35 #ifndef _BLAZE_MATH_EXPRESSIONS_DMATTSMATMULTEXPR_H_ 36 #define _BLAZE_MATH_EXPRESSIONS_DMATTSMATMULTEXPR_H_ 118 template<
typename MT1
125 :
public MatMatMultExpr< DenseMatrix< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF>, false > >
151 SYM = ( SF && !( HF || LF || UF ) ),
152 HERM = ( HF && !( LF || UF ) ),
153 LOW = ( LF || ( ( SF || HF ) && UF ) ),
154 UPP = ( UF || ( ( SF || HF ) && LF ) )
165 template<
typename T1,
typename T2,
typename T3 >
166 struct CanExploitSymmetry {
178 template<
typename T1,
typename T2,
typename T3 >
179 struct IsEvaluationRequired {
180 enum :
bool { value = ( evaluateLeft || evaluateRight ) &&
181 !CanExploitSymmetry<T1,T2,T3>::value };
191 template<
typename T1,
typename T2,
typename T3 >
192 struct UseOptimizedKernel {
193 enum :
bool { value = useOptimizedKernels &&
247 enum :
bool { simdEnabled =
false };
250 enum :
bool { smpAssignable = !evaluateLeft && MT1::smpAssignable &&
251 !evaluateRight && MT2::smpAssignable };
301 :(
lhs_.columns() ) ) );
305 const size_t n(
end - begin );
324 if( i >=
lhs_.rows() ) {
327 if( j >=
rhs_.columns() ) {
339 inline size_t rows() const noexcept {
350 return rhs_.columns();
380 template<
typename T >
381 inline bool canAlias(
const T* alias )
const noexcept {
382 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
392 template<
typename T >
393 inline bool isAliased(
const T* alias )
const noexcept {
394 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
404 return lhs_.isAligned();
437 template<
typename MT
454 DMatTSMatMultExpr::selectAssignKernel( ~lhs, A, B );
473 template<
typename MT3
477 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
481 const size_t M( A.rows() );
482 const size_t N( B.columns() );
493 for( ; (i+4UL) <= M; i+=4UL ) {
494 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
503 if( element == end ) {
511 C(i ,j) = A(i ,element->index()) * element->value();
512 C(i+1UL,j) = A(i+1UL,element->index()) * element->value();
513 C(i+2UL,j) = A(i+2UL,element->index()) * element->value();
514 C(i+3UL,j) = A(i+3UL,element->index()) * element->value();
516 for( ; element!=
end; ++element ) {
517 C(i ,j) += A(i ,element->index()) * element->value();
518 C(i+1UL,j) += A(i+1UL,element->index()) * element->value();
519 C(i+2UL,j) += A(i+2UL,element->index()) * element->value();
520 C(i+3UL,j) += A(i+3UL,element->index()) * element->value();
525 for( ; (i+2UL) <= M; i+=2UL ) {
526 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
535 if( element == end ) {
541 C(i ,j) = A(i ,element->index()) * element->value();
542 C(i+1UL,j) = A(i+1UL,element->index()) * element->value();
544 for( ; element!=
end; ++element ) {
545 C(i ,j) += A(i ,element->index()) * element->value();
546 C(i+1UL,j) += A(i+1UL,element->index()) * element->value();
552 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
561 if( element == end ) {
566 C(i,j) = A(i,element->index()) * element->value();
568 for( ; element!=
end; ++element )
569 C(i,j) += A(i,element->index()) * element->value();
575 for(
size_t i=1UL; i<M; ++i ) {
576 for(
size_t j=0UL; j<i; ++j ) {
577 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
581 else if( LOW && !UPP ) {
582 for(
size_t j=1UL; j<N; ++j ) {
583 for(
size_t i=0UL; i<j; ++i ) {
588 else if( !LOW && UPP ) {
589 for(
size_t i=1UL; i<M; ++i ) {
590 for(
size_t j=0UL; j<i; ++j ) {
613 template<
typename MT3
617 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
621 const size_t M( A.rows() );
622 const size_t N( B.columns() );
631 for( ; (i+4UL) <= M; i+=4UL ) {
632 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
641 const size_t nonzeros( end - element );
642 const size_t kpos( nonzeros &
size_t(-4) );
645 for(
size_t k=0UL; k<kpos; k+=4UL )
647 const size_t j1( element->index() );
648 const ET2 v1( element->value() );
650 const size_t j2( element->index() );
651 const ET2 v2( element->value() );
653 const size_t j3( element->index() );
654 const ET2 v3( element->value() );
656 const size_t j4( element->index() );
657 const ET2 v4( element->value() );
662 C(i ,j) += A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
663 C(i+1UL,j) += A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
