, T2 > > | operator* (const SparseMatrix< T1, false > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a row-major sparse matrix and a dense vector ( ![]() | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsMatMatMultExpr< T1 >, MultExprTrait_< T1, T2 > > | operator* (const SparseMatrix< T1, SO > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a sparse matrix-matrix multiplication expression and a dense vector ( ![]() | |
template<typename MT , bool SO> | |
const SMatEvalExpr< MT, SO > | eval (const SparseMatrix< MT, SO > &sm) |
Forces the evaluation of the given sparse matrix expression sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Abs, SO > | abs (const SparseMatrix< MT, SO > &sm) |
Applies the abs() function to each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Floor, SO > | floor (const SparseMatrix< MT, SO > &sm) |
Applies the floor() function to each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Ceil, SO > | ceil (const SparseMatrix< MT, SO > &sm) |
Applies the ceil() function to each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Conj, SO > | conj (const SparseMatrix< MT, SO > &sm) |
Returns a matrix containing the complex conjugate of each single element of sm. More... | |
template<typename MT , bool SO> | |
const CTransExprTrait_< MT > | ctrans (const SparseMatrix< MT, SO > &sm) |
Returns the conjugate transpose matrix of sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Real, SO > | real (const SparseMatrix< MT, SO > &sm) |
Returns a matrix containing the real parts of each single element of sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Imag, SO > | imag (const SparseMatrix< MT, SO > &sm) |
Returns a matrix containing the imaginary parts of each single element of sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Sqrt, SO > | sqrt (const SparseMatrix< MT, SO > &sm) |
Computes the square root of each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, InvSqrt, SO > | invsqrt (const SparseMatrix< MT, SO > &sm) |
Computes the inverse square root of each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Cbrt, SO > | cbrt (const SparseMatrix< MT, SO > &sm) |
Computes the cubic root of each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, InvCbrt, SO > | invcbrt (const SparseMatrix< MT, SO > &sm) |
Computes the inverse cubic root of each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO, typename DT > | |
const SMatForEachExpr< MT, Clip< DT >, SO > | clip (const SparseMatrix< MT, SO > &sm, const DT &min, const DT &max) |
Restricts each single element of the sparse matrix sm to the range ![]() | |
template<typename MT , bool SO, typename ET > | |
const SMatForEachExpr< MT, Pow< ET >, SO > | pow (const SparseMatrix< MT, SO > &sm, ET exp) |
Computes the exponential value for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Exp, SO > | exp (const SparseMatrix< MT, SO > &sm) |
Computes ![]() | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Log, SO > | log (const SparseMatrix< MT, SO > &sm) |
Computes the natural logarithm for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Log10, SO > | log10 (const SparseMatrix< MT, SO > &sm) |
Computes the common logarithm for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Sin, SO > | sin (const SparseMatrix< MT, SO > &sm) |
Computes the sine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Asin, SO > | asin (const SparseMatrix< MT, SO > &sm) |
Computes the inverse sine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Sinh, SO > | sinh (const SparseMatrix< MT, SO > &sm) |
Computes the hyperbolic sine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Asinh, SO > | asinh (const SparseMatrix< MT, SO > &sm) |
Computes the inverse hyperbolic sine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Cos, SO > | cos (const SparseMatrix< MT, SO > &sm) |
Computes the cosine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Acos, SO > | acos (const SparseMatrix< MT, SO > &sm) |
Computes the inverse cosine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Cosh, SO > | cosh (const SparseMatrix< MT, SO > &sm) |
Computes the hyperbolic cosine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Acosh, SO > | acosh (const SparseMatrix< MT, SO > &sm) |
Computes the inverse hyperbolic cosine for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Tan, SO > | tan (const SparseMatrix< MT, SO > &sm) |
Computes the tangent for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Atan, SO > | atan (const SparseMatrix< MT, SO > &sm) |
Computes the inverse tangent for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Tanh, SO > | tanh (const SparseMatrix< MT, SO > &sm) |
Computes the hyperbolic tangent for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Atanh, SO > | atanh (const SparseMatrix< MT, SO > &sm) |
Computes the inverse hyperbolic tangent for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Erf, SO > | erf (const SparseMatrix< MT, SO > &sm) |
Computes the error function for each non-zero element of the sparse matrix sm. More... | |
template<typename MT , bool SO> | |
const SMatForEachExpr< MT, Erfc, SO > | erfc (const SparseMatrix< MT, SO > &sm) |
Computes the complementary error function for each non-zero element of the sparse matrix sm. More... | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsNumeric< T2 >, DivExprTrait_< T1, T2 > > | operator/ (const SparseMatrix< T1, SO > &mat, T2 scalar) |
Division operator for the division of a sparse matrix by a scalar value ( ![]() | |
template<typename MT , bool SO> | |
const SMatScalarMultExpr< MT, UnderlyingBuiltin_< MT >, SO > | operator- (const SparseMatrix< MT, SO > &sm) |
Unary minus operator for the negation of a sparse matrix ( ![]() | |
template<typename T1 , bool SO, typename T2 > | |
const EnableIf_< IsNumeric< T2 >, MultExprTrait_< T1, T2 > > | operator* (const SparseMatrix< T1, SO > &mat, T2 scalar) |
Multiplication operator for the multiplication of a sparse matrix and a scalar value ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsNumeric< T1 >, MultExprTrait_< T1, T2 > > | operator* (T1 scalar, const SparseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a scalar value and a sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatSMatAddExpr< T1, T2 > | operator+ (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Addition operator for the addition of two row-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatSMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of two row-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatSMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Subtraction operator for the subtraction of two row-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T1 >, IsMatMatMultExpr< T1 > >, SMatSVecMultExpr< T1, T2 > > | operator* (const SparseMatrix< T1, false > &mat, const SparseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a row-major sparse matrix and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTDMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, false > &lhs, const DenseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a row-major sparse matrix and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTDMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, false > &lhs, const DenseMatrix< T2, true > &rhs) |
Subtraction operator for the subtraction of a row-major sparse matrix and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTSMatAddExpr< T1, T2 > | operator+ (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Addition operator for the addition of a row-major and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTSMatAddExpr< T2, T1 > | operator+ (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Addition operator for the addition of a column-major and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTSMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a row-major sparse matrix and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const SMatTSMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, true > &rhs) |
Subtraction operator for the subtraction of a row-major and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecDVecCrossExpr< T1, T2, TF > | operator% (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Operator for the cross product of a sparse vector and a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecDVecCrossExpr< T1, T2, TF > | cross (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Cross product of a sparse vector and a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecDVecDivExpr< T1, T2, TF > | operator/ (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Division operator for the componentwise division of a sparse vector and a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecDVecMultExpr< T1, T2, TF > | operator* (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Multiplication operator for the componentwise product of a sparse vector and a dense vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecDVecSubExpr< T1, T2, TF > | operator- (const SparseVector< T1, TF > &lhs, const DenseVector< T2, TF > &rhs) |
Subtraction operator for the subtraction of a sparse vector and a dense vector ( ![]() | |
template<typename VT , bool TF> | |
const SVecEvalExpr< VT, TF > | eval (const SparseVector< VT, TF > &sv) |
Forces the evaluation of the given sparse vector expression sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Abs, TF > | abs (const SparseVector< VT, TF > &sv) |
Applies the abs() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Floor, TF > | floor (const SparseVector< VT, TF > &sv) |
Applies the floor() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Ceil, TF > | ceil (const SparseVector< VT, TF > &sv) |
Applies the ceil() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Conj, TF > | conj (const SparseVector< VT, TF > &sv) |
Returns a vector containing the complex conjugate of each single element of sv. More... | |
template<typename VT , bool TF> | |
const CTransExprTrait_< VT > | ctrans (const SparseVector< VT, TF > &sv) |
Returns the conjugate transpose vector of sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Real, TF > | real (const SparseVector< VT, TF > &sv) |
Returns a vector containing the real parts of each single element of sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Imag, TF > | imag (const SparseVector< VT, TF > &sv) |
Returns a vector containing the imaginary parts of each single element of sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Sqrt, TF > | sqrt (const SparseVector< VT, TF > &sv) |
Computes the square root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, InvSqrt, TF > | invsqrt (const SparseVector< VT, TF > &sv) |
Computes the inverse square root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Cbrt, TF > | cbrt (const SparseVector< VT, TF > &sv) |
Computes the cubic root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, InvCbrt, TF > | invcbrt (const SparseVector< VT, TF > &sv) |
Computes the inverse cubic root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF, typename DT > | |
const SVecForEachExpr< VT, Clip< DT >, TF > | clip (const SparseVector< VT, TF > &sv, const DT &min, const DT &max) |
Restricts each single element of the sparse vector sv to the range ![]() | |
template<typename VT , bool TF, typename ET > | |
const SVecForEachExpr< VT, Pow< ET >, TF > | pow (const SparseVector< VT, TF > &sv, ET exp) |
Computes the exponential value for each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Exp, TF > | exp (const SparseVector< VT, TF > &sv) |
Computes ![]() | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Log, TF > | log (const SparseVector< VT, TF > &sv) |
Computes the natural logarithm of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Log10, TF > | log10 (const SparseVector< VT, TF > &sv) |
Computes the common logarithm of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Sin, TF > | sin (const SparseVector< VT, TF > &sv) |
Computes the sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Asin, TF > | asin (const SparseVector< VT, TF > &sv) |
Computes the inverse sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Sinh, TF > | sinh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Asinh, TF > | asinh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Cos, TF > | cos (const SparseVector< VT, TF > &sv) |
Computes the cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Acos, TF > | acos (const SparseVector< VT, TF > &sv) |
Computes the inverse cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Cosh, TF > | cosh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Acosh, TF > | acosh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Tan, TF > | tan (const SparseVector< VT, TF > &sv) |
Computes the tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Atan, TF > | atan (const SparseVector< VT, TF > &sv) |
Computes the inverse tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Tanh, TF > | tanh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Atanh, TF > | atanh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Erf, TF > | erf (const SparseVector< VT, TF > &sv) |
Computes the error function of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
const SVecForEachExpr< VT, Erfc, TF > | erfc (const SparseVector< VT, TF > &sv) |
Computes the complementary error function of each non-zero element of the sparse vector sv. More... | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T2 >, DivExprTrait_< T1, T2 > > | operator/ (const SparseVector< T1, TF > &vec, T2 scalar) |
Division operator for the divison of a sparse vector by a scalar value ( ![]() | |
template<typename VT , bool TF> | |
const SVecScalarMultExpr< VT, UnderlyingBuiltin_< VT >, TF > | operator- (const SparseVector< VT, TF > &sv) |
Unary minus operator for the negation of a sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T2 >, MultExprTrait_< T1, T2 > > | operator* (const SparseVector< T1, TF > &vec, T2 scalar) |
Multiplication operator for the multiplication of a sparse vector and a scalar value ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const EnableIf_< IsNumeric< T1 >, MultExprTrait_< T1, T2 > > | operator* (T1 scalar, const SparseVector< T2, TF > &vec) |
Multiplication operator for the multiplication of a scalar value and a sparse vector ( ![]() | |
template<typename VT , bool TF> | |
const SVecScalarMultExpr< VT, ElementType_< VT >, TF > | normalize (const SparseVector< VT, TF > &vec) |
Normalization of the sparse vector ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecSVecAddExpr< T1, T2, TF > | operator+ (const SparseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Addition operator for the addition of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecSVecCrossExpr< T1, T2, TF > | operator% (const SparseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Operator for the cross product of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecSVecCrossExpr< T1, T2, TF > | cross (const SparseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Cross product of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecSVecMultExpr< T1, T2, TF > | operator* (const SparseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Multiplication operator for the componentwise multiplication of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 , bool TF> | |
const SVecSVecSubExpr< T1, T2, TF > | operator- (const SparseVector< T1, TF > &lhs, const SparseVector< T2, TF > &rhs) |
Subtraction operator for the subtraction of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const SVecTDVecMultExpr< T1, T2 > | operator* (const SparseVector< T1, false > &lhs, const DenseVector< T2, true > &rhs) |
Multiplication operator for the sparse vector-dense vector outer product ( ![]() | |
template<typename T1 , typename T2 > | |
const SVecTSVecMultExpr< T1, T2 > | operator* (const SparseVector< T1, false > &lhs, const SparseVector< T2, true > &rhs) |
Multiplication operator for the sparse vector-sparse vector outer product ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatDMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, true > &lhs, const DenseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a column-major dense matrix and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T1 >, TDMatDVecMultExpr< T1, T2 > > | operator* (const DenseMatrix< T1, true > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a column-major dense matrix and a dense vector ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatSMatAddExpr< T1, T2 > | operator+ (const DenseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Addition operator for the addition of a column-major dense matrix and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatSMatAddExpr< T1, T2 > | operator+ (const SparseMatrix< T2, false > &lhs, const DenseMatrix< T1, true > &rhs) |
Addition operator for the addition of a row-major sparse matrix and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatSMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a column-major dense matrix and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatSMatSubExpr< T1, T2 > | operator- (const DenseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Subtraction operator for the subtraction of a column-major dense matrix and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T1 >, TDMatSVecMultExpr< T1, T2 > > | operator* (const DenseMatrix< T1, true > &mat, const SparseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a column-major dense matrix and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatTDMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, true > &lhs, const DenseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of two column-major dense matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const TDMatTSMatMultExpr< T1, T2 > | operator* (const DenseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a column-major dense matrix and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T2 >, TDVecDMatMultExpr< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const DenseMatrix< T2, false > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsMatMatMultExpr< T2 >, MultExprTrait_< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const DenseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a dense matrix-matrix multiplication expression ( ![]() | |
template<typename T1 , typename T2 > | |
DisableIf_< TDVecDVecMultExprHelper< T1, T2 >, const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > > | operator* (const DenseVector< T1, true > &lhs, const DenseVector< T2, false > &rhs) |
Default multiplication operator for the scalar product (inner product) of two dense vectors ( ![]() | |
template<typename T1 , typename T2 > | |
EnableIf_< TDVecDVecMultExprHelper< T1, T2 >, const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > > | operator* (const DenseVector< T1, true > &lhs, const DenseVector< T2, false > &rhs) |
SIMD optimized multiplication operator for the scalar product (inner product) of two dense vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T2 >, IsMatMatMultExpr< T2 > >, TDVecSMatMultExpr< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const SparseMatrix< T2, false > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsMatMatMultExpr< T2 >, MultExprTrait_< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const SparseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a sparse matrix-matrix multiplication expression ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | operator* (const DenseVector< T1, true > &lhs, const SparseVector< T2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of a dense and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T2 >, TDVecTDMatMultExpr< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const DenseMatrix< T2, true > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T2 >, TDVecTSMatMultExpr< T1, T2 > > | operator* (const DenseVector< T1, true > &vec, const SparseMatrix< T2, true > &mat) |
Multiplication operator for the multiplication of a transpose dense vector and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatDMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, true > &lhs, const DenseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a column-major sparse matrix and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatDMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, true > &lhs, const DenseMatrix< T2, false > &rhs) |
Subtraction operator for the subtraction of a column-major sparse matrix and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T1 >, IsMatMatMultExpr< T1 > >, TSMatDVecMultExpr< T1, T2 > > | operator* (const SparseMatrix< T1, true > &mat, const DenseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a column-major sparse matrix and a dense vector ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatSMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Multiplication operator for the multiplication of a column-major sparse matrix and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatSMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, false > &rhs) |
Subtraction operator for the subtraction of a column-major and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T1 >, TSMatSVecMultExpr< T1, T2 > > | operator* (const SparseMatrix< T1, true > &mat, const SparseVector< T2, false > &vec) |
Multiplication operator for the multiplication of a transpose sparse matrix and a sparse vector ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatTDMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, true > &lhs, const DenseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of a column-major sparse matrix and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatTSMatAddExpr< T1, T2 > | operator+ (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Addition operator for the addition of two column-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatTSMatMultExpr< T1, T2 > | operator* (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Multiplication operator for the multiplication of two column-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const TSMatTSMatSubExpr< T1, T2 > | operator- (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Subtraction operator for the subtraction of two column-major sparse matrices ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T2 >, TSVecDMatMultExpr< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const DenseMatrix< T2, false > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a row-major dense matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsMatMatMultExpr< T2 >, MultExprTrait_< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const DenseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a dense matrix-matrix multiplication expression ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | operator* (const SparseVector< T1, true > &lhs, const DenseVector< T2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of a sparse and a dense vector ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< IsMatMatMultExpr< T2 >, TSVecSMatMultExpr< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const SparseMatrix< T2, false > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a row-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 , bool SO> | |
const EnableIf_< IsMatMatMultExpr< T2 >, MultExprTrait_< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const SparseMatrix< T2, SO > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a sparse matrix-matrix multiplication expression ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | operator* (const SparseVector< T1, true > &lhs, const SparseVector< T2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of two sparse vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T2 >, IsMatMatMultExpr< T2 > >, TSVecTDMatMultExpr< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const DenseMatrix< T2, true > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a column-major dense matrix ( ![]() | |
template<typename T1 , typename T2 > | |
const DisableIf_< Or< IsSymmetric< T2 >, IsMatMatMultExpr< T2 > >, TSVecTSMatMultExpr< T1, T2 > > | operator* (const SparseVector< T1, true > &vec, const SparseMatrix< T2, true > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a column-major sparse matrix ( ![]() | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE constexpr bool | lessThan (const T1 &a, const T2 &b) noexcept(IsBuiltin< CommonType_< T1, T2 > >::value) |
Generic less-than comparison. More... | |
template<typename Type > | |
size_t | determineColumns (initializer_list< initializer_list< Type > > list) noexcept |
Determine the maximum number of columns specified by the given initializer list. More... | |
template<typename MT1 , bool SO, typename MT2 > | |
void | unmrq (DenseMatrix< MT1, SO > &C, const DenseMatrix< MT2, SO > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a RQ decomposition with another matrix. More... | |
template<typename PT , typename RT > | |
auto | erf (const Proxy< PT, RT > &proxy) -> decltype(erf(std::declval< RepresentedType_< PT > >())) |
Computing the error function of the represented element. More... | |
template<typename PT , typename RT > | |
auto | erfc (const Proxy< PT, RT > &proxy) -> decltype(erfc(std::declval< RepresentedType_< PT > >())) |
Computing the complementary error function of the represented element. More... | |
template<typename Archive , typename MT , bool SO> | |
void | serialize (Archive &archive, const Matrix< MT, SO > &mat) |
Serializes the given matrix and writes it to the archive. More... | |
template<typename Archive , typename MT , bool SO> | |
void | deserialize (Archive &archive, Matrix< MT, SO > &mat) |
Deserializes a matrix from the given archive. More... | |
template<typename Archive , typename VT , bool TF> | |
void | serialize (Archive &archive, const Vector< VT, TF > &vec) |
Serializes the given vector and writes it to the archive. More... | |
template<typename Archive , typename VT , bool TF> | |
void | deserialize (Archive &archive, Vector< VT, TF > &vec) |
Deserializes a vector from the given archive. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE void | clear (Type &clearable) |
Clearing the given value/object to the default state. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE constexpr EnableIf_< IsBuiltin< T >, T > | conj (T a) noexcept |
Computing the conjugate of the given value/object. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | conjugate (T &a) noexcept(IsNumeric< T >::value) |
In-place conjugation of the given value/object. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | cswap (T &a, T &b) noexcept(IsNumeric< T >::value) |
Swapping two conjugated values/objects. More... | |
template<typename T1 , typename T2 > | |
bool | equal (const T1 &a, const T2 &b) |
Generic equality check. More... | |
template<typename T , typename = EnableIf_< IsBuiltin<T> >> | |
auto | invcbrt (T a) noexcept-> decltype(inv(cbrt(a))) |
Returns the inverse cubic root of the given built-in value. More... | |
BLAZE_ALWAYS_INLINE float | inv (float a) noexcept |
Inverting the given single precision value. More... | |
BLAZE_ALWAYS_INLINE double | inv (double a) noexcept |
Inverting the given double precision value. More... | |
BLAZE_ALWAYS_INLINE long double | inv (long double a) noexcept |
Inverting the given extended precision value. More... | |
BLAZE_ALWAYS_INLINE complex< float > | inv (const complex< float > &a) noexcept |
Inverting the given single precision complex number. More... | |
BLAZE_ALWAYS_INLINE complex< double > | inv (const complex< double > &a) noexcept |
Inverting the given double precision complex number. More... | |
BLAZE_ALWAYS_INLINE complex< long double > | inv (const complex< long double > &a) noexcept |
Inverting the given extended precision complex number. More... | |
BLAZE_ALWAYS_INLINE void | invert (float &a) noexcept |
In-place inversion of the given single precision value. More... | |
BLAZE_ALWAYS_INLINE void | invert (double &a) noexcept |
In-place inversion of the given double precision value. More... | |
BLAZE_ALWAYS_INLINE void | invert (long double &a) noexcept |
In-place inversion of the given extended precision value. More... | |
BLAZE_ALWAYS_INLINE void | invert (complex< float > &a) noexcept |
In-place inversion of the given single precision complex number. More... | |
BLAZE_ALWAYS_INLINE void | invert (complex< double > &a) noexcept |
In-place inversion of the given double precision complex number. More... | |
BLAZE_ALWAYS_INLINE void | invert (complex< long double > &a) noexcept |
In-place inversion of the given extended precision complex number. More... | |
template<typename T , typename = EnableIf_< IsBuiltin<T> >> | |
auto | invsqrt (T a) noexcept-> decltype(inv(sqrt(a))) |
Returns the inverse square root of the given built-in value. More... | |
template<typename T , typename = EnableIf_< IsBuiltin<T> >> | |
auto | invsqrt (const complex< T > &a) noexcept-> decltype(inv(sqrt(a))) |
Returns the inverse square root of the given complex number. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE bool | isDefault (const Type &v) noexcept(IsBuiltin< Type >::value) |
Returns whether the given value/object is in default state. More... | |
template<typename Type , typename = EnableIf_< IsNumeric<Type> >> | |
BLAZE_ALWAYS_INLINE bool | isDivisor (const Type &v) |
Returns whether the given value/object is a valid divisor. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE EnableIf_< IsNumeric< T >, bool > | isnan (T a) noexcept |
Platform independent implementation of the C99 isnan function. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE EnableIf_< IsNumeric< Type >, bool > | isOne (const Type &v) |
Returns whether the given value/object represents the numeric value 1. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE bool | isReal (const Type &v) noexcept |
Returns whether the given value/object represents a real number. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE EnableIf_< IsNumeric< Type >, bool > | isZero (const Type &v) noexcept |
Returns whether the given value/object represents the numeric value 0. More... | |
template<typename Type > | |
BLAZE_ALWAYS_INLINE void | reset (Type &resettable) |
Resetting the given value/object to the default value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE constexpr EnableIf_< Or< IsBuiltin< T >, IsComplex< T > >, const T & > | serial (const T &a) noexcept |
Formal serialization of the evaluation of the given argument. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE constexpr MultExprTrait_< T, T > | sq (const T &a) noexcept(noexcept(a *a)) |
Squaring the given value/object. More... | |
BLAZE_ALWAYS_INLINE const SIMDuint8 | abs (const SIMDint8 &a) noexcept=delete |
Absolute value of a vector of 8-bit signed integral values. More... | |
BLAZE_ALWAYS_INLINE const SIMDuint16 | abs (const SIMDint16 &a) noexcept=delete |
Absolute value of a vector of 16-bit signed integral values. More... | |
BLAZE_ALWAYS_INLINE const SIMDuint32 | abs (const SIMDint32 &a) noexcept=delete |
Absolute value of a vector of 32-bit signed integral values. More... | |
BLAZE_ALWAYS_INLINE const SIMDuint64 | abs (const SIMDint64 &a) noexcept=delete |
Absolute value of a vector of 64-bit signed integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | acos (const SIMDf32< T > &a) noexcept=delete |
Inverse cosine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | acos (const SIMDf64< T > &a) noexcept=delete |
Inverse cosine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | acosh (const SIMDf32< T > &a) noexcept=delete |
Inverse hyperbolic cosine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | acosh (const SIMDf64< T > &a) noexcept=delete |
Inverse hyperbolic cosine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDi8< T > &a, const SIMDi8< T > &b) noexcept=delete |
Addition of two vectors of 8-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint8 | operator+ (const SIMDi8< T1 > &a, const SIMDi8< T2 > &b) noexcept=delete |
Addition of two vectors of 8-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDci8< T > &a, const SIMDci8< T > &b) noexcept=delete |
Addition of two vectors of 8-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDi16< T > &a, const SIMDi16< T > &b) noexcept=delete |
Addition of two vectors of 16-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint16 | operator+ (const SIMDi16< T1 > &a, const SIMDi16< T2 > &b) noexcept=delete |
Addition of two vectors of 16-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDci16< T > &a, const SIMDci16< T > &b) noexcept=delete |
Addition of two vectors of 16-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDi32< T > &a, const SIMDi32< T > &b) noexcept=delete |
Addition of two vectors of 32-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint32 | operator+ (const SIMDi32< T1 > &a, const SIMDi32< T2 > &b) noexcept=delete |
Addition of two vectors of 32-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDci32< T > &a, const SIMDci32< T > &b) noexcept=delete |
Addition of two vectors of 32-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDi64< T > &a, const SIMDi64< T > &b) noexcept=delete |
Addition of two vectors of 64-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint64 | operator+ (const SIMDi64< T1 > &a, const SIMDi64< T2 > &b) noexcept=delete |
Addition of two vectors of 64-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator+ (const SIMDci64< T > &a, const SIMDci64< T > &b) noexcept=delete |
