![]() |
Modules | |
Expressions | |
CompressedVector | |
Classes | |
struct | blaze::SparseVector< VT, TF > |
Base class for sparse vectors.The SparseVector class is a base class for all arbitrarily sized (N-dimensional) sparse vectors. It provides an abstraction from the actual type of the sparse vector, but enables a conversion back to this type via the Vector base class. More... | |
class | blaze::VectorAccessProxy< VT > |
Access proxy for sparse, N-dimensional vectors.The VectorAccessProxy provides safe access to the elements of a non-const sparse vector. The proxied access to the elements of a sparse vector is necessary since it may be possible that several insertion operations happen in the same statement. The following code illustrates this with two examples by means of the CompressedVector class: More... | |
Functions | |
template<typename VT1 , typename VT2 > | |
decltype(auto) | blaze::operator* (const DenseVector< VT1, true > &lhs, const SparseVector< VT2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of a dense and a sparse vector ( ![]() | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator* (const DenseVector< VT1, TF > &lhs, const SparseVector< VT2, TF > &rhs) |
Multiplication operator for the componentwise product of a dense vector and a sparse vector ( ![]() | |
template<typename MT , typename VT > | |
decltype(auto) | blaze::operator* (const SparseMatrix< MT, false > &mat, const SparseVector< VT, false > &vec) |
Multiplication operator for the multiplication of a row-major sparse matrix and a sparse vector ( ![]() | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator/ (const SparseVector< VT1, TF > &lhs, const DenseVector< VT2, TF > &rhs) |
Division operator for the componentwise division of a sparse vector and a dense vector ( ![]() | |
template<typename VT1 , typename VT2 > | |
decltype(auto) | blaze::operator* (const SparseVector< VT1, true > &lhs, const DenseVector< VT2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of a sparse and a dense vector ( ![]() | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator* (const SparseVector< VT1, TF > &lhs, const DenseVector< VT2, TF > &rhs) |
Multiplication operator for the componentwise product of a sparse vector and a dense vector ( ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::eval (const SparseVector< VT, TF > &sv) |
Forces the evaluation of the given sparse vector expression sv. More... | |
template<typename VT , bool TF, typename OP > | |
decltype(auto) | blaze::map (const SparseVector< VT, TF > &sv, OP op) |
Evaluates the given custom operation on each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF, typename OP > | |
decltype(auto) | blaze::forEach (const SparseVector< VT, TF > &sv, OP op) |
Evaluates the given custom operation on each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::abs (const SparseVector< VT, TF > &sv) |
Applies the abs() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::floor (const SparseVector< VT, TF > &sv) |
Applies the floor() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::ceil (const SparseVector< VT, TF > &sv) |
Applies the ceil() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::trunc (const SparseVector< VT, TF > &sv) |
Applies the trunc() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::round (const SparseVector< VT, TF > &sv) |
Applies the round() function to each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::conj (const SparseVector< VT, TF > &sv) |
Returns a vector containing the complex conjugate of each single element of sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::ctrans (const SparseVector< VT, TF > &sv) |
Returns the conjugate transpose vector of sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::real (const SparseVector< VT, TF > &sv) |
Returns a vector containing the real parts of each single element of sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::imag (const SparseVector< VT, TF > &sv) |
Returns a vector containing the imaginary parts of each single element of sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::sqrt (const SparseVector< VT, TF > &sv) |
Computes the square root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::invsqrt (const SparseVector< VT, TF > &sv) |
Computes the inverse square root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::cbrt (const SparseVector< VT, TF > &sv) |
Computes the cubic root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::invcbrt (const SparseVector< VT, TF > &sv) |