664 C(i+2UL,j) += A(i+2UL,j1) * v1 + A(i+2UL,j2) * v2 + A(i+2UL,j3) * v3 + A(i+2UL,j4) * v4;
665 C(i+3UL,j) += A(i+3UL,j1) * v1 + A(i+3UL,j2) * v2 + A(i+3UL,j3) * v3 + A(i+3UL,j4) * v4;
668 for( ; element!=
end; ++element )
670 const size_t j1( element->index() );
671 const ET2 v1( element->value() );
673 C(i ,j) += A(i ,j1) * v1;
674 C(i+1UL,j) += A(i+1UL,j1) * v1;
675 C(i+2UL,j) += A(i+2UL,j1) * v1;
676 C(i+3UL,j) += A(i+3UL,j1) * v1;
681 for( ; (i+2UL) <= M; i+=2UL ) {
682 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
691 const size_t nonzeros( end - element );
692 const size_t kpos( nonzeros &
size_t(-4) );
695 for(
size_t k=0UL; k<kpos; k+=4UL )
697 const size_t j1( element->index() );
698 const ET2 v1( element->value() );
700 const size_t j2( element->index() );
701 const ET2 v2( element->value() );
703 const size_t j3( element->index() );
704 const ET2 v3( element->value() );
706 const size_t j4( element->index() );
707 const ET2 v4( element->value() );
712 C(i ,j) += A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
713 C(i+1UL,j) += A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
716 for( ; element!=
end; ++element )
718 const size_t j1( element->index() );
719 const ET2 v1( element->value() );
721 C(i ,j) += A(i ,j1) * v1;
722 C(i+1UL,j) += A(i+1UL,j1) * v1;
728 for(
size_t j=( SYM || HERM || UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
737 const size_t nonzeros( end - element );
738 const size_t kpos( nonzeros &
size_t(-4) );
741 for(
size_t k=0UL; k<kpos; k+=4UL )
743 const size_t j1( element->index() );
744 const ET2 v1( element->value() );
746 const size_t j2( element->index() );
747 const ET2 v2( element->value() );
749 const size_t j3( element->index() );
750 const ET2 v3( element->value() );
752 const size_t j4( element->index() );
753 const ET2 v4( element->value() );
758 C(i,j) += A(i,j1) * v1 + A(i,j2) * v2 + A(i,j3) * v3 + A(i,j4) * v4;
761 for( ; element!=
end; ++element )
763 const size_t j1( element->index() );
764 const ET2 v1( element->value() );
766 C(i,j) += A(i,j1) * v1;
773 for(
size_t i=1UL; i<M; ++i ) {
774 for(
size_t j=0UL; j<i; ++j ) {
775 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
796 template<
typename MT
815 const ForwardFunctor fwd;
817 const TmpType tmp(
serial( rhs ) );
818 assign( ~lhs, fwd( tmp ) );
838 template<
typename MT
848 const ForwardFunctor fwd;
868 template<
typename MT
885 DMatTSMatMultExpr::selectAddAssignKernel( ~lhs, A, B );
904 template<
typename MT3
908 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
912 const size_t M( A.rows() );
913 const size_t N( B.columns() );
920 for( ; (i+4UL) <= M; i+=4UL ) {
921 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
930 for( ; element!=
end; ++element ) {
931 C(i ,j) += A(i ,element->index()) * element->value();
932 C(i+1UL,j) += A(i+1UL,element->index()) * element->value();
933 C(i+2UL,j) += A(i+2UL,element->index()) * element->value();
934 C(i+3UL,j) += A(i+3UL,element->index()) * element->value();
939 for( ; (i+2UL) <= M; i+=2UL ) {
940 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
949 for( ; element!=
end; ++element ) {
950 C(i ,j) += A(i ,element->index()) * element->value();
951 C(i+1UL,j) += A(i+1UL,element->index()) * element->value();
957 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
966 for( ; element!=
end; ++element )
967 C(i,j) += A(i,element->index()) * element->value();
989 template<
typename MT3
993 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
997 const size_t M( A.rows() );
998 const size_t N( B.columns() );
1005 for( ; (i+4UL) <= M; i+=4UL ) {
1006 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
1015 const size_t nonzeros( end - element );
1016 const size_t kpos( nonzeros &
size_t(-4) );
1019 for(
size_t k=0UL; k<kpos; k+=4UL )
1021 const size_t j1( element->index() );
1022 const ET2 v1( element->value() );
1024 const size_t j2( element->index() );
1025 const ET2 v2( element->value() );
1027 const size_t j3( element->index() );
1028 const ET2 v3( element->value() );
1030 const size_t j4( element->index() );
1031 const ET2 v4( element->value() );
1036 C(i ,j) += A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
1037 C(i+1UL,j) += A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