Addition of two vectors of 64-bit integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | operator+ (const SIMDf32< T1 > &a, const SIMDf32< T2 > &b) noexcept=delete |
Addition of two vectors of single precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator+ (const SIMDcfloat &a, const SIMDcfloat &b) noexcept=delete |
Addition of two vectors of single precision complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | operator+ (const SIMDf64< T1 > &a, const SIMDf64< T2 > &b) noexcept=delete |
Addition of two vectors of double precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator+ (const SIMDcdouble &a, const SIMDcdouble &b) noexcept=delete |
Addition of two vectors of double precision complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | asin (const SIMDf32< T > &a) noexcept=delete |
Inverse sine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | asin (const SIMDf64< T > &a) noexcept=delete |
Inverse sine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | asinh (const SIMDf32< T > &a) noexcept=delete |
Inverse hyperbolic sine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | asinh (const SIMDf64< T > &a) noexcept=delete |
Inverse hyperbolic sine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | atan (const SIMDf32< T > &a) noexcept=delete |
Inverse tangent of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | atan (const SIMDf64< T > &a) noexcept=delete |
Inverse tangent of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | atanh (const SIMDf32< T > &a) noexcept=delete |
Inverse hyperbolic tangent of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | atanh (const SIMDf64< T > &a) noexcept=delete |
Inverse hyperbolic tangent of a vector of double precision floating point values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE T1 & | operator+= (SIMDPack< T1 > &lhs, const SIMDPack< T2 > &rhs) |
Addition assignment operator for the addition of two SIMD packs. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE T1 & | operator-= (SIMDPack< T1 > &lhs, const SIMDPack< T2 > &rhs) |
Subtraction assignment operator for the subtraction of two SIMD packs. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE T1 & | operator*= (SIMDPack< T1 > &lhs, const SIMDPack< T2 > &rhs) |
Multiplication assignment operator for the multiplication of two SIMD packs. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE T1 & | operator/= (SIMDPack< T1 > &lhs, const SIMDPack< T2 > &rhs) |
Division assignment operator for the division of two SIMD packs. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | cbrt (const SIMDf32< T > &a) noexcept=delete |
Computes the cubic root for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | cbrt (const SIMDf64< T > &a) noexcept=delete |
Computes the cubic root for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | ceil (const SIMDf32< T > &a) noexcept=delete |
Computes the largest integer value not less than the given value for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | ceil (const SIMDf64< T > &a) noexcept=delete |
Computes the largest integer value not less than the given value for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDi8< T > &a) noexcept |
Complex conjugate of a vector of 8-bit integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDi16< T > &a) noexcept |
Complex conjugate of a vector of 16-bit integral values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint16 | conj (const SIMDcint16 &a) noexcept=delete |
Complex conjugate of a vector of 16-bit integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDi32< T > &a) noexcept |
Complex conjugate of a vector of 32-bit integral values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint32 | conj (const SIMDcint32 &a) noexcept=delete |
Complex conjugate of a vector of 32-bit integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDi64< T > &a) noexcept |
Complex conjugate of a vector of 64-bit integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDf32< T > &a) noexcept |
Complex conjugate of a vector of single precision floating point values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | conj (const SIMDcfloat &a) noexcept=delete |
Complex conjugate of a vector of single precision complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | conj (const SIMDf64< T > &a) noexcept |
Complex conjugate of a vector of double precision floating point values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | conj (const SIMDcdouble &a) noexcept=delete |
Complex conjugate of a vector of double precision complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | cos (const SIMDf32< T > &a) noexcept=delete |
Cosine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | cos (const SIMDf64< T > &a) noexcept=delete |
Cosine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | cosh (const SIMDf32< T > &a) noexcept=delete |
Hyperbolic cosine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | cosh (const SIMDf64< T > &a) noexcept=delete |
Hyperbolic cosine of a vector of double precision floating point values. More... | |
BLAZE_ALWAYS_INLINE const SIMDint32 | operator/ (const SIMDint32 &a, const SIMDint32 &b) noexcept=delete |
Division of two vectors of 32-bit signed integral SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint32 | operator/ (const SIMDcint32 &a, const SIMDint32 &b) noexcept=delete |
Scaling of a vector of 32-bit signed integral complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDint64 | operator/ (const SIMDint64 &a, const SIMDint64 &b) noexcept=delete |
Division of two vectors of 64-bit signed integral SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint64 | operator/ (const SIMDcint64 &a, const SIMDint64 &b) noexcept=delete |
Scaling of a vector of 64-bit signed integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | operator/ (const SIMDf32< T1 > &a, const SIMDf32< T2 > &b) noexcept=delete |
Division of two vectors of single precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator/ (const SIMDcfloat &a, const SIMDfloat &b) noexcept=delete |
Scaling of a vector of single precision floating point values complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | operator/ (const SIMDf64< T1 > &a, const SIMDf64< T2 > &b) noexcept=delete |
Division of two vectors of double precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator/ (const SIMDcdouble &a, const SIMDdouble &b) noexcept=delete |
Scaling of a vector of double precision floating point values complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | erf (const SIMDf32< T > &a) noexcept=delete |
Computes the error function for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | erf (const SIMDf64< T > &a) noexcept=delete |
Computes the error function for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | erfc (const SIMDf32< T > &a) noexcept=delete |
Computes the complementary error function for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | erfc (const SIMDf64< T > &a) noexcept=delete |
Computes the complementary error function for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | exp (const SIMDf32< T > &a) noexcept=delete |
Computes ![]() | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | exp (const SIMDf64< T > &a) noexcept=delete |
Computes ![]() | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | floor (const SIMDf32< T > &a) noexcept=delete |
Computes the largest integer value not greater than the given value for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | floor (const SIMDf64< T > &a) noexcept=delete |
Computes the largest integer value not greater than the given value for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | invcbrt (const SIMDf32< T > &a) noexcept=delete |
Computes the inverse cubic root for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | invcbrt (const SIMDf64< T > &a) noexcept=delete |
Computes the inverse cubic root for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | invsqrt (const SIMDf32< T > &a) noexcept=delete |
Computes the inverse square root for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | invsqrt (const SIMDf64< T > &a) noexcept=delete |
Computes the inverse square root for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDint8, SIMDuint8 > > | loada (const T *address) noexcept |
Loads a vector of 1-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDcint8, SIMDcuint8 > > | loada (const complex< T > *address) noexcept |
Loads a vector of 1-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDint16, SIMDuint16 > > | loada (const T *address) noexcept |
Loads a vector of 2-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDcint16, SIMDcuint16 > > | loada (const complex< T > *address) noexcept |
Loads a vector of 2-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDint32, SIMDuint32 > > | loada (const T *address) noexcept |
Loads a vector of 4-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDcint32, SIMDcuint32 > > | loada (const complex< T > *address) noexcept |
Loads a vector of 4-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDint64, SIMDuint64 > > | loada (const T *address) noexcept |
Loads a vector of 8-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDcint64, SIMDcuint64 > > | loada (const complex< T > *address) noexcept |
Loads a vector of 8-byte integral complex values. More... | |
BLAZE_ALWAYS_INLINE const SIMDfloat | loada (const float *address) noexcept |
Loads a vector of 'float' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | loada (const complex< float > *address) noexcept |
Loads a vector of 'complex<float>' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDdouble | loada (const double *address) noexcept |
Loads a vector of 'double' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | loada (const complex< double > *address) noexcept |
Loads a vector of 'complex<double>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDint8, SIMDuint8 > > | loadu (const T *address) noexcept |
Loads a vector of 1-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDcint8, SIMDcuint8 > > | loadu (const complex< T > *address) noexcept |
Loads a vector of 1-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDint16, SIMDuint16 > > | loadu (const T *address) noexcept |
Loads a vector of 2-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDcint16, SIMDcuint16 > > | loadu (const complex< T > *address) noexcept |
Loads a vector of 2-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDint32, SIMDuint32 > > | loadu (const T *address) noexcept |
Loads a vector of 4-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDcint32, SIMDcuint32 > > | loadu (const complex< T > *address) noexcept |
Loads a vector of 4-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDint64, SIMDuint64 > > | loadu (const T *address) noexcept |
Loads a vector of 8-byte integral values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDcint64, SIMDcuint64 > > | loadu (const complex< T > *address) noexcept |
Loads a vector of 8-byte integral complex values. More... | |
BLAZE_ALWAYS_INLINE const SIMDfloat | loadu (const float *address) noexcept |
Loads a vector of 'float' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | loadu (const complex< float > *address) noexcept |
Loads a vector of 'complex<float>' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDdouble | loadu (const double *address) noexcept |
Loads a vector of 'double' values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | loadu (const complex< double > *address) noexcept |
Loads a vector of 'complex<double>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | log (const SIMDf32< T > &a) noexcept=delete |
Computes the natural logarithm for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | log (const SIMDf64< T > &a) noexcept=delete |
Computes the natural logarithm for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | log10 (const SIMDf32< T > &a) noexcept=delete |
Computes the common logarithm for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | log10 (const SIMDf64< T > &a) noexcept=delete |
Computes the common logarithm for a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator* (const SIMDi16< T > &a, const SIMDi16< T > &b) noexcept=delete |
Multiplication of two vectors of 16-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint16 | operator* (const SIMDi16< T1 > &a, const SIMDi16< T2 > &b) noexcept=delete |
Multiplication of two vectors of 16-bit integral SIMD values of different type. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint16 | operator* (const SIMDcint16 &a, const SIMDint16 &b) noexcept=delete |
Scaling of a vector of 16-bit signed integral complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcuint16 | operator* (const SIMDcuint16 &a, const SIMDuint16 &b) noexcept=delete |
Scaling of a vector of 16-bit unsigned integral complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint16 | operator* (const SIMDint16 &a, const SIMDcint16 &b) noexcept=delete |
Scaling of a vector of 16-bit signed integral complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcuint16 | operator* (const SIMDuint16 &a, const SIMDcuint16 &b) noexcept=delete |
Scaling of a vector of 16-bit unsigned integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator* (const SIMDci16< T > &a, const SIMDci16< T > &b) noexcept=delete |
Multiplication of two vectors of 16-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator* (const SIMDi32< T > &a, const SIMDi32< T > &b) noexcept=delete |
Multiplication of two vectors of 32-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint32 | operator* (const SIMDi32< T1 > &a, const SIMDi32< T2 > &b) noexcept=delete |
Multiplication of two vectors of 32-bit integral SIMD values of different type. More... | |
BLAZE_ALWAYS_INLINE const SIMDcint32 | operator* (const SIMDcint32 &a, const SIMDint32 &b) noexcept=delete |
Scaling of a vector of 32-bit signed integral complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcuint32 | operator* (const SIMDcuint32 &a, const SIMDuint32 &b) noexcept=delete |
Scaling of a vector of 32-bit unsigned integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDcint32 | operator* (const SIMDint32 &a, const SIMDcint32 &b) noexcept=delete |
Scaling of a vector of 32-bit signed integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDcuint32 | operator* (const SIMDuint32 &a, const SIMDcuint32 &b) noexcept=delete |
Scaling of a vector of 32-bit unsigned integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator* (const SIMDci32< T > &a, const SIMDci32< T > &b) noexcept=delete |
Multiplication of two vectors of 32-bit integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDf32MultExpr< T1, T2 > | operator* (const SIMDf32< T1 > &a, const SIMDf32< T2 > &b) noexcept |
Multiplication of two vectors of single precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator* (const SIMDcfloat &a, const SIMDfloat &b) noexcept=delete |
Scaling of a vector of single precision complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator* (const SIMDfloat &a, const SIMDcfloat &b) noexcept=delete |
Scaling of a vector of single precision complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator* (const SIMDcfloat &a, const SIMDcfloat &b) noexcept=delete |
Multiplication of two vectors of single precision complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDf64MultExpr< T1, T2 > | operator* (const SIMDf64< T1 > &a, const SIMDf64< T2 > &b) noexcept |
Multiplication of two vectors of double precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator* (const SIMDcdouble &a, const SIMDdouble &b) noexcept=delete |
Scaling of a vector of double precision complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator* (const SIMDdouble &a, const SIMDcdouble &b) noexcept=delete |
Scaling of a vector of double precision complex SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator* (const SIMDcdouble &a, const SIMDcdouble &b) noexcept=delete |
Multiplication of two vectors of double precision complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | pow (const SIMDf32< T > &a, const SIMDf32< T > &b) noexcept=delete |
Computes the exponential value of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | pow (const SIMDf64< T > &a, const SIMDf64< T > &b) noexcept=delete |
Computes the exponential value of a vector of double precision floating point values. More... | |
BLAZE_ALWAYS_INLINE const complex< int8_t > | sum (const SIMDcint8 &a) noexcept |
Returns the sum of all elements in the 8-bit integral complex SIMD vector. More... | |
BLAZE_ALWAYS_INLINE int16_t | sum (const SIMDint16 &a) noexcept |
Returns the sum of all elements in the 16-bit integral SIMD vector. More... | |
BLAZE_ALWAYS_INLINE const complex< int16_t > | sum (const SIMDcint16 &a) noexcept |
Returns the sum of all elements in the 16-bit integral complex SIMD vector. More... | |
BLAZE_ALWAYS_INLINE int32_t | sum (const SIMDint32 &a) noexcept |
Returns the sum of all elements in the 32-bit integral SIMD vector. More... | |
BLAZE_ALWAYS_INLINE const complex< int32_t > | sum (const SIMDcint32 &a) noexcept |
Returns the sum of all elements in the 32-bit integral complex SIMD vector. More... | |
BLAZE_ALWAYS_INLINE int64_t | sum (const SIMDint64 &a) noexcept |
Returns the sum of all elements in the 64-bit integral SIMD vector. More... | |
BLAZE_ALWAYS_INLINE const complex< int64_t > | sum (const SIMDcint64 &a) noexcept |
Returns the sum of all elements in the 64-bit integral complex SIMD vector. More... | |
BLAZE_ALWAYS_INLINE float | sum (const SIMDfloat &a) noexcept |
Returns the sum of all elements in the single precision floating point SIMD vector. More... | |
BLAZE_ALWAYS_INLINE const complex< float > | sum (const SIMDcfloat &a) noexcept |
Returns the sum of all elements in the single precision complex SIMD vector. More... | |
BLAZE_ALWAYS_INLINE double | sum (const SIMDdouble &a) noexcept |
Returns the sum of all elements in the double precision floating point SIMD vector. More... | |
BLAZE_ALWAYS_INLINE const complex< double > | sum (const SIMDcdouble &a) noexcept |
Returns the sum of all elements in the double precision complex SIMD vector. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDint8, SIMDuint8 > > | set (T value) noexcept |
Sets all values in the vector to the given 1-byte integral value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 1UL > >, If_< IsSigned< T >, SIMDcint8, SIMDcuint8 > > | set (complex< T > value) noexcept |
Sets all values in the vector to the given 1-byte integral complex value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDint16, SIMDuint16 > > | set (T value) noexcept |
Sets all values in the vector to the given 2-byte integral value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 2UL > >, If_< IsSigned< T >, SIMDcint16, SIMDcuint16 > > | set (complex< T > value) noexcept |
Sets all values in the vector to the given 2-byte integral complex value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDint32, SIMDuint32 > > | set (T value) noexcept |
Sets all values in the vector to the given 4-byte integral value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 4UL > >, If_< IsSigned< T >, SIMDcint32, SIMDcuint32 > > | set (complex< T > value) noexcept |
Sets all values in the vector to the given 4-byte integral complex value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDint64, SIMDuint64 > > | set (T value) noexcept |
Sets all values in the vector to the given 8-byte integral value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const EnableIf_< And< IsIntegral< T >, HasSize< T, 8UL > >, If_< IsSigned< T >, SIMDcint64, SIMDcuint64 > > | set (complex< T > value) noexcept |
Sets all values in the vector to the given 8-byte integral complex value. More... | |
BLAZE_ALWAYS_INLINE const SIMDfloat | set (float value) noexcept |
Sets all values in the vector to the given 'float' value. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | set (const complex< float > &value) noexcept |
Sets all values in the vector to the given 'complex<float>' value. More... | |
BLAZE_ALWAYS_INLINE const SIMDdouble | set (double value) noexcept |
Sets all values in the vector to the given 'double' value. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | set (const complex< double > &value) noexcept |
Sets all values in the vector to the given 'complex<double>' value. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDi8< T > &value) noexcept |
Setting an integral SIMD type with 8-bit data values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDci8< T > &value) noexcept |
Setting an integral SIMD type with 8-bit complex values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDi16< T > &value) noexcept |
Setting an integral SIMD type with 16-bit data values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDci16< T > &value) noexcept |
Setting an integral SIMD type with 16-bit complex values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDi32< T > &value) noexcept |
Setting an integral SIMD type with 32-bit data values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDci32< T > &value) noexcept |
Setting an integral SIMD type with 32-bit complex values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDi64< T > &value) noexcept |
Setting an integral SIMD type with 64-bit data values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDci64< T > &value) noexcept |
Setting an integral SIMD type with 64-bit complex values to zero. More... | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDfloat &value) noexcept |
Setting a floating point SIMD type with 32-bit single precision data values to zero. More... | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDcfloat &value) noexcept |
Setting a floating point SIMD type with 32-bit single precision complex values to zero. More... | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDdouble &value) noexcept |
Setting a floating point SIMD type with 64-bit double precision data values to zero. More... | |
BLAZE_ALWAYS_INLINE void | setzero (SIMDcdouble &value) noexcept |
Setting a floating point SIMD type with 32-bit double precision complex values to zero. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | sin (const SIMDf32< T > &a) noexcept=delete |
Sine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | sin (const SIMDf64< T > &a) noexcept=delete |
Sine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | sinh (const SIMDf32< T > &a) noexcept=delete |
Hyperbolic sine of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | sinh (const SIMDf64< T > &a) noexcept=delete |
Hyperbolic sine of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | sqrt (const SIMDf32< T > &a) noexcept=delete |
Computes the square root for a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | sqrt (const SIMDf64< T > &a) noexcept=delete |
Computes the square root for a vector of double precision floating point values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | storea (T1 *address, const SIMDi8< T2 > &value) noexcept |
Aligned store of a vector of 1-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | storea (complex< T1 > *address, const SIMDci8< T2 > &value) noexcept |
Aligned store of a vector of 1-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | storea (T1 *address, const SIMDi16< T2 > &value) noexcept |
Aligned store of a vector of 2-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | storea (complex< T1 > *address, const SIMDci16< T2 > &value) noexcept |
Aligned store of a vector of 2-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | storea (T1 *address, const SIMDi32< T2 > &value) noexcept |
Aligned store of a vector of 4-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | storea (complex< T1 > *address, const SIMDci32< T2 > &value) noexcept |
Aligned store of a vector of 4-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | storea (T1 *address, const SIMDi64< T2 > &value) noexcept |
Aligned store of a vector of 8-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | storea (complex< T1 > *address, const SIMDci64< T2 > &value) noexcept |
Aligned store of a vector of 8-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | storea (float *address, const SIMDf32< T > &value) noexcept |
Aligned store of a vector of 'float' values. More... | |
BLAZE_ALWAYS_INLINE void | storea (complex< float > *address, const SIMDcfloat &value) noexcept |
Aligned store of a vector of 'complex<float>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | storea (double *address, const SIMDf64< T > &value) noexcept |
Aligned store of a vector of 'double' values. More... | |
BLAZE_ALWAYS_INLINE void | storea (complex< double > *address, const SIMDcdouble &value) noexcept |
Aligned store of a vector of 'complex<double>' values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | storeu (T1 *address, const SIMDi8< T2 > &value) noexcept |
Unaligned store of a vector of 1-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | storeu (complex< T1 > *address, const SIMDci8< T2 > &value) noexcept |
Unaligned store of a vector of 1-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | storeu (T1 *address, const SIMDi16< T2 > &value) noexcept |
Unaligned store of a vector of 2-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | storeu (complex< T1 > *address, const SIMDci16< T2 > &value) noexcept |
Unaligned store of a vector of 2-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | storeu (T1 *address, const SIMDi32< T2 > &value) noexcept |
Unaligned store of a vector of 4-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | storeu (complex< T1 > *address, const SIMDci32< T2 > &value) noexcept |
Unaligned store of a vector of 4-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | storeu (T1 *address, const SIMDi64< T2 > &value) noexcept |
Unaligned store of a vector of 8-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | storeu (complex< T1 > *address, const SIMDci64< T2 > &value) noexcept |
Unaligned store of a vector of 8-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | storeu (float *address, const SIMDf32< T > &value) noexcept |
Unaligned store of a vector of 'float' values. More... | |
BLAZE_ALWAYS_INLINE void | storeu (complex< float > *address, const SIMDcfloat &value) noexcept |
Unaligned store of a vector of 'complex<float>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | storeu (double *address, const SIMDf64< T > &value) noexcept |
Unaligned store of a vector of 'double' values. More... | |
BLAZE_ALWAYS_INLINE void | storeu (complex< double > *address, const SIMDcdouble &value) noexcept |
Unaligned store of a vector of 'complex<double>' values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | stream (T1 *address, const SIMDi8< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 1-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 1UL > > > | stream (complex< T1 > *address, const SIMDci8< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 1-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | stream (T1 *address, const SIMDi16< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 2-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 2UL > > > | stream (complex< T1 > *address, const SIMDci16< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 2-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | stream (T1 *address, const SIMDi32< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 4-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 4UL > > > | stream (complex< T1 > *address, const SIMDci32< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 4-byte integral complex values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | stream (T1 *address, const SIMDi64< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 8-byte integral values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE EnableIf_< And< IsIntegral< T1 >, HasSize< T1, 8UL > > > | stream (complex< T1 > *address, const SIMDci64< T2 > &value) noexcept |
Aligned, non-temporal store of a vector of 8-byte integral complex values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | stream (float *address, const SIMDf32< T > &value) noexcept |
Aligned, non-temporal store of a vector of 'float' values. More... | |
BLAZE_ALWAYS_INLINE void | stream (complex< float > *address, const SIMDcfloat &value) noexcept |
Aligned, non-temporal store of a vector of 'complex<float>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE void | stream (double *address, const SIMDf64< T > &value) noexcept |
Aligned, non-temporal store of a vector of 'double' values. More... | |
BLAZE_ALWAYS_INLINE void | stream (complex< double > *address, const SIMDcdouble &value) noexcept |
Aligned, non-temporal store of a vector of 'complex<double>' values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDi8< T > &a, const SIMDi8< T > &b) noexcept=delete |
Subtraction of two vectors of 8-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint8 | operator- (const SIMDi8< T1 > &a, const SIMDi8< T2 > &b) noexcept=delete |
Subtraction of two vectors of 8-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDci8< T > &a, const SIMDci8< T > &b) noexcept=delete |
Subtraction of two vectors of 8-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDi16< T > &a, const SIMDi16< T > &b) noexcept=delete |
Subtraction of two vectors of 16-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint16 | operator- (const SIMDi16< T1 > &a, const SIMDi16< T2 > &b) noexcept=delete |
Subtraction of two vectors of 16-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDci16< T > &a, const SIMDci16< T > &b) noexcept=delete |
Subtraction of two vectors of 16-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDi32< T > &a, const SIMDi32< T > &b) noexcept=delete |
Subtraction of two vectors of 32-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint32 | operator- (const SIMDi32< T1 > &a, const SIMDi32< T2 > &b) noexcept=delete |
Subtraction of two vectors of 32-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDci32< T > &a, const SIMDci32< T > &b) noexcept=delete |
Subtraction of two vectors of 32-bit integral complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDi64< T > &a, const SIMDi64< T > &b) noexcept=delete |
Subtraction of two vectors of 64-bit integral SIMD values of the same type. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDuint64 | operator- (const SIMDi64< T1 > &a, const SIMDi64< T2 > &b) noexcept=delete |
Subtraction of two vectors of 64-bit integral SIMD values of different type. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const T | operator- (const SIMDci64< T > &a, const SIMDci64< T > &b) noexcept=delete |
Subtraction of two vectors of 64-bit integral complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | operator- (const SIMDf32< T1 > &a, const SIMDf32< T2 > &b) noexcept=delete |
Subtraction of two vectors of single precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcfloat | operator- (const SIMDcfloat &a, const SIMDcfloat &b) noexcept=delete |
Subtraction of two vectors of single precision complex SIMD values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | operator- (const SIMDf64< T1 > &a, const SIMDf64< T2 > &b) noexcept=delete |
Subtraction of two vectors of double precision floating point SIMD values. More... | |
BLAZE_ALWAYS_INLINE const SIMDcdouble | operator- (const SIMDcdouble &a, const SIMDcdouble &b) noexcept=delete |
Subtraction of two vectors of double precision complex SIMD values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | tan (const SIMDf32< T > &a) noexcept=delete |
Tangent of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | tan (const SIMDf64< T > &a) noexcept=delete |
Tangent of a vector of double precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDfloat | tanh (const SIMDf32< T > &a) noexcept=delete |
Hyperbolic tangent of a vector of single precision floating point values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE const SIMDdouble | tanh (const SIMDf64< T > &a) noexcept=delete |
Hyperbolic tangent of a vector of double precision floating point values. More... | |
template<typename T1 , typename T2 > | |
bool | operator== (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Equality operator for the comparison of two row-major sparse matrices. More... | |
template<typename T1 , typename T2 > | |
bool | operator== (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Equality operator for the comparison of two column-major sparse matrices. More... | |
template<typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, ColumnExprTrait_< MT > > | column (Matrix< MT, SO > &matrix, size_t index) |
Creating a view on a specific column of the given matrix. More... | |
template<typename MT , bool SO> | |
const DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, ColumnExprTrait_< const MT > > | column (const Matrix< MT, SO > &matrix, size_t index) |
Creating a view on a specific column of the given constant matrix. More... | |
template<typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, ColumnExprTrait_< MT > > | column (Matrix< MT, SO > &&matrix, size_t index) |
Creating a view on a specific column of the given temporary matrix. More... | |
template<typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, RowExprTrait_< MT > > | row (Matrix< MT, SO > &matrix, size_t index) |
Creating a view on a specific row of the given matrix. More... | |
template<typename MT , bool SO> | |
const DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, RowExprTrait_< const MT > > | row (const Matrix< MT, SO > &matrix, size_t index) |
Creating a view on a specific row of the given constant matrix. More... | |