Computes the inverse cubic root of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF, typename DT > | |
decltype(auto) | blaze::clamp (const SparseVector< VT, TF > &sv, const DT &min, const DT &max) |
Restricts each single element of the sparse vector sv to the range ![]() | |
template<typename VT , bool TF, typename ET > | |
decltype(auto) | blaze::pow (const SparseVector< VT, TF > &sv, ET exp) |
Computes the exponential value for each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::exp (const SparseVector< VT, TF > &sv) |
Computes ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::exp2 (const SparseVector< VT, TF > &sv) |
Computes ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::exp10 (const SparseVector< VT, TF > &sv) |
Computes ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::log (const SparseVector< VT, TF > &sv) |
Computes the natural logarithm of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::log2 (const SparseVector< VT, TF > &sv) |
Computes the binary logarithm of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::log10 (const SparseVector< VT, TF > &sv) |
Computes the common logarithm of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::sin (const SparseVector< VT, TF > &sv) |
Computes the sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::asin (const SparseVector< VT, TF > &sv) |
Computes the inverse sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::sinh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::asinh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic sine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::cos (const SparseVector< VT, TF > &sv) |
Computes the cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::acos (const SparseVector< VT, TF > &sv) |
Computes the inverse cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::cosh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::acosh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic cosine of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::tan (const SparseVector< VT, TF > &sv) |
Computes the tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::atan (const SparseVector< VT, TF > &sv) |
Computes the inverse tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::tanh (const SparseVector< VT, TF > &sv) |
Computes the hyperbolic tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::atanh (const SparseVector< VT, TF > &sv) |
Computes the inverse hyperbolic tangent of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::erf (const SparseVector< VT, TF > &sv) |
Computes the error function of each non-zero element of the sparse vector sv. More... | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::erfc (const SparseVector< VT, TF > &sv) |
Computes the complementary error function of each non-zero element of the sparse vector sv. More... | |
template<typename VT , typename ST , bool TF, typename = EnableIf_< IsNumeric<ST> >> | |
decltype(auto) | blaze::operator/ (const SparseVector< VT, TF > &vec, ST scalar) |
Division operator for the divison of a sparse vector by a scalar value ( ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::operator- (const SparseVector< VT, TF > &sv) |
Unary minus operator for the negation of a sparse vector ( ![]() | |
template<typename VT , typename ST , bool TF, typename = EnableIf_< IsNumeric<ST> >> | |
decltype(auto) | blaze::operator* (const SparseVector< VT, TF > &vec, ST scalar) |
Multiplication operator for the multiplication of a sparse vector and a scalar value ( ![]() | |
template<typename ST , typename VT , bool TF, typename = EnableIf_< IsNumeric<ST> >> | |
decltype(auto) | blaze::operator* (ST scalar, const SparseVector< VT, TF > &vec) |
Multiplication operator for the multiplication of a scalar value and a sparse vector ( ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::serial (const SparseVector< VT, TF > &sv) |
Forces the serial evaluation of the given sparse vector expression sv. More... | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator+ (const SparseVector< VT1, TF > &lhs, const SparseVector< VT2, TF > &rhs) |
Addition operator for the addition of two sparse vectors ( ![]() | |
template<typename VT1 , typename VT2 > | |
decltype(auto) | blaze::operator* (const SparseVector< VT1, true > &lhs, const SparseVector< VT2, false > &rhs) |
Multiplication operator for the scalar product (inner product) of two sparse vectors ( ![]() | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator* (const SparseVector< VT1, TF > &lhs, const SparseVector< VT2, TF > &rhs) |