1038 C(i+2UL,j) += A(i+2UL,j1) * v1 + A(i+2UL,j2) * v2 + A(i+2UL,j3) * v3 + A(i+2UL,j4) * v4;
1039 C(i+3UL,j) += A(i+3UL,j1) * v1 + A(i+3UL,j2) * v2 + A(i+3UL,j3) * v3 + A(i+3UL,j4) * v4;
1042 for( ; element!=
end; ++element )
1044 const size_t j1( element->index() );
1045 const ET2 v1( element->value() );
1047 C(i ,j) += A(i ,j1) * v1;
1048 C(i+1UL,j) += A(i+1UL,j1) * v1;
1049 C(i+2UL,j) += A(i+2UL,j1) * v1;
1050 C(i+3UL,j) += A(i+3UL,j1) * v1;
1055 for( ; (i+2UL) <= M; i+=2UL ) {
1056 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
1065 const size_t nonzeros( end - element );
1066 const size_t kpos( nonzeros &
size_t(-4) );
1069 for(
size_t k=0UL; k<kpos; k+=4UL )
1071 const size_t j1( element->index() );
1072 const ET2 v1( element->value() );
1074 const size_t j2( element->index() );
1075 const ET2 v2( element->value() );
1077 const size_t j3( element->index() );
1078 const ET2 v3( element->value() );
1080 const size_t j4( element->index() );
1081 const ET2 v4( element->value() );
1086 C(i ,j) += A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
1087 C(i+1UL,j) += A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
1090 for( ; element!=
end; ++element )
1092 const size_t j1( element->index() );
1093 const ET2 v1( element->value() );
1095 C(i ,j) += A(i ,j1) * v1;
1096 C(i+1UL,j) += A(i+1UL,j1) * v1;
1102 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
1111 const size_t nonzeros( end - element );
1112 const size_t kpos( nonzeros &
size_t(-4) );
1115 for(
size_t k=0UL; k<kpos; k+=4UL )
1117 const size_t j1( element->index() );
1118 const ET2 v1( element->value() );
1120 const size_t j2( element->index() );
1121 const ET2 v2( element->value() );
1123 const size_t j3( element->index() );
1124 const ET2 v3( element->value() );
1126 const size_t j4( element->index() );
1127 const ET2 v4( element->value() );
1132 C(i,j) += A(i,j1) * v1 + A(i,j2) * v2 + A(i,j3) * v3 + A(i,j4) * v4;
1135 for( ; element!=
end; ++element )
1137 const size_t j1( element->index() );
1138 const ET2 v1( element->value() );
1140 C(i,j) += A(i,j1) * v1;
1164 template<
typename MT
1176 const ForwardFunctor fwd;
1200 template<
typename MT
1217 DMatTSMatMultExpr::selectSubAssignKernel( ~lhs, A, B );
1236 template<
typename MT3
1240 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1244 const size_t M( A.rows() );
1245 const size_t N( B.columns() );
1252 for( ; (i+4UL) <= M; i+=4UL ) {
1253 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
1262 for( ; element!=
end; ++element ) {
1263 C(i ,j) -= A(i ,element->index()) * element->value();
1264 C(i+1UL,j) -= A(i+1UL,element->index()) * element->value();
1265 C(i+2UL,j) -= A(i+2UL,element->index()) * element->value();
1266 C(i+3UL,j) -= A(i+3UL,element->index()) * element->value();
1271 for( ; (i+2UL) <= M; i+=2UL ) {
1272 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
1281 for( ; element!=
end; ++element ) {
1282 C(i ,j) -= A(i ,element->index()) * element->value();
1283 C(i+1UL,j) -= A(i+1UL,element->index()) * element->value();
1289 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
1298 for( ; element!=
end; ++element )
1299 C(i,j) -= A(i,element->index()) * element->value();
1321 template<
typename MT3
1325 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1329 const size_t M( A.rows() );
1330 const size_t N( B.columns() );
1337 for( ; (i+4UL) <= M; i+=4UL ) {
1338 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+4UL : N ); ++j )
1347 const size_t nonzeros( end - element );
1348 const size_t kpos( nonzeros &
size_t(-4) );
1351 for(
size_t k=0UL; k<kpos; k+=4UL )
1353 const size_t j1( element->index() );
1354 const ET2 v1( element->value() );
1356 const size_t j2( element->index() );
1357 const ET2 v2( element->value() );
1359 const size_t j3( element->index() );
1360 const ET2 v3( element->value() );
1362 const size_t j4( element->index() );
1363 const ET2 v4( element->value() );
1368 C(i ,j) -= A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
1369 C(i+1UL,j) -= A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
1370 C(i+2UL,j) -= A(i+2UL,j1) * v1 + A(i+2UL,j2) * v2 + A(i+2UL,j3) * v3 + A(i+2UL,j4) * v4;
1371 C(i+3UL,j) -= A(i+3UL,j1) * v1 + A(i+3UL,j2) * v2 + A(i+3UL,j3) * v3 + A(i+3UL,j4) * v4;