template<typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, RowExprTrait_< MT > > | row (Matrix< MT, SO > &&matrix, size_t index) |
Creating a view on a specific row of the given temporary matrix. More... | |
template<typename MT , bool SO> | |
SubmatrixExprTrait_< MT, unaligned > | submatrix (Matrix< MT, SO > &matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given matrix. More... | |
template<typename MT , bool SO> | |
const SubmatrixExprTrait_< const MT, unaligned > | submatrix (const Matrix< MT, SO > &matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given constant matrix. More... | |
template<typename MT , bool SO> | |
SubmatrixExprTrait_< MT, unaligned > | submatrix (Matrix< MT, SO > &&matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given temporary matrix. More... | |
template<bool AF, typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, SubmatrixExprTrait_< MT, AF > > | submatrix (Matrix< MT, SO > &matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given matrix. More... | |
template<bool AF, typename MT , bool SO> | |
const DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, SubmatrixExprTrait_< const MT, AF > > | submatrix (const Matrix< MT, SO > &matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given constant matrix. More... | |
template<bool AF, typename MT , bool SO> | |
DisableIf_< Or< IsComputation< MT >, IsTransExpr< MT > >, SubmatrixExprTrait_< MT, AF > > | submatrix (Matrix< MT, SO > &&matrix, size_t row, size_t column, size_t m, size_t n) |
Creating a view on a specific submatrix of the given temporary matrix. More... | |
template<typename VT , bool TF> | |
SubvectorExprTrait_< VT, unaligned > | subvector (Vector< VT, TF > &vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given vector. More... | |
template<typename VT , bool TF> | |
const SubvectorExprTrait_< const VT, unaligned > | subvector (const Vector< VT, TF > &vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given constant vector. More... | |
template<typename VT , bool TF> | |
SubvectorExprTrait_< VT, unaligned > | subvector (Vector< VT, TF > &&vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given temporary vector. More... | |
template<bool AF, typename VT , bool TF> | |
DisableIf_< Or< IsComputation< VT >, IsTransExpr< VT > >, SubvectorExprTrait_< VT, AF > > | subvector (Vector< VT, TF > &vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given vector. More... | |
template<bool AF, typename VT , bool TF> | |
const DisableIf_< Or< IsComputation< VT >, IsTransExpr< VT > >, SubvectorExprTrait_< const VT, AF > > | subvector (const Vector< VT, TF > &vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given constant vector. More... | |
template<bool AF, typename VT , bool TF> | |
DisableIf_< Or< IsComputation< VT >, IsTransExpr< VT > >, SubvectorExprTrait_< VT, AF > > | subvector (Vector< VT, TF > &&vector, size_t index, size_t size) |
Creating a view on a specific subvector of the given temporary vector. More... | |
template<typename InputIterator , typename OutputIterator > | |
OutputIterator | transfer (InputIterator first, InputIterator last, OutputIterator dest) |
Transfers the elements from the given source range to the destination range. More... | |
template<typename D , typename S > | |
size_t | polymorphicCount (S *const *first, S *const *last) |
Counts the pointer to objects with dynamic type D. More... | |
template<typename D , typename S > | |
S *const * | polymorphicFind (S *const *first, S *const *last) |
Finds the next pointer to an object with dynamic type D. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE bool | checkAlignment (const T *address) |
Checks the alignment of the given address. More... | |
bool | ASSERT_MESSAGE (const char *) |
Assertion helper function.The ASSERT_MESSAGE function is a small helper function to assist in printing an informative message in case an assert fires. This function builds on the ideas of Matthew Wilson, who directly combines a C-string error message with the run time expression (Imperfect C++, ISBN: 0321228774): More... | |
template<typename To , typename From > | |
To | convert (const From &from) |
Conversion from type From to type To. More... | |
template<typename T , unsigned int N> | |
size_t | dimensionof (T(&a)[N]) |
Static evaluation of array dimensions. More... | |
template<typename T > | |
EnableIf_< IsBuiltin< T >, T * > | allocate (size_t size) |
Aligned array allocation for built-in data types. More... | |
template<typename T > | |
DisableIf_< IsBuiltin< T >, T * > | allocate (size_t size) |
Aligned array allocation for user-specific class types. More... | |
template<typename T > | |
EnableIf_< IsBuiltin< T > > | deallocate (T *address) noexcept |
Deallocation of memory for built-in data types. More... | |
template<typename T > | |
DisableIf_< IsBuiltin< T > > | deallocate (T *address) |
Deallocation of memory for user-specific class types. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE size_t | misalignment (const T *address) |
Computes the misalignment of the given address. More... | |
template<typename... Args> | |
void | UNUSED_PARAMETER (const Args &...) |
Suppression of unused parameter warnings. More... | |
Accuracy operators | |
template<typename A , typename T > | |
bool | operator== (const NegativeAccuracy< A > &, const T &rhs) |
Equality comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator== (const T &lhs, const NegativeAccuracy< A > & ) |
Equality comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename A , typename T > | |
bool | operator!= (const NegativeAccuracy< A > &, const T &rhs) |
Inequality comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator!= (const T &lhs, const NegativeAccuracy< A > & ) |
Inequality comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename A , typename T > | |
bool | operator< (const NegativeAccuracy< A > &, const T &rhs) |
Less-than comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator< (const T &lhs, const NegativeAccuracy< A > & ) |
Less-than comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename A , typename T > | |
bool | operator> (const NegativeAccuracy< A > &, const T &rhs) |
Greater-than comparison between a NegativeAccuracy object and a floating point value. More... | |
template<typename A , typename T > | |
bool | operator> (const T &lhs, const NegativeAccuracy< A > & ) |
Greater-than comparison between a floating point value and a NegativeAccuracy object. More... | |
template<typename T > | |
bool | operator== (const Accuracy &, const T &rhs) |
Equality comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator== (const T &lhs, const Accuracy & ) |
Equality comparison between a floating point value and an Accuracy object. More... | |
template<typename T > | |
bool | operator!= (const Accuracy &, const T &rhs) |
Inequality comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator!= (const T &lhs, const Accuracy & ) |
Inequality comparison between a floating point value and an Accuracy object. More... | |
template<typename T > | |
bool | operator< (const Accuracy &, const T &rhs) |
Less-than comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator< (const T &lhs, const Accuracy & ) |
Less-than comparison between a floating point value and an Accuracy object. More... | |
template<typename T > | |
bool | operator> (const Accuracy &, const T &rhs) |
Greater-than comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator> (const T &lhs, const Accuracy & ) |
Greater-than comparison between a floating point value and an Accuracy object. More... | |
template<typename T > | |
bool | operator<= (const Accuracy &, const T &rhs) |
Less-or-equal-than comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator<= (const T &lhs, const Accuracy & ) |
Less-or-equal-than comparison between a floating point value and an Accuracy object. More... | |
template<typename T > | |
bool | operator>= (const Accuracy &, const T &rhs) |
Greater-or-equal-than comparison between an Accuracy object and a floating point value. More... | |
template<typename T > | |
bool | operator>= (const T &lhs, const Accuracy & ) |
Less-or-equal-than comparison between a floating point value and an Accuracy object. More... | |
DiagonalProxy global functions | |
template<typename MT > | |
void | reset (const DiagonalProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const DiagonalProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const DiagonalProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const DiagonalProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const DiagonalProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const DiagonalProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const DiagonalProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
DiagonalMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (DiagonalMatrix< MT, SO, DF > &m) |
Resetting the given diagonal matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (DiagonalMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given diagonal matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (DiagonalMatrix< MT, SO, DF > &m) |
Clearing the given diagonal matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const DiagonalMatrix< MT, SO, DF > &m) |
Returns whether the given diagonal matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const DiagonalMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given diagonal matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (DiagonalMatrix< MT, SO, DF > &a, DiagonalMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
HermitianProxy global functions | |
template<typename MT > | |
void | reset (const HermitianProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const HermitianProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
void | invert (const HermitianProxy< MT > &proxy) |
In-place inversion of the represented element. More... | |
template<typename MT > | |
bool | isDefault (const HermitianProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const HermitianProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const HermitianProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const HermitianProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const HermitianProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
HermitianValue global functions | |
template<typename MT > | |
void | reset (const HermitianValue< MT > &value) |
Resetting the Hermitian value to the default initial values. More... | |
template<typename MT > | |
void | clear (const HermitianValue< MT > &value) |
Clearing the Hermitian value. More... | |
template<typename MT > | |
void | invert (const HermitianValue< MT > &value) |
In-place inversion of the Hermitian value. More... | |
template<typename MT > | |
bool | isDefault (const HermitianValue< MT > &value) |
Returns whether the Hermitian value is in default state. More... | |
template<typename MT > | |
bool | isReal (const HermitianValue< MT > &value) |
Returns whether the Hermitian value represents a real number. More... | |
template<typename MT > | |
bool | isZero (const HermitianValue< MT > &value) |
Returns whether the Hermitian value is 0. More... | |
template<typename MT > | |
bool | isOne (const HermitianValue< MT > &value) |
Returns whether the Hermitian value is 1. More... | |
template<typename MT > | |
bool | isnan (const HermitianValue< MT > &value) |
Returns whether the Hermitian value is not a number. More... | |
HermitianMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (HermitianMatrix< MT, SO, DF > &m) |
Resetting the given Hermitian matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (HermitianMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given Hermitian matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (HermitianMatrix< MT, SO, DF > &m) |
Clearing the given Hermitian matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const HermitianMatrix< MT, SO, DF > &m) |
Returns whether the given Hermitian matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const HermitianMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given Hermitian matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (HermitianMatrix< MT, SO, DF > &a, HermitianMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
LowerProxy global functions | |
template<typename MT > | |
void | reset (const LowerProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const LowerProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const LowerProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const LowerProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const LowerProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const LowerProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const LowerProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
LowerMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (LowerMatrix< MT, SO, DF > &m) |
Resetting the given lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (LowerMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (LowerMatrix< MT, SO, DF > &m) |
Clearing the given lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const LowerMatrix< MT, SO, DF > &m) |
Returns whether the given lower matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const LowerMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given lower matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (LowerMatrix< MT, SO, DF > &a, LowerMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
StrictlyLowerProxy global functions | |
template<typename MT > | |
void | reset (const StrictlyLowerProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const StrictlyLowerProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const StrictlyLowerProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const StrictlyLowerProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const StrictlyLowerProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const StrictlyLowerProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const StrictlyLowerProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
StrictlyLowerMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (StrictlyLowerMatrix< MT, SO, DF > &m) |
Resetting the given strictly lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (StrictlyLowerMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given strictly lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (StrictlyLowerMatrix< MT, SO, DF > &m) |
Clearing the given strictly lower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const StrictlyLowerMatrix< MT, SO, DF > &m) |
Returns whether the given strictly lower matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const StrictlyLowerMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given strictly lower matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (StrictlyLowerMatrix< MT, SO, DF > &a, StrictlyLowerMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
StrictlyUpperProxy global functions | |
template<typename MT > | |
void | reset (const StrictlyUpperProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const StrictlyUpperProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const StrictlyUpperProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const StrictlyUpperProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const StrictlyUpperProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const StrictlyUpperProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const StrictlyUpperProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
StrictlyUpperMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (StrictlyUpperMatrix< MT, SO, DF > &m) |
Resetting the given strictly upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (StrictlyUpperMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given strictly upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (StrictlyUpperMatrix< MT, SO, DF > &m) |
Clearing the given strictly upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const StrictlyUpperMatrix< MT, SO, DF > &m) |
Returns whether the given strictly upper matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const StrictlyUpperMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given strictly upper matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (StrictlyUpperMatrix< MT, SO, DF > &a, StrictlyUpperMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
NonNumericProxy global functions | |
template<typename MT > | |
void | reset (const NonNumericProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const NonNumericProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const NonNumericProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const NonNumericProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const NonNumericProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const NonNumericProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const NonNumericProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
NumericProxy global functions | |
template<typename MT > | |
void | reset (const NumericProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const NumericProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
void | invert (const NumericProxy< MT > &proxy) |
In-place inversion of the represented element. More... | |
template<typename MT > | |
bool | isDefault (const NumericProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const NumericProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const NumericProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const NumericProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const NumericProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
SharedValue operators | |
template<typename T1 , typename T2 > | |
bool | operator== (const SharedValue< T1 > &lhs, const SharedValue< T2 > &rhs) |
Equality comparison between two SharedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator!= (const SharedValue< T1 > &lhs, const SharedValue< T2 > &rhs) |
Inequality comparison between two SharedValue objects. More... | |
SharedValue global functions | |
template<typename Type > | |
bool | isDefault (const SharedValue< Type > &value) |
Returns whether the shared value is in default state. More... | |
SymmetricValue global functions | |
template<typename MT > | |
void | reset (const SymmetricValue< MT > &value) |
Resetting the symmetric value to the default initial values. More... | |
template<typename MT > | |
void | clear (const SymmetricValue< MT > &value) |
Clearing the symmetric value. More... | |
template<typename MT > | |
void | invert (const SymmetricValue< MT > &value) |
In-place inversion of the symmetric value. More... | |
template<typename MT > | |
bool | isDefault (const SymmetricValue< MT > &value) |
Returns whether the symmetric value is in default state. More... | |
template<typename MT > | |
bool | isReal (const SymmetricValue< MT > &value) |
Returns whether the symmetric value represents a real number. More... | |
template<typename MT > | |
bool | isZero (const SymmetricValue< MT > &value) |
Returns whether the symmetric value is 0. More... | |
template<typename MT > | |
bool | isOne (const SymmetricValue< MT > &value) |
Returns whether the symmetric value is 1. More... | |
template<typename MT > | |
bool | isnan (const SymmetricValue< MT > &value) |
Returns whether the symmetric value is not a number. More... | |
SymmetricMatrix operators | |
template<typename MT , bool SO, bool DF, bool NF> | |
void | reset (SymmetricMatrix< MT, SO, DF, NF > &m) |
Resetting the given symmetric matrix. More... | |
template<typename MT , bool SO, bool DF, bool NF> | |
void | reset (SymmetricMatrix< MT, SO, DF, NF > &m, size_t i) |
Resetting the specified row/column of the given symmetric matrix. More... | |
template<typename MT , bool SO, bool DF, bool NF> | |
void | clear (SymmetricMatrix< MT, SO, DF, NF > &m) |
Clearing the given symmetric matrix. More... | |
template<typename MT , bool SO, bool DF, bool NF> | |
bool | isDefault (const SymmetricMatrix< MT, SO, DF, NF > &m) |
Returns whether the given symmetric matrix is in default state. More... | |
template<typename MT , bool SO, bool DF, bool NF> | |
bool | isIntact (const SymmetricMatrix< MT, SO, DF, NF > &m) |
Returns whether the invariants of the given symmetric matrix are intact. More... | |
template<typename MT , bool SO, bool DF, bool NF> | |
void | swap (SymmetricMatrix< MT, SO, DF, NF > &a, SymmetricMatrix< MT, SO, DF, NF > &b) noexcept |
Swapping the contents of two matrices. More... | |
UniLowerProxy global functions | |
template<typename MT > | |
void | reset (const UniLowerProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const UniLowerProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
void | invert (const UniLowerProxy< MT > &proxy) |
In-place inversion of the represented element. More... | |
template<typename MT > | |
bool | isDefault (const UniLowerProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const UniLowerProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const UniLowerProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const UniLowerProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const UniLowerProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
UniLowerValue global functions | |
template<typename MT > | |
void | reset (const UniLowerValue< MT > &value) |
Resetting the unilower value to the default initial values. More... | |
template<typename MT > | |
void | clear (const UniLowerValue< MT > &value) |
Clearing the unilower value. More... | |
template<typename MT > | |
void | invert (const UniLowerValue< MT > &value) |
In-place inversion of the unilower value. More... | |
template<typename MT > | |
bool | isDefault (const UniLowerValue< MT > &value) |
Returns whether the unilower value is in default state. More... | |
template<typename MT > | |
bool | isReal (const UniLowerValue< MT > &value) |
Returns whether the unilower value represents a real number. More... | |
template<typename MT > | |
bool | isZero (const UniLowerValue< MT > &value) |
Returns whether the unilower value is 0. More... | |
template<typename MT > | |
bool | isOne (const UniLowerValue< MT > &value) |
Returns whether the unilower value is 1. More... | |
template<typename MT > | |
bool | isnan (const UniLowerValue< MT > &value) |
Returns whether the unilower value is not a number. More... | |
UniLowerMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (UniLowerMatrix< MT, SO, DF > &m) |
Resetting the given unilower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (UniLowerMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given unilower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (UniLowerMatrix< MT, SO, DF > &m) |
Clearing the given unilower matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const UniLowerMatrix< MT, SO, DF > &m) |
Returns whether the given unilower matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const UniLowerMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given unilower matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (UniLowerMatrix< MT, SO, DF > &a, UniLowerMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
UniUpperProxy global functions | |
template<typename MT > | |
void | reset (const UniUpperProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const UniUpperProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
void | invert (const UniUpperProxy< MT > &proxy) |
In-place inversion of the represented element. More... | |
template<typename MT > | |
bool | isDefault (const UniUpperProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const UniUpperProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const UniUpperProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const UniUpperProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const UniUpperProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
UniUpperValue global functions | |
template<typename MT > | |
void | reset (const UniUpperValue< MT > &value) |
Resetting the uniupper value to the default initial values. More... | |
template<typename MT > | |
void | clear (const UniUpperValue< MT > &value) |
Clearing the uniupper value. More... | |
template<typename MT > | |
void | invert (const UniUpperValue< MT > &value) |
In-place inversion of the uniupper value. More... | |
template<typename MT > | |
bool | isDefault (const UniUpperValue< MT > &value) |
Returns whether the uniupper value is in default state. More... | |
template<typename MT > | |
bool | isReal (const UniUpperValue< MT > &value) |
Returns whether the uniupper value represents a real number. More... | |
template<typename MT > | |
bool | isZero (const UniUpperValue< MT > &value) |
Returns whether the uniupper value is 0. More... | |
template<typename MT > | |
bool | isOne (const UniUpperValue< MT > &value) |
Returns whether the uniupper value is 1. More... | |
template<typename MT > | |
bool | isnan (const UniUpperValue< MT > &value) |
Returns whether the uniupper value is not a number. More... | |
UniUpperMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (UniUpperMatrix< MT, SO, DF > &m) |
Resetting the given uniupper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (UniUpperMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given uniupper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (UniUpperMatrix< MT, SO, DF > &m) |
Clearing the given uniupper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const UniUpperMatrix< MT, SO, DF > &m) |
Returns whether the given uniupper matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const UniUpperMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given uniupper matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (UniUpperMatrix< MT, SO, DF > &a, UniUpperMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
UpperProxy global functions | |
template<typename MT > | |
void | reset (const UpperProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const UpperProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const UpperProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const UpperProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const UpperProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const UpperProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const UpperProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
UpperMatrix operators | |
template<typename MT , bool SO, bool DF> | |
void | reset (UpperMatrix< MT, SO, DF > &m) |
Resetting the given upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | reset (UpperMatrix< MT, SO, DF > &m, size_t i) |
Resetting the specified row/column of the given upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
void | clear (UpperMatrix< MT, SO, DF > &m) |
Clearing the given upper matrix. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isDefault (const UpperMatrix< MT, SO, DF > &m) |
Returns whether the given upper matrix is in default state. More... | |
template<typename MT , bool SO, bool DF> | |
bool | isIntact (const UpperMatrix< MT, SO, DF > &m) |
Returns whether the invariants of the given lower matrix are intact. More... | |
template<typename MT , bool SO, bool DF> | |
void | swap (UpperMatrix< MT, SO, DF > &a, UpperMatrix< MT, SO, DF > &b) noexcept |
Swapping the contents of two matrices. More... | |
CustomMatrix operators | |
template<typename Type , bool AF, bool PF, bool SO> | |
void | reset (CustomMatrix< Type, AF, PF, SO > &m) |
Resetting the given custom matrix. More... | |
template<typename Type , bool AF, bool PF, bool SO> | |
void | reset (CustomMatrix< Type, AF, PF, SO > &m, size_t i) |
Reset the specified row/column of the given custom matrix. More... | |
template<typename Type , bool AF, bool PF, bool SO> | |
void | clear (CustomMatrix< Type, AF, PF, SO > &m) |
Clearing the given custom matrix. More... | |
template<typename Type , bool AF, bool PF, bool SO> | |
bool | isDefault (const CustomMatrix< Type, AF, PF, SO > &m) |
Returns whether the given custom matrix is in default state. More... | |
template<typename Type , bool AF, bool PF, bool SO> | |
bool | isIntact (const CustomMatrix< Type, AF, PF, SO > &m) |
Returns whether the invariants of the given custom matrix are intact. More... | |
template<typename Type , bool AF, bool PF, bool SO> | |
void | swap (CustomMatrix< Type, AF, PF, SO > &a, CustomMatrix< Type, AF, PF, SO > &b) noexcept |
Swapping the contents of two custom matrices. More... | |
CustomVector operators | |
template<typename Type , bool AF, bool PF, bool TF> | |
void | reset (CustomVector< Type, AF, PF, TF > &v) |
Resetting the given custom vector. More... | |
template<typename Type , bool AF, bool PF, bool TF> | |
void | clear (CustomVector< Type, AF, PF, TF > &v) |
Clearing the given custom vector. More... | |
template<typename Type , bool AF, bool PF, bool TF> | |
bool | isDefault (const CustomVector< Type, AF, PF, TF > &v) |
Returns whether the given custom vector is in default state. More... | |
template<typename Type , bool AF, bool PF, bool TF> | |
bool | isIntact (const CustomVector< Type, AF, PF, TF > &v) noexcept |
Returns whether the invariants of the given custom vector are intact. More... | |
template<typename Type , bool AF, bool PF, bool TF> | |
void | swap (CustomVector< Type, AF, PF, TF > &a, CustomVector< Type, AF, PF, TF > &b) noexcept |
Swapping the contents of two vectors. More... | |
DenseIterator operators | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator== (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Equality comparison between two DenseIterator objects. More... | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator!= (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Inequality comparison between two DenseIterator objects. More... | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator< (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Less-than comparison between two DenseIterator objects. More... | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator> (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Greater-than comparison between two DenseIterator objects. More... | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator<= (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Less-or-equal-than comparison between two DenseIterator objects. More... | |
template<typename T1 , bool AF1, typename T2 , bool AF2> | |
bool | operator>= (const DenseIterator< T1, AF1 > &lhs, const DenseIterator< T2, AF2 > &rhs) noexcept |
Greater-or-equal-than comparison between two DenseIterator objects. More... | |
template<typename Type , bool AF> | |
const DenseIterator< Type, AF > | operator+ (const DenseIterator< Type, AF > &it, ptrdiff_t inc) noexcept |
Addition between a DenseIterator and an integral value. More... | |
template<typename Type , bool AF> | |
const DenseIterator< Type, AF > | operator+ (ptrdiff_t inc, const DenseIterator< Type, AF > &it) noexcept |
Addition between an integral value and a DenseIterator. More... | |
template<typename Type , bool AF> | |
const DenseIterator< Type, AF > | operator- (const DenseIterator< Type, AF > &it, ptrdiff_t dec) noexcept |
Subtraction between a DenseIterator and an integral value. More... | |
template<typename Type , bool AF> | |
ptrdiff_t | operator- (const DenseIterator< Type, AF > &lhs, const DenseIterator< Type, AF > &rhs) noexcept |
Calculating the number of elements between two DenseIterator objects. More... | |
DenseMatrix operators | |
template<typename T1 , typename T2 > | |
bool | operator== (const DenseMatrix< T1, false > &lhs, const DenseMatrix< T2, false > &rhs) |
Equality operator for the comparison of two rwo-major dense matrices. More... | |
template<typename T1 , typename T2 > | |
bool | operator== (const DenseMatrix< T1, true > &lhs, const DenseMatrix< T2, true > &rhs) |
Equality operator for the comparison of two column-major dense matrices. More... | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const DenseMatrix< T1, SO > &lhs, const DenseMatrix< T2,!SO > &rhs) |
Equality operator for the comparison of two dense matrices with different storage order. More... | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const DenseMatrix< T1, SO > &lhs, const SparseMatrix< T2, false > &rhs) |
Equality operator for the comparison of a dense matrix and a row-major sparse matrix. More... | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const DenseMatrix< T1, SO > &lhs, const SparseMatrix< T2, true > &rhs) |
Equality operator for the comparison of a dense matrix and a column-major sparse matrix. More... | |
template<typename T1 , bool SO1, typename T2 , bool SO2> | |
bool | operator== (const SparseMatrix< T1, SO1 > &lhs, const DenseMatrix< T2, SO2 > &rhs) |
Equality operator for the comparison of a sparse matrix and a dense matrix. More... | |
template<typename T1 , typename T2 > | |
EnableIf_< IsNumeric< T2 >, bool > | operator== (const DenseMatrix< T1, false > &mat, T2 scalar) |
Equality operator for the comparison of a row-major dense matrix and a scalar value. More... | |
template<typename T1 , typename T2 > | |
EnableIf_< IsNumeric< T2 >, bool > | operator== (const DenseMatrix< T1, true > &mat, T2 scalar) |
Equality operator for the comparison of a column-major dense matrix and a scalar value. More... | |
template<typename T1 , typename T2 , bool SO> | |
EnableIf_< IsNumeric< T2 >, bool > | operator== (T1 scalar, const DenseMatrix< T2, SO > &mat) |
Equality operator for the comparison of a scalar value and a dense matrix. More... | |
template<typename T1 , bool SO1, typename T2 , bool SO2> | |
