35 #ifndef _BLAZE_MATH_EXPRESSIONS_SMATTDMATMULTEXPR_H_ 36 #define _BLAZE_MATH_EXPRESSIONS_SMATTDMATMULTEXPR_H_ 115 template<
typename MT1
121 class SMatTDMatMultExpr
122 :
public MatMatMultExpr< DenseMatrix< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF>, false > >
123 ,
private Computation
148 SYM = ( SF && !( HF || LF || UF ) ),
149 HERM = ( HF && !( LF || UF ) ),
150 LOW = ( LF || ( ( SF || HF ) && UF ) ),
151 UPP = ( UF || ( ( SF || HF ) && LF ) )
162 template<
typename T1,
typename T2,
typename T3 >
163 struct CanExploitSymmetry {
175 template<
typename T1,
typename T2,
typename T3 >
176 struct IsEvaluationRequired {
177 enum :
bool { value = ( evaluateLeft || evaluateRight ) &&
178 CanExploitSymmetry<T1,T2,T3>::value };
188 template<
typename T1,
typename T2,
typename T3 >
189 struct UseOptimizedKernel {
190 enum :
bool { value = useOptimizedKernels &&
244 enum :
bool { simdEnabled =
false };
247 enum :
bool { smpAssignable = !evaluateLeft && MT1::smpAssignable &&
248 !evaluateRight && MT2::smpAssignable };
298 :(
lhs_.columns() ) ) );
302 const size_t n(
end - begin );
321 if( i >=
lhs_.rows() ) {
324 if( j >=
rhs_.columns() ) {
336 inline size_t rows() const noexcept {
347 return rhs_.columns();
377 template<
typename T >
378 inline bool canAlias(
const T* alias )
const noexcept {
379 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
389 template<
typename T >
390 inline bool isAliased(
const T* alias )
const noexcept {
391 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
401 return rhs_.isAligned();
434 template<
typename MT
454 SMatTDMatMultExpr::selectAssignKernel( ~lhs, A, B );
473 template<
typename MT3
477 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
481 const size_t M( A.rows() );
482 const size_t N( B.columns() );
489 for( ; (j+4UL) <= N; j+=4UL ) {
490 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
499 if( element == end ) {
507 C(i,j ) = element->value() * B(element->index(),j );
508 C(i,j+1UL) = element->value() * B(element->index(),j+1UL);
509 C(i,j+2UL) = element->value() * B(element->index(),j+2UL);
510 C(i,j+3UL) = element->value() * B(element->index(),j+3UL);
512 for( ; element!=
end; ++element ) {
513 C(i,j ) += element->value() * B(element->index(),j );
514 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
515 C(i,j+2UL) += element->value() * B(element->index(),j+2UL);
516 C(i,j+3UL) += element->value() * B(element->index(),j+3UL);
521 for( ; (j+2UL) <= N; j+=2UL ) {
522 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
531 if( element == end ) {
537 C(i,j ) = element->value() * B(element->index(),j );
538 C(i,j+1UL) = element->value() * B(element->index(),j+1UL);
540 for( ; element!=
end; ++element ) {
541 C(i,j ) += element->value() * B(element->index(),j );
542 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
548 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
557 if( element == end ) {
562 C(i,j) = element->value() * B(element->index(),j);
564 for( ; element!=
end; ++element ) {
565 C(i,j) += element->value() * B(element->index(),j);
572 for(
size_t j=1UL; j<N; ++j ) {
573 for(
size_t i=0UL; i<j; ++i ) {
574 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
578 else if( LOW && !UPP ) {
579 for(
size_t j=1UL; j<N; ++j ) {
580 for(
size_t i=0UL; i<j; ++i ) {
585 else if( !LOW && UPP ) {
586 for(
size_t i=1UL; i<M; ++i ) {
587 for(
size_t j=0UL; j<i; ++j ) {
610 template<
typename MT3
614 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
618 const size_t M( A.rows() );
619 const size_t N( B.columns() );
628 for( ; (j+4UL) <= N; j+=4UL ) {
629 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
638 const size_t nonzeros( end - element );
639 const size_t kpos( nonzeros &
size_t(-4) );
642 for(
size_t k=0UL; k<kpos; k+=4UL )
644 const size_t i1( element->index() );
645 const ET1 v1( element->value() );
647 const size_t i2( element->index() );
648 const ET1 v2( element->value() );
650 const size_t i3( element->index() );
651 const ET1 v3( element->value() );
653 const size_t i4( element->index() );
654 const ET1 v4( element->value() );
659 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
660 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
661 C(i,j+2UL) += v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