1374 for( ; element!=
end; ++element )
1376 const size_t j1( element->index() );
1377 const ET2 v1( element->value() );
1379 C(i ,j) -= A(i ,j1) * v1;
1380 C(i+1UL,j) -= A(i+1UL,j1) * v1;
1381 C(i+2UL,j) -= A(i+2UL,j1) * v1;
1382 C(i+3UL,j) -= A(i+3UL,j1) * v1;
1387 for( ; (i+2UL) <= M; i+=2UL ) {
1388 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+2UL : N ); ++j )
1397 const size_t nonzeros( end - element );
1398 const size_t kpos( nonzeros &
size_t(-4) );
1401 for(
size_t k=0UL; k<kpos; k+=4UL )
1403 const size_t j1( element->index() );
1404 const ET2 v1( element->value() );
1406 const size_t j2( element->index() );
1407 const ET2 v2( element->value() );
1409 const size_t j3( element->index() );
1410 const ET2 v3( element->value() );
1412 const size_t j4( element->index() );
1413 const ET2 v4( element->value() );
1418 C(i ,j) -= A(i ,j1) * v1 + A(i ,j2) * v2 + A(i ,j3) * v3 + A(i ,j4) * v4;
1419 C(i+1UL,j) -= A(i+1UL,j1) * v1 + A(i+1UL,j2) * v2 + A(i+1UL,j3) * v3 + A(i+1UL,j4) * v4;
1422 for( ; element!=
end; ++element )
1424 const size_t j1( element->index() );
1425 const ET2 v1( element->value() );
1427 C(i ,j) -= A(i ,j1) * v1;
1428 C(i+1UL,j) -= A(i+1UL,j1) * v1;
1434 for(
size_t j=( UPP ? i : 0UL ); j<( LOW ? i+1UL : N ); ++j )
1443 const size_t nonzeros( end - element );
1444 const size_t kpos( nonzeros &
size_t(-4) );
1447 for(
size_t k=0UL; k<kpos; k+=4UL )
1449 const size_t j1( element->index() );
1450 const ET2 v1( element->value() );
1452 const size_t j2( element->index() );
1453 const ET2 v2( element->value() );
1455 const size_t j3( element->index() );
1456 const ET2 v3( element->value() );
1458 const size_t j4( element->index() );
1459 const ET2 v4( element->value() );
1464 C(i,j) -= A(i,j1) * v1 + A(i,j2) * v2 + A(i,j3) * v3 + A(i,j4) * v4;
1467 for( ; element!=
end; ++element )
1469 const size_t j1( element->index() );
1470 const ET2 v1( element->value() );
1472 C(i,j) -= A(i,j1) * v1;
1496 template<
typename MT
1508 const ForwardFunctor fwd;
1532 template<
typename MT
1546 schurAssign( ~lhs, tmp );
1578 template<
typename MT
1615 template<
typename MT
1634 const ForwardFunctor fwd;
1636 const TmpType tmp( rhs );
1657 template<
typename MT
1669 const ForwardFunctor fwd;
1692 template<
typename MT
1729 template<
typename MT
1741 const ForwardFunctor fwd;
1768 template<
typename MT
1805 template<
typename MT
1817 const ForwardFunctor fwd;
1841 template<
typename MT
1923 template<
typename MT1
1925 inline decltype(
auto)
1972 template<
typename MT1
2017 template<
typename MT1
2062 template<
typename MT1
2107 template<
typename MT1
2152 template<
typename MT1
2183 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2184 struct Rows< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2201 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2202 struct Columns< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2219 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2220 struct IsAligned< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2237 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2238 struct IsSymmetric< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2241 , IsBuiltin< ElementType_< DMatTSMatMultExpr<MT1,MT2,false,true,false,false> > > >
2242 , And< Bool<LF>, Bool<UF> > >::value >
2258 template<
typename MT1,
typename MT2,
bool SF,
bool LF,
bool UF >
2259 struct IsHermitian< DMatTSMatMultExpr<MT1,MT2,SF,true,LF,UF> >
2276 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2277 struct IsLower< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2279 , And< IsLower<MT1>, IsLower<MT2> >
2280 , And< Or< Bool<SF>, Bool<HF> >
2281 , IsUpper<MT1>, IsUpper<MT2> > >::value >
2297 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2298 struct IsUniLower< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2299 :
public BoolConstant< Or< And< IsUniLower<MT1>, IsUniLower<MT2> >
2300 , And< Or< Bool<SF>, Bool<HF> >
2301 , IsUniUpper<MT1>, IsUniUpper<MT2> > >::value >
2317 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2319 :
public BoolConstant< Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2320 , And< IsStrictlyLower<MT2>, IsLower<MT1> >
2321 , And< Or< Bool<SF>, Bool<HF> >