bool | operator!= (const DenseMatrix< T1, SO1 > &lhs, const DenseMatrix< T2, SO2 > &rhs) |
Inequality operator for the comparison of two dense matrices. More... | |
template<typename T1 , bool SO1, typename T2 , bool SO2> | |
bool | operator!= (const DenseMatrix< T1, SO1 > &lhs, const SparseMatrix< T2, SO2 > &rhs) |
Inequality operator for the comparison of a dense matrix and a sparse matrix. More... | |
template<typename T1 , bool SO1, typename T2 , bool SO2> | |
bool | operator!= (const SparseMatrix< T1, SO1 > &lhs, const DenseMatrix< T2, SO2 > &rhs) |
Inequality operator for the comparison of a sparse matrix and a dense matrix. More... | |
template<typename T1 , typename T2 , bool SO> | |
EnableIf_< IsNumeric< T2 >, bool > | operator!= (const DenseMatrix< T1, SO > &mat, T2 scalar) |
Inequality operator for the comparison of a dense matrix and a scalar value. More... | |
template<typename T1 , typename T2 , bool SO> | |
EnableIf_< IsNumeric< T2 >, bool > | operator!= (T1 scalar, const DenseMatrix< T2, SO > &mat) |
Inequality operator for the comparison of a scalar value and a dense matrix. More... | |
DenseMatrix functions | |
template<typename MT , bool SO> | |
bool | isnan (const DenseMatrix< MT, SO > &dm) |
Checks the given dense matrix for not-a-number elements. More... | |
template<typename MT , bool SO> | |
bool | isSymmetric (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is symmetric. More... | |
template<typename MT , bool SO> | |
bool | isHermitian (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is Hermitian. More... | |
template<typename MT , bool SO> | |
bool | isUniform (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is a uniform matrix. More... | |
template<typename MT , bool SO> | |
bool | isLower (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is a lower triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUniLower (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is a lower unitriangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isStrictlyLower (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is a strictly lower triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUpper (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is an upper triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUniUpper (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is an upper unitriangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isStrictlyUpper (const DenseMatrix< MT, SO > &dm) |
Checks if the given dense matrix is a strictly upper triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isDiagonal (const DenseMatrix< MT, SO > &dm) |
Checks if the give dense matrix is diagonal. More... | |
template<typename MT , bool SO> | |
bool | isIdentity (const DenseMatrix< MT, SO > &dm) |
Checks if the give dense matrix is an identity matrix. More... | |
template<typename MT , bool SO> | |
const ElementType_< MT > | min (const DenseMatrix< MT, SO > &dm) |
Returns the smallest element of the dense matrix. More... | |
template<typename MT , bool SO> | |
const ElementType_< MT > | max (const DenseMatrix< MT, SO > &dm) |
Returns the largest element of the dense matrix. More... | |
DenseVector operators | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator== (const DenseVector< T1, TF1 > &lhs, const DenseVector< T2, TF2 > &rhs) |
Equality operator for the comparison of two dense vectors. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator== (const DenseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Equality operator for the comparison of a dense vector and a sparse vector. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator== (const SparseVector< T1, TF1 > &lhs, const DenseVector< T2, TF2 > &rhs) |
Equality operator for the comparison of a sparse vector and a dense vector. More... | |
template<typename T1 , typename T2 , bool TF> | |
EnableIf_< IsNumeric< T2 >, bool > | operator== (const DenseVector< T1, TF > &vec, T2 scalar) |
Equality operator for the comparison of a dense vector and a scalar value. More... | |
template<typename T1 , typename T2 , bool TF> | |
EnableIf_< IsNumeric< T1 >, bool > | operator== (T1 scalar, const DenseVector< T2, TF > &vec) |
Equality operator for the comparison of a scalar value and a dense vector. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator!= (const DenseVector< T1, TF1 > &lhs, const DenseVector< T2, TF2 > &rhs) |
Inequality operator for the comparison of two dense vectors. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator!= (const DenseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Inequality operator for the comparison of a dense vector and a sparse vector. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator!= (const SparseVector< T1, TF1 > &lhs, const DenseVector< T2, TF2 > &rhs) |
Inequality operator for the comparison of a sparse vector and a dense vector. More... | |
template<typename T1 , typename T2 , bool TF> | |
EnableIf_< IsNumeric< T2 >, bool > | operator!= (const DenseVector< T1, TF > &vec, T2 scalar) |
Inequality operator for the comparison of a dense vector and a scalar value. More... | |
template<typename T1 , typename T2 , bool TF> | |
EnableIf_< IsNumeric< T1 >, bool > | operator!= (T1 scalar, const DenseVector< T2, TF > &vec) |
Inequality operator for the comparison of a scalar value and a dense vector. More... | |
DenseVector functions | |
template<typename VT , bool TF> | |
bool | isnan (const DenseVector< VT, TF > &dv) |
Checks the given dense vector for not-a-number elements. More... | |
template<typename VT , bool TF> | |
bool | isDivisor (const DenseVector< VT, TF > &dv) |
Returns whether the given dense vector is a valid divisor. More... | |
template<typename VT , bool TF> | |
bool | isUniform (const DenseVector< VT, TF > &dv) |
Checks if the given dense vector is a uniform vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | sqrLength (const DenseVector< VT, TF > &dv) |
Calculation of the dense vector square length ![]() | |
template<typename VT , bool TF> | |
auto | length (const DenseVector< VT, TF > &dv) -> decltype(sqrt(sqrLength(~dv))) |
Calculation of the dense vector length ![]() | |
template<typename VT , bool TF> | |
const ElementType_< VT > | min (const DenseVector< VT, TF > &dv) |
Returns the smallest element of the dense vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | max (const DenseVector< VT, TF > &dv) |
Returns the largest element of the dense vector. More... | |
DynamicMatrix operators | |
template<typename Type , bool SO> | |
void | reset (DynamicMatrix< Type, SO > &m) |
Resetting the given dynamic matrix. More... | |
template<typename Type , bool SO> | |
void | reset (DynamicMatrix< Type, SO > &m, size_t i) |
Reset the specified row/column of the given dynamic matrix. More... | |
template<typename Type , bool SO> | |
void | clear (DynamicMatrix< Type, SO > &m) |
Clearing the given dynamic matrix. More... | |
template<typename Type , bool SO> | |
bool | isDefault (const DynamicMatrix< Type, SO > &m) |
Returns whether the given dynamic matrix is in default state. More... | |
template<typename Type , bool SO> | |
bool | isIntact (const DynamicMatrix< Type, SO > &m) noexcept |
Returns whether the invariants of the given dynamic matrix are intact. More... | |
template<typename Type , bool SO> | |
void | swap (DynamicMatrix< Type, SO > &a, DynamicMatrix< Type, SO > &b) noexcept |
Swapping the contents of two dynamic matrices. More... | |
DynamicVector operators | |
template<typename Type , bool TF> | |
void | reset (DynamicVector< Type, TF > &v) |
Resetting the given dynamic vector. More... | |
template<typename Type , bool TF> | |
void | clear (DynamicVector< Type, TF > &v) |
Clearing the given dynamic vector. More... | |
template<typename Type , bool TF> | |
bool | isDefault (const DynamicVector< Type, TF > &v) |
Returns whether the given dynamic vector is in default state. More... | |
template<typename Type , bool TF> | |
bool | isIntact (const DynamicVector< Type, TF > &v) noexcept |
Returns whether the invariants of the given dynamic vector are intact. More... | |
template<typename Type , bool TF> | |
void | swap (DynamicVector< Type, TF > &a, DynamicVector< Type, TF > &b) noexcept |
Swapping the contents of two vectors. More... | |
HybridMatrix operators | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | reset (HybridMatrix< Type, M, N, SO > &m) |
Resetting the given hybrid matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | reset (HybridMatrix< Type, M, N, SO > &m, size_t i) |
Reset the specified row/column of the given hybrid matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | clear (HybridMatrix< Type, M, N, SO > &m) |
Clearing the given hybrid matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
bool | isDefault (const HybridMatrix< Type, M, N, SO > &m) |
Returns whether the given hybrid matrix is in default state. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
bool | isIntact (const HybridMatrix< Type, M, N, SO > &m) noexcept |
Returns whether the invariants of the given hybrid matrix are intact. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | swap (HybridMatrix< Type, M, N, SO > &a, HybridMatrix< Type, M, N, SO > &b) noexcept |
Swapping the contents of two hybrid matrices. More... | |
HybridVector operators | |
template<typename Type , size_t N, bool TF> | |
void | reset (HybridVector< Type, N, TF > &v) |
Resetting the given hybrid vector. More... | |
template<typename Type , size_t N, bool TF> | |
void | clear (HybridVector< Type, N, TF > &v) |
Clearing the given hybrid vector. More... | |
template<typename Type , size_t N, bool TF> | |
bool | isDefault (const HybridVector< Type, N, TF > &v) |
Returns whether the given hybrid vector is in default state. More... | |
template<typename Type , size_t N, bool TF> | |
bool | isIntact (const HybridVector< Type, N, TF > &v) |
Returns whether the invariants of the given hybrid vector are intact. More... | |
template<typename Type , size_t N, bool TF> | |
void | swap (HybridVector< Type, N, TF > &a, HybridVector< Type, N, TF > &b) noexcept |
Swapping the contents of two hybrid vectors. More... | |
Inversion functions | |
template<typename MT , bool SO> | |
void | invert (DenseMatrix< MT, SO > &dm) |
In-place inversion of the given dense matrix. More... | |
template<InversionFlag IF, typename MT , bool SO> | |
void | invert (DenseMatrix< MT, SO > &dm) |
In-place inversion of the given dense matrix. More... | |
LLH decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | llh (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &L) |
Cholesky (LLH) decomposition of the given dense matrix. More... | |
LQ decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2, typename MT3 , bool SO3> | |
void | lq (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &L, DenseMatrix< MT3, SO3 > &Q) |
LQ decomposition of the given dense matrix. More... | |
LU decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , typename MT3 , typename MT4 , bool SO2> | |
void | lu (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO1 > &L, DenseMatrix< MT3, SO1 > &U, Matrix< MT4, SO2 > &P) |
LU decomposition of the given dense matrix. More... | |
QL decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2, typename MT3 , bool SO3> | |
void | ql (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &Q, DenseMatrix< MT3, SO3 > &L) |
QL decomposition of the given dense matrix. More... | |
QR decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2, typename MT3 , bool SO3> | |
void | qr (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &Q, DenseMatrix< MT3, SO3 > &R) |
QR decomposition of the given dense matrix. More... | |
RQ decomposition functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2, typename MT3 , bool SO3> | |
void | rq (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &R, DenseMatrix< MT3, SO3 > &Q) |
RQ decomposition of the given dense matrix. More... | |
StaticMatrix operators | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | reset (StaticMatrix< Type, M, N, SO > &m) |
Resetting the given static matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | reset (StaticMatrix< Type, M, N, SO > &m, size_t i) |
Reset the specified row/column of the given static matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | clear (StaticMatrix< Type, M, N, SO > &m) |
Clearing the given static matrix. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
bool | isDefault (const StaticMatrix< Type, M, N, SO > &m) |
Returns whether the given dynamic matrix is in default state. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
bool | isIntact (const StaticMatrix< Type, M, N, SO > &m) noexcept |
Returns whether the invariants of the given static matrix are intact. More... | |
template<typename Type , size_t M, size_t N, bool SO> | |
void | swap (StaticMatrix< Type, M, N, SO > &a, StaticMatrix< Type, M, N, SO > &b) noexcept |
Swapping the contents of two static matrices. More... | |
StaticVector operators | |
template<typename Type , size_t N, bool TF> | |
void | reset (StaticVector< Type, N, TF > &v) |
Resetting the given static vector. More... | |
template<typename Type , size_t N, bool TF> | |
void | clear (StaticVector< Type, N, TF > &v) |
Clearing the given static vector. More... | |
template<typename Type , size_t N, bool TF> | |
bool | isDefault (const StaticVector< Type, N, TF > &v) |
Returns whether the given static vector is in default state. More... | |
template<typename Type , size_t N, bool TF> | |
bool | isIntact (const StaticVector< Type, N, TF > &v) noexcept |
Returns whether the invariants of the given static vector are intact. More... | |
template<typename Type , bool TF> | |
const StaticVector< Type, 2UL, TF > | perp (const StaticVector< Type, 2UL, TF > &v) |
Unary perp dot product operator for the calculation of a perpendicular vector ( ![]() | |
template<typename Type , bool TF> | |
const StaticVector< Type, 3UL, TF > | perp (const StaticVector< Type, 3UL, TF > &v) |
Creates a perpendicular vector b which satisfies ![]() | |
template<typename Type , size_t N, bool TF> | |
void | swap (StaticVector< Type, N, TF > &a, StaticVector< Type, N, TF > &b) noexcept |
Swapping the contents of two static vectors. More... | |
NegativeEpsilon operators | |
template<typename E , typename T > | |
bool | operator== (const NegativeEpsilon< E > &, const T &rhs) |
Equality comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator== (const T &lhs, const NegativeEpsilon< E > & ) |
Equality comparison between a floating point value and a NegativeEpsilon object. More... | |
template<typename E , typename T > | |
bool | operator!= (const NegativeEpsilon< E > &, const T &rhs) |
Inequality comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator!= (const T &lhs, const NegativeEpsilon< E > & ) |
Inequality comparison between a floating point value and a NegativeEpsilon object. More... | |
template<typename E , typename T > | |
bool | operator< (const NegativeEpsilon< E > &, const T &rhs) |
Less-than comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator< (const T &lhs, const NegativeEpsilon< E > & ) |
Less-than comparison between a floating point value and a NegativeEpsilon object. More... | |
template<typename E , typename T > | |
bool | operator> (const NegativeEpsilon< E > &, const T &rhs) |
Greater-than comparison between a NegativeEpsilon object and a floating point value. More... | |
template<typename E , typename T > | |
bool | operator> (const T &lhs, const NegativeEpsilon< E > & ) |
Greater-than comparison between a floating point value and a NegativeEpsilon object. More... | |
Epsilon operators | |
template<typename T > | |
bool | operator== (const Epsilon &, const T &rhs) |
Equality comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator== (const T &lhs, const Epsilon & ) |
Equality comparison between a floating point value and an Epsilon object. More... | |
template<typename T > | |
bool | operator!= (const Epsilon &, const T &rhs) |
Inequality comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator!= (const T &lhs, const Epsilon & ) |
Inequality comparison between a floating point value and an Epsilon object. More... | |
template<typename T > | |
bool | operator< (const Epsilon &, const T &rhs) |
Less-than comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator< (const T &lhs, const Epsilon & ) |
Less-than comparison between a floating point value and an Epsilon object. More... | |
template<typename T > | |
bool | operator> (const Epsilon &, const T &rhs) |
Greater-than comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator> (const T &lhs, const Epsilon & ) |
Greater-than comparison between a floating point value and an Epsilon object. More... | |
template<typename T > | |
bool | operator<= (const Epsilon &, const T &rhs) |
Less-or-equal-than comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator<= (const T &lhs, const Epsilon & ) |
Less-or-equal-than comparison between a floating point value and an Epsilon object. More... | |
template<typename T > | |
bool | operator>= (const Epsilon &, const T &rhs) |
Greater-or-equal-than comparison between an Epsilon object and a floating point value. More... | |
template<typename T > | |
bool | operator>= (const T &lhs, const Epsilon & ) |
Less-or-equal-than comparison between a floating point value and an Epsilon object. More... | |
Determinant functions | |
template<typename MT , bool SO> | |
ElementType_< MT > | det (const DenseMatrix< MT, SO > &dm) |
Computation of the determinant of the given dense square matrix. More... | |
Matrix global functions | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::Iterator | begin (Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator to the first element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::ConstIterator | begin (const Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator to the first element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::ConstIterator | cbegin (const Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator to the first element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::Iterator | end (Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator just past the last element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::ConstIterator | end (const Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator just past the last element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE MT::ConstIterator | cend (const Matrix< MT, SO > &matrix, size_t i) |
Returns an iterator just past the last element of row/column i. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | rows (const Matrix< MT, SO > &matrix) noexcept |
Returns the current number of rows of the matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | columns (const Matrix< MT, SO > &matrix) noexcept |
Returns the current number of columns of the matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | capacity (const Matrix< MT, SO > &matrix) noexcept |
Returns the maximum capacity of the matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | capacity (const Matrix< MT, SO > &matrix, size_t i) noexcept |
Returns the current capacity of the specified row/column. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const Matrix< MT, SO > &matrix) |
Returns the total number of non-zero elements in the matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const Matrix< MT, SO > &matrix, size_t i) |
Returns the number of non-zero elements in the specified row/column. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE void | resize (Matrix< MT, SO > &matrix, size_t m, size_t n, bool preserve) |
Changing the size of the matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE void | transpose (Matrix< MT, SO > &matrix) |
In-place transpose of the given matrix. More... | |
template<typename MT , bool SO> | |
BLAZE_ALWAYS_INLINE bool | isSquare (const Matrix< MT, SO > &matrix) noexcept |
Checks if the given matrix is a square matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
BLAZE_ALWAYS_INLINE bool | isSame (const Matrix< MT1, SO1 > &a, const Matrix< MT2, SO2 > &b) noexcept |
Returns whether the two given matrices represent the same observable state. More... | |
Vector global functions | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::Iterator | begin (Vector< VT, TF > &vector) |
Returns an iterator to the first element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::ConstIterator | begin (const Vector< VT, TF > &vector) |
Returns an iterator to the first element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::ConstIterator | cbegin (const Vector< VT, TF > &vector) |
Returns an iterator to the first element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::Iterator | end (Vector< VT, TF > &vector) |
Returns an iterator just past the last element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::ConstIterator | end (const Vector< VT, TF > &vector) |
Returns an iterator just past the last element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE VT::ConstIterator | cend (const Vector< VT, TF > &vector) |
Returns an iterator just past the last element of the given vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE size_t | size (const Vector< VT, TF > &vector) noexcept |
Returns the current size/dimension of the vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE size_t | capacity (const Vector< VT, TF > &vector) noexcept |
Returns the maximum capacity of the vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const Vector< VT, TF > &vector) |
Returns the number of non-zero elements in the vector. More... | |
template<typename VT , bool TF> | |
BLAZE_ALWAYS_INLINE void | resize (Vector< VT, TF > &vector, size_t n, bool preserve) |
Changing the size of the vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
BLAZE_ALWAYS_INLINE bool | isSame (const Vector< VT1, TF1 > &a, const Vector< VT2, TF2 > &b) noexcept |
Returns whether the two given vectors represent the same observable state. More... | |
Mathematical utility functions | |
template<typename T > | |
constexpr int | sign (T a) noexcept |
Sign function. More... | |
template<typename T > | |
size_t | digits (T a) noexcept |
Returns the number of valid digits of an integral value. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE constexpr CommonType_< T1, T2 > | min (const T1 &a, const T2 &b) noexcept(All< IsNumeric, T1, T2 >::value) |
Minimum function for two data values. More... | |
template<typename T1 , typename T2 , typename... Ts> | |
BLAZE_ALWAYS_INLINE constexpr CommonType_< T1, T2, Ts... > | min (const T1 &a, const T2 &b, const Ts &...args) noexcept(All< IsNumeric, T1, T2, Ts... >::value) |
Minimum function for at least three data values. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE constexpr CommonType_< T1, T2 > | max (const T1 &a, const T2 &b) noexcept(All< IsNumeric, T1, T2 >::value) |
Maximum function for two data values. More... | |
template<typename T1 , typename T2 , typename... Ts> | |
BLAZE_ALWAYS_INLINE constexpr CommonType_< T1, T2, Ts... > | max (const T1 &a, const T2 &b, const Ts &...args) noexcept(All< IsNumeric, T1, T2, Ts... >::value) |
Maximum function for at least three data values. More... | |
template<typename T > | |
BLAZE_ALWAYS_INLINE constexpr T | nextMultiple (T value, T factor) noexcept |
Rounds up an integral value to the next multiple of a given factor. More... | |
template<typename T1 , typename T2 > | |
BLAZE_ALWAYS_INLINE constexpr bool | lessThan (T1 a, T2 b) noexcept(IsBuiltin< CommonType_< T1, T2 > >::value) |
NegativeInfinity operators | |
template<typename I1 , typename I2 > | |
bool | operator== (const NegativeInfinity< I1 > &lhs, const NegativeInfinity< I2 > &rhs) |
Equality comparison between two NegativeInfinity objects. More... | |
template<typename I , typename T > | |
bool | operator== (const NegativeInfinity< I > &lhs, const T &rhs) |
Equality comparison between an NegativeInfinity object and a built-in data type. More... | |
template<typename I , typename T > | |
bool | operator== (const T &lhs, const NegativeInfinity< I > &rhs) |
Equality comparison between a built-in data type and an NegativeInfinity object. More... | |
template<typename I1 , typename I2 > | |
bool | operator!= (const NegativeInfinity< I1 > &lhs, const NegativeInfinity< I2 > &rhs) |
Inequality comparison between two NegativeInfinity objects. More... | |
template<typename I , typename T > | |
bool | operator!= (const NegativeInfinity< I > &lhs, const T &rhs) |
Inequality comparison between an NegativeInfinity object and a built-in data type. More... | |
template<typename I , typename T > | |
bool | operator!= (const T &lhs, const NegativeInfinity< I > &rhs) |
Inequality comparison between a built-in data type and an NegativeInfinity object. More... | |
Infinity operators | |
bool | operator== (const Infinity &lhs, const Infinity &rhs) |
Equality comparison between two Infinity objects. More... | |
template<typename I > | |
bool | operator== (const Infinity &lhs, const NegativeInfinity< I > &rhs) |
Equality comparison between an Infinity object and a NegativeInfinity object. More... | |
template<typename I > | |
bool | operator== (const NegativeInfinity< I > &lhs, const Infinity &rhs) |
Equality comparison between a NegativeInfinity object and an Infinity object. More... | |
template<typename T > | |
bool | operator== (const Infinity &lhs, const T &rhs) |
Equality comparison between an Infinity object and a built-in data type. More... | |
template<typename T > | |
bool | operator== (const T &lhs, const Infinity &rhs) |
Equality comparison between a built-in data type and an Infinity object. More... | |
bool | operator!= (const Infinity &lhs, const Infinity &rhs) |
Inequality comparison between two Infinity objects. More... | |
template<typename I > | |
bool | operator!= (const Infinity &lhs, const NegativeInfinity< I > &rhs) |
Inequality comparison between an Infinity object and a NegativeInfinity object. More... | |
template<typename I > | |
bool | operator!= (const NegativeInfinity< I > &lhs, const Infinity &rhs) |
Inequality comparison between a NegativeInfinity object and an Infinity object. More... | |
template<typename T > | |
bool | operator!= (const Infinity &lhs, const T &rhs) |
Inequality comparison between an Infinity object and a built-in data type. More... | |
template<typename T > | |
bool | operator!= (const T &lhs, const Infinity &rhs) |
Inequality comparison between a built-in data type and an Infinity object. More... | |
LAPACK LQ decomposition functions (gelqf) | |
void | gelqf (int m, int n, float *A, int lda, float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the LQ decomposition of the given dense single precision column-major matrix. More... | |
void | gelqf (int m, int n, double *A, int lda, double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the LQ decomposition of the given dense double precision column-major matrix. More... | |
void | gelqf (int m, int n, complex< float > *A, int lda, complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the LQ decomposition of the given dense single precision complex column-major matrix. More... | |
void | gelqf (int m, int n, complex< double > *A, int lda, complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the LQ decomposition of the given dense double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | gelqf (DenseMatrix< MT, SO > &A, ElementType_< MT > *tau) |
LAPACK kernel for the LQ decomposition of the given dense matrix. More... | |
LAPACK QL decomposition functions (geqlf) | |
void | geqlf (int m, int n, float *A, int lda, float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the QL decomposition of the given dense single precision column-major matrix. More... | |
void | geqlf (int m, int n, double *A, int lda, double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the QL decomposition of the given dense double precision column-major matrix. More... | |
void | geqlf (int m, int n, complex< float > *A, int lda, complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the QL decomposition of the given dense single precision complex column-major matrix. More... | |
void | geqlf (int m, int n, complex< double > *A, int lda, complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the QL decomposition of the given dense double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | geqlf (DenseMatrix< MT, SO > &A, ElementType_< MT > *tau) |
LAPACK kernel for the QL decomposition of the given dense matrix. More... | |
LAPACK QR decomposition functions (geqp3) | |
void | geqp3 (int m, int n, float *A, int lda, int *jpvt, float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense single precision column-major matrix. More... | |
void | geqp3 (int m, int n, double *A, int lda, int *jpvt, double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense double precision column-major matrix. More... | |
LAPACK QR decomposition functions (geqrf) | |
void | geqrf (int m, int n, float *A, int lda, float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense single precision column-major matrix. More... | |
void | geqrf (int m, int n, double *A, int lda, double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense double precision column-major matrix. More... | |
void | geqrf (int m, int n, complex< float > *A, int lda, complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense single precision complex column-major matrix. More... | |
void | geqrf (int m, int n, complex< double > *A, int lda, complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the QR decomposition of the given dense double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | geqrf (DenseMatrix< MT, SO > &A, ElementType_< MT > *tau) |
LAPACK kernel for the QR decomposition of the given dense matrix. More... | |
LAPACK RQ decomposition functions (gerqf) | |
void | gerqf (int m, int n, float *A, int lda, float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the RQ decomposition of the given dense single precision column-major matrix. More... | |
void | gerqf (int m, int n, double *A, int lda, double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the RQ decomposition of the given dense single precision column-major matrix. More... | |
void | gerqf (int m, int n, complex< float > *A, int lda, complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the RQ decomposition of the given dense single precision complex column-major matrix. More... | |
void | gerqf (int m, int n, complex< double > *A, int lda, complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the RQ decomposition of the given dense double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | gerqf (DenseMatrix< MT, SO > &A, ElementType_< MT > *tau) |
LAPACK kernel for the RQ decomposition of the given dense matrix. More... | |
LAPACK general linear system functions (gesv) | |
void | gesv (int n, int nrhs, float *A, int lda, int *ipiv, float *B, int ldb, int *info) |
LAPACK kernel for solving a general single precision linear system of equations ( ![]() | |
void | gesv (int n, int nrhs, double *A, int lda, int *ipiv, double *B, int ldb, int *info) |
LAPACK kernel for solving a general double precision linear system of equations ( ![]() | |
void | gesv (int n, int nrhs, complex< float > *A, int lda, int *ipiv, complex< float > *B, int ldb, int *info) |
LAPACK kernel for solving a general single precision complex linear system of equations ( ![]() | |
void | gesv (int n, int nrhs, complex< double > *A, int lda, int *ipiv, complex< double > *B, int ldb, int *info) |
LAPACK kernel for solving a general double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | gesv (DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, int *ipiv) |
LAPACK kernel for solving a general linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | gesv (DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, int *ipiv) |
LAPACK kernel for solving a general linear system of equations ( ![]() | |
LAPACK LU decomposition functions (getrf) | |
void | getrf (int m, int n, float *A, int lda, int *ipiv, int *info) |
LAPACK kernel for the LU decomposition of the given dense general single precision column-major matrix. More... | |
void | getrf (int m, int n, double *A, int lda, int *ipiv, int *info) |
LAPACK kernel for the LU decomposition of the given dense general double precision column-major matrix. More... | |
void | getrf (int m, int n, complex< float > *A, int lda, int *ipiv, int *info) |
LAPACK kernel for the LU decomposition of the given dense general single precision complex column-major matrix. More... | |
void | getrf (int m, int n, complex< double > *A, int lda, int *ipiv, int *info) |
LAPACK kernel for the LU decomposition of the given dense general double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | getrf (DenseMatrix< MT, SO > &A, int *ipiv) |
LAPACK LU-based inversion functions (getri) | |
void | getri (int n, float *A, int lda, const int *ipiv, float *work, int lwork, int *info) |
LAPACK kernel for the inversion of the given dense general single precision column-major square matrix. More... | |
void | getri (int n, double *A, int lda, const int *ipiv, double *work, int lwork, int *info) |
LAPACK kernel for the inversion of the given dense general double precision column-major square matrix. More... | |
void | getri (int n, complex< float > *A, int lda, const int *ipiv, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the inversion of the given dense general single precision complex column-major square matrix. More... | |