Multiplication operator for the componentwise multiplication of two sparse vectors ( ![]() | |
template<typename VT1 , typename VT2 , bool TF> | |
decltype(auto) | blaze::operator- (const SparseVector< VT1, TF > &lhs, const SparseVector< VT2, TF > &rhs) |
Subtraction operator for the subtraction of two sparse vectors ( ![]() | |
template<typename VT , bool TF> | |
decltype(auto) | blaze::trans (const SparseVector< VT, TF > &sv) |
Calculation of the transpose of the given sparse vector. More... | |
template<typename MT , typename VT > | |
decltype(auto) | blaze::operator* (const SparseMatrix< MT, true > &mat, const SparseVector< VT, false > &vec) |
Multiplication operator for the multiplication of a transpose sparse matrix and a sparse vector ( ![]() | |
template<typename VT , typename MT > | |
decltype(auto) | blaze::operator* (const SparseVector< VT, true > &vec, const SparseMatrix< MT, false > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a row-major sparse matrix ( ![]() | |
template<typename VT , typename MT > | |
decltype(auto) | blaze::operator* (const SparseVector< VT, true > &vec, const SparseMatrix< MT, true > &mat) |
Multiplication operator for the multiplication of a transpose sparse vector and a column-major sparse matrix ( ![]() | |
SparseVector operators | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | blaze::operator== (const SparseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Equality operator for the comparison of two sparse vectors. More... | |
template<typename T1 , bool TF1, typename T2 , bool TF2> | |
bool | blaze::operator!= (const SparseVector< T1, TF1 > &lhs, const SparseVector< T2, TF2 > &rhs) |
Inequality operator for the comparison of two sparse vectors. More... | |
SparseVector functions | |
template<typename VT , bool TF> | |
bool | blaze::isnan (const SparseVector< VT, TF > &sv) |
Checks the given sparse vector for not-a-number elements. More... | |
template<typename VT , bool TF> | |
bool | blaze::isUniform (const SparseVector< VT, TF > &sv) |
Checks if the given sparse vector is a uniform vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | blaze::sqrLength (const SparseVector< VT, TF > &sv) |
Calculation of the square length (magnitude) of the sparse vector ![]() | |
template<typename VT , bool TF> | |
auto | blaze::length (const SparseVector< VT, TF > &sv) -> decltype(sqrt(sqrLength(~sv))) |
Calculation of the length (magnitude) of the sparse vector ![]() | |
template<typename VT , bool TF> | |
const ElementType_< VT > | blaze::min (const SparseVector< VT, TF > &sv) |
Returns the smallest element of the sparse vector. More... | |
template<typename VT , bool TF> | |
const ElementType_< VT > | blaze::max (const SparseVector< VT, TF > &sv) |
Returns the largest element of the sparse vector. More... | |
VectorAccessProxy global functions | |
template<typename VT > | |
void | blaze::reset (const VectorAccessProxy< VT > &proxy) |
Resetting the represented element to the default initial values. More... | |
template<typename VT > | |
void | blaze::clear (const VectorAccessProxy< VT > &proxy) |
Clearing the represented element. More... | |
template<bool RF, typename VT > | |
bool | blaze::isDefault (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is in default state. More... | |
template<bool RF, typename VT > | |
bool | blaze::isReal (const VectorAccessProxy< VT > &proxy) |
Returns whether the vector element represents a real number. More... | |
template<bool RF, typename VT > | |
bool | blaze::isZero (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is 0. More... | |
template<bool RF, typename VT > | |
bool | blaze::isOne (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is 1. More... | |
template<typename VT > | |
bool | blaze::isnan (const VectorAccessProxy< VT > &proxy) |
Returns whether the represented element is not a number. More... | |
template<typename VT > | |
void | blaze::swap (const VectorAccessProxy< VT > &a, const VectorAccessProxy< VT > &b) noexcept |
Swapping the contents of two access proxies. More... | |
template<typename VT , typename T > | |
void | blaze::swap (const VectorAccessProxy< VT > &a, T &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
template<typename T , typename VT > | |
void | blaze::swap (T &a, const VectorAccessProxy< VT > &b) noexcept |
Swapping the contents of an access proxy with another element. More... | |
|
inline |
Applies the abs() function to each non-zero element of the sparse vector sv.