662 C(i,j+3UL) += v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
665 for( ; element!=
end; ++element )
667 const size_t i1( element->index() );
668 const ET1 v1( element->value() );
670 C(i,j ) += v1 * B(i1,j );
671 C(i,j+1UL) += v1 * B(i1,j+1UL);
672 C(i,j+2UL) += v1 * B(i1,j+2UL);
673 C(i,j+3UL) += v1 * B(i1,j+3UL);
678 for( ; (j+2UL) <= N; j+=2UL ) {
679 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
688 const size_t nonzeros( end - element );
689 const size_t kpos( nonzeros &
size_t(-4) );
692 for(
size_t k=0UL; k<kpos; k+=4UL )
694 const size_t i1( element->index() );
695 const ET1 v1( element->value() );
697 const size_t i2( element->index() );
698 const ET1 v2( element->value() );
700 const size_t i3( element->index() );
701 const ET1 v3( element->value() );
703 const size_t i4( element->index() );
704 const ET1 v4( element->value() );
709 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
710 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
713 for( ; element!=
end; ++element )
715 const size_t i1( element->index() );
716 const ET1 v1( element->value() );
718 C(i,j ) += v1 * B(i1,j );
719 C(i,j+1UL) += v1 * B(i1,j+1UL);
725 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
734 const size_t nonzeros( end - element );
735 const size_t kpos( nonzeros &
size_t(-4) );
738 for(
size_t k=0UL; k<kpos; k+=4UL )
740 const size_t i1( element->index() );
741 const ET1 v1( element->value() );
743 const size_t i2( element->index() );
744 const ET1 v2( element->value() );
746 const size_t i3( element->index() );
747 const ET1 v3( element->value() );
749 const size_t i4( element->index() );
750 const ET1 v4( element->value() );
755 C(i,j) += v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
758 for( ; element!=
end; ++element )
760 const size_t i1( element->index() );
761 const ET1 v1( element->value() );
763 C(i,j) += v1 * B(i1,j);
770 for(
size_t j=1UL; j<N; ++j ) {
771 for(
size_t i=0UL; i<j; ++i ) {
772 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
793 template<
typename MT
812 const ForwardFunctor fwd;
814 const TmpType tmp(
serial( rhs ) );
815 assign( ~lhs, fwd( tmp ) );
835 template<
typename MT
845 const ForwardFunctor fwd;
847 assign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
865 template<
typename MT
885 SMatTDMatMultExpr::selectAddAssignKernel( ~lhs, A, B );
904 template<
typename MT3
908 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
912 const size_t M( A.rows() );
913 const size_t N( B.columns() );
920 for( ; (j+4UL) <= N; j+=4UL ) {
921 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
930 for( ; element!=
end; ++element ) {
931 C(i,j ) += element->value() * B(element->index(),j );
932 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
933 C(i,j+2UL) += element->value() * B(element->index(),j+2UL);
934 C(i,j+3UL) += element->value() * B(element->index(),j+3UL);
939 for( ; (j+2UL) <= N; j+=2UL ) {
940 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
949 for( ; element!=
end; ++element ) {
950 C(i,j ) += element->value() * B(element->index(),j );
951 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
957 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
966 for( ; element!=
end; ++element ) {
967 C(i,j) += element->value() * B(element->index(),j);
990 template<
typename MT3
994 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
998 const size_t M( A.rows() );
999 const size_t N( B.columns() );
1006 for( ; (j+4UL) <= N; j+=4UL ) {
1007 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1016 const size_t nonzeros( end - element );
1017 const size_t kpos( nonzeros &
size_t(-4) );
1020 for(
size_t k=0UL; k<kpos; k+=4UL )
1022 const size_t i1( element->index() );
1023 const ET1 v1( element->value() );
1025 const size_t i2( element->index() );
1026 const ET1 v2( element->value() );
1028 const size_t i3( element->index() );
1029 const ET1 v3( element->value() );
1031 const size_t i4( element->index() );
1032 const ET1 v4( element->value() );
1037 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1038 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1039 C(i,j+2UL) += v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
1040 C(i,j+3UL) += v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
1043 for( ; element!=
end; ++element )
1045 const size_t i1( element->index() );
1046 const ET1 v1( element->value() );
1048 C(i,j ) += v1 * B(i1,j );
1049 C(i,j+1UL) += v1 * B(i1,j+1UL);
1050 C(i,j+2UL) += v1 * B(i1,j+2UL);
1051 C(i,j+3UL) += v1 * B(i1,j+3UL);
1056 for( ; (j+2UL) <= N; j+=2UL ) {
1057 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1066 const size_t nonzeros( end - element );
1067 const size_t kpos( nonzeros &
size_t(-4) );
1070 for(
size_t k=0UL; k<kpos; k+=4UL )
1072 const size_t i1( element->index() );
1073 const ET1 v1( element->value() );
1075 const size_t i2( element->index() );
1076 const ET1 v2( element->value() );
1078 const size_t i3( element->index() );
1079 const ET1 v3( element->value() );
1081 const size_t i4( element->index() );
1082 const ET1 v4( element->value() );
1087 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1088 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1091 for( ; element!=
end; ++element )
1093 const size_t i1( element->index() );
1094 const ET1 v1( element->value() );
1096 C(i,j ) += v1 * B(i1,j );
1097 C(i,j+1UL) += v1 * B(i1,j+1UL);
1103 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1112 const size_t nonzeros( end - element );
1113 const size_t kpos( nonzeros &
size_t(-4) );
1116 for(
size_t k=0UL; k<kpos; k+=4UL )
1118 const size_t i1( element->index() );
1119 const ET1 v1( element->value() );
1121 const size_t i2( element->index() );
1122 const ET1 v2( element->value() );
1124 const size_t i3( element->index() );
1125 const ET1 v3( element->value() );
1127 const size_t i4( element->index() );
1128 const ET1 v4( element->value() );
1133 C(i,j) += v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
1136 for( ; element!=
end; ++element )
1138 const size_t i1( element->index() );
1139 const ET1 v1( element->value() );
1141 C(i,j) += v1 * B(i1,j);
1165 template<
typename MT
1175 const ForwardFunctor fwd;
1177 addAssign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
1199 template<
typename MT
1219 SMatTDMatMultExpr::selectSubAssignKernel( ~lhs, A, B );
1238 template<
typename MT3
1242 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1246 const size_t M( A.rows() );
1247 const size_t N( B.columns() );
1254 for( ; (j+4UL) <= N; j+=4UL ) {
1255 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1264 for( ; element!=
end; ++element ) {
1265 C(i,j ) -= element->value() * B(element->index(),j );
1266 C(i,j+1UL) -= element->value() * B(element->index(),j+1UL);
1267 C(i,j+2UL) -= element->value() * B(element->index(),j+2UL);
1268 C(i,j+3UL) -= element->value() * B(element->index(),j+3UL);
1273 for( ; (j+2UL) <= N; j+=2UL ) {
1274 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1283 for( ; element!=
end; ++element ) {
1284 C(i,j ) -= element->value() * B(element->index(),j );
1285 C(i,j+1UL) -= element->value() * B(element->index(),j+1UL);
1291 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1300 for( ; element!=
end; ++element ) {
1301 C(i,j) -= element->value() * B(element->index(),j);
1324 template<
typename MT3
1328 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1332 const size_t M( A.rows() );
1333 const size_t N( B.columns() );
1340 for( ; (j+4UL) <= N; j+=4UL ) {
1341 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1350 const size_t nonzeros( end - element );
1351 const size_t kpos( nonzeros &
size_t(-4) );
1354 for(
size_t k=0UL; k<kpos; k+=4UL )
1356 const size_t i1( element->index() );
1357 const ET1 v1( element->value() );
1359 const size_t i2( element->index() );
1360 const ET1 v2( element->value() );
1362 const size_t i3( element->index() );
1363 const ET1 v3( element->value() );
1365 const size_t i4( element->index() );
1366 const ET1 v4( element->value() );
1371 C(i,j ) -= v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1372 C(i,j+1UL) -= v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1373 C(i,j+2UL) -= v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
1374 C(i,j+3UL) -= v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
1377 for( ; element!=
end; ++element )
1379 const size_t i1( element->index() );
1380 const ET1 v1( element->value() );
1382 C(i,j ) -= v1 * B(i1,j );
1383 C(i,j+1UL) -= v1 * B(i1,j+1UL);
1384 C(i,j+2UL) -= v1 * B(i1,j+2UL);
1385 C(i,j+3UL) -= v1 * B(i1,j+3UL);
1390 for( ; (j+2UL) <= N; j+=2UL ) {
1391 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1400 const size_t nonzeros( end - element );
1401 const size_t kpos( nonzeros &
size_t(-4) );
1404 for(
size_t k=0UL; k<kpos; k+=4UL )
1406 const size_t i1( element->index() );
1407 const ET1 v1( element->value() );
1409 const size_t i2( element->index() );
1410 const ET1 v2( element->value() );
1412 const size_t i3( element->index() );
1413 const ET1 v3( element->value() );
1415 const size_t i4( element->index() );
1416 const ET1 v4( element->value() );
1421 C(i,j ) -= v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1422 C(i,j+1UL) -= v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1425 for( ; element!=
end; ++element )
1427 const size_t i1( element->index() );
1428 const ET1 v1( element->value() );
1430 C(i,j ) -= v1 * B(i1,j );
1431 C(i,j+1UL) -= v1 * B(i1,j+1UL);
1437 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1446 const size_t nonzeros( end - element );
1447 const size_t kpos( nonzeros &
size_t(-4) );
1450 for(
size_t k=0UL; k<kpos; k+=4UL )
1452 const size_t i1( element->index() );
1453 const ET1 v1( element->value() );
1455 const size_t i2( element->index() );
1456 const ET1 v2( element->value() );
1458 const size_t i3( element->index() );
1459 const ET1 v3( element->value() );
1461 const size_t i4( element->index() );
1462 const ET1 v4( element->value() );
1467 C(i,j) -= v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
1470 for( ; element!=
end; ++element )
1472 const size_t i1( element->index() );
1473 const ET1 v1( element->value() );
1475 C(i,j) -= v1 * B(i1,j);
1499 template<
typename MT
1509 const ForwardFunctor fwd;
1511 subAssign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
1533 template<
typename MT
1547 schurAssign( ~lhs, tmp );
1579 template<
typename MT
1619 template<
typename MT
1638 const ForwardFunctor fwd;
1640 const TmpType tmp( rhs );
1661 template<
typename MT
1671 const ForwardFunctor fwd;
1694 template<
typename MT
1734 template<
typename MT
1744 const ForwardFunctor fwd;
1771 template<
typename MT
1811 template<
typename MT
1821 const ForwardFunctor fwd;
1845 template<
typename MT
1928 template<
typename MT1
1930 inline decltype(
auto)
1979 template<
typename MT1
1994 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2026 template<
typename MT1
2041 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2073 template<
typename MT1
2088 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2120 template<
typename MT1
2135 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2167 template<
typename MT1
2182 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2198 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2199 struct Rows< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2216 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2217 struct Columns< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2234 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2235 struct IsAligned< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2252 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2253 struct IsSymmetric< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2256 , IsBuiltin< ElementType_< SMatTDMatMultExpr<MT1,MT2,false,true,false,false> > > >
2257 , And< Bool<LF>, Bool<UF> > >::value >
2273 template<
typename MT1,
typename MT2,
bool SF,
bool LF,
bool UF >
2274 struct IsHermitian< SMatTDMatMultExpr<MT1,MT2,SF,true,LF,UF> >
2291 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2292 struct IsLower< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2294 , And< IsLower<MT1>, IsLower<MT2> >
2295 , And< Or< Bool<SF>, Bool<HF> >
2296 , IsUpper<MT1>, IsUpper<MT2> > >::value >
2312 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2313 struct IsUniLower< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2314 :
public BoolConstant< Or< And< IsUniLower<MT1>, IsUniLower<MT2> >
2315 , And< Or< Bool<SF>, Bool<HF> >
2316 , IsUniUpper<MT1>, IsUniUpper<MT2> > >::value >
2332 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2334 :
public BoolConstant< Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2335 , And< IsStrictlyLower<MT2>, IsLower<MT1> >
2336 , And< Or< Bool<SF>, Bool<HF> >
2337 , Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2338 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> > > > >::value >
2354 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2355 struct IsUpper< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2357 , And< IsUpper<MT1>, IsUpper<MT2> >
2358 , And< Or< Bool<SF>, Bool<HF> >
2359 , IsLower<MT1>, IsLower<MT2> > >::value >
2375 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2376 struct IsUniUpper< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2377 :
public BoolConstant< Or< And< IsUniUpper<MT1>, IsUniUpper<MT2> >
2378 , And< Or< Bool<SF>, Bool<HF> >
2379 , IsUniLower<MT1>, IsUniLower<MT2> > >::value >
2395 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2397 :
public BoolConstant< Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2398 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> >
2399 , And< Or< Bool<SF>, Bool<HF> >
2400 , Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2401 , And< IsStrictlyLower<MT2>, IsLower<MT1> > > > >::value >
#define BLAZE_THROW_INVALID_ARGUMENT(MESSAGE)
Macro for the emission of a std::invalid_argument exception.This macro encapsulates the default way o...
Definition: Exception.h:235
Header file for auxiliary alias declarations.
Headerfile for the generic min algorithm.
Compile time check whether the given type is a computational expression template.This type trait clas...
Definition: IsComputation.h:72
IfTrue_< evaluateLeft, const RT1, CT1 > LT
Type for the assignment of the left-hand side sparse matrix operand.
Definition: SMatTDMatMultExpr.h:236
decltype(auto) decldiag(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as diagonal.
Definition: DMatDeclDiagExpr.h:996
Header file for the Rows type trait.
Header file for the IsUniUpper type trait.
EnableIf_< IsDenseMatrix< MT1 > > smpSchurAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP Schur product assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:196
Compile time check for triangular matrix types.This type trait tests whether or not the given templat...
Definition: IsTriangular.h:87
Header file for basic type definitions.
ResultType_< MT2 > RT2
Result type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:128
const ElementType ReturnType
Return type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:226
Subvector< VT, AF > subvector(Vector< VT, TF > &vector, size_t index, size_t size)
Creating a view on a specific subvector of the given vector.
Definition: Subvector.h:322
RightOperand rightOperand() const noexcept
Returns the right-hand side transpose dense matrix operand.
Definition: SMatTDMatMultExpr.h:366
ResultType_< MT1 > RT1
Result type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:127
Flag for lower matrices.
Definition: SMatTDMatMultExpr.h:150
EnableIf_< IsDenseMatrix< MT1 > > smpSubAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP subtraction assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:164
Header file for the serial shim.
ElementType_< ResultType > ElementType
Resulting element type.
Definition: SMatTDMatMultExpr.h:225
Generic wrapper for a compile time constant integral value.The IntegralConstant class template repres...
Definition: IntegralConstant.h:71
#define BLAZE_CONSTRAINT_MUST_BE_DENSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a dense, N-dimensional matrix type...
Definition: DenseMatrix.h:61
Header file for the DeclUpp functor.
BLAZE_ALWAYS_INLINE MT::Iterator begin(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator to the first element of row/column i.
Definition: Matrix.h:198
void reset(const DiagonalProxy< MT > &proxy)
Resetting the represented element to the default initial values.
Definition: DiagonalProxy.h:560
size_t columns() const noexcept
Returns the current number of columns of the matrix.
Definition: SMatTDMatMultExpr.h:346
typename DisableIf< Condition, T >::Type DisableIf_
Auxiliary type for the DisableIf class template.The DisableIf_ alias declaration provides a convenien...
Definition: DisableIf.h:224
Header file for the And class template.
const ElementType_< MT > min(const DenseMatrix< MT, SO > &dm)
Returns the smallest element of the dense matrix.
Definition: DenseMatrix.h:1762
Compile time check for lower triangular matrices.This type trait tests whether or not the given templ...
Definition: IsLower.h:88
decltype(auto) declupp(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as upper.
Definition: DMatDeclUppExpr.h:1027
bool isAliased(const T *alias) const noexcept
Returns whether the expression is aliased with the given address alias.
Definition: SMatTDMatMultExpr.h:390
TransposeType_< ResultType > TransposeType
Transpose type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:224
typename MultTrait< T1, T2 >::Type MultTrait_
Auxiliary alias declaration for the MultTrait class template.The MultTrait_ alias declaration provide...
Definition: MultTrait.h:250
Column< MT > column(Matrix< MT, SO > &matrix, size_t index)
Creating a view on a specific column of the given matrix.
Definition: Column.h:124
Header file for the Computation base class.
Header file for the MatMatMultExpr base class.
Compile time check for upper triangular matrices.This type trait tests whether or not the given templ...
Definition: IsUpper.h:88
Constraints on the storage order of matrix types.
Header file for the RequiresEvaluation type trait.
System settings for performance optimizations.
Header file for the IsUniLower type trait.
typename T::ResultType ResultType_
Alias declaration for nested ResultType type definitions.The ResultType_ alias declaration provides a...
Definition: Aliases.h:343
const ElementType_< MT > max(const DenseMatrix< MT, SO > &dm)
Returns the largest element of the dense matrix.
Definition: DenseMatrix.h:1809
EnableIf_< IsDenseMatrix< MT1 > > smpAddAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP addition assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:133
CompositeType_< MT1 > CT1
Composite type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:131
size_t rows() const noexcept
Returns the current number of rows of the matrix.
Definition: SMatTDMatMultExpr.h:336
Base class for dense matrices.The DenseMatrix class is a base class for all dense matrix classes...
Definition: DenseMatrix.h:78
Base class for sparse matrices.The SparseMatrix class is a base class for all sparse matrix classes...
Definition: Forward.h:129
CompositeType_< MT2 > CT2
Composite type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:132
typename IfTrue< Condition, T1, T2 >::Type IfTrue_
Auxiliary alias declaration for the IfTrue class template.The IfTrue_ alias declaration provides a co...
Definition: If.h:109
Row< MT > row(Matrix< MT, SO > &matrix, size_t index)
Creating a view on a specific row of the given matrix.
Definition: Row.h:124
Compile time check for the alignment of data types.This type trait tests whether the given data type ...
Definition: IsAligned.h:87
Constraint on the data type.
Constraint on the data type.
Compile time check to query the requirement to evaluate an expression.Via this type trait it is possi...
Definition: RequiresEvaluation.h:72
Flag for Hermitian matrices.
Definition: SMatTDMatMultExpr.h:149
typename T::CompositeType CompositeType_
Alias declaration for nested CompositeType type definitions.The CompositeType_ alias declaration prov...
Definition: Aliases.h:83
bool canAlias(const T *alias) const noexcept
Returns whether the expression can alias with the given address alias.
Definition: SMatTDMatMultExpr.h:378
Compile time check for upper unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniUpper.h:86
Headerfile for the generic max algorithm.
Header file for the DisableIf class template.
Header file for the multiplication trait.
Header file for the IsStrictlyUpper type trait.
Header file for the IsSymmetric type trait.
Namespace of the Blaze C++ math library.
Definition: Blaze.h:57
Header file for the DeclLow functor.
Header file for the If class template.
#define BLAZE_CONSTRAINT_MUST_BE_COLUMN_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a column-major dense or sparse matri...
Definition: ColumnMajorMatrix.h:61
bool canSMPAssign() const noexcept
Returns whether the expression can be used in SMP assignments.
Definition: SMatTDMatMultExpr.h:410
OppositeType_< ResultType > OppositeType
Result type with opposite storage order for expression template evaluations.
Definition: SMatTDMatMultExpr.h:223
bool isAligned() const noexcept
Returns whether the operands of the expression are properly aligned in memory.
Definition: SMatTDMatMultExpr.h:400
Generic wrapper for the decllow() function.
Definition: DeclLow.h:58
EnableIf_< IsDenseMatrix< MT1 > > smpAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:102
Header file for the Or class template.
#define BLAZE_THROW_OUT_OF_RANGE(MESSAGE)
Macro for the emission of a std::out_of_range exception.This macro encapsulates the default way of Bl...
Definition: Exception.h:331
Header file for the DenseMatrix base class.
Header file for the Columns type trait.
const Element * ConstIterator
Iterator over constant elements.
Definition: CompressedMatrix.h:3087
typename T::ElementType ElementType_
Alias declaration for nested ElementType type definitions.The ElementType_ alias declaration provides...
Definition: Aliases.h:163
decltype(auto) decllow(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as lower.
Definition: DMatDeclLowExpr.h:1027
Header file for the IsLower type trait.
LeftOperand lhs_
Left-hand side sparse matrix of the multiplication expression.
Definition: SMatTDMatMultExpr.h:417
Header file for the IsAligned type trait.
Compile time check for diagonal matrices.This type trait tests whether or not the given template para...
Definition: IsDiagonal.h:90
If_< IsExpression< MT2 >, const MT2, const MT2 &> RightOperand
Composite type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:233
Expression object for sparse matrix-transpose dense matrix multiplications.The SMatTDMatMultExpr clas...
Definition: Forward.h:121
const ResultType CompositeType
Data type for composite expression templates.
Definition: SMatTDMatMultExpr.h:227
Generic wrapper for the null function.
Definition: Noop.h:58
Header file for the IsTriangular type trait.
Constraints on the storage order of matrix types.
Compile time check for symmetric matrices.This type trait tests whether or not the given template par...
Definition: IsSymmetric.h:85
Header file for the exception macros of the math module.
Compile time check for strictly upper triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyUpper.h:86
BLAZE_ALWAYS_INLINE MT::Iterator end(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator just past the last element of row/column i.
Definition: Matrix.h:264
Header file for the DeclDiag functor.
ElementType_< RT2 > ET2
Element type of the right-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:130
Constraint on the data type.
Header file for all forward declarations for expression class templates.
Header file for the EnableIf class template.
Header file for the IsStrictlyLower type trait.
#define BLAZE_CONSTRAINT_MUST_FORM_VALID_MATMATMULTEXPR(T1, T2)
Constraint on the data type.In case the given data types T1 and T2 do not form a valid matrix/matrix ...
Definition: MatMatMultExpr.h:108
Compile time check for lower unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniLower.h:86
Header file for the conjugate shim.
Compile time check for resizable data types.This type trait tests whether the given data type is a re...
Definition: IsResizable.h:75
#define BLAZE_CONSTRAINT_MUST_BE_ROW_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a row-major dense or sparse matrix t...
Definition: RowMajorMatrix.h:61
Header file for run time assertion macros.
Utility type for generic codes.
ElementType_< RT1 > ET1
Element type of the left-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:129
typename If< T1, T2, T3 >::Type If_
Auxiliary alias declaration for the If class template.The If_ alias declaration provides a convenient...
Definition: If.h:154
Header file for the reset shim.
#define BLAZE_FUNCTION_TRACE
Function trace macro.This macro can be used to reliably trace function calls. In case function tracin...
Definition: FunctionTrace.h:94
decltype(auto) declsym(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as symmetric.
Definition: DMatDeclSymExpr.h:1029
Compile time check for Hermitian matrices.This type trait tests whether or not the given template par...
Definition: IsHermitian.h:85
Base class for matrices.The Matrix class is a base class for all dense and sparse matrix classes with...
Definition: Forward.h:101
Flag for symmetric matrices.
Definition: SMatTDMatMultExpr.h:148
Constraints on the storage order of matrix types.
Generic wrapper for the declherm() function.
Definition: DeclHerm.h:58
decltype(auto) serial(const DenseMatrix< MT, SO > &dm)
Forces the serial evaluation of the given dense matrix expression dm.
Definition: DMatSerialExpr.h:819
SMatTDMatMultExpr(const MT1 &lhs, const MT2 &rhs) noexcept
Constructor for the SMatTDMatMultExpr class.
Definition: SMatTDMatMultExpr.h:257
Header file for the Noop functor.
#define BLAZE_CONSTRAINT_MUST_NOT_REQUIRE_EVALUATION(T)
Constraint on the data type.In case the given data type T requires an intermediate evaluation within ...
Definition: RequiresEvaluation.h:81
Header file for the RemoveReference type trait.
typename EnableIf< Condition, T >::Type EnableIf_
Auxiliary alias declaration for the EnableIf class template.The EnableIf_ alias declaration provides ...
Definition: EnableIf.h:224
typename T::OppositeType OppositeType_
Alias declaration for nested OppositeType type definitions.The OppositeType_ alias declaration provid...
Definition: Aliases.h:263
#define BLAZE_CONSTRAINT_MATRICES_MUST_HAVE_SAME_STORAGE_ORDER(T1, T2)
Constraint on the data type.In case either of the two given data types T1 or T2 is not a matrix type ...
Definition: StorageOrder.h:84
Generic wrapper for the declupp() function.
Definition: DeclUpp.h:58
Compile time check for strictly lower triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyLower.h:86
const Type & ReturnType
Return type for expression template evaluations.
Definition: CompressedMatrix.h:3082
typename T::ConstIterator ConstIterator_
Alias declaration for nested ConstIterator type definitions.The ConstIterator_ alias declaration prov...
Definition: Aliases.h:103
decltype(auto) trans(const DenseMatrix< MT, SO > &dm)
Calculation of the transpose of the given dense matrix.
Definition: DMatTransExpr.h:790
LeftOperand leftOperand() const noexcept
Returns the left-hand side sparse matrix operand.
Definition: SMatTDMatMultExpr.h:356
decltype(auto) declherm(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as Hermitian.
Definition: DMatDeclHermExpr.h:1029
Header file for the IsComputation type trait class.
RightOperand rhs_
Right-hand side dense matrix of the multiplication expression.
Definition: SMatTDMatMultExpr.h:418
Header file for the IsBuiltin type trait.
ReturnType operator()(size_t i, size_t j) const
2D-access to the matrix elements.
Definition: SMatTDMatMultExpr.h:272
If_< IsExpression< MT1 >, const MT1, const MT1 &> LeftOperand
Composite type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:230
Header file for the IntegralConstant class template.
Compile time evaluation of the number of columns of a matrix.The Columns type trait evaluates the num...
Definition: Columns.h:75
Generic wrapper for the decldiag() function.
Definition: DeclDiag.h:58
Compile time evaluation of the number of rows of a matrix.The Rows type trait evaluates the number of...
Definition: Rows.h:75
Header file for the DeclHerm functor.
IfTrue_< evaluateRight, const RT2, CT2 > RT
Type for the assignment of the right-hand side dense matrix operand.
Definition: SMatTDMatMultExpr.h:239
typename T::TransposeType TransposeType_
Alias declaration for nested TransposeType type definitions.The TransposeType_ alias declaration prov...
Definition: Aliases.h:423
Header file for the IsUpper type trait.
decltype(auto) conj(const DenseMatrix< MT, SO > &dm)
Returns a matrix containing the complex conjugate of each single element of dm.
Definition: DMatMapExpr.h:1321
Flag for upper matrices.
Definition: SMatTDMatMultExpr.h:151
Constraint on the data type.
Generic wrapper for the declsym() function.
Definition: DeclSym.h:58
BLAZE_ALWAYS_INLINE bool isSquare(const Matrix< MT, SO > &matrix) noexcept
Checks if the given matrix is a square matrix.
Definition: Matrix.h:742
MultTrait_< RT1, RT2 > ResultType
Result type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:222
Header file for the thresholds for matrix/vector and matrix/matrix multiplications.
#define BLAZE_INTERNAL_ASSERT(expr, msg)
Run time assertion macro for internal checks.In case of an invalid run time expression, the program execution is terminated. The BLAZE_INTERNAL_ASSERT macro can be disabled by setting the BLAZE_USER_ASSERTION flag to zero or by defining NDEBUG during the compilation.
Definition: Assert.h:101
Header file for the Bool class template.
Header file for the DeclSym functor.
#define BLAZE_CONSTRAINT_MUST_BE_SPARSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a sparse, N-dimensional matrix type...
Definition: SparseMatrix.h:61
Header file for the TrueType type/value trait base class.
Header file for the IsExpression type trait class.
Header file for the function trace functionality.
ReturnType at(size_t i, size_t j) const
Checked access to the matrix elements.
Definition: SMatTDMatMultExpr.h:320