void | getri (int n, complex< double > *A, int lda, const int *ipiv, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the inversion of the given dense general double precision complex column-major square matrix. More... | |
template<typename MT , bool SO> | |
void | getri (DenseMatrix< MT, SO > &A, const int *ipiv) |
LAPACK kernel for the inversion of the given dense general matrix. More... | |
LAPACK LU-based substitution functions (getrs) | |
void | getrs (char trans, int n, int nrhs, const float *A, int lda, const int *ipiv, float *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a general single precision linear system of equations ( ![]() | |
void | getrs (char trans, int n, int nrhs, const double *A, int lda, const int *ipiv, double *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a general double precision linear system of equations ( ![]() | |
void | getrs (char trans, int n, int nrhs, const complex< float > *A, int lda, const int *ipiv, complex< float > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a general single precision complex linear system of equations ( ![]() | |
void | getrs (char trans, int n, int nrhs, const complex< double > *A, int lda, const int *ipiv, complex< double > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a general double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | getrs (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char trans, const int *ipiv) |
LAPACK kernel for the substitution step of solving a general linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | getrs (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char trans, const int *ipiv) |
LAPACK kernel for the substitution step of solving a general linear system of equations ( ![]() | |
LAPACK Hermitian indefinite linear system functions (hesv) | |
void | hesv (char uplo, int n, int nrhs, complex< float > *A, int lda, int *ipiv, complex< float > *B, int ldb, complex< float > *work, int lwork, int *info) |
LAPACK kernel for solving a Hermitian indefinite single precision complex linear system of equations ( ![]() | |
void | hesv (char uplo, int n, int nrhs, complex< double > *A, int lda, int *ipiv, complex< double > *B, int ldb, complex< double > *work, int lwork, int *info) |
LAPACK kernel for solving a Hermitian indefinite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | hesv (DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, int *ipiv) |
LAPACK kernel for solving a Hermitian indefinite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | hesv (DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo, int *ipiv) |
LAPACK kernel for solving a Hermitian indefinite linear system of equations ( ![]() | |
LAPACK LDLH decomposition functions (hetrf) | |
void | hetrf (char uplo, int n, complex< float > *A, int lda, int *ipiv, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense Hermitian indefinite single precision complex column-major matrix. More... | |
void | hetrf (char uplo, int n, complex< double > *A, int lda, int *ipiv, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense Hermitian indefinite double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | hetrf (DenseMatrix< MT, SO > &A, char uplo, int *ipiv) |
LAPACK kernel for the decomposition of the given dense Hermitian indefinite matrix. More... | |
LAPACK LDLH-based inversion functions (hetri) | |
void | hetri (char uplo, int n, complex< float > *A, int lda, const int *ipiv, complex< float > *work, int *info) |
LAPACK kernel for the inversion of the given dense Hermitian indefinite single precision complex column-major square matrix. More... | |
void | hetri (char uplo, int n, complex< double > *A, int lda, const int *ipiv, complex< double > *work, int *info) |
LAPACK kernel for the inversion of the given dense Hermitian indefinite double precision complex column-major square matrix. More... | |
template<typename MT , bool SO> | |
void | hetri (DenseMatrix< MT, SO > &A, char uplo, const int *ipiv) |
LAPACK kernel for the inversion of the given dense Hermitian indefinite matrix. More... | |
LAPACK LDLH-based substitution functions (hetrs) | |
void | hetrs (char uplo, int n, int nrhs, const complex< float > *A, int lda, const int *ipiv, complex< float > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite single precision complex linear system of equations ( ![]() | |
void | hetrs (char uplo, int n, int nrhs, const complex< double > *A, int lda, const int *ipiv, complex< double > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | hetrs (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, const int *ipiv) |
LAPACK kernel for the substitution step of solving a symmetric indefinite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | hetrs (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo, const int *ipiv) |
LAPACK kernel for the substitution step of solving a symmetric indefinite linear system of equations ( ![]() | |
LAPACK functions to reconstruct Q from a LQ decomposition (orglq) | |
void | orglq (int m, int n, int k, float *A, int lda, const float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
void | orglq (int m, int n, int k, double *A, int lda, const double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
template<typename MT , bool SO> | |
void | orglq (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
LAPACK functions to reconstruct Q from a QL decomposition (orgql) | |
void | orgql (int m, int n, int k, float *A, int lda, const float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
void | orgql (int m, int n, int k, double *A, int lda, const double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
template<typename MT , bool SO> | |
void | orgql (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
LAPACK functions to reconstruct Q from a QR decomposition (orgqr) | |
void | orgqr (int m, int n, int k, float *A, int lda, const float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
void | orgqr (int m, int n, int k, double *A, int lda, const double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
template<typename MT , bool SO> | |
void | orgqr (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
LAPACK functions to reconstruct Q from a RQ decomposition (orgrq) | |
void | orgrq (int m, int n, int k, float *A, int lda, const float *tau, float *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
void | orgrq (int m, int n, int k, double *A, int lda, const double *tau, double *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
template<typename MT , bool SO> | |
void | orgrq (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
LAPACK functions to multiply Q from a LQ decomposition with a matrix (ormlq) | |
void | ormlq (char side, char trans, int m, int n, int k, const float *A, int lda, const float *tau, float *C, int ldc, float *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a LQ decomposition with another matrix. More... | |
void | ormlq (char side, char trans, int m, int n, int k, const double *A, int lda, const double *tau, double *C, int ldc, double *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a LQ decomposition with another matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | ormlq (DenseMatrix< MT1, SO1 > &C, const DenseMatrix< MT2, SO2 > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a LQ decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a QL decomposition with a matrix (ormql) | |
void | ormql (char side, char trans, int m, int n, int k, const float *A, int lda, const float *tau, float *C, int ldc, float *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a QL decomposition with another matrix. More... | |
void | ormql (char side, char trans, int m, int n, int k, const double *A, int lda, const double *tau, double *C, int ldc, double *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a QL decomposition with another matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | ormql (DenseMatrix< MT1, SO1 > &C, const DenseMatrix< MT2, SO2 > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a QL decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a QR decomposition with a matrix (ormqr) | |
void | ormqr (char side, char trans, int m, int n, int k, const float *A, int lda, const float *tau, float *C, int ldc, float *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a QR decomposition with another matrix. More... | |
void | ormqr (char side, char trans, int m, int n, int k, const double *A, int lda, const double *tau, double *C, int ldc, double *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a QR decomposition with another matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | ormqr (DenseMatrix< MT1, SO1 > &C, const DenseMatrix< MT2, SO2 > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a QR decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a RQ decomposition with a matrix (ormrq) | |
void | ormrq (char side, char trans, int m, int n, int k, const float *A, int lda, const float *tau, float *C, int ldc, float *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a RQ decomposition with another matrix. More... | |
void | ormrq (char side, char trans, int m, int n, int k, const double *A, int lda, const double *tau, double *C, int ldc, double *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a RQ decomposition with another matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | ormrq (DenseMatrix< MT1, SO1 > &C, const DenseMatrix< MT2, SO2 > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a RQ decomposition with another matrix. More... | |
LAPACK positive definite linear system functions (posv) | |
void | posv (char uplo, int n, int nrhs, float *A, int lda, float *B, int ldb, int *info) |
LAPACK kernel for solving a positive definite single precision linear system of equations ( ![]() | |
void | posv (char uplo, int n, int nrhs, double *A, int lda, double *B, int ldb, int *info) |
LAPACK kernel for solving a positive definite double precision linear system of equations ( ![]() | |
void | posv (char uplo, int n, int nrhs, complex< float > *A, int lda, complex< float > *B, int ldb, int *info) |
LAPACK kernel for solving a positive definite single precision complex linear system of equations ( ![]() | |
void | posv (char uplo, int n, int nrhs, complex< double > *A, int lda, complex< double > *B, int ldb, int *info) |
LAPACK kernel for solving a positive definite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | posv (DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo) |
LAPACK kernel for solving a positive definite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | posv (DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo) |
LAPACK kernel for solving a positive definite linear system of equations ( ![]() | |
LAPACK LLH (Cholesky) decomposition functions (potrf) | |
void | potrf (char uplo, int n, float *A, int lda, int *info) |
LAPACK kernel for the Cholesky decomposition of the given dense positive definite single precision column-major matrix. More... | |
void | potrf (char uplo, int n, double *A, int lda, int *info) |
LAPACK kernel for the Cholesky decomposition of the given dense positive definite double precision column-major matrix. More... | |
void | potrf (char uplo, int n, complex< float > *A, int lda, int *info) |
LAPACK kernel for the Cholesky decomposition of the given dense positive definite single precision complex column-major matrix. More... | |
void | potrf (char uplo, int n, complex< double > *A, int lda, int *info) |
LAPACK kernel for the Cholesky decomposition of the given dense positive definite double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | potrf (DenseMatrix< MT, SO > &A, char uplo) |
LAPACK kernel for the Cholesky decomposition of the given dense positive definite matrix. More... | |
LAPACK LLH-based inversion functions (potri) | |
void | potri (char uplo, int n, float *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense positive definite single precision column-major square matrix. More... | |
void | potri (char uplo, int n, double *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense positive definite double precision column-major square matrix. More... | |
void | potri (char uplo, int n, complex< float > *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense positive definite single precision complex column-major square matrix. More... | |
void | potri (char uplo, int n, complex< double > *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense positive definite double precision complex column-major square matrix. More... | |
template<typename MT , bool SO> | |
void | potri (DenseMatrix< MT, SO > &A, char uplo) |
LAPACK kernel for the inversion of the given dense positive definite matrix. More... | |
LAPACK LLH-based substitution functions (potrs) | |
void | potrs (char uplo, int n, int nrhs, const float *A, int lda, float *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a positive definite single precision linear system of equations ( ![]() | |
void | potrs (char uplo, int n, int nrhs, const double *A, int lda, double *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a positive definite double precision linear system of equations ( ![]() | |
void | potrs (char uplo, int n, int nrhs, const complex< float > *A, int lda, complex< float > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a positive definite single precision complex linear system of equations ( ![]() | |
void | potrs (char uplo, int n, int nrhs, const complex< double > *A, int lda, complex< double > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a positive definite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | potrs (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo) |
LAPACK kernel for the substitution step of solving a positive definite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | potrs (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo) |
LAPACK kernel for the substitution step of solving a positive definite linear system of equations ( ![]() | |
LAPACK symmetric indefinite linear system functions (sysv) | |
void | sysv (char uplo, int n, int nrhs, float *A, int lda, int *ipiv, float *B, int ldb, float *work, int lwork, int *info) |
LAPACK kernel for solving a symmetric indefinite single precision linear system of equations ( ![]() | |
void | sysv (char uplo, int n, int nrhs, double *A, int lda, int *ipiv, double *B, int ldb, double *work, int lwork, int *info) |
LAPACK kernel for solving a symmetric indefinite double precision linear system of equations ( ![]() | |
void | sysv (char uplo, int n, int nrhs, complex< float > *A, int lda, int *ipiv, complex< float > *B, int ldb, complex< float > *work, int lwork, int *info) |
LAPACK kernel for solving a symmetric indefinite single precision complex linear system of equations ( ![]() | |
void | sysv (char uplo, int n, int nrhs, complex< double > *A, int lda, int *ipiv, complex< double > *B, int ldb, complex< double > *work, int lwork, int *info) |
LAPACK kernel for solving a symmetric indefinite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | sysv (DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, int *ipiv) |
LAPACK kernel for solving a symmetric indefinite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | sysv (DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo, int *ipiv) |
LAPACK kernel for solving a symmetric indefinite linear system of equations ( ![]() | |
LAPACK LDLT decomposition functions (sytrf) | |
void | sytrf (char uplo, int n, float *A, int lda, int *ipiv, float *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense symmetric indefinite single precision column-major matrix. More... | |
void | sytrf (char uplo, int n, double *A, int lda, int *ipiv, double *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense symmetric indefinite double precision column-major matrix. More... | |
void | sytrf (char uplo, int n, complex< float > *A, int lda, int *ipiv, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense symmetric indefinite single precision complex column-major matrix. More... | |
void | sytrf (char uplo, int n, complex< double > *A, int lda, int *ipiv, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the decomposition of the given dense symmetric indefinite double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | sytrf (DenseMatrix< MT, SO > &A, char uplo, int *ipiv) |
LAPACK kernel for the decomposition of the given dense symmetric indefinite matrix. More... | |
LAPACK LDLT-based inversion functions (sytri) | |
void | sytri (char uplo, int n, float *A, int lda, const int *ipiv, float *work, int *info) |
LAPACK kernel for the inversion of the given dense symmetric indefinite single precision column-major square matrix. More... | |
void | sytri (char uplo, int n, double *A, int lda, const int *ipiv, double *work, int *info) |
LAPACK kernel for the inversion of the given dense symmetric indefinite double precision column-major square matrix. More... | |
void | sytri (char uplo, int n, complex< float > *A, int lda, const int *ipiv, complex< float > *work, int *info) |
LAPACK kernel for the inversion of the given dense symmetric indefinite single precision complex column-major square matrix. More... | |
void | sytri (char uplo, int n, complex< double > *A, int lda, const int *ipiv, complex< double > *work, int *info) |
LAPACK kernel for the inversion of the given dense symmetric indefinite double precision complex column-major square matrix. More... | |
template<typename MT , bool SO> | |
void | sytri (DenseMatrix< MT, SO > &A, char uplo, const int *ipiv) |
LAPACK kernel for the inversion of the given dense symmetric indefinite matrix. More... | |
LAPACK LDLT-based substitution functions (sytrs) | |
void | sytrs (char uplo, int n, int nrhs, const float *A, int lda, const int *ipiv, float *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite single precision linear system of equations ( ![]() | |
void | sytrs (char uplo, int n, int nrhs, const double *A, int lda, const int *ipiv, double *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite double precision linear system of equations ( ![]() | |
void | sytrs (char uplo, int n, int nrhs, const complex< float > *A, int lda, const int *ipiv, complex< float > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite single precision complex linear system of equations ( ![]() | |
void | sytrs (char uplo, int n, int nrhs, const complex< double > *A, int lda, const int *ipiv, complex< double > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a symmetric indefinite double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | sytrs (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, const int *ipiv) |
LAPACK kernel for the substitution step of solving a symmetric indefinite linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | sytrs (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo, const int *ipiv) |
LAPACK kernel for the substitution step of solving a symmetric indefinite linear system of equations ( ![]() | |
LAPACK triangular linear system functions (trsv) | |
void | trsv (char uplo, char trans, char diag, int n, const float *A, int lda, float *x, int incX) |
LAPACK kernel for solving a triangular single precision linear system of equations ( ![]() | |
void | trsv (char uplo, char trans, char diag, int n, const double *A, int lda, double *x, int incX) |
LAPACK kernel for solving a triangular double precision linear system of equations ( ![]() | |
void | trsv (char uplo, char trans, char diag, int n, const complex< float > *A, int lda, complex< float > *x, int incX) |
LAPACK kernel for solving a triangular single precision complex linear system of equations ( ![]() | |
void | trsv (char uplo, char trans, char diag, int n, const complex< double > *A, int lda, complex< double > *x, int incX) |
LAPACK kernel for solving a triangular double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | trsv (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, char trans, char diag) |
LAPACK kernel for solving a triangular linear system of equations ( ![]() ![]() | |
LAPACK triangular matrix inversion functions (trtri) | |
void | trtri (char uplo, char diag, int n, float *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense triangular single precision column-major matrix. More... | |
void | trtri (char uplo, char diag, int n, double *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense triangular double precision column-major matrix. More... | |
void | trtri (char uplo, char diag, int n, complex< float > *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense triangular single precision complex column-major matrix. More... | |
void | trtri (char uplo, char diag, int n, complex< double > *A, int lda, int *info) |
LAPACK kernel for the inversion of the given dense triangular double precision complex column-major matrix. More... | |
template<typename MT , bool SO> | |
void | trtri (DenseMatrix< MT, SO > &A, char uplo, char diag) |
LAPACK kernel for the inversion of the given dense triangular matrix. More... | |
LAPACK triangular substitution functions (trtrs) | |
void | trtrs (char uplo, char trans, char diag, int n, int nrhs, const float *A, int lda, float *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a triangular single precision linear system of equations ( ![]() | |
void | trtrs (char uplo, char trans, char diag, int n, int nrhs, const double *A, int lda, double *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a triangular double precision linear system of equations ( ![]() | |
void | trtrs (char uplo, char trans, char diag, int n, int nrhs, const complex< float > *A, int lda, complex< float > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a triangular single precision complex linear system of equations ( ![]() | |
void | trtrs (char uplo, char trans, char diag, int n, int nrhs, const complex< double > *A, int lda, complex< double > *B, int ldb, int *info) |
LAPACK kernel for the substitution step of solving a triangular double precision complex linear system of equations ( ![]() | |
template<typename MT , bool SO, typename VT , bool TF> | |
void | trtrs (const DenseMatrix< MT, SO > &A, DenseVector< VT, TF > &b, char uplo, char trans, char diag) |
LAPACK kernel for the substitution step of solving a triangular linear system of equations ( ![]() | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | trtrs (const DenseMatrix< MT1, SO1 > &A, DenseMatrix< MT2, SO2 > &B, char uplo, char trans, char diag) |
LAPACK kernel for the substitution step of solving a triangular linear system of equations ( ![]() | |
LAPACK functions to reconstruct Q from a LQ decomposition (unglq) | |
void | unglq (int m, int n, int k, complex< float > *A, int lda, const complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
void | unglq (int m, int n, int k, complex< double > *A, int lda, const complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
template<typename MT , bool SO> | |
void | unglq (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a LQ decomposition. More... | |
LAPACK functions to reconstruct Q from a QL decomposition (ungql) | |
void | ungql (int m, int n, int k, complex< float > *A, int lda, const complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
void | ungql (int m, int n, int k, complex< double > *A, int lda, const complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
template<typename MT , bool SO> | |
void | ungql (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QL decomposition. More... | |
LAPACK functions to reconstruct Q from a QR decomposition (ungqr) | |
void | ungqr (int m, int n, int k, complex< float > *A, int lda, const complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
void | ungqr (int m, int n, int k, complex< double > *A, int lda, const complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
template<typename MT , bool SO> | |
void | ungqr (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a QR decomposition. More... | |
LAPACK functions to reconstruct Q from a RQ decomposition (ungrq) | |
void | ungrq (int m, int n, int k, complex< float > *A, int lda, const complex< float > *tau, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
void | ungrq (int m, int n, int k, complex< double > *A, int lda, const complex< double > *tau, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
template<typename MT , bool SO> | |
void | ungrq (DenseMatrix< MT, SO > &A, const ElementType_< MT > *tau) |
LAPACK kernel for the reconstruction of the orthogonal matrix Q from a RQ decomposition. More... | |
LAPACK functions to multiply Q from a LQ decomposition with a matrix (unmlq) | |
void | unmlq (char side, char trans, int m, int n, int k, const complex< float > *A, int lda, const complex< float > *tau, complex< float > *C, int ldc, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision complex Q from a LQ decomposition with another matrix. More... | |
void | unmlq (char side, char trans, int m, int n, int k, const complex< double > *A, int lda, const complex< double > *tau, complex< double > *C, int ldc, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision complex Q from a LQ decomposition with another matrix. More... | |
template<typename MT1 , bool SO, typename MT2 > | |
void | unmlq (DenseMatrix< MT1, SO > &C, const DenseMatrix< MT2, SO > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a LQ decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a QL decomposition with a matrix (unmql) | |
void | unmql (char side, char trans, int m, int n, int k, const complex< float > *A, int lda, const complex< float > *tau, complex< float > *C, int ldc, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a QL decomposition with another matrix. More... | |
void | unmql (char side, char trans, int m, int n, int k, const complex< double > *A, int lda, const complex< double > *tau, complex< double > *C, int ldc, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a QL decomposition with another matrix. More... | |
template<typename MT1 , bool SO, typename MT2 > | |
void | unmql (DenseMatrix< MT1, SO > &C, const DenseMatrix< MT2, SO > &A, char side, char trans, const ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a QL decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a QR decomposition with a matrix (unmqr) | |
void | unmqr (char side, char trans, int m, int n, int k, const complex< float > *A, int lda, const complex< float > *tau, complex< float > *C, int ldc, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a QR decomposition with another matrix. More... | |
void | unmqr (char side, char trans, int m, int n, int k, const complex< double > *A, int lda, const complex< double > *tau, complex< double > *C, int ldc, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a QR decomposition with another matrix. More... | |
template<typename MT1 , bool SO, typename MT2 > | |
void | unmqr (DenseMatrix< MT1, SO > &C, DenseMatrix< MT2, SO > &A, char side, char trans, ElementType_< MT2 > *tau) |
LAPACK kernel for the multiplication of the double precision Q from a QR decomposition with another matrix. More... | |
LAPACK functions to multiply Q from a RQ decomposition with a matrix (unmrq) | |
void | unmrq (char side, char trans, int m, int n, int k, const complex< float > *A, int lda, const complex< float > *tau, complex< float > *C, int ldc, complex< float > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the single precision Q from a RQ decomposition with another matrix. More... | |
void | unmrq (char side, char trans, int m, int n, int k, const complex< double > *A, int lda, const complex< double > *tau, complex< double > *C, int ldc, complex< double > *work, int lwork, int *info) |
LAPACK kernel for the multiplication of the double precision Q from a RQ decomposition with another matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
void | unmrq (DenseMatrix< MT1, SO1 > &C, const DenseMatrix< MT2, SO2 > &A, char side, char trans, const ElementType_< MT2 > *tau) |
Matrix operators | |
template<typename MT , bool SO> | |
std::ostream & | operator<< (std::ostream &os, const Matrix< MT, SO > &m) |
Global output operator for dense and sparse matrices. More... | |
DenseMatrixProxy global functions | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE DenseMatrixProxy< PT, MT >::Iterator | begin (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator to the first element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE DenseMatrixProxy< PT, MT >::ConstIterator | cbegin (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator to the first element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE DenseMatrixProxy< PT, MT >::Iterator | end (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator just past the last element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE DenseMatrixProxy< PT, MT >::ConstIterator | cend (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator just past the last element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | rows (const DenseMatrixProxy< PT, MT > &proxy) |
Returns the current number of rows of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | columns (const DenseMatrixProxy< PT, MT > &proxy) |
Returns the current number of columns of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const DenseMatrixProxy< PT, MT > &proxy) |
Returns the maximum capacity of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns the current capacity of the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const DenseMatrixProxy< PT, MT > &proxy) |
Returns the number of non-zero elements in the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns the number of non-zero elements in the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | resize (const DenseMatrixProxy< PT, MT > &proxy, size_t m, size_t n, bool preserve) |
Changing the size of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | reset (const DenseMatrixProxy< PT, MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | reset (const DenseMatrixProxy< PT, MT > &proxy, size_t i) |
Reset the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | clear (const DenseMatrixProxy< PT, MT > &proxy) |
Clearing the represented matrix. More... | |
DenseVectorProxy global functions | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE DenseVectorProxy< PT, VT >::Iterator | begin (const DenseVectorProxy< PT, VT > &proxy) |
Returns an iterator to the first element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE DenseVectorProxy< PT, VT >::ConstIterator | cbegin (const DenseVectorProxy< PT, VT > &proxy) |
Returns an iterator to the first element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE DenseVectorProxy< PT, VT >::Iterator | end (const DenseVectorProxy< PT, VT > &proxy) |
Returns an iterator just past the last element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE DenseVectorProxy< PT, VT >::ConstIterator | cend (const DenseVectorProxy< PT, VT > &proxy) |
Returns an iterator just past the last element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | size (const DenseVectorProxy< PT, VT > &proxy) |
Returns the current size/dimension of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const DenseVectorProxy< PT, VT > &proxy) |
Returns the maximum capacity of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const DenseVectorProxy< PT, VT > &proxy) |
Returns the number of non-zero elements in the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | resize (const DenseVectorProxy< PT, VT > &proxy, size_t n, bool preserve) |
Changing the size of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | reset (const DenseVectorProxy< PT, VT > &proxy) |
Resetting the represented vector to the default initial values. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | clear (const DenseVectorProxy< PT, VT > &proxy) |
Clearing the represented vector. More... | |
Proxy operators | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
AddExprTrait_< RT1, RT2 > | operator+ (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Addition between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, AddExprTrait_< RT, T > > | operator+ (const Proxy< PT, RT > &lhs, const T &rhs) |
Addition between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, AddExprTrait_< T, RT > > | operator+ (const T &lhs, const Proxy< PT, RT > &rhs) |
Addition between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
SubExprTrait_< RT1, RT2 > | operator- (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Subtraction between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, SubExprTrait_< RT, T > > | operator- (const Proxy< PT, RT > &lhs, const T &rhs) |
Subtraction between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, SubExprTrait_< T, RT > > | operator- (const T &lhs, const Proxy< PT, RT > &rhs) |
Subtraction between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
MultExprTrait_< RT1, RT2 > | operator* (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Multiplication between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, MultExprTrait_< RT, T > > | operator* (const Proxy< PT, RT > &lhs, const T &rhs) |
Multiplication between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, MultExprTrait_< T, RT > > | operator* (const T &lhs, const Proxy< PT, RT > &rhs) |
Multiplication between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
DivExprTrait_< RT1, RT2 > | operator/ (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Division between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, DivExprTrait_< RT, T > > | operator/ (const Proxy< PT, RT > &lhs, const T &rhs) |
Division between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, DivExprTrait_< T, RT > > | operator/ (const T &lhs, const Proxy< PT, RT > &rhs) |
Division between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator== (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Equality comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator== (const Proxy< PT, RT > &lhs, const T &rhs) |
Equality comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator== (const T &lhs, const Proxy< PT, RT > &rhs) |
Equality comparison between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator!= (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Inequality comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator!= (const Proxy< PT, RT > &lhs, const T &rhs) |
Inequality comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator!= (const T &lhs, const Proxy< PT, RT > &rhs) |
Inquality comparison between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator< (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Less-than comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator< (const Proxy< PT, RT > &lhs, const T &rhs) |
Less-than comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator< (const T &lhs, const Proxy< PT, RT > &rhs) |
Less-than comparison between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator> (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Greater-than comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator> (const Proxy< PT, RT > &lhs, const T &rhs) |
Greater-than comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator> (const T &lhs, const Proxy< PT, RT > &rhs) |
Greater-than comparison between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator<= (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Less-or-equal-than comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator<= (const Proxy< PT, RT > &lhs, const T &rhs) |
Less-or-equal-than comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator<= (const T &lhs, const Proxy< PT, RT > &rhs) |
Less-or-equal-than comparison between an object of different type and a Proxy object. More... | |
template<typename PT1 , typename RT1 , typename PT2 , typename RT2 > | |
bool | operator>= (const Proxy< PT1, RT1 > &lhs, const Proxy< PT2, RT2 > &rhs) |
Greater-or-equal-than comparison between two Proxy objects. More... | |
template<typename PT , typename RT , typename T > | |
DisableIf_< IsProxy< T >, bool > | operator>= (const Proxy< PT, RT > &lhs, const T &rhs) |
Greater-or-equal-than comparison between a Proxy object and an object of different type. More... | |
template<typename T , typename PT , typename RT > | |
DisableIf_< IsProxy< T >, bool > | operator>= (const T &lhs, const Proxy< PT, RT > &rhs) |
Greater-or-equal-than comparison between an object of different type and a Proxy object. More... | |
template<typename PT , typename RT > | |
std::ostream & | operator<< (std::ostream &os, const Proxy< PT, RT > &proxy) |
Global output operator for the Proxy class template. More... | |
Proxy global functions | |
template<typename PT , typename RT > | |
auto | trans (const Proxy< PT, RT > &proxy) -> decltype(trans(std::declval< RepresentedType_< PT > >())) |
Computing the transpose of the represented element. More... | |
template<typename PT , typename RT > | |
auto | ctrans (const Proxy< PT, RT > &proxy) -> decltype(ctrans(std::declval< RepresentedType_< PT > >())) |
Computing the conjugate transpose of the represented element. More... | |
template<typename PT , typename RT > | |
auto | abs (const Proxy< PT, RT > &proxy) -> decltype(abs(std::declval< RepresentedType_< PT > >())) |
Computing the absolute value of the represented element. More... | |
template<typename PT , typename RT > | |
auto | conj (const Proxy< PT, RT > &proxy) -> decltype(conj(std::declval< RepresentedType_< PT > >())) |
Computing the complex conjugate of the represented element. More... | |
template<typename PT , typename RT > | |
auto | real (const Proxy< PT, RT > &proxy) -> decltype(real(std::declval< RepresentedType_< PT > >())) |
Computing the real part of the represented element. More... | |
template<typename PT , typename RT > | |
auto | imag (const Proxy< PT, RT > &proxy) -> decltype(imag(std::declval< RepresentedType_< PT > >())) |
Computing the imaginary part of the represented element. More... | |
template<typename PT , typename RT > | |
auto | sqrt (const Proxy< PT, RT > &proxy) -> decltype(sqrt(std::declval< RepresentedType_< PT > >())) |
Computing the square root of the represented element. More... | |
template<typename PT , typename RT > | |
auto | invsqrt (const Proxy< PT, RT > &proxy) -> decltype(invsqrt(std::declval< RepresentedType_< PT > >())) |
Computing the inverse square root of the represented element. More... | |
template<typename PT , typename RT > | |
auto | cbrt (const Proxy< PT, RT > &proxy) -> decltype(cbrt(std::declval< RepresentedType_< PT > >())) |
Computing the cubic root of the represented element. More... | |
template<typename PT , typename RT > | |
auto | invcbrt (const Proxy< PT, RT > &proxy) -> decltype(invcbrt(std::declval< RepresentedType_< PT > >())) |
Computing the inverse cubic root of the represented element. More... | |
template<typename PT , typename RT > | |
auto | floor (const Proxy< PT, RT > &proxy) -> decltype(floor(std::declval< RepresentedType_< PT > >())) |
Computes the largest integral value that is not greater than the represented element. More... | |
template<typename PT , typename RT > | |
auto | ceil (const Proxy< PT, RT > &proxy) -> decltype(ceil(std::declval< RepresentedType_< PT > >())) |
Computes the smallest integral value that is not less than the represented element. More... | |
template<typename PT , typename RT , typename ET > | |
auto | pow (const Proxy< PT, RT > &proxy, const ET &exp) -> decltype(pow(std::declval< RepresentedType_< PT > >(), exp)) |
Computing the exponential value of the represented element. More... | |
template<typename PT , typename RT > | |
auto | exp (const Proxy< PT, RT > &proxy) -> decltype(exp(std::declval< RepresentedType_< PT > >())) |
Computing the base-e exponential of the represented element. More... | |
template<typename PT , typename RT > | |
auto | sin (const Proxy< PT, RT > &proxy) -> decltype(sin(std::declval< RepresentedType_< PT > >())) |
Computing the sine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | asin (const Proxy< PT, RT > &proxy) -> decltype(asin(std::declval< RepresentedType_< PT > >())) |
Computing the inverse sine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | sinh (const Proxy< PT, RT > &proxy) -> decltype(sinh(std::declval< RepresentedType_< PT > >())) |
Computing the hyperbolic sine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | asinh (const Proxy< PT, RT > &proxy) -> decltype(asinh(std::declval< RepresentedType_< PT > >())) |
Computing the inverse hyperbolic sine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | cos (const Proxy< PT, RT > &proxy) -> decltype(cos(std::declval< RepresentedType_< PT > >())) |
Computing the cosine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | acos (const Proxy< PT, RT > &proxy) -> decltype(acos(std::declval< RepresentedType_< PT > >())) |
Computing the inverse cosine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | cosh (const Proxy< PT, RT > &proxy) -> decltype(cosh(std::declval< RepresentedType_< PT > >())) |
Computing the hyperbolic cosine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | acosh (const Proxy< PT, RT > &proxy) -> decltype(acosh(std::declval< RepresentedType_< PT > >())) |
Computing the inverse hyperbolic cosine of the represented element. More... | |
template<typename PT , typename RT > | |
auto | tan (const Proxy< PT, RT > &proxy) -> decltype(tan(std::declval< RepresentedType_< PT > >())) |
Computing the tangent of the represented element. More... | |
template<typename PT , typename RT > | |
auto | atan (const Proxy< PT, RT > &proxy) -> decltype(atan(std::declval< RepresentedType_< PT > >())) |
Computing the inverse tangent of the represented element. More... | |
template<typename PT , typename RT > | |
auto | tanh (const Proxy< PT, RT > &proxy) -> decltype(tanh(std::declval< RepresentedType_< PT > >())) |
Computing the hyperbolic tangent of the represented element. More... | |
template<typename PT , typename RT > | |
auto | atanh (const Proxy< PT, RT > &proxy) -> decltype(atanh(std::declval< RepresentedType_< PT > >())) |
Computing the inverse hyperbolic tangent of the represented element. More... | |
template<typename PT , typename RT > | |
void | transpose (const Proxy< PT, RT > &proxy) |
In-place transpose of the represented matrix element. More... | |
template<typename PT , typename RT > | |
void | ctranspose (const Proxy< PT, RT > &proxy) |
In-place conjugate transpose of the represented matrix element. More... | |
template<typename PT , typename RT > | |
void | invert (const Proxy< PT, RT > &proxy) |
In-place inversion of the represented element. More... | |
template<InversionFlag IF, typename PT , typename RT > | |
void | invert (const Proxy< PT, RT > &proxy) |
In-place inversion of the represented element. More... | |
template<typename PT , typename RT > | |
bool | isReal (const Proxy< PT, RT > &proxy) |
Returns whether the element represents a real number. More... | |
template<typename PT , typename RT > | |
bool | isZero (const Proxy< PT, RT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename PT , typename RT > | |
bool | isOne (const Proxy< PT, RT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename PT , typename RT > | |
bool | isnan (const Proxy< PT, RT > &proxy) |
Returns whether the represented element is not a number. More... | |
SparseMatrixProxy global functions | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE SparseMatrixProxy< PT, MT >::Iterator | begin (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator to the first element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE SparseMatrixProxy< PT, MT >::ConstIterator | cbegin (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator to the first element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE SparseMatrixProxy< PT, MT >::Iterator | end (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator just past the last element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE SparseMatrixProxy< PT, MT >::ConstIterator | cend (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns an iterator just past the last element of row/column i of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | rows (const SparseMatrixProxy< PT, MT > &proxy) |
Returns the current number of rows of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | columns (const SparseMatrixProxy< PT, MT > &proxy) |
Returns the current number of columns of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const SparseMatrixProxy< PT, MT > &proxy) |
Returns the maximum capacity of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns the current capacity of the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const SparseMatrixProxy< PT, MT > &proxy) |
Returns the number of non-zero elements in the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Returns the number of non-zero elements in the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | resize (const SparseMatrixProxy< PT, MT > &proxy, size_t m, size_t n, bool preserve) |
Changing the size of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | reset (const SparseMatrixProxy< PT, MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | reset (const SparseMatrixProxy< PT, MT > &proxy, size_t i) |
Reset the specified row/column of the represented matrix. More... | |
template<typename PT , typename MT > | |
BLAZE_ALWAYS_INLINE void | clear (const SparseMatrixProxy< PT, MT > &proxy) |
Clearing the represented matrix. More... | |
SparseVectorProxy global functions | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE SparseVectorProxy< PT, VT >::Iterator | begin (const SparseVectorProxy< PT, VT > &proxy) |
Returns an iterator to the first element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE SparseVectorProxy< PT, VT >::ConstIterator | cbegin (const SparseVectorProxy< PT, VT > &proxy) |
Returns an iterator to the first element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE SparseVectorProxy< PT, VT >::Iterator | end (const SparseVectorProxy< PT, VT > &proxy) |
Returns an iterator just past the last element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE SparseVectorProxy< PT, VT >::ConstIterator | cend (const SparseVectorProxy< PT, VT > &proxy) |
Returns an iterator just past the last element of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | size (const SparseVectorProxy< PT, VT > &proxy) |
Returns the current size/dimension of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | capacity (const SparseVectorProxy< PT, VT > &proxy) |
Returns the maximum capacity of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE size_t | nonZeros (const SparseVectorProxy< PT, VT > &proxy) |
Returns the number of non-zero elements in the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | resize (const SparseVectorProxy< PT, VT > &proxy, size_t n, bool preserve) |
Changing the size of the represented vector. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | reset (const SparseVectorProxy< PT, VT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename PT , typename VT > | |
BLAZE_ALWAYS_INLINE void | clear (const SparseVectorProxy< PT, VT > &proxy) |
Clearing the represented element. More... | |
Dense matrix SMP functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsDenseMatrix< MT1 > > | smpAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP assignment of a matrix to a dense matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsDenseMatrix< MT1 > > | smpAddAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP addition assignment of a matrix to a dense matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsDenseMatrix< MT1 > > | smpSubAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP subtraction assignment of a matrix to dense matrix. More... | |
Dense vector SMP functions | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsDenseVector< VT1 > > | smpAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP assignment of a vector to a dense vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsDenseVector< VT1 > > | smpAddAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP addition assignment of a vector to a dense vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsDenseVector< VT1 > > | smpSubAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP subtraction assignment of a vector to a dense vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsDenseVector< VT1 > > | smpMultAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP multiplication assignment of a vector to a dense vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsDenseVector< VT1 > > | smpDivAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP division assignment of a vector to a dense vector. More... | |
SMP utility functions | |
BLAZE_ALWAYS_INLINE size_t | getNumThreads () |
Returns the number of threads used for thread parallel operations. More... | |
BLAZE_ALWAYS_INLINE void | setNumThreads (size_t number) |
Sets the number of threads to be used for thread parallel operations. More... | |
BLAZE_ALWAYS_INLINE void | shutDownThreads () |
Provides a reliable shutdown of C++11 threads for Visual Studio compilers. More... | |
Sparse matrix SMP functions | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsSparseMatrix< MT1 > > | smpAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP assignment of a matrix to a sparse matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsSparseMatrix< MT1 > > | smpAddAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP addition assignment of a matrix to a sparse matrix. More... | |
template<typename MT1 , bool SO1, typename MT2 , bool SO2> | |
EnableIf_< IsSparseMatrix< MT1 > > | smpSubAssign (Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs) |
Default implementation of the SMP subtraction assignment of a matrix to sparse matrix. More... | |
Sparse vector SMP functions | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsSparseVector< VT1 > > | smpAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP assignment of a vector to a sparse vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsSparseVector< VT1 > > | smpAddAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP addition assignment of a vector to a sparse vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsSparseVector< VT1 > > | smpSubAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP subtraction assignment of a vector to a sparse vector. More... | |
template<typename VT1 , bool TF1, typename VT2 , bool TF2> | |
EnableIf_< IsSparseVector< VT1 > > | smpMultAssign (Vector< VT1, TF1 > &lhs, const Vector< VT2, TF2 > &rhs) |
Default implementation of the SMP multiplication assignment of a vector to a sparse vector. More... | |
ParallelSection functions | |
bool | isParallelSectionActive () |
Returns whether a parallel section is active or not. More... | |
SerialSection functions | |
bool | isSerialSectionActive () |
Returns whether a serial section is active or not. More... | |
Constructors | |
CompressedMatrix () | |
CompressedMatrix (size_t m, size_t n) | |
CompressedMatrix (size_t m, size_t n, size_t nonzeros) | |
CompressedMatrix (size_t m, size_t n, const std::vector< size_t > &nonzeros) | |
CompressedMatrix (const CompressedMatrix &sm) | |
CompressedMatrix (CompressedMatrix &&sm) noexcept | |
template<typename MT , bool SO> | |
CompressedMatrix (const DenseMatrix< MT, SO > &dm) | |
template<typename MT , bool SO> | |
CompressedMatrix (const SparseMatrix< MT, SO > &sm) | |
Destructor | |
~CompressedMatrix () | |
Data access functions | |
Reference | operator() (size_t i, size_t j) noexcept |
Reference | at (size_t i, size_t j) |
Iterator | begin (size_t i) noexcept |
ConstIterator | cbegin (size_t i) const noexcept |
Iterator | end (size_t i) noexcept |
ConstIterator | cend (size_t i) const noexcept |
Assignment operators | |
CompressedMatrix & | operator= (const CompressedMatrix &rhs) |
CompressedMatrix & | operator= (CompressedMatrix &&rhs) noexcept |
template<typename MT , bool SO> | |
CompressedMatrix & | operator= (const DenseMatrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
CompressedMatrix & | operator= (const SparseMatrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
CompressedMatrix & | operator+= (const Matrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
CompressedMatrix & | operator-= (const Matrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
CompressedMatrix & | operator*= (const Matrix< MT, SO > &rhs) |
template<typename Other > | |
EnableIf_< IsNumeric< Other >, CompressedMatrix > & | operator*= (Other rhs) |
template<typename Other > | |
EnableIf_< IsNumeric< Other >, CompressedMatrix > & | operator/= (Other rhs) |
Utility functions | |
size_t | rows () const noexcept |
size_t | columns () const noexcept |
size_t | capacity () const noexcept |
size_t | capacity (size_t j) const noexcept |
size_t | nonZeros () const |
size_t | nonZeros (size_t j) const |
void | reset () |
void | reset (size_t j) |
void | clear () |
Iterator | set (size_t i, size_t j, const Type &value) |
Iterator | insert (size_t i, size_t j, const Type &value) |
void | erase (size_t i, size_t j) |
Iterator | erase (size_t j, Iterator pos) |
Iterator | erase (size_t j, Iterator first, Iterator last) |
void | resize (size_t m, size_t n, bool preserve=true) |
void | reserve (size_t nonzeros) |
void | reserve (size_t j, size_t nonzeros) |
void | trim () |
void | trim (size_t j) |
CompressedMatrix & | transpose () |
CompressedMatrix & | ctranspose () |
template<typename Other > | |
CompressedMatrix & | scale (const Other &scalar) |
template<typename Other > | |
CompressedMatrix & | scaleDiagonal (Other scalar) |
void | swap (CompressedMatrix &sm) noexcept |
Iterator | insert (Iterator pos, size_t i, size_t j, const Type &value) |
size_t | extendCapacity () const noexcept |
void | reserveElements (size_t nonzeros) |
Lookup functions | |
Iterator | find (size_t i, size_t j) |
Iterator | lowerBound (size_t i, size_t j) |
Iterator | upperBound (size_t i, size_t j) |
Low-level utility functions | |
void | append (size_t i, size_t j, const Type &value, bool check=false) |
void | finalize (size_t j) |
Expression template evaluation functions | |
template<typename Other > | |
bool | canAlias (const Other *alias) const noexcept |
template<typename Other > | |
bool | isAliased (const Other *alias) const noexcept |
bool | canSMPAssign () const noexcept |
template<typename MT , bool SO> | |
void | assign (const DenseMatrix< MT, SO > &rhs) |
template<typename MT > | |
void | assign (const SparseMatrix< MT, true > &rhs) |
template<typename MT > | |
void | assign (const SparseMatrix< MT, false > &rhs) |
template<typename MT , bool SO> | |
void | addAssign (const DenseMatrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
void | addAssign (const SparseMatrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
void | subAssign (const DenseMatrix< MT, SO > &rhs) |
template<typename MT , bool SO> | |
void | subAssign (const SparseMatrix< MT, SO > &rhs) |
CompressedVector operators | |
template<typename Type , bool TF> | |
void | reset (CompressedVector< Type, TF > &v) |
Resetting the given compressed vector. More... | |
template<typename Type , bool TF> | |
void | clear (CompressedVector< Type, TF > &v) |
Clearing the given compressed vector. More... | |
template<typename Type , bool TF> | |
bool | isDefault (const CompressedVector< Type, TF > &v) |
Returns whether the given compressed vector is in default state. More... | |
template<typename Type , bool TF> | |
bool | isIntact (const CompressedVector< Type, TF > &v) noexcept |
Returns whether the invariants of the given compressed vector are intact. More... | |
template<typename Type , bool TF> | |
void | swap (CompressedVector< Type, TF > &a, CompressedVector< Type, TF > &b) noexcept |
Swapping the contents of two compressed vectors. More... | |
MatrixAccessProxy global functions | |
template<typename MT > | |
void | reset (const MatrixAccessProxy< MT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename MT > | |
void | clear (const MatrixAccessProxy< MT > &proxy) |
Clearing the represented element. More... | |
template<typename MT > | |
bool | isDefault (const MatrixAccessProxy< MT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename MT > | |
bool | isReal (const MatrixAccessProxy< MT > &proxy) |
Returns whether the matrix element represents a real number. More... | |
template<typename MT > | |
bool | isZero (const MatrixAccessProxy< MT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename MT > | |
bool | isOne (const MatrixAccessProxy< MT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename MT > | |
bool | isnan (const MatrixAccessProxy< MT > &proxy) |
Returns whether the represented element is not a number. More... | |
template<typename MT > | |
void | swap (const MatrixAccessProxy< MT > &a, const MatrixAccessProxy< MT > &b) noexcept |
Swapping the contents of two access proxies. More... | |
template<typename MT , typename T > | |
void | swap (const MatrixAccessProxy< MT > &a, T &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
template<typename T , typename MT > | |
void | swap (T &a, const MatrixAccessProxy< MT > &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
SparseMatrix operators | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const SparseMatrix< T1, false > &lhs, const SparseMatrix< T2, false > &rhs) |
Equality operator for the comparison of two row-major sparse matrices. More... | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const SparseMatrix< T1, true > &lhs, const SparseMatrix< T2, true > &rhs) |
Equality operator for the comparison of two column-major sparse matrices. More... | |
template<typename T1 , typename T2 , bool SO> | |
bool | operator== (const SparseMatrix< T1, SO > &lhs, const SparseMatrix< T2,!SO > &rhs) |
Equality operator for the comparison of two sparse matrices with different storage order. More... | |
template<typename T1 , bool SO1, typename T2 , bool SO2> | |
bool | operator!= (const SparseMatrix< T1, SO1 > &lhs, const SparseMatrix< T2, SO2 > &rhs) |
Inequality operator for the comparison of two sparse matrices. More... | |
SparseMatrix functions | |
template<typename MT , bool SO> | |
bool | isnan (const SparseMatrix< MT, SO > &sm) |
Checks the given sparse matrix for not-a-number elements. More... | |
template<typename MT , bool SO> | |
bool | isSymmetric (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is symmetric. More... | |
template<typename MT , bool SO> | |
bool | isHermitian (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is Hermitian. More... | |
template<typename MT , bool SO> | |
bool | isUniform (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is a uniform matrix. More... | |
template<typename MT , bool SO> | |
bool | isLower (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is a lower triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUniLower (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is a lower unitriangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isStrictlyLower (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is a strictly lower triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUpper (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is an upper triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isUniUpper (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is an upper unitriangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isStrictlyUpper (const SparseMatrix< MT, SO > &sm) |
Checks if the given sparse matrix is a strictly upper triangular matrix. More... | |
template<typename MT , bool SO> | |
bool | isDiagonal (const SparseMatrix< MT, SO > &sm) |
Checks if the give sparse matrix is diagonal. More... | |
template<typename MT , bool SO> | |
bool | isIdentity (const SparseMatrix< MT, SO > &sm) |
Checks if the give sparse matrix is an identity matrix. More... | |
template<typename MT , bool SO> | |
const ElementType_< MT > | min (const SparseMatrix< MT, SO > &sm) |
Returns the smallest element of the sparse matrix. More... | |
template<typename MT , bool SO> | |
const ElementType_< MT > | max (const SparseMatrix< MT, SO > &sm) |
Returns the largest element of the sparse matrix. More... | |
SparseVector operators | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator== (const SparseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Equality operator for the comparison of two sparse vectors. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | operator!= (const SparseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Inequality operator for the comparison of two sparse vectors. More... | |
SparseVector functions | |
template<typename VT , bool TF> | |
bool | isnan (const SparseVector< VT, TF > &sv) |
Checks the given sparse vector for not-a-number elements. More... | |
template<typename VT , bool TF> | |
bool | isUniform (const SparseVector< VT, TF > &sv) |
Checks if the given sparse vector is a uniform vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | sqrLength (const SparseVector< VT, TF > &sv) |
Calculation of the sparse vector square length ![]() | |
template<typename VT , bool TF> | |
auto | length (const SparseVector< VT, TF > &sv) -> decltype(sqrt(sqrLength(~sv))) |
Calculation of the sparse vector length ![]() | |
template<typename VT , bool TF> | |
const ElementType_< VT > | min (const SparseVector< VT, TF > &sv) |
Returns the smallest element of the sparse vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | max (const SparseVector< VT, TF > &sv) |
Returns the largest element of the sparse vector. More... | |
VectorAccessProxy global functions | |
template<typename VT > | |
void | reset (const VectorAccessProxy< VT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename VT > | |
void | clear (const VectorAccessProxy< VT > &proxy) |
Clearing the represented element. More... | |
template<typename VT > | |
bool | isDefault (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<typename VT > | |
bool | isReal (const VectorAccessProxy< VT > &proxy) |
Returns whether the vector element represents a real number. More... | |
template<typename VT > | |
bool | isZero (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is 0. More... | |
template<typename VT > | |
bool | isOne (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename VT > | |
bool | isnan (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is not a number. More... | |
template<typename VT > | |
void | swap (const VectorAccessProxy< VT > &a, const VectorAccessProxy< VT > &b) noexcept |
Swapping the contents of two access proxies. More... | |
template<typename VT , typename T > | |
void | swap (const VectorAccessProxy< VT > &a, T &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
template<typename T , typename VT > | |
void | swap (T &a, const VectorAccessProxy< VT > &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
Vector operators | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | inner (const Vector< T1, false > &lhs, const Vector< T2, false > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | inner (const Vector< T1, false > &lhs, const Vector< T2, true > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | inner (const Vector< T1, true > &lhs, const Vector< T2, false > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | inner (const Vector< T1, true > &lhs, const Vector< T2, true > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | dot (const Vector< T1, TF1 > &lhs, const Vector< T2, TF2 > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | operator, (const Vector< T1, TF1 > &lhs, const Vector< T2, TF2 > &rhs) |
Multiplication operator for the scalar product (dot/inner product) of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | outer (const Vector< T1, false > &lhs, const Vector< T2, false > &rhs) |
Multiplication operator for the outer product of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | outer (const Vector< T1, false > &lhs, const Vector< T2, true > &rhs) |
Multiplication operator for the outer product of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | outer (const Vector< T1, true > &lhs, const Vector< T2, false > &rhs) |
Multiplication operator for the outer product of two vectors ( ![]() | |
template<typename T1 , typename T2 > | |
const MultTrait_< ElementType_< T1 >, ElementType_< T2 > > | outer (const Vector< T1, true > &lhs, const Vector< T2, true > &rhs) |
Multiplication operator for the outer product of two vectors ( ![]() | |
template<typename VT , bool TF> | |
std::ostream & | operator<< (std::ostream &os, const Vector< VT, TF > &v) |
Global output operator for dense and sparse vectors. More... | |
Column operators | |
template<typename MT , bool SO, bool DF, bool SF> | |
void | reset (Column< MT, SO, DF, SF > &column) |
Resetting the given column. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
void | clear (Column< MT, SO, DF, SF > &column) |
Clearing the given column. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isDefault (const Column< MT, SO, DF, SF > &column) |
Returns whether the given column is in default state. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isIntact (const Column< MT, SO, DF, SF > &column) noexcept |
Returns whether the invariants of the given column are intact. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isSame (const Column< MT, SO, DF, SF > &a, const Column< MT, SO, DF, SF > &b) noexcept |
Returns whether the two given columns represent the same observable state. More... | |
Row operators | |
template<typename MT , bool SO, bool DF, bool SF> | |
void | reset (Row< MT, SO, DF, SF > &row) |
Resetting the given row. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
void | clear (Row< MT, SO, DF, SF > &row) |
Clearing the given row. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isDefault (const Row< MT, SO, DF, SF > &row) |
Returns whether the given row is in default state. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isIntact (const Row< MT, SO, DF, SF > &row) noexcept |
Returns whether the invariants of the given row are intact. More... | |
template<typename MT , bool SO, bool DF, bool SF> | |
bool | isSame (const Row< MT, SO, DF, SF > &a, const Row< MT, SO, DF, SF > &b) noexcept |
Returns whether the two given rows represent the same observable state. More... | |
Submatrix operators | |
template<typename MT , bool AF, bool SO, bool DF> | |
void | reset (Submatrix< MT, AF, SO, DF > &sm) |
Resetting the given submatrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
void | reset (Submatrix< MT, AF, SO, DF > &sm, size_t i) |
Reset the specified row/column of the given submatrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
void | clear (Submatrix< MT, AF, SO, DF > &sm) |
Clearing the given matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isDefault (const Submatrix< MT, AF, SO, DF > &sm) |
Returns whether the given submatrix is in default state. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isIntact (const Submatrix< MT, AF, SO, DF > &sm) noexcept |
Returns whether the invariants of the given submatrix are intact. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isSymmetric (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is symmetric. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isHermitian (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is Hermitian. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isLower (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is a lower triangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isUniLower (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is a lower unitriangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isStrictlyLower (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is a strictly lower triangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isUpper (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is an upper triangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isUniUpper (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is an upper unitriangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isStrictlyUpper (const Submatrix< MT, AF, SO, DF > &sm) |
Checks if the given submatrix is a strictly upper triangular matrix. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isSame (const Submatrix< MT, AF, SO, DF > &a, const Matrix< MT, SO > &b) noexcept |
Returns whether the given matrix and submatrix represent the same observable state. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isSame (const Matrix< MT, SO > &a, const Submatrix< MT, AF, SO, DF > &b) noexcept |
Returns whether the given matrix and submatrix represent the same observable state. More... | |
template<typename MT , bool AF, bool SO, bool DF> | |
bool | isSame (const Submatrix< MT, AF, SO, DF > &a, const Submatrix< MT, AF, SO, DF > &b) noexcept |
Returns whether the two given submatrices represent the same observable state. More... | |
Subvector operators | |
template<typename VT , bool AF, bool TF, bool DF> | |
void | reset (Subvector< VT, AF, TF, DF > &sv) |
Resetting the given subvector. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
void | clear (Subvector< VT, AF, TF, DF > &sv) |
Clearing the given subvector. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
bool | isDefault (const Subvector< VT, AF, TF, DF > &sv) |
Returns whether the given subvector is in default state. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
bool | isIntact (const Subvector< VT, AF, TF, DF > &sv) noexcept |
Returns whether the invariants of the given subvector vector are intact. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
bool | isSame (const Subvector< VT, AF, TF, DF > &a, const Vector< VT, TF > &b) noexcept |
Returns whether the given vector and subvector represent the same observable state. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
bool | isSame (const Vector< VT, TF > &a, const Subvector< VT, AF, TF, DF > &b) noexcept |
Returns whether the given vector and subvector represent the same observable state. More... | |
template<typename VT , bool AF, bool TF, bool DF> | |
bool | isSame (const Subvector< VT, AF, TF, DF > &a, const Subvector< VT, AF, TF, DF > &b) noexcept |
Returns whether the two given subvectors represent the same observable state. More... | |
AlignedAllocator operators | |
template<typename T1 , typename T2 > | |
bool | operator== (const AlignedAllocator< T1 > &lhs, const AlignedAllocator< T2 > &rhs) noexcept |
Equality comparison between two AlignedAllocator objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator!= (const AlignedAllocator< T1 > &lhs, const AlignedAllocator< T2 > &rhs) noexcept |
Inequality comparison between two AlignedAllocator objects. More... | |
InputString operators | |
bool | IsFileName (const InputString &s) |
Tests for a valid file name. More... | |
std::ostream & | operator<< (std::ostream &os, const InputString &str) |
Global output operator for the InputString class. More... | |
std::istream & | operator>> (std::istream &is, InputString &str) |
Global input operator for the InputString class. More... | |
Pointer cast operators | |
template<typename To , typename From > | |
To * | static_pointer_cast (From *ptr) |
Static cast for pointer types. More... | |
template<typename To , typename From > | |
To * | dynamic_pointer_cast (From *ptr) |
Dynamic cast for pointer types. More... | |
template<typename To , typename From > | |
To * | const_pointer_cast (From *ptr) |
Const cast for pointer types. More... | |
template<typename To , typename From > | |
To * | reinterpret_pointer_cast (From *ptr) |
Reinterpret cast for pointer types. More... | |
Smart pointer cast operators | |
template<typename To , template< typename > class S, typename From > | |
S< To > | static_pointer_cast (S< From > ptr) |
Static cast for smart pointers. More... | |
template<typename To , template< typename > class S, typename From > | |
S< To > | dynamic_pointer_cast (S< From > ptr) |
Dynamic cast for smart pointers. More... | |
template<typename To , template< typename > class S, typename From > | |
S< To > | const_pointer_cast (S< From > ptr) |
Const cast for smart pointers. More... | |
template<typename To , template< typename > class S, typename From > | |
S< To > | reinterpret_pointer_cast (S< From > ptr) |
Reinterpret cast for smart pointers. More... | |
PtrIterator operators | |
template<typename TypeL , typename TypeR > | |
bool | operator== (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Equality comparison between two PtrIterator objects. More... | |
template<typename TypeL , typename TypeR > | |
bool | operator!= (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Inequality comparison between two PtrIterator objects. More... | |
template<typename TypeL , typename TypeR > | |
bool | operator< (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Less-than comparison between two PtrIterator objects. More... | |
template<typename TypeL , typename TypeR > | |
bool | operator> (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Greater-than comparison between two PtrIterator objects. More... | |
template<typename TypeL , typename TypeR > | |
bool | operator<= (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Less-or-equal-than comparison between two PtrIterator objects. More... | |
template<typename TypeL , typename TypeR > | |
bool | operator>= (const PtrIterator< TypeL > &lhs, const PtrIterator< TypeR > &rhs) |
Greater-or-equal-than comparison between two PtrIterator objects. More... | |
PtrVector operators | |
template<typename T , typename D , typename G > | |
bool | operator== (const PtrVector< T, D, G > &lhs, const PtrVector< T, D, G > &rhs) |
Equality comparison between two pointer vectors. More... | |
template<typename T , typename D , typename G > | |
bool | operator!= (const PtrVector< T, D, G > &lhs, const PtrVector< T, D, G > &rhs) |
Inequality comparison between two pointer vectors. More... | |
template<typename T , typename D , typename G > | |
void | swap (PtrVector< T, D, G > &a, PtrVector< T, D, G > &b) noexcept |
Swapping the contents of two pointer vectors. More... | |
Random number functions | |
template<typename T > | |
T | rand () |
Random number function. More... | |
template<typename T , typename... Args> | |
T | rand (Args &&...args) |
Random number function. More... | |
template<typename T > | |
void | randomize (T &value) |
Randomization of a given variable. More... | |
template<typename T , typename... Args> | |
void | randomize (T &value, Args &&...args) |
Randomization of a given variable. More... | |
uint32_t | defaultSeed () |
Returns the default random seed. More... | |
uint32_t | getSeed () |
Returns the current seed of the random number generator. More... | |
void | setSeed (uint32_t seed) |
Setting the seed of the random number generator. More... | |
System clock setup functions | |
SystemClockID | theSystemClock () |
Returns a handle to the Blaze system clock. More... | |
Time functions | |
std::string | getDate () |
Creating a formated date string in the form YYYY-MM-DD. More... | |
std::string | getTime () |
Creating a formated time and date string. More... | |
double | getWcTime () |
Returns the current wall clock time in seconds. More... | |
double | getCpuTime () |
Returns the current CPU time in seconds. More... | |
UnsignedValue operators | |
template<typename T1 , typename T2 > | |
bool | operator== (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Equality comparison between two UnsignedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator!= (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Inequality comparison between two UnsignedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator< (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Less-than comparison between two UnsignedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator> (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Greater-than comparison between two UnsignedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator<= (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Less-or-equal-than comparison between two UnsignedValue objects. More... | |
template<typename T1 , typename T2 > | |
bool | operator>= (const UnsignedValue< T1 > &lhs, const UnsignedValue< T2 > &rhs) |
Greater-or-equal-than comparison between two UnsignedValue objects. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &os, const UnsignedValue< T > &uv) |
Global output operator for the UnsignedValue wrapper. More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &is, UnsignedValue< T > &uv) |
Global input operator for the UnsignedValue wrapper. More... | |
Variables | |
constexpr size_t | cacheSize = 3145728UL |
Cache size of the target architecture.This setting specifies the available cache size in Byte of the used target architecture. Several algorithms use this setting for an optimized evaluation. More... | |
constexpr bool | usePadding = true |
Configuration of the padding of dense vectors and matrices.This configuration switch enables/disables the padding of dense vectors and matrices. Padding is used by the Blaze library in order to achieve maximum performance for both dense vector and matrix operations. Due to padding, the proper alignment of data elements can be guaranteed and the need for remainder loops is minimized. In case the switch is set to true, padding is enabled for all native dense vectors and matrices. If the switch is set to false, padding is generally disabled. More... | |
constexpr bool | useStreaming = true |
Configuration of the streaming behavior.For large vectors and matrices non-temporal stores can provide a significant performance advantage of about 20%. However, this advantage is only in effect in case the memory bandwidth of the target architecture is maxed out. If the target architecture's memory bandwidth cannot be exhausted the use of non-temporal stores can decrease performance instead of increasing it. More... | |
constexpr bool | useOptimizedKernels = true |
Configuration switch for optimized kernels.This configuration switch enables/disables all optimized compute kernels of the Blaze library, including all vectorized and data type depending kernels. In case the switch is set to true the optimized kernels are used whenever possible. In case the switch is set to false all optimized kernels are not used, even if it would be possible. More... | |
constexpr bool | defaultStorageOrder = rowMajor |
The default storage order for all matrices of the Blaze library.This value specifies the default storage order for all matrices of the Blaze library. In case no explicit storage order is specified with the according matrix type, this setting is used. More... | |
constexpr size_t | DMATDVECMULT_USER_THRESHOLD = 4000000UL |
Row-major dense matrix/dense vector multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/dense vector multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | TDMATDVECMULT_USER_THRESHOLD = 62500UL |
Column-major dense matrix/dense vector multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/dense vector multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | TDVECDMATMULT_USER_THRESHOLD = 62500UL |
Dense Vector/row-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the dense vector/row-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | TDVECTDMATMULT_USER_THRESHOLD = 4000000UL |
Dense Vector/column-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the dense vector/column-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | DMATDMATMULT_USER_THRESHOLD = 10000UL |
Row-major dense matrix/row-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/row-major dense matrix multiplication. In case the number of elements of the target matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the target matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | DMATTDMATMULT_USER_THRESHOLD = 10000UL |
Row-major dense matrix/column-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/column-major dense matrix multiplication. In case the number of elements of the target matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the target matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | TDMATDMATMULT_USER_THRESHOLD = 10000UL |
Column-major dense matrix/row-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/row-major dense matrix multiplication. In case the number of elements of the target matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the target matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | TDMATTDMATMULT_USER_THRESHOLD = 10000UL |
Column-major dense matrix/column-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/column-major dense matrix multiplication. In case the number of elements of the target matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the target matrix is smaller, the Blaze kernels are used. More... | |
constexpr size_t | DMATSMATMULT_USER_THRESHOLD = 2500UL |
Row-major dense matrix/row-major sparse matrix multiplication threshold.This setting specifies the threshold between the application of the Blaze kernels for small and for large row-major dense matrix/row-major sparse matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. More... | |
constexpr size_t | TDMATSMATMULT_USER_THRESHOLD = 2500UL |
Column-major dense matrix/row-major sparse matrix multiplication threshold.This setting specifies the threshold between the application of the Blaze kernels for small and for large column-major dense matrix/row-major sparse matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. More... | |
constexpr size_t | TSMATDMATMULT_USER_THRESHOLD = 10000UL |
Column-major sparse matrix/row-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the Blaze kernels for small and for large column-major sparse matrix/row-major dense matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. More... | |
constexpr size_t | TSMATTDMATMULT_USER_THRESHOLD = 22500UL |
Column-major sparse matrix/column-major dense matrix multiplication threshold.This setting specifies the threshold between the application of the Blaze kernels for small and for large column-major sparse matrix/column-major dense matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. More... | |
constexpr size_t | SMP_DVECASSIGN_USER_THRESHOLD = 38000UL |
SMP dense vector assignment threshold.This threshold specifies when an assignment of a simple dense vector can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECDVECADD_USER_THRESHOLD = 38000UL |
SMP dense vector/dense vector addition threshold.This threshold specifies when a dense vector/dense vector addition can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECDVECSUB_USER_THRESHOLD = 38000UL |
SMP dense vector/dense vector subtraction threshold.This threshold specifies when a dense vector/dense vector subtraction can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECDVECMULT_USER_THRESHOLD = 38000UL |
SMP dense vector/dense vector multiplication threshold.This threshold specifies when a dense vector/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECDVECDIV_USER_THRESHOLD = 38000UL |
SMP dense vector/dense vector division threshold.This threshold specifies when a dense vector/dense vector division can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECSCALARMULT_USER_THRESHOLD = 51000UL |
SMP dense vector/scalar multiplication/division threshold.This threshold specifies when a dense vector/scalar multiplication/division can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATDVECMULT_USER_THRESHOLD = 330UL |
SMP row-major dense matrix/dense vector multiplication threshold.This threshold specifies when a row-major dense matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATDVECMULT_USER_THRESHOLD = 360UL |
SMP column-major dense matrix/dense vector multiplication threshold.This threshold specifies when a column-major dense matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDVECDMATMULT_USER_THRESHOLD = 370UL |
SMP dense vector/row-major dense matrix multiplication threshold.This threshold specifies when a dense vector/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDVECTDMATMULT_USER_THRESHOLD = 340UL |
SMP dense vector/column-major dense matrix multiplication threshold.This threshold specifies when a dense vector/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATSVECMULT_USER_THRESHOLD = 480UL |
SMP row-major dense matrix/sparse vector multiplication threshold.This threshold specifies when a row-major dense matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATSVECMULT_USER_THRESHOLD = 910UL |
SMP column-major dense matrix/sparse vector multiplication threshold.This threshold specifies when a column-major dense matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSVECDMATMULT_USER_THRESHOLD = 910UL |
SMP sparse vector/row-major dense matrix multiplication threshold.This threshold specifies when a sparse vector/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSVECTDMATMULT_USER_THRESHOLD = 480UL |
SMP sparse vector/column-major dense matrix multiplication threshold.This threshold specifies when a sparse vector/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATDVECMULT_USER_THRESHOLD = 600UL |
SMP row-major sparse matrix/dense vector multiplication threshold.This threshold specifies when a row-major sparse matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATDVECMULT_USER_THRESHOLD = 1250UL |
SMP column-major sparse matrix/dense vector multiplication threshold.This threshold specifies when a column-major sparse matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDVECSMATMULT_USER_THRESHOLD = 1190UL |
SMP dense vector/row-major sparse matrix multiplication threshold.This threshold specifies when a dense vector/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDVECTSMATMULT_USER_THRESHOLD = 530UL |
SMP dense vector/column-major sparse matrix multiplication threshold.This threshold specifies when a dense vector/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATSVECMULT_USER_THRESHOLD = 260UL |
SMP row-major sparse matrix/sparse vector multiplication threshold.This threshold specifies when a row-major sparse matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATSVECMULT_USER_THRESHOLD = 2160UL |
SMP column-major sparse matrix/sparse vector multiplication threshold.This threshold specifies when a column-major sparse matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSVECSMATMULT_USER_THRESHOLD = 2160UL |
SMP sparse vector/row-major sparse matrix multiplication threshold.This threshold specifies when a sparse vector/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSVECTSMATMULT_USER_THRESHOLD = 260UL |
SMP sparse vector/column-major sparse matrix multiplication threshold.This threshold specifies when a sparse vector/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATASSIGN_USER_THRESHOLD = 48400UL |
SMP dense matrix assignment threshold.This threshold specifies when an assignment with a simple dense matrix can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATDMATADD_USER_THRESHOLD = 36100UL |
SMP row-major dense matrix/row-major dense matrix addition threshold.This threshold specifies when a row-major dense matrix/row-major dense matrix addition can be executed in parallel. This threshold affects both additions between two row-major matrices or two column-major dense matrices. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATTDMATADD_USER_THRESHOLD = 30625UL |
SMP row-major dense matrix/column-major dense matrix addition threshold.This threshold specifies when a row-major dense matrix/column-major dense matrix addition can be executed in parallel. This threshold affects both additions between a row-major matrix and a column-major matrix and a column-major matrix and a row-major matrix. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATDMATSUB_USER_THRESHOLD = 36100UL |
SMP row-major dense matrix/row-major dense matrix subtraction threshold.This threshold specifies when a row-major dense matrix/row-major dense matrix subtraction can be executed in parallel. This threshold affects both subtractions between two row-major matrices or two column-major dense matrices. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATTDMATSUB_USER_THRESHOLD = 30625UL |
SMP row-major dense matrix/column-major dense matrix subtraction threshold.This threshold specifies when a row-major dense matrix/column-major dense matrix subtraction can be executed in parallel. This threshold affects both subtractions between a row-major matrix and a column-major matrix and a column-major matrix and a row-major matrix. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATSCALARMULT_USER_THRESHOLD = 48400UL |
SMP dense matrix/scalar multiplication/division threshold.This threshold specifies when a dense matrix/scalar multiplication or division can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATDMATMULT_USER_THRESHOLD = 3025UL |
SMP row-major dense matrix/row-major dense matrix multiplication threshold.This threshold specifies when a row-major dense matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATTDMATMULT_USER_THRESHOLD = 3025UL |
SMP row-major dense matrix/column-major dense matrix multiplication threshold.This threshold specifies when a row-major dense matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATDMATMULT_USER_THRESHOLD = 3025UL |
SMP column-major dense matrix/row-major dense matrix multiplication threshold.This threshold specifies when a column-major dense matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATTDMATMULT_USER_THRESHOLD = 3025UL |
SMP column-major dense matrix/column-major dense matrix multiplication threshold.This threshold specifies when a column-major dense matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATSMATMULT_USER_THRESHOLD = 4096UL |
SMP row-major dense matrix/row-major sparse matrix multiplication threshold.This threshold specifies when a row-major dense matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DMATTSMATMULT_USER_THRESHOLD = 4624UL |
SMP row-major dense matrix/column-major sparse matrix multiplication threshold.This threshold specifies when a row-major dense matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATSMATMULT_USER_THRESHOLD = 8100UL |
SMP column-major dense matrix/row-major sparse matrix multiplication threshold.This threshold specifies when a column-major dense matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TDMATTSMATMULT_USER_THRESHOLD = 8100UL |
SMP column-major dense matrix/column-major sparse matrix multiplication threshold.This threshold specifies when a column-major dense matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATDMATMULT_USER_THRESHOLD = 7744UL |
SMP row-major sparse matrix/row-major dense matrix multiplication threshold.This threshold specifies when a row-major sparse matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATTDMATMULT_USER_THRESHOLD = 5184UL |
SMP row-major sparse matrix/column-major dense matrix multiplication threshold.This threshold specifies when a row-major sparse matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATDMATMULT_USER_THRESHOLD = 4356UL |
SMP column-major sparse matrix/row-major dense matrix multiplication threshold.This threshold specifies when a column-major sparse matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATTDMATMULT_USER_THRESHOLD = 4356UL |
SMP column-major sparse matrix/column-major dense matrix multiplication threshold.This threshold specifies when a column-major sparse matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATSMATMULT_USER_THRESHOLD = 22500UL |
SMP row-major sparse matrix/row-major sparse matrix multiplication threshold.This threshold specifies when a row-major sparse matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_SMATTSMATMULT_USER_THRESHOLD = 19600UL |
SMP row-major sparse matrix/column-major sparse matrix multiplication threshold.This threshold specifies when a row-major sparse matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATSMATMULT_USER_THRESHOLD = 19600UL |
SMP column-major sparse matrix/row-major sparse matrix multiplication threshold.This threshold specifies when a column-major sparse matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_TSMATTSMATMULT_USER_THRESHOLD = 22500UL |
SMP column-major sparse matrix/column-major sparse matrix multiplication threshold.This threshold specifies when a column-major sparse matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr size_t | SMP_DVECTDVECMULT_USER_THRESHOLD = 84100UL |
SMP dense vector/dense vector outer product threshold.This threshold specifies when a dense vector/dense vector outer product can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. More... | |
constexpr bool | defaultTransposeFlag = columnVector |
The default transpose flag for all vectors of the Blaze library.This value specifies the default transpose flag for all vector of the Blaze library. In case no explicit transpose flag is specified with the according vector type, this setting is used. More... | |
const Accuracy | accuracy |
Global Accuracy instance.The blaze::accuracy instance can be used wherever a floating point data type is expected. It is implicitly converted to the corresponding floating point data type and represents the computation accuracy of the Blaze library for the according data type. | |
const bool | unaligned = false |
Alignment flag for unaligned vectors and matrices.Via this flag it is possible to specify subvectors, submatrices, custom vectors and matrices as unaligned. The following example demonstrates the setup of an unaligned subvector: More... | |
const bool | aligned = true |
Alignment flag for aligned vectors and matrices.Via this flag it is possible to specify subvectors, submatrices, custom vectors and matrices as aligned. The following example demonstrates the setup of an aligned subvector: More... | |
const real_t | M_E = 2.7182818284590452353602874713526625 |
Definition of the mathematical constant ![]() | |
const real_t | M_LOG2E = 1.4426950408889634073599246810018921 |
Definition of the mathematical constant ![]() | |
const real_t | M_LOG10E = 0.4342944819032518276511289189166051 |
Definition of the mathematical constant ![]() | |
const real_t | M_LN2 = 0.6931471805599453094172321214581766 |
Definition of the mathematical constant ![]() | |
const real_t | M_LN10 = 2.3025850929940456840179914546843642 |
Definition of the mathematical constant ![]() | |
const real_t | M_PI = 3.1415926535897932384626433832795029 |
Definition of the mathematical constant ![]() | |
const real_t | M_SQRT2 = 1.4142135623730950488016887242096981 |
Definition of the mathematical constant ![]() | |
const real_t | M_SQRT3 = 1.7320508075688772935274463415058724 |
Definition of the mathematical constant ![]() | |
const Epsilon | epsilon |
Global Epsilon instance.The blaze::epsilon instance can be used wherever a floating point data type is expected. It is implicitly converted to the corresponding floating point data type and represents the smallest possible difference between two values of the according data type. | |
const Infinity | inf |
Global Infinity instance.The blaze::inf instance can be used wherever a built-in data type is expected. It is implicitly converted to the corresponding built-in data type and represents its largest possible data value. | |
const bool | unpadded = false |
Padding flag for unpadded vectors and matrices.Via this flag it is possible to specify custom vectors and matrices as unpadded. The following example demonstrates the setup of an unaligned, unpadded custom row vector of size 7: More... | |
const bool | padded = true |
Padding flag for padded vectors and matrices.Via this flag it is possible to specify custom vectors and matrices as aligned. The following example demonstrates the setup of an aligned, padded custom row vector of size 7: More... | |
const bool | rowMajor = false |
Storage order flag for row-major matrices. More... | |
const bool | columnMajor = true |
Storage order flag for column-major matrices. More... | |
const bool | columnVector = false |
Transpose flag for column vectors. More... | |
const bool | rowVector = true |
Transpose flag for row vectors. More... | |
constexpr size_t | DMATDVECMULT_DEBUG_THRESHOLD = 256UL |
Row-major dense matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::DMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/dense vector multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | TDMATDVECMULT_DEBUG_THRESHOLD = 256UL |
Column-major dense matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::TDMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/dense vector multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | TDVECDMATMULT_DEBUG_THRESHOLD = 256UL |
Dense Vector/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TDVECDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the dense vector/row-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | TDVECTDMATMULT_DEBUG_THRESHOLD = 256UL |
Dense Vector/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TDVECTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the dense vector/column-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | DMATDMATMULT_DEBUG_THRESHOLD = 256UL |
Row-major dense matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::DMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/row-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | DMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
Row-major dense matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::DMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the row-major dense matrix/column-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | TDMATDMATMULT_DEBUG_THRESHOLD = 256UL |
Column-major dense matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TDMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/row-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | TDMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
Column-major dense matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TDMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the custom Blaze kernels and the BLAS kernels for the column-major dense matrix/column-major dense matrix multiplication. In case the number of elements in the dense matrix is equal or higher than this value, the BLAS kernels are preferred over the custom Blaze kernels. In case the number of elements in the dense matrix is smaller, the Blaze kernels are used. | |
constexpr size_t | DMATSMATMULT_DEBUG_THRESHOLD = 256UL |
Row-major dense matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::DMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the Blaze kernels for small and for large row-major dense matrix/row-major sparse matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. | |
constexpr size_t | TDMATSMATMULT_DEBUG_THRESHOLD = 256UL |
Column-major dense matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::DMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the Blaze kernels for small and for large column-major dense matrix/row-major sparse matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. | |
constexpr size_t | TSMATDMATMULT_DEBUG_THRESHOLD = 256UL |
Column-major sparse matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TSMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the Blaze kernels for small and for large column-major sparse matrix/row-major dense matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. | |
constexpr size_t | TSMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
Column-major sparse matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::TSMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies the threshold between the application of the Blaze kernels for small and for large column-major sparse matrix/column-major dense matrix multiplications. In case the number of elements of the target matrix is equal or higher than this value, the kernel for large matrices is preferred over the kernel for small matrices. In case the number of elements in the target matrix is smaller, the kernel for small matrices is used. | |
constexpr size_t | SMP_DVECASSIGN_DEBUG_THRESHOLD = 32UL |
SMP dense vector assignment threshold.This debug value is used instead of the blaze::SMP_DVECASSIGN_USER_THRESHOLD while the Blaze debug mode is active. It specifies when an assignment of a simple dense vector can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECDVECADD_DEBUG_THRESHOLD = 32UL |
SMP dense vector/dense vector addition threshold.This debug value is used instead of the blaze::SMP_DVECDVECADD_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/dense vector addition can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECDVECSUB_DEBUG_THRESHOLD = 32UL |
SMP dense vector/dense vector subtraction threshold.This debug value is used instead of the blaze::SMP_DVECDVECSUB_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/dense vector subtraction can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECDVECMULT_DEBUG_THRESHOLD = 32UL |
SMP dense vector/dense vector multiplication threshold.This debug value is used instead of the blaze::SMP_DVECDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECDVECDIV_DEBUG_THRESHOLD = 32UL |
SMP dense vector/dense vector division threshold.This debug value is used instead of the blaze::SMP_DVECDVECDIV_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/dense vector division can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECSCALARMULT_DEBUG_THRESHOLD = 32UL |
SMP dense vector/scalar multiplication/division threshold.This debug value is used instead of the blaze::SMP_DVECSCALARMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/scalar multiplication/division can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATDVECMULT_DEBUG_THRESHOLD = 16UL |
SMP row-major dense matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::SMP_DMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATDVECMULT_DEBUG_THRESHOLD = 16UL |
SMP column-major dense matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDVECDMATMULT_DEBUG_THRESHOLD = 16UL |
SMP dense vector/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDVECDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDVECTDMATMULT_DEBUG_THRESHOLD = 16UL |
SMP dense vector/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDVECTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATSVECMULT_DEBUG_THRESHOLD = 16UL |
SMP row-major dense matrix/sparse vector multiplication threshold.This debug value is used instead of the blaze::SMP_DMATSVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATSVECMULT_DEBUG_THRESHOLD = 16UL |
SMP column-major dense matrix/sparse vector multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATSVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSVECDMATMULT_DEBUG_THRESHOLD = 16UL |
SMP sparse vector/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSVECDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a sparse vector/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSVECTDMATMULT_DEBUG_THRESHOLD = 16UL |
SMP sparse vector/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSVECTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a sparse vector/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATDVECMULT_DEBUG_THRESHOLD = 16UL |
SMP row-major sparse matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::SMP_SMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATDVECMULT_DEBUG_THRESHOLD = 16UL |
SMP column-major sparse matrix/dense vector multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/dense vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDVECSMATMULT_DEBUG_THRESHOLD = 16UL |
SMP dense vector/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDVECSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDVECTSMATMULT_DEBUG_THRESHOLD = 16UL |
SMP dense vector/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDVECTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATSVECMULT_DEBUG_THRESHOLD = 16UL |
SMP row-major sparse matrix/sparse vector multiplication threshold.This debug value is used instead of the blaze::SMP_SMATSVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATSVECMULT_DEBUG_THRESHOLD = 16UL |
SMP column-major sparse matrix/sparse vector multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATSVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/sparse vector multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSVECSMATMULT_DEBUG_THRESHOLD = 16UL |
SMP sparse vector/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSVECSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a sparse vector/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSVECTSMATMULT_DEBUG_THRESHOLD = 16UL |
SMP sparse vector/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSVECTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a sparse vector/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target vector is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATASSIGN_DEBUG_THRESHOLD = 256UL |
SMP dense matrix assignment threshold.This debug value is used instead of the blaze::SMP_DMATASSIGN_USER_THRESHOLD while the Blaze debug mode is active. It specifies when an assignment with a simple dense matrix can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATDMATADD_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/row-major dense matrix addition threshold.This debug value is used instead of the blaze::SMP_DMATDMATADD_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/row-major dense matrix addition can be executed in parallel. This threshold affects both additions between two row-major matrices or two column-major dense matrices. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATTDMATADD_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/column-major dense matrix addition threshold.This debug value is used instead of the blaze::SMP_DMATTDMATADD_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/column-major dense matrix addition can be executed in parallel. This threshold affects both additions between a row-major matrix and a column-major matrix and a column-major matrix and a row-major matrix. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATDMATSUB_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/row-major dense matrix subtraction threshold.This debug value is used instead of the blaze::SMP_DMATDMATSUB_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/row-major dense matrix subtraction can be executed in parallel. This threshold affects both subtractions between two row-major matrices or two column-major dense matrices. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATTDMATSUB_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/column-major dense matrix subtraction threshold.This debug value is used instead of the blaze::SMP_DMATTDMATSUB_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/column-major dense matrix subtraction can be executed in parallel. This threshold affects both subtractions between a row-major matrix and a column-major matrix and a column-major matrix and a row-major matrix. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATSCALARMULT_DEBUG_THRESHOLD = 256UL |
SMP dense matrix/scalar multiplication/division threshold.This debug value is used instead of the blaze::SMP_DMATSCALARMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense matrix/scalar multiplication or division can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_DMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_DMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major dense matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major dense matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_DMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DMATTSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major dense matrix/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_DMATTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major dense matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major dense matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TDMATTSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major dense matrix/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TDMATTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major dense matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major sparse matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_SMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major sparse matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_SMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major sparse matrix/row-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/row-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATTDMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major sparse matrix/column-major dense matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATTDMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/column-major dense matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major sparse matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_SMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_SMATTSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP row-major sparse matrix/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_SMATTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a row-major sparse matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major sparse matrix/row-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/row-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_TSMATTSMATMULT_DEBUG_THRESHOLD = 256UL |
SMP column-major sparse matrix/column-major sparse matrix multiplication threshold.This debug value is used instead of the blaze::SMP_TSMATTSMATMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a column-major sparse matrix/column-major sparse matrix multiplication can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
constexpr size_t | SMP_DVECTDVECMULT_DEBUG_THRESHOLD = 256UL |
SMP dense vector/dense vector outer product threshold.This debug value is used instead of the blaze::SMP_DVECTDVECMULT_USER_THRESHOLD while the Blaze debug mode is active. It specifies when a dense vector/dense vector outer product can be executed in parallel. In case the number of elements of the target matrix is larger or equal to this threshold, the operation is executed in parallel. If the number of elements is below this threshold the operation is executed single-threaded. | |
Member variables | |
size_t | m_ |
The current number of rows of the sparse matrix. | |
size_t | n_ |
The current number of columns of the sparse matrix. | |
size_t | capacity_ |
The current capacity of the pointer array. | |
Iterator * | begin_ |
Pointers to the first non-zero element of each column. | |
Iterator * | end_ |
Pointers one past the last non-zero element of each column. | |
static const Type | zero_ |
Neutral element for accesses to zero elements. | |
Namespace of the Blaze C++ math library.
using blaze::BaseType_ = typedef typename T::BaseType |
Alias declaration for nested BaseType
type definitions.The BaseType_ alias declaration provides a convenient shortcut to access the nested BaseType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::CompositeType_ = typedef typename T::CompositeType |
Alias declaration for nested CompositeType
type definitions.The CompositeType_ alias declaration provides a convenient shortcut to access the nested CompositeType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ConstIterator_ = typedef typename T::ConstIterator |
Alias declaration for nested ConstIterator
type definitions.The ConstIterator_ alias declaration provides a convenient shortcut to access the nested ConstIterator type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ConstPointer_ = typedef typename T::ConstPointer |
Alias declaration for nested ConstPointer
type definitions.The ConstPointer_ alias declaration provides a convenient shortcut to access the nested ConstPointer type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ConstReference_ = typedef typename T::ConstReference |
Alias declaration for nested ConstReference
type definitions.The ConstReference_ alias declaration provides a convenient shortcut to access the nested ConstReference type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ElementType_ = typedef typename T::ElementType |
Alias declaration for nested ElementType
type definitions.The ElementType_ alias declaration provides a convenient shortcut to access the nested ElementType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::Iterator_ = typedef typename T::Iterator |
Alias declaration for nested Iterator
type definitions.The Iterator_ alias declaration provides a convenient shortcut to access the nested Iterator type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::LeftOperand_ = typedef typename T::LeftOperand |
Alias declaration for nested LeftOperand
type definitions.The LeftOperand_ alias declaration provides a convenient shortcut to access the nested LeftOperand type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::Operand_ = typedef typename T::Operand |
Alias declaration for nested Operand
type definitions.The Operand_ alias declaration provides a convenient shortcut to access the nested Operand type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::OppositeType_ = typedef typename T::OppositeType |
Alias declaration for nested OppositeType
type definitions.The OppositeType_ alias declaration provides a convenient shortcut to access the nested OppositeType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::Pointer_ = typedef typename T::Pointer |
Alias declaration for nested Pointer
type definitions.The Pointer_ alias declaration provides a convenient shortcut to access the nested Pointer type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::Reference_ = typedef typename T::Reference |
Alias declaration for nested Reference
type definitions.The Reference_ alias declaration provides a convenient shortcut to access the nested Reference type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::RepresentedType_ = typedef typename T::RepresentedType |
Alias declaration for nested RepresentedType
type definitions.The RepresentedType_ alias declaration provides a convenient shortcut to access the nested RepresentedType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ResultType_ = typedef typename T::ResultType |
Alias declaration for nested ResultType
type definitions.The ResultType_ alias declaration provides a convenient shortcut to access the nested ResultType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ReturnType_ = typedef typename T::ReturnType |
Alias declaration for nested ReturnType
type definitions.The ReturnType_ alias declaration provides a convenient shortcut to access the nested ReturnType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::RightOperand_ = typedef typename T::RightOperand |
Alias declaration for nested RightOperand
type definitions.The RightOperand_ alias declaration provides a convenient shortcut to access the nested RightOperand type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::SIMDType_ = typedef typename T::SIMDType |
Alias declaration for nested SIMDType
type definitions.The SIMDType_ alias declaration provides a convenient shortcut to access the nested SIMDType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::TransposeType_ = typedef typename T::TransposeType |
Alias declaration for nested TransposeType
type definitions.The TransposeType_ alias declaration provides a convenient shortcut to access the nested TransposeType type definition of the given type T. The following code example shows both ways to access the nested type definition:
using blaze::ValueType_ = typedef typename T::ValueType |
Alias declaration for nested ValueType
type definitions.The ValueType_ alias declaration provides a convenient shortcut to access the nested ValueType type definition of the given type T. The following code example shows both ways to access the nested type definition:
anonymous enum : bool |
Compilation flag for SMP assignments.
The smpAssignable compilation flag indicates whether the matrix can be used in SMP (shared memory parallel) assignments (both on the left-hand and right-hand side of the assignment).
DisableIf_< IsBuiltin<T>, T* > blaze::allocate | ( | size_t | size | ) |
Aligned array allocation for user-specific class types.
size | The number of elements of the given type to allocate. |
std::bad_alloc | Allocation failed. |
The allocate() function provides the functionality to allocate memory based on the alignment restrictions of the given user-specific class type. For instance, in case the given type has the requirement to be 32-byte aligned, the returned pointer is guaranteed to be 32-byte aligned. Additionally, all elements of the array are guaranteed to be default constructed. Note that the allocate() function provides exception safety similar to the new operator: In case any element throws an exception during construction, all elements that have already been constructed are destroyed in reverse order and the allocated memory is deallocated again.
|
inline |
Conversion from type From to type To.
from | The data value to be converted. |
The convert function transforms the data value from of type From to the data type To. The syntax for this operation is similar to the C++ cast operators. For example, in order to convert a built-in integer value integer
to a std::string, use
The convert function supports any possible type conversion in the most efficient way.
DisableIf_< IsBuiltin<T> > blaze::deallocate | ( | T * | address | ) |
Deallocation of memory for user-specific class types.
address | The address of the first element of the array to be deallocated. |
This function deallocates the given memory that was previously allocated via the allocate() function.
void blaze::deserialize | ( | Archive & | archive, |
Vector< VT, TF > & | vec | ||
) |
Deserializes a vector from the given archive.
archive | The archive to be read from. |
vec | The vector to be deserialized. |
std::runtime_error | Vector could not be deserialized. |
The deserialize() function converts the portable, binary representation contained in the given archive into the given vector type. For a detailed example that demonstrates the (de-)serialization process of vectors, see the serialize() function.
void blaze::deserialize | ( | Archive & | archive, |
Matrix< MT, SO > & | mat | ||
) |
Deserializes a matrix from the given archive.
archive | The archive to be read from. |
mat | The matrix to be deserialized. |
std::runtime_error | Matrix could not be deserialized. |
The deserialize() function converts the portable, binary representation contained in the given archive into the given matrix type. For a detailed example that demonstrates the (de-)serialization process of matrices, see the serialize() function.
|
noexcept |
Loads a vector of 2-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 2-byte integral values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 2-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 2-byte integral complex values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 4-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 4-byte integral values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 4-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 4-byte integral complex values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 8-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 8-byte integral values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 8-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 8-byte integral complex values. The given address must be aligned according to the enabled instruction set (16-byte alignment in case of SSE, 32-byte alignment in case of AVX, and 64-byte alignment in case of MIC).
|
noexcept |
Loads a vector of 2-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 2-byte integral values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
noexcept |
Loads a vector of 2-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 2-byte integral complex values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
noexcept |
Loads a vector of 4-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 4-byte integral values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
noexcept |
Loads a vector of 4-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 4-byte integral complex values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
noexcept |
Loads a vector of 8-byte integral values.
address | The first integral value to be loaded. |
This function loads a vector of 8-byte integral values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
noexcept |
Loads a vector of 8-byte integral complex values.
address | The first integral complex value to be loaded. |
This function loads a vector of 8-byte integral complex values. In contrast to the according loada()
function, the given address is not required to be properly aligned.
|
inline |
Normalization of the sparse vector ( ).
vec | The given sparse vector. |
This function represents the normalization of a sparse vector:
The function returns an expression representing the normalized sparse vector. Note that this function only works for floating point vectors. The attempt to use this function for an integral vector results in a compile time error.
|
inline |
Normalization of the dense vector ( ).
vec | The given dense vector. |
This function represents the normalization of a dense vector:
The function returns an expression representing the normalized dense vector. Note that this function only works for floating point vectors. The attempt to use this function for an integral vector results in a compile time error.
|
inline |
Inequality comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inlinenoexcept |
Inequality comparison between two AlignedAllocator objects.
lhs | The left-hand side aligned allocator. |
rhs | The right-hand side aligned allocator. |
|
inline |
Inequality comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Inequality comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Inequality comparison between two pointer vectors.
lhs | The left hand side pointer vector. |
rhs | The right hand side pointer vector. |
|
inline |
SIMD optimized multiplication operator for the scalar product (inner product) of two dense vectors ( ).
lhs | The left-hand side dense vector for the inner product. |
rhs | The right-hand side dense vector for the inner product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the scalar product (inner product) of two dense vectors:
The operator returns a scalar value of the higher-order element type of the two involved vector element types T1::ElementType and T2::ElementType. Both vector types T1 and T2 as well as the two element types T1::ElementType and T2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
|
inlinenoexcept |
Addition between a DenseIterator and an integral value.
it | The iterator to be incremented. |
inc | The number of elements the iterator is incremented. |
|
inlinenoexcept |
Addition between an integral value and a DenseIterator.
inc | The number of elements the iterator is incremented. |
it | The iterator to be incremented. |
|
inlinenoexcept |
Subtraction between a DenseIterator and an integral value.
it | The iterator to be decremented. |
dec | The number of elements the iterator is decremented. |
|
inlinenoexcept |
Calculating the number of elements between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Less-than comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inline |
Less-than comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Less-than comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Global output operator for the UnsignedValue wrapper.
os | Reference to the output stream. |
uv | Reference to a UnsignedValue object. |
|
inline |
Less-or-equal-than comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inline |
Less-or-equal-than comparison between a NegativeAccuracy object and a floating point value.
rhs | The right-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between a NegativeEpsilon object and a floating point value.
rhs | The right-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between a floating point value and a NegativeEpsilon object.
lhs | The left-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between a floating point value and a NegativeAccuracy object.
lhs | The left-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Less-or-equal-than comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Equality comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inlinenoexcept |
Equality comparison between two AlignedAllocator objects.
lhs | The left-hand side aligned allocator. |
rhs | The right-hand side aligned allocator. |
|
inline |
Equality comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Equality comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Equality comparison between two pointer vectors.
lhs | The left hand side pointer vector. |
rhs | The right hand side pointer vector. |
|
inline |
Greater-than comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inline |
Greater-than comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Greater-than comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
|
inline |
Greater-or-equal-than comparison between two UnsignedValue objects.
lhs | The left-hand side UnsignedValue wrapper. |
rhs | The right-hand side UnsignedValue wrapper. |
|
inline |
Greater-or-equal-than comparison between a NegativeAccuracy object and a floating point value.
rhs | The right-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Greater-or-equal-than comparison between a NegativeEpsilon object and a floating point value.
rhs | The right-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between a floating point value and a NegativeEpsilon object.
lhs | The left-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Less-or-equal-than comparison between a floating point value and a NegativeAccuracy object.
lhs | The left-hand side floating point value. |
This operator exclusively works for floating point data types. The attempt to compare any integral data type or user-defined class types will result in a compile time error.
|
inline |
Greater-or-equal-than comparison between two PtrIterator objects.
lhs | The left-hand side pointer iterator. |
rhs | The right-hand side pointer iterator. |
|
inlinenoexcept |
Greater-or-equal-than comparison between two DenseIterator objects.
lhs | The left-hand side iterator. |
rhs | The right-hand side iterator. |
std::istream & blaze::operator>> | ( | std::istream & | is, |
UnsignedValue< T > & | uv | ||
) |
Global input operator for the UnsignedValue wrapper.
is | Reference to the input stream. |
uv | Reference to a UnsignedValue object. |
The input operator guarantees that this object is not changed in the case of an input error. Only values suitable for the according built-in unsigned integral data type T are allowed. Otherwise, the input stream's position is returned to its previous position and the std::istream::failbit is set.
|
inline |
Counts the pointer to objects with dynamic type D.
first | Iterator to the first pointer of the pointer range. |
last | Iterator to the pointer one past the last pointer of the pointer range. |
This function traverses the range of pointers to objects with static type S and counts all polymorphic pointers to objects of dynamic type D. Note that in case D is not a type derived from S, a compile time error is created!
|
inline |
Finds the next pointer to an object with dynamic type D.
first | Iterator to the first pointer of the pointer range. |
last | Iterator to the pointer one past the last pointer of the pointer range. |
This function traverses the range of pointers to objects with static type S until it finds the next polymorphic pointer to an object of dynamic type D. Note that in case D is not a type derived from S, a compile time error is created!
void blaze::serialize | ( | Archive & | archive, |
const Vector< VT, TF > & | vec | ||
) |
Serializes the given vector and writes it to the archive.
archive | The archive to be written. |
vec | The vector to be serialized. |
std::runtime_error | Error during serialization. |
The serialize() function converts the given vector into a portable, binary representation. The following example demonstrates the (de-)serialization process of vectors:
As the example demonstrates, the vector serialization offers an enormous flexibility. However, several actions result in errors:
In case an error is encountered during (de-)serialization, a std::runtime_exception is thrown.
void blaze::serialize | ( | Archive & | archive, |
const Matrix< MT, SO > & | mat | ||
) |
Serializes the given matrix and writes it to the archive.
archive | The archive to be written. |
mat | The matrix to be serialized. |
std::runtime_error | Matrix could not be serialized. |
The serialize() function converts the given matrix into a portable, binary representation. The following example demonstrates the (de-)serialization process of matrices:
As the example demonstrates, the matrix serialization offers an enormous flexibility. However, several actions result in errors:
In case an error is encountered during (de-)serialization, a std::runtime_exception is thrown.
|
noexcept |
Sets all values in the vector to the given 2-byte integral value.
value | The given 2-byte integral value. |
|
noexcept |
Sets all values in the vector to the given 2-byte integral complex value.
value | The given 2-byte integral complex value. |
|
noexcept |
Sets all values in the vector to the given 4-byte integral value.
value | The given 4-byte integral value. |
|
noexcept |
Sets all values in the vector to the given 4-byte integral complex value.
value | The given 4-byte integral complex value. |
|
noexcept |
Sets all values in the vector to the given 8-byte integral value.
value | The given 8-byte integral value. |
|
noexcept |
Sets all values in the vector to the given 8-byte integral complex value.
value | The given 8-byte integral complex value. |
|
inline |
Default implementation of the SMP addition assignment of a matrix to a sparse matrix.
lhs | The target left-hand side sparse matrix. |
rhs | The right-hand side matrix to be added. |
This function implements the default SMP addition assignment of a matrix to a sparse matrix.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP addition assignment of a vector to a sparse vector.
lhs | The target left-hand side sparse vector. |
rhs | The right-hand side vector to be added. |
This function implements the default SMP addition assignment of a vector to a sparse vector.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP assignment of a vector to a sparse vector.
lhs | The target left-hand side sparse vector. |
rhs | The right-hand side vector to be assigned. |
This function implements the default SMP assignment of a vector to a sparse vector.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP assignment of a matrix to a sparse matrix.
lhs | The target left-hand side sparse matrix. |
rhs | The right-hand side matrix to be assigned. |
This function implements the default SMP assignment of a matrix to a sparse matrix.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP multiplication assignment of a vector to a sparse vector.
lhs | The target left-hand side sparse vector. |
rhs | The right-hand side vector to be multiplied. |
This function implements the default SMP multiplication assignment of a vector to a sparse vector.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP subtraction assignment of a matrix to sparse matrix.
lhs | The target left-hand side sparse matrix. |
rhs | The right-hand side matrix to be subtracted. |
This function implements the default SMP subtraction assignment of a matrix to a sparse matrix.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inline |
Default implementation of the SMP subtraction assignment of a vector to a sparse vector.
lhs | The target left-hand side sparse vector. |
rhs | The right-hand side vector to be subtracted. |
This function implements the default SMP subtraction assignment of a vector to a sparse vector.
This function must NOT be called explicitly! It is used internally for the performance optimized evaluation of expression templates. Calling this function explicitly might result in erroneous results and/or in compilation errors. Instead of using this function use the assignment operator.
|
inlinenoexcept |
Swapping the contents of two pointer vectors.
a | The first pointer vector to be swapped. |
b | The second pointer vector to be swapped. |
no-throw | guarantee. |
OutputIterator blaze::transfer | ( | InputIterator | first, |
InputIterator | last, | ||
OutputIterator | dest | ||
) |
Transfers the elements from the given source range to the destination range.
first | Iterator to the first element of the source range. |
last | Iterator to the element one past the last element of the source range. |
dest | Iterator to the first element of the destination range. |
This function transfers the elements in the range to the specified destination range. In case the elements provide a no-throw move assignment, the transfer operation is handled via move. Else the elements are copied.
const bool blaze::columnMajor = true |
Storage order flag for column-major matrices.
Via this flag it is possible to specify the storage order of matrices as column-major. For instance, given the following matrix
in case of column-major order the elements are stored in the order
The following example demonstrates the setup of this matrix:
const bool blaze::columnVector = false |
Transpose flag for column vectors.
Via this flag it is possible to specify vectors as column vectors. The following example demonstrates the setup of a 3-dimensional column vector:
const bool blaze::rowMajor = false |
Storage order flag for row-major matrices.
Via this flag it is possible to specify the storage order of matrices as row-major. For instance, given the following matrix
in case of row-major order the elements are stored in the order
The following example demonstrates the setup of this matrix:
const bool blaze::rowVector = true |
Transpose flag for row vectors.
Via this flag it is possible to specify vectors as row vectors. The following example demonstrates the setup of a 3-dimensional row vector: