35 #ifndef _BLAZE_MATH_EXPRESSIONS_SMATTDMATMULTEXPR_H_ 36 #define _BLAZE_MATH_EXPRESSIONS_SMATTDMATMULTEXPR_H_ 115 template<
typename MT1
121 class SMatTDMatMultExpr
122 :
public MatMatMultExpr< DenseMatrix< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF>, false > >
123 ,
private Computation
148 SYM = ( SF && !( HF || LF || UF ) ),
149 HERM = ( HF && !( LF || UF ) ),
150 LOW = ( LF || ( ( SF || HF ) && UF ) ),
151 UPP = ( UF || ( ( SF || HF ) && LF ) )
162 template<
typename T1,
typename T2,
typename T3 >
163 struct CanExploitSymmetry {
175 template<
typename T1,
typename T2,
typename T3 >
176 struct IsEvaluationRequired {
177 enum :
bool { value = ( evaluateLeft || evaluateRight ) &&
178 CanExploitSymmetry<T1,T2,T3>::value };
188 template<
typename T1,
typename T2,
typename T3 >
189 struct UseOptimizedKernel {
190 enum :
bool { value = useOptimizedKernels &&
244 enum :
bool { simdEnabled =
false };
247 enum :
bool { smpAssignable = !evaluateLeft && MT1::smpAssignable &&
248 !evaluateRight && MT2::smpAssignable };
298 :(
lhs_.columns() ) ) );
302 const size_t n(
end - begin );
322 if( i >=
lhs_.rows() ) {
325 if( j >=
rhs_.columns() ) {
337 inline size_t rows() const noexcept {
348 return rhs_.columns();
378 template<
typename T >
379 inline bool canAlias(
const T* alias )
const noexcept {
380 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
390 template<
typename T >
391 inline bool isAliased(
const T* alias )
const noexcept {
392 return (
lhs_.isAliased( alias ) ||
rhs_.isAliased( alias ) );
402 return rhs_.isAligned();
435 template<
typename MT
455 SMatTDMatMultExpr::selectAssignKernel( ~lhs, A, B );
474 template<
typename MT3
478 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
482 const size_t M( A.rows() );
483 const size_t N( B.columns() );
490 for( ; (j+4UL) <= N; j+=4UL ) {
491 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
500 if( element == end ) {
508 C(i,j ) = element->value() * B(element->index(),j );
509 C(i,j+1UL) = element->value() * B(element->index(),j+1UL);
510 C(i,j+2UL) = element->value() * B(element->index(),j+2UL);
511 C(i,j+3UL) = element->value() * B(element->index(),j+3UL);
513 for( ; element!=
end; ++element ) {
514 C(i,j ) += element->value() * B(element->index(),j );
515 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
516 C(i,j+2UL) += element->value() * B(element->index(),j+2UL);
517 C(i,j+3UL) += element->value() * B(element->index(),j+3UL);
522 for( ; (j+2UL) <= N; j+=2UL ) {
523 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
532 if( element == end ) {
538 C(i,j ) = element->value() * B(element->index(),j );
539 C(i,j+1UL) = element->value() * B(element->index(),j+1UL);
541 for( ; element!=
end; ++element ) {
542 C(i,j ) += element->value() * B(element->index(),j );
543 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
549 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
558 if( element == end ) {
563 C(i,j) = element->value() * B(element->index(),j);
565 for( ; element!=
end; ++element ) {
566 C(i,j) += element->value() * B(element->index(),j);
573 for(
size_t j=1UL; j<N; ++j ) {
574 for(
size_t i=0UL; i<j; ++i ) {
575 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
579 else if( LOW && !UPP ) {
580 for(
size_t j=1UL; j<N; ++j ) {
581 for(
size_t i=0UL; i<j; ++i ) {
586 else if( !LOW && UPP ) {
587 for(
size_t i=1UL; i<M; ++i ) {
588 for(
size_t j=0UL; j<i; ++j ) {
611 template<
typename MT3
615 selectAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
619 const size_t M( A.rows() );
620 const size_t N( B.columns() );
629 for( ; (j+4UL) <= N; j+=4UL ) {
630 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
639 const size_t nonzeros( end - element );
640 const size_t kpos( nonzeros &
size_t(-4) );
643 for(
size_t k=0UL; k<kpos; k+=4UL )
645 const size_t i1( element->index() );
646 const ET1 v1( element->value() );
648 const size_t i2( element->index() );
649 const ET1 v2( element->value() );
651 const size_t i3( element->index() );
652 const ET1 v3( element->value() );
654 const size_t i4( element->index() );
655 const ET1 v4( element->value() );
660 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
661 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
662 C(i,j+2UL) += v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
663 C(i,j+3UL) += v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
666 for( ; element!=
end; ++element )
668 const size_t i1( element->index() );
669 const ET1 v1( element->value() );
671 C(i,j ) += v1 * B(i1,j );
672 C(i,j+1UL) += v1 * B(i1,j+1UL);
673 C(i,j+2UL) += v1 * B(i1,j+2UL);
674 C(i,j+3UL) += v1 * B(i1,j+3UL);
679 for( ; (j+2UL) <= N; j+=2UL ) {
680 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
689 const size_t nonzeros( end - element );
690 const size_t kpos( nonzeros &
size_t(-4) );
693 for(
size_t k=0UL; k<kpos; k+=4UL )
695 const size_t i1( element->index() );
696 const ET1 v1( element->value() );
698 const size_t i2( element->index() );
699 const ET1 v2( element->value() );
701 const size_t i3( element->index() );
702 const ET1 v3( element->value() );
704 const size_t i4( element->index() );
705 const ET1 v4( element->value() );
710 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
711 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
714 for( ; element!=
end; ++element )
716 const size_t i1( element->index() );
717 const ET1 v1( element->value() );
719 C(i,j ) += v1 * B(i1,j );
720 C(i,j+1UL) += v1 * B(i1,j+1UL);
726 for(
size_t i=( SYM || HERM || LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
735 const size_t nonzeros( end - element );
736 const size_t kpos( nonzeros &
size_t(-4) );
739 for(
size_t k=0UL; k<kpos; k+=4UL )
741 const size_t i1( element->index() );
742 const ET1 v1( element->value() );
744 const size_t i2( element->index() );
745 const ET1 v2( element->value() );
747 const size_t i3( element->index() );
748 const ET1 v3( element->value() );
750 const size_t i4( element->index() );
751 const ET1 v4( element->value() );
756 C(i,j) += v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
759 for( ; element!=
end; ++element )
761 const size_t i1( element->index() );
762 const ET1 v1( element->value() );
764 C(i,j) += v1 * B(i1,j);
771 for(
size_t j=1UL; j<N; ++j ) {
772 for(
size_t i=0UL; i<j; ++i ) {
773 C(i,j) = HERM ?
conj( C(j,i) ) : C(j,i);
794 template<
typename MT
813 const ForwardFunctor fwd;
815 const TmpType tmp(
serial( rhs ) );
816 assign( ~lhs, fwd( tmp ) );
836 template<
typename MT
846 const ForwardFunctor fwd;
848 assign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
866 template<
typename MT
886 SMatTDMatMultExpr::selectAddAssignKernel( ~lhs, A, B );
905 template<
typename MT3
909 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
913 const size_t M( A.rows() );
914 const size_t N( B.columns() );
921 for( ; (j+4UL) <= N; j+=4UL ) {
922 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
931 for( ; element!=
end; ++element ) {
932 C(i,j ) += element->value() * B(element->index(),j );
933 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
934 C(i,j+2UL) += element->value() * B(element->index(),j+2UL);
935 C(i,j+3UL) += element->value() * B(element->index(),j+3UL);
940 for( ; (j+2UL) <= N; j+=2UL ) {
941 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
950 for( ; element!=
end; ++element ) {
951 C(i,j ) += element->value() * B(element->index(),j );
952 C(i,j+1UL) += element->value() * B(element->index(),j+1UL);
958 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
967 for( ; element!=
end; ++element ) {
968 C(i,j) += element->value() * B(element->index(),j);
991 template<
typename MT3
995 selectAddAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
999 const size_t M( A.rows() );
1000 const size_t N( B.columns() );
1007 for( ; (j+4UL) <= N; j+=4UL ) {
1008 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1017 const size_t nonzeros( end - element );
1018 const size_t kpos( nonzeros &
size_t(-4) );
1021 for(
size_t k=0UL; k<kpos; k+=4UL )
1023 const size_t i1( element->index() );
1024 const ET1 v1( element->value() );
1026 const size_t i2( element->index() );
1027 const ET1 v2( element->value() );
1029 const size_t i3( element->index() );
1030 const ET1 v3( element->value() );
1032 const size_t i4( element->index() );
1033 const ET1 v4( element->value() );
1038 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1039 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1040 C(i,j+2UL) += v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
1041 C(i,j+3UL) += v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
1044 for( ; element!=
end; ++element )
1046 const size_t i1( element->index() );
1047 const ET1 v1( element->value() );
1049 C(i,j ) += v1 * B(i1,j );
1050 C(i,j+1UL) += v1 * B(i1,j+1UL);
1051 C(i,j+2UL) += v1 * B(i1,j+2UL);
1052 C(i,j+3UL) += v1 * B(i1,j+3UL);
1057 for( ; (j+2UL) <= N; j+=2UL ) {
1058 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1067 const size_t nonzeros( end - element );
1068 const size_t kpos( nonzeros &
size_t(-4) );
1071 for(
size_t k=0UL; k<kpos; k+=4UL )
1073 const size_t i1( element->index() );
1074 const ET1 v1( element->value() );
1076 const size_t i2( element->index() );
1077 const ET1 v2( element->value() );
1079 const size_t i3( element->index() );
1080 const ET1 v3( element->value() );
1082 const size_t i4( element->index() );
1083 const ET1 v4( element->value() );
1088 C(i,j ) += v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1089 C(i,j+1UL) += v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1092 for( ; element!=
end; ++element )
1094 const size_t i1( element->index() );
1095 const ET1 v1( element->value() );
1097 C(i,j ) += v1 * B(i1,j );
1098 C(i,j+1UL) += v1 * B(i1,j+1UL);
1104 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1113 const size_t nonzeros( end - element );
1114 const size_t kpos( nonzeros &
size_t(-4) );
1117 for(
size_t k=0UL; k<kpos; k+=4UL )
1119 const size_t i1( element->index() );
1120 const ET1 v1( element->value() );
1122 const size_t i2( element->index() );
1123 const ET1 v2( element->value() );
1125 const size_t i3( element->index() );
1126 const ET1 v3( element->value() );
1128 const size_t i4( element->index() );
1129 const ET1 v4( element->value() );
1134 C(i,j) += v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
1137 for( ; element!=
end; ++element )
1139 const size_t i1( element->index() );
1140 const ET1 v1( element->value() );
1142 C(i,j) += v1 * B(i1,j);
1166 template<
typename MT
1176 const ForwardFunctor fwd;
1178 addAssign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
1200 template<
typename MT
1220 SMatTDMatMultExpr::selectSubAssignKernel( ~lhs, A, B );
1239 template<
typename MT3
1243 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1247 const size_t M( A.rows() );
1248 const size_t N( B.columns() );
1255 for( ; (j+4UL) <= N; j+=4UL ) {
1256 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1265 for( ; element!=
end; ++element ) {
1266 C(i,j ) -= element->value() * B(element->index(),j );
1267 C(i,j+1UL) -= element->value() * B(element->index(),j+1UL);
1268 C(i,j+2UL) -= element->value() * B(element->index(),j+2UL);
1269 C(i,j+3UL) -= element->value() * B(element->index(),j+3UL);
1274 for( ; (j+2UL) <= N; j+=2UL ) {
1275 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1284 for( ; element!=
end; ++element ) {
1285 C(i,j ) -= element->value() * B(element->index(),j );
1286 C(i,j+1UL) -= element->value() * B(element->index(),j+1UL);
1292 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1301 for( ; element!=
end; ++element ) {
1302 C(i,j) -= element->value() * B(element->index(),j);
1325 template<
typename MT3
1329 selectSubAssignKernel( MT3& C,
const MT4& A,
const MT5& B )
1333 const size_t M( A.rows() );
1334 const size_t N( B.columns() );
1341 for( ; (j+4UL) <= N; j+=4UL ) {
1342 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+4UL : M ); ++i )
1351 const size_t nonzeros( end - element );
1352 const size_t kpos( nonzeros &
size_t(-4) );
1355 for(
size_t k=0UL; k<kpos; k+=4UL )
1357 const size_t i1( element->index() );
1358 const ET1 v1( element->value() );
1360 const size_t i2( element->index() );
1361 const ET1 v2( element->value() );
1363 const size_t i3( element->index() );
1364 const ET1 v3( element->value() );
1366 const size_t i4( element->index() );
1367 const ET1 v4( element->value() );
1372 C(i,j ) -= v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1373 C(i,j+1UL) -= v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1374 C(i,j+2UL) -= v1 * B(i1,j+2UL) + v2 * B(i2,j+2UL) + v3 * B(i3,j+2UL) + v4 * B(i4,j+2UL);
1375 C(i,j+3UL) -= v1 * B(i1,j+3UL) + v2 * B(i2,j+3UL) + v3 * B(i3,j+3UL) + v4 * B(i4,j+3UL);
1378 for( ; element!=
end; ++element )
1380 const size_t i1( element->index() );
1381 const ET1 v1( element->value() );
1383 C(i,j ) -