2322 , Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2323 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> > > > >::value >
2339 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2340 struct IsUpper< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2342 , And< IsUpper<MT1>, IsUpper<MT2> >
2343 , And< Or< Bool<SF>, Bool<HF> >
2344 , IsLower<MT1>, IsLower<MT2> > >::value >
2360 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2361 struct IsUniUpper< DMatTSMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2362 :
public BoolConstant< Or< And< IsUniUpper<MT1>, IsUniUpper<MT2> >
2363 , And< Or< Bool<SF>, Bool<HF> >
2364 , IsUniLower<MT1>, IsUniLower<MT2> > >::value >
2380 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2382 :
public BoolConstant< Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2383 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> >
2384 , And< Or< Bool<SF>, Bool<HF> >
2385 , Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2386 , And< IsStrictlyLower<MT2>, IsLower<MT1> > > > >::value >
CompositeType_< MT1 > CT1
Composite type of the left-hand side dense matrix expression.
Definition: DMatTSMatMultExpr.h:134
#define BLAZE_THROW_INVALID_ARGUMENT(MESSAGE)
Macro for the emission of a std::invalid_argument exception.This macro encapsulates the default way o...
Definition: Exception.h:235
ElementType_< RT1 > ET1
Element type of the left-hand side dense matrix expression.
Definition: DMatTSMatMultExpr.h:132
Header file for auxiliary alias declarations.
Headerfile for the generic min algorithm.
Compile time check whether the given type is a computational expression template.This type trait clas...
Definition: IsComputation.h:72
decltype(auto) decldiag(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as diagonal.
Definition: DMatDeclDiagExpr.h:996
Header file for the Rows type trait.
Header file for the IsUniUpper type trait.
EnableIf_< IsDenseMatrix< MT1 > > smpSchurAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP Schur product assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:196
Compile time check for triangular matrix types.This type trait tests whether or not the given templat...
Definition: IsTriangular.h:87
Header file for basic type definitions.
Subvector< VT, AF > subvector(Vector< VT, TF > &vector, size_t index, size_t size)
Creating a view on a specific subvector of the given vector.
Definition: Subvector.h:322
EnableIf_< IsDenseMatrix< MT1 > > smpSubAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP subtraction assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:164
size_t columns() const noexcept
Returns the current number of columns of the matrix.
Definition: DMatTSMatMultExpr.h:349
Header file for the serial shim.
Header file for the IsDiagonal type trait.
Generic wrapper for a compile time constant integral value.The IntegralConstant class template repres...
Definition: IntegralConstant.h:71
#define BLAZE_CONSTRAINT_MUST_BE_DENSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a dense, N-dimensional matrix type...
Definition: DenseMatrix.h:61
Header file for the DeclUpp functor.
BLAZE_ALWAYS_INLINE MT::Iterator begin(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator to the first element of row/column i.
Definition: Matrix.h:198
void reset(const DiagonalProxy< MT > &proxy)
Resetting the represented element to the default initial values.
Definition: DiagonalProxy.h:560
DMatTSMatMultExpr(const MT1 &lhs, const MT2 &rhs) noexcept
Constructor for the DMatTSMatMultExpr class.
Definition: DMatTSMatMultExpr.h:260
LeftOperand leftOperand() const noexcept
Returns the left-hand side dense matrix operand.
Definition: DMatTSMatMultExpr.h:359
typename DisableIf< Condition, T >::Type DisableIf_
Auxiliary type for the DisableIf class template.The DisableIf_ alias declaration provides a convenien...
Definition: DisableIf.h:224
Header file for the And class template.
const ElementType_< MT > min(const DenseMatrix< MT, SO > &dm)
Returns the smallest element of the dense matrix.
Definition: DenseMatrix.h:1762
Compile time check for lower triangular matrices.This type trait tests whether or not the given templ...
Definition: IsLower.h:88
ReturnType at(size_t i, size_t j) const
Checked access to the matrix elements.
Definition: DMatTSMatMultExpr.h:323
bool canSMPAssign() const noexcept
Returns whether the expression can be used in SMP assignments.
Definition: DMatTSMatMultExpr.h:413
decltype(auto) declupp(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as upper.
Definition: DMatDeclUppExpr.h:1027
typename MultTrait< T1, T2 >::Type MultTrait_
Auxiliary alias declaration for the MultTrait class template.The MultTrait_ alias declaration provide...
Definition: MultTrait.h:250
Column< MT > column(Matrix< MT, SO > &matrix, size_t index)
Creating a view on a specific column of the given matrix.
Definition: Column.h:124
Header file for the Computation base class.
OppositeType_< ResultType > OppositeType
Result type with opposite storage order for expression template evaluations.
Definition: DMatTSMatMultExpr.h:226
Header file for the MatMatMultExpr base class.
Compile time check for upper triangular matrices.This type trait tests whether or not the given templ...
Definition: IsUpper.h:88
Constraints on the storage order of matrix types.
Header file for the RequiresEvaluation type trait.
IfTrue_< evaluateLeft, const RT1, CT1 > LT
Type for the assignment of the left-hand side dense matrix operand.
Definition: DMatTSMatMultExpr.h:239
System settings for performance optimizations.
ResultType_< MT2 > RT2
Result type of the right-hand side sparse matrix expression.
Definition: DMatTSMatMultExpr.h:131
Header file for the IsUniLower type trait.
typename T::ResultType ResultType_
Alias declaration for nested ResultType type definitions.The ResultType_ alias declaration provides a...
Definition: Aliases.h:343
const ElementType_< MT > max(const DenseMatrix< MT, SO > &dm)
Returns the largest element of the dense matrix.
Definition: DenseMatrix.h:1809
EnableIf_< IsDenseMatrix< MT1 > > smpAddAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP addition assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:133
Base class for dense matrices.The DenseMatrix class is a base class for all dense matrix classes...
Definition: DenseMatrix.h:78
Base class for sparse matrices.The SparseMatrix class is a base class for all sparse matrix classes...
Definition: Forward.h:129
typename IfTrue< Condition, T1, T2 >::Type IfTrue_
Auxiliary alias declaration for the IfTrue class template.The IfTrue_ alias declaration provides a co...
Definition: If.h:109
Row< MT > row(Matrix< MT, SO > &matrix, size_t index)
Creating a view on a specific row of the given matrix.
Definition: Row.h:124
Compile time check for the alignment of data types.This type trait tests whether the given data type ...
Definition: IsAligned.h:87
Constraint on the data type.
Constraint on the data type.
Compile time check to query the requirement to evaluate an expression.Via this type trait it is possi...
Definition: RequiresEvaluation.h:72
RightOperand rhs_
Right-hand side sparse matrix of the multiplication expression.
Definition: DMatTSMatMultExpr.h:421
typename T::CompositeType CompositeType_
Alias declaration for nested CompositeType type definitions.The CompositeType_ alias declaration prov...
Definition: Aliases.h:83
Compile time check for upper unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniUpper.h:86
Headerfile for the generic max algorithm.
Header file for the DisableIf class template.
Header file for the multiplication trait.
Header file for the IsStrictlyUpper type trait.
Header file for the IsSymmetric type trait.
Namespace of the Blaze C++ math library.
Definition: Blaze.h:57
Header file for the DeclLow functor.
bool isAliased(const T *alias) const noexcept
Returns whether the expression is aliased with the given address alias.
Definition: DMatTSMatMultExpr.h:393
Header file for the If class template.
bool canAlias(const T *alias) const noexcept
Returns whether the expression can alias with the given address alias.
Definition: DMatTSMatMultExpr.h:381
#define BLAZE_CONSTRAINT_MUST_BE_COLUMN_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a column-major dense or sparse matri...
Definition: ColumnMajorMatrix.h:61
Generic wrapper for the decllow() function.
Definition: DeclLow.h:58
EnableIf_< IsDenseMatrix< MT1 > > smpAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:102
Header file for the Or class template.
#define BLAZE_THROW_OUT_OF_RANGE(MESSAGE)
Macro for the emission of a std::out_of_range exception.This macro encapsulates the default way of Bl...
Definition: Exception.h:331
Header file for the DenseMatrix base class.
Header file for the Columns type trait.
const Element * ConstIterator
Iterator over constant elements.
Definition: CompressedMatrix.h:3087
typename T::ElementType ElementType_
Alias declaration for nested ElementType type definitions.The ElementType_ alias declaration provides...
Definition: Aliases.h:163
RightOperand rightOperand() const noexcept
Returns the right-hand side transpose sparse matrix operand.
Definition: DMatTSMatMultExpr.h:369
decltype(auto) decllow(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as lower.
Definition: DMatDeclLowExpr.h:1027
Header file for the IsLower type trait.
Header file for the IsAligned type trait.
Compile time check for diagonal matrices.This type trait tests whether or not the given template para...
Definition: IsDiagonal.h:90
Flag for Hermitian matrices.
Definition: DMatTSMatMultExpr.h:152
Generic wrapper for the null function.
Definition: Noop.h:58
Header file for the IsTriangular type trait.
Constraints on the storage order of matrix types.
Compile time check for symmetric matrices.This type trait tests whether or not the given template par...
Definition: IsSymmetric.h:85
Header file for the exception macros of the math module.
Compile time check for strictly upper triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyUpper.h:86
size_t rows() const noexcept
Returns the current number of rows of the matrix.
Definition: DMatTSMatMultExpr.h:339
BLAZE_ALWAYS_INLINE MT::Iterator end(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator just past the last element of row/column i.
Definition: Matrix.h:264
Header file for the DeclDiag functor.
Constraint on the data type.
Header file for all forward declarations for expression class templates.
bool isAligned() const noexcept
Returns whether the operands of the expression are properly aligned in memory.
Definition: DMatTSMatMultExpr.h:403
Flag for upper matrices.
Definition: DMatTSMatMultExpr.h:154
Header file for the EnableIf class template.
Header file for the IsStrictlyLower type trait.
#define BLAZE_CONSTRAINT_MUST_FORM_VALID_MATMATMULTEXPR(T1, T2)
Constraint on the data type.In case the given data types T1 and T2 do not form a valid matrix/matrix ...
Definition: MatMatMultExpr.h:108
Compile time check for lower unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniLower.h:86
Header file for the conjugate shim.
Compile time check for resizable data types.This type trait tests whether the given data type is a re...
Definition: IsResizable.h:75
Base class for all matrix/matrix multiplication expression templates.The MatMatMultExpr class serves ...
Definition: MatMatMultExpr.h:67
#define BLAZE_CONSTRAINT_MUST_NOT_BE_SYMMETRIC_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is a symmetric matrix type, a compilation error is created.
Definition: Symmetric.h:79
#define BLAZE_CONSTRAINT_MUST_BE_ROW_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a row-major dense or sparse matrix t...
Definition: RowMajorMatrix.h:61
Header file for run time assertion macros.
Utility type for generic codes.
typename If< T1, T2, T3 >::Type If_
Auxiliary alias declaration for the If class template.The If_ alias declaration provides a convenient...
Definition: If.h:154
LeftOperand lhs_
Left-hand side dense matrix of the multiplication expression.
Definition: DMatTSMatMultExpr.h:420
Header file for the reset shim.
ElementType_< RT2 > ET2
Element type of the right-hand side sparse matrix expression.
Definition: DMatTSMatMultExpr.h:133
#define BLAZE_FUNCTION_TRACE
Function trace macro.This macro can be used to reliably trace function calls. In case function tracin...
Definition: FunctionTrace.h:94
Flag for symmetric matrices.
Definition: DMatTSMatMultExpr.h:151
decltype(auto) declsym(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as symmetric.
Definition: DMatDeclSymExpr.h:1029
Compile time check for Hermitian matrices.This type trait tests whether or not the given template par...
Definition: IsHermitian.h:85
Flag for lower matrices.
Definition: DMatTSMatMultExpr.h:153
Base class for matrices.The Matrix class is a base class for all dense and sparse matrix classes with...
Definition: Forward.h:101
Expression object for dense matrix-transpose sparse matrix multiplications.The DMatTSMatMultExpr clas...
Definition: DMatTSMatMultExpr.h:124
Constraint on the data type.
Constraints on the storage order of matrix types.
Generic wrapper for the declherm() function.
Definition: DeclHerm.h:58
decltype(auto) serial(const DenseMatrix< MT, SO > &dm)
Forces the serial evaluation of the given dense matrix expression dm.
Definition: DMatSerialExpr.h:819
Header file for the Noop functor.
CompositeType_< MT2 > CT2
Composite type of the right-hand side sparse matrix expression.
Definition: DMatTSMatMultExpr.h:135
#define BLAZE_CONSTRAINT_MUST_NOT_REQUIRE_EVALUATION(T)
Constraint on the data type.In case the given data type T requires an intermediate evaluation within ...
Definition: RequiresEvaluation.h:81
Header file for the RemoveReference type trait.
typename EnableIf< Condition, T >::Type EnableIf_
Auxiliary alias declaration for the EnableIf class template.The EnableIf_ alias declaration provides ...
Definition: EnableIf.h:224
If_< IsExpression< MT2 >, const MT2, const MT2 &> RightOperand
Composite type of the right-hand side sparse matrix expression.
Definition: DMatTSMatMultExpr.h:236
typename T::OppositeType OppositeType_
Alias declaration for nested OppositeType type definitions.The OppositeType_ alias declaration provid...
Definition: Aliases.h:263
#define BLAZE_CONSTRAINT_MATRICES_MUST_HAVE_SAME_STORAGE_ORDER(T1, T2)
Constraint on the data type.In case either of the two given data types T1 or T2 is not a matrix type ...
Definition: StorageOrder.h:84
const ElementType ReturnType
Return type for expression template evaluations.
Definition: DMatTSMatMultExpr.h:229
Generic wrapper for the declupp() function.
Definition: DeclUpp.h:58
Compile time check for strictly lower triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyLower.h:86
const Type & ReturnType
Return type for expression template evaluations.
Definition: CompressedMatrix.h:3082
typename T::ConstIterator ConstIterator_
Alias declaration for nested ConstIterator type definitions.The ConstIterator_ alias declaration prov...
Definition: Aliases.h:103
decltype(auto) trans(const DenseMatrix< MT, SO > &dm)
Calculation of the transpose of the given dense matrix.
Definition: DMatTransExpr.h:790
const ResultType CompositeType
Data type for composite expression templates.
Definition: DMatTSMatMultExpr.h:230
decltype(auto) declherm(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as Hermitian.
Definition: DMatDeclHermExpr.h:1029
ResultType_< MT1 > RT1
Result type of the left-hand side dense matrix expression.
Definition: DMatTSMatMultExpr.h:130
Header file for the IsComputation type trait class.
MultTrait_< RT1, RT2 > ResultType
Result type for expression template evaluations.
Definition: DMatTSMatMultExpr.h:225
Header file for the IsBuiltin type trait.
Base class for all compute expression templates.The Computation class serves as a tag for all computa...
Definition: Computation.h:66
TransposeType_< ResultType > TransposeType
Transpose type for expression template evaluations.
Definition: DMatTSMatMultExpr.h:227
Header file for the IntegralConstant class template.
Compile time evaluation of the number of columns of a matrix.The Columns type trait evaluates the num...
Definition: Columns.h:75
Generic wrapper for the decldiag() function.
Definition: DeclDiag.h:58
Compile time evaluation of the number of rows of a matrix.The Rows type trait evaluates the number of...
Definition: Rows.h:75
Header file for the DeclHerm functor.
typename T::TransposeType TransposeType_
Alias declaration for nested TransposeType type definitions.The TransposeType_ alias declaration prov...
Definition: Aliases.h:423
Header file for the IsUpper type trait.
decltype(auto) conj(const DenseMatrix< MT, SO > &dm)
Returns a matrix containing the complex conjugate of each single element of dm.
Definition: DMatMapExpr.h:1321
Constraint on the data type.
Generic wrapper for the declsym() function.
Definition: DeclSym.h:58
IfTrue_< evaluateRight, const RT2, CT2 > RT
Type for the assignment of the right-hand side sparse matrix operand.
Definition: DMatTSMatMultExpr.h:242
BLAZE_ALWAYS_INLINE bool isSquare(const Matrix< MT, SO > &matrix) noexcept
Checks if the given matrix is a square matrix.
Definition: Matrix.h:742
Header file for the IsResizable type trait.
ElementType_< ResultType > ElementType
Resulting element type.
Definition: DMatTSMatMultExpr.h:228
Header file for the thresholds for matrix/vector and matrix/matrix multiplications.
#define BLAZE_INTERNAL_ASSERT(expr, msg)
Run time assertion macro for internal checks.In case of an invalid run time expression, the program execution is terminated. The BLAZE_INTERNAL_ASSERT macro can be disabled by setting the BLAZE_USER_ASSERTION flag to zero or by defining NDEBUG during the compilation.
Definition: Assert.h:101
Header file for the Bool class template.
Header file for the DeclSym functor.
#define BLAZE_CONSTRAINT_MUST_BE_SPARSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a sparse, N-dimensional matrix type...
Definition: SparseMatrix.h:61
ReturnType operator()(size_t i, size_t j) const
2D-access to the matrix elements.
Definition: DMatTSMatMultExpr.h:275
Header file for the TrueType type/value trait base class.
Header file for the IsExpression type trait class.
Header file for the function trace functionality.
If_< IsExpression< MT1 >, const MT1, const MT1 &> LeftOperand
Composite type of the left-hand side dense matrix expression.
Definition: DMatTSMatMultExpr.h:233