sv | The input vector. |
This function applies the abs() function to each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the abs() function:
|
inline |
Computes the inverse cosine of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The acos() function computes the inverse cosine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the acos() function:
|
inline |
Computes the inverse hyperbolic cosine of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The acosh() function computes the inverse hyperbolic cosine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the acosh() function:
|
inline |
Computes the inverse sine of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The asin() function computes the inverse sine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the asin() function:
|
inline |
Computes the inverse hyperbolic sine of each non-zero element of the sparse vector sv.
sv | The input vector. |
The asinh() function computes the inverse hyperbolic sine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the asinh() function:
|
inline |
Computes the inverse tangent of each non-zero element of the sparse vector sv.
sv | The input vector. |
The atan() function computes the inverse tangent for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the atan() function:
|
inline |
Computes the inverse hyperbolic tangent of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The atanh() function computes the inverse hyperbolic tangent for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the atanh() function:
|
inline |
Computes the cubic root of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The cbrt() function computes the cubic root of each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the cbrt() function:
|
inline |
Applies the ceil() function to each non-zero element of the sparse vector sv.
sv | The input vector. |
This function applies the ceil() function to each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the ceil() function:
|
inline |
Restricts each single element of the sparse vector sv to the range .
sv | The input vector. |
min | The lower delimiter. |
max | The upper delimiter. |
The clamp() function resetricts each element of the input vector sv to the range . The function returns an expression representing this operation.
The following example demonstrates the use of the clamp() function:
|
inline |
Clearing the represented element.
proxy | The given access proxy. |
|
inline |
Returns a vector containing the complex conjugate of each single element of sv.
sv | The integral sparse input vector. |
The conj function calculates the complex conjugate of each element of the sparse input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the conj function:
|
inline |
Computes the cosine of each non-zero element of the sparse vector sv.
sv | The input vector. |
The cos() function computes the cosine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the cos() function:
|
inline |
Computes the hyperbolic cosine of each non-zero element of the sparse vector sv.
sv | The input vector. |
The cosh() function computes the hyperbolic cosine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the cosh() function:
|
inline |
Returns the conjugate transpose vector of sv.
sv | The input vector. |
The ctrans function returns an expression representing the conjugate transpose (also called adjoint matrix, Hermitian conjugate matrix or transjugate matrix) of the given input vector sv.
The following example demonstrates the use of the ctrans function:
Note that the ctrans function has the same effect as manually applying the conj and trans function in any order:
|
inline |
Computes the error function of each non-zero element of the sparse vector sv.
sv | The input vector. |
The erf() function computes the error function for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the erf() function:
|
inline |
Computes the complementary error function of each non-zero element of the sparse vector sv.
sv | The input vector. |
The erfc() function computes the complementary error function for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the erfc() function:
decltype(auto) blaze::eval | ( | const SparseVector< VT, TF > & | sv | ) |
Forces the evaluation of the given sparse vector expression sv.
sv | The input vector. |
The eval function forces the evaluation of the given sparse vector expression sv. The function returns an expression representing this operation.
The following example demonstrates the use of the eval function:
|
inline |
Computes of each non-zero element of the sparse vector sv.
sv | The input vector. |
The exp() function computes for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the exp() function:
|
inline |
Computes of each non-zero element of the sparse vector sv.
sv | The input vector. |
The exp10() function computes for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the exp10() function:
|
inline |
Computes of each non-zero element of the sparse vector sv.
sv | The input vector. |
The exp2() function computes for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the exp2() function:
|
inline |
Applies the floor() function to each non-zero element of the sparse vector sv.
sv | The input vector. |
This function applies the floor() function to each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the floor() function:
|
inline |
Evaluates the given custom operation on each non-zero element of the sparse vector sv.
sv | The input vector. |
op | The custom operation. |
The forEach() function evaluates the given custom operation on each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the forEach() function:
|
inline |
Returns a vector containing the imaginary parts of each single element of sv.
sv | The integral sparse input vector. |
The imag function calculates the imaginary part of each element of the sparse input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the imag function:
|
inline |
Computes the inverse cubic root of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The invcbrt() function computes the inverse cubic root of each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the invcbrt() function:
|
inline |
Computes the inverse square root of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The invsqrt() function computes the inverse square root of each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the invsqrt() function:
|
inline |
Returns whether the represented element is in default state.
proxy | The given access proxy. |
This function checks whether the element represented by the access proxy is in default state. In case it is in default state, the function returns true, otherwise it returns false.
|
inline |
Checks the given sparse vector for not-a-number elements.
sv | The sparse vector to be checked for not-a-number elements. |
This function checks the N-dimensional sparse vector for not-a-number (NaN) elements. If at least one element of the vector is not-a-number, the function returns true, otherwise it returns false.
Note that this function only works for vectors with floating point elements. The attempt to use it for a vector with a non-floating point element type results in a compile time error.
|
inline |
Returns whether the represented element is not a number.
proxy | The given access proxy. |
This function checks whether the element represented by the access proxy is not a number (NaN). In case it is not a number, the function returns true, otherwise it returns false.
|
inline |
Returns whether the represented element is 1.
proxy | The given access proxy. |
This function checks whether the element represented by the access proxy represents the numeric value 1. In case it is 1, the function returns true, otherwise it returns false.
|
inline |
Returns whether the vector element represents a real number.
proxy | The given access proxy. |
This function checks whether the element represented by the access proxy represents the a real number. In case the element is of built-in type, the function returns true. In case the element is of complex type, the function returns true if the imaginary part is equal to 0. Otherwise it returns false.
bool blaze::isUniform | ( | const SparseVector< VT, TF > & | sv | ) |
Checks if the given sparse vector is a uniform vector.
sv | The sparse vector to be checked. |
This function checks if the given sparse vector is a uniform vector. The vector is considered to be uniform if all its elements are identical. The following code example demonstrates the use of the function:
It is also possible to check if a vector expression results in a uniform vector:
However, note that this might require the complete evaluation of the expression, including the generation of a temporary vector.
|
inline |
Returns whether the represented element is 0.
proxy | The given access proxy. |
This function checks whether the element represented by the access proxy represents the numeric value 0. In case it is 0, the function returns true, otherwise it returns false.
|
inline |
Calculation of the length (magnitude) of the sparse vector .
sv | The given sparse vector. |
This function calculates the actual length (magnitude) of the sparse vector. The return type of the length() function depends on the actual element type of the vector instance:
Type | LengthType |
float | float |
integral data types and double | double |
long double | long double |
complex<T> | complex<T> |
|
inline |
Computes the natural logarithm of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The log() function computes the natural logarithm for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the log() function:
|
inline |
Computes the common logarithm of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The log10() function computes the common logarithm for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the log10() function:
|
inline |
Computes the binary logarithm of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The log2() function computes the binary logarithm for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the log2() function:
decltype(auto) blaze::map | ( | const SparseVector< VT, TF > & | sv, |
OP | op | ||
) |
Evaluates the given custom operation on each non-zero element of the sparse vector sv.
sv | The input vector. |
op | The custom operation. |
The map() function evaluates the given custom operation on each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the map() function:
const ElementType_< VT > blaze::max | ( | const SparseVector< VT, TF > & | sv | ) |
Returns the largest element of the sparse vector.
sv | The given sparse vector. |
This function returns the largest element of the given sparse vector. This function can only be used for element types that support the smaller-than relationship. In case the vector currently has a size of 0, the returned value is the default value (e.g. 0 in case of fundamental data types).
const ElementType_< VT > blaze::min | ( | const SparseVector< VT, TF > & | sv | ) |
Returns the smallest element of the sparse vector.
sv | The given sparse vector. |
This function returns the smallest element of the given sparse vector. This function can only be used for element types that support the smaller-than relationship. In case the vector currently has a size of 0, the returned value is the default value (e.g. 0 in case of fundamental data types).
|
inline |
Inequality operator for the comparison of two sparse vectors.
lhs | The left-hand side sparse vector for the comparison. |
rhs | The right-hand side sparse vector for the comparison. |
|
inline |
Multiplication operator for the scalar product (inner product) of a dense and a sparse vector ( ).
lhs | The left-hand side dense vector for the inner product. |
rhs | The right-hand side sparse vector for the inner product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the scalar product (inner product) of a dense vector and a sparse vector:
The operator returns a scalar value of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT1, TF > & | lhs, |
const DenseVector< VT2, TF > & | rhs | ||
) |
Multiplication operator for the componentwise product of a sparse vector and a dense vector ( ).
lhs | The left-hand side sparse vector for the component product. |
rhs | The right-hand side dense vector for the component product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the componentwise multiplication of a sparse vector and a dense vector:
The operator returns an expression representing a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT1, true > & | lhs, |
const DenseVector< VT2, false > & | rhs | ||
) |
Multiplication operator for the scalar product (inner product) of a sparse and a dense vector ( ).
lhs | The left-hand side sparse vector for the inner product. |
rhs | The right-hand side dense vector for the inner product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the scalar product (inner product) of a sparse vector and a dense vector:
The operator returns a scalar value of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT1, TF > & | lhs, |
const SparseVector< VT2, TF > & | rhs | ||
) |
Multiplication operator for the componentwise multiplication of two sparse vectors ( ).
lhs | The left-hand side sparse vector for the component product. |
rhs | The right-hand side sparse vector for the component product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the componentwise multiplication of two sparse vectors:
The operator returns a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT1, true > & | lhs, |
const SparseVector< VT2, false > & | rhs | ||
) |
Multiplication operator for the scalar product (inner product) of two sparse vectors ( ).
lhs | The left-hand side sparse vector for the inner product. |
rhs | The right-hand side sparse vector for the inner product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the scalar product (inner product) of two sparse vectors:
The operator returns a scalar value of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseMatrix< MT, false > & | mat, |
const SparseVector< VT, false > & | vec | ||
) |
Multiplication operator for the multiplication of a row-major sparse matrix and a sparse vector ( ).
mat | The left-hand side sparse matrix for the multiplication. |
vec | The right-hand side sparse vector for the multiplication. |
std::invalid_argument | Matrix and vector sizes do not match. |
This operator represents the multiplication between a row-major sparse matrix and a sparse vector:
The operator returns an expression representing a sparse vector of the higher-order element type of the two involved element types MT::ElementType and VT::ElementType. Both the sparse matrix type MT and the sparse vector type VT as well as the two element types MT::ElementType and VT::ElementType have to be supported by the MultTrait class template.
In case the current size of the vector vec doesn't match the current number of columns of the matrix mat, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseMatrix< MT, true > & | mat, |
const SparseVector< VT, false > & | vec | ||
) |
Multiplication operator for the multiplication of a transpose sparse matrix and a sparse vector ( ).
mat | The left-hand side sparse matrix for the multiplication. |
vec | The right-hand side sparse vector for the multiplication. |
std::invalid_argument | Matrix and vector sizes do not match. |
This operator represents the multiplication between a transpose sparse matrix and a sparse vector:
The operator returns an expression representing a sparse vector of the higher-order element type of the two involved element types MT::ElementType and VT::ElementType. Both the sparse matrix type MT and the sparse vector type VT as well as the two element types MT::ElementType and VT::ElementType have to be supported by the MultTrait class template.
In case the current size of the vector vec doesn't match the current number of columns of the matrix mat, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT, true > & | vec, |
const SparseMatrix< MT, false > & | mat | ||
) |
Multiplication operator for the multiplication of a transpose sparse vector and a row-major sparse matrix ( ).
vec | The left-hand side transpose sparse vector for the multiplication. |
mat | The right-hand side row-major sparse matrix for the multiplication. |
std::invalid_argument | Vector and matrix sizes do not match. |
This operator represents the multiplication between a transpose sparse vector and a row-major sparse matrix:
The operator returns an expression representing a transpose sparse vector of the higher-order element type of the two involved element types VT::ElementType and MT::ElementType. Both the sparse vector type VT and the sparse matrix type MT as well as the two element types VT::ElementType and MT::ElementType have to be supported by the MultTrait class template.
In case the current size of the vector vec doesn't match the current number of rows of the matrix mat, a std::invalid_argument is thrown.
decltype(auto) blaze::operator* | ( | const SparseVector< VT, true > & | vec, |
const SparseMatrix< MT, true > & | mat | ||
) |
Multiplication operator for the multiplication of a transpose sparse vector and a column-major sparse matrix ( ).
vec | The left-hand side transpose sparse vector for the multiplication. |
mat | The right-hand side column-major sparse matrix for the multiplication. |
std::invalid_argument | Vector and matrix sizes do not match. |
This operator represents the multiplication between a transpose sparse vector and a column-major sparse matrix:
The operator returns an expression representing a transpose sparse vector of the higher-order element type of the two involved element types VT::ElementType and MT::ElementType. Both the sparse vector type VT and the sparse matrix type MT as well as the two element types VT::ElementType and MT::ElementType have to be supported by the MultTrait class template.
In case the current size of the vector vec doesn't match the current number of rows of the matrix mat, a std::invalid_argument is thrown.
|
inline |
Multiplication operator for the componentwise product of a dense vector and a sparse vector ( ).
lhs | The left-hand side dense vector for the component product. |
rhs | The right-hand side sparse vector for the component product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the componentwise multiplication of a dense vector and a sparse vector:
The operator returns an expression representing a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the MultTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
|
inline |
Multiplication operator for the multiplication of a sparse vector and a scalar value ( ).
vec | The left-hand side sparse vector for the multiplication. |
scalar | The right-hand side scalar value for the multiplication. |
This operator represents the multiplication between a sparse vector and a scalar value:
The operator returns a sparse vector of the higher-order element type of the involved data types VT::ElementType and ST. Note that this operator only works for scalar values of built-in data type.
|
inline |
Multiplication operator for the multiplication of a scalar value and a sparse vector ( ).
scalar | The left-hand side scalar value for the multiplication. |
vec | The right-hand side sparse vector for the multiplication. |
This operator represents the multiplication between a a scalar value and sparse vector:
The operator returns a sparse vector of the higher-order element type of the involved data types ST and VT::ElementType. Note that this operator only works for scalar values of built-in data type.
decltype(auto) blaze::operator+ | ( | const SparseVector< VT1, TF > & | lhs, |
const SparseVector< VT2, TF > & | rhs | ||
) |
Addition operator for the addition of two sparse vectors ( ).
lhs | The left-hand side sparse vector for the vector addition. |
rhs | The right-hand side sparse vector for the vector addition. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the addition of two sparse vectors:
The operator returns a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the AddTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
|
inline |
Subtraction operator for the subtraction of two sparse vectors ( ).
lhs | The left-hand side sparse vector for the vector subtraction. |
rhs | The right-hand side sparse vector to be subtracted from the vector. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the subtraction of two sparse vectors:
The operator returns a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the SubTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
|
inline |
Unary minus operator for the negation of a sparse vector ( ).
sv | The sparse vector to be negated. |
This operator represents the negation of a sparse vector:
The operator returns an expression representing the negation of the given sparse vector.
decltype(auto) blaze::operator/ | ( | const SparseVector< VT1, TF > & | lhs, |
const DenseVector< VT2, TF > & | rhs | ||
) |
Division operator for the componentwise division of a sparse vector and a dense vector ( ).
lhs | The left-hand side sparse vector for the component product. |
rhs | The right-hand side dense vector for the component product. |
std::invalid_argument | Vector sizes do not match. |
This operator represents the component quotient of a sparse vector and a dense vector:
The operator returns an expression representing a sparse vector of the higher-order element type of the two involved vector element types VT1::ElementType and VT2::ElementType. Both vector types VT1 and VT2 as well as the two element types VT1::ElementType and VT2::ElementType have to be supported by the DivTrait class template.
In case the current sizes of the two given vectors don't match, a std::invalid_argument is thrown.
|
inline |
Division operator for the divison of a sparse vector by a scalar value ( ).
vec | The left-hand side sparse vector for the division. |
scalar | The right-hand side scalar value for the division. |
This operator represents the division of a sparse vector by a scalar value:
The operator returns a sparse vector of the higher-order element type of the involved data types VT::ElementType and ST. Note that this operator only works for scalar values of built-in data type.
|
inline |
Equality operator for the comparison of two sparse vectors.
lhs | The left-hand side sparse vector for the comparison. |
rhs | The right-hand side sparse vector for the comparison. |
|
inline |
Computes the exponential value for each non-zero element of the sparse vector sv.
sv | The input vector. |
exp | The exponent. |
The pow() function computes the exponential value for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the pow() function:
|
inline |
Returns a vector containing the real parts of each single element of sv.
sv | The integral sparse input vector. |
The real function calculates the real part of each element of the sparse input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the real function:
|
inline |
Resetting the represented element to the default initial values.
proxy | The given access proxy. |
|
inline |
Applies the round() function to each non-zero element of the sparse vector sv.
sv | The input vector. |
This function applies the round() function to each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the round() function:
decltype(auto) blaze::serial | ( | const SparseVector< VT, TF > & | sv | ) |
Forces the serial evaluation of the given sparse vector expression sv.
sv | The input vector. |
The serial function forces the serial evaluation of the given sparse vector expression sv. The function returns an expression representing this operation.
The following example demonstrates the use of the serial function:
|
inline |
Computes the sine of each non-zero element of the sparse vector sv.
sv | The input vector. |
The sin() function computes the sine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the sin() function:
|
inline |
Computes the hyperbolic sine of each non-zero element of the sparse vector sv.
sv | The input vector. |
The sinh() function computes the hyperbolic sine for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the sinh() function:
const ElementType_< VT > blaze::sqrLength | ( | const SparseVector< VT, TF > & | sv | ) |
Calculation of the square length (magnitude) of the sparse vector .
sv | The given sparse vector. |
This function calculates the actual square length (magnitude) of the sparse vector.
|
inline |
Computes the square root of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The sqrt() function computes the square root of each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the sqrt() function:
|
inlinenoexcept |
Swapping the contents of two access proxies.
a | The first access proxy to be swapped. |
b | The second access proxy to be swapped. |
|
inlinenoexcept |
Swapping the contents of an access proxy with another element.
a | The access proxy to be swapped. |
b | The other element to be swapped. |
|
inlinenoexcept |
Swapping the contents of an access proxy with another element.
a | The other element to be swapped. |
b | The access proxy to be swapped. |
|
inline |
Computes the tangent of each non-zero element of the sparse vector sv.
sv | The input vector. |
The tan() function computes the tangent for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the tan() function:
|
inline |
Computes the hyperbolic tangent of each non-zero element of the sparse vector sv.
sv | The input vector; all non-zero elements must be in the range ![]() |
The tanh() function computes the hyperbolic tangent for each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the tanh() function:
decltype(auto) blaze::trans | ( | const SparseVector< VT, TF > & | sv | ) |
Calculation of the transpose of the given sparse vector.
sv | The sparse vector to be transposed. |
This function returns an expression representing the transpose of the given sparse vector:
|
inline |
Applies the trunc() function to each non-zero element of the sparse vector sv.
sv | The input vector. |
This function applies the trunc() function to each non-zero element of the input vector sv. The function returns an expression representing this operation.
The following example demonstrates the use of the trunc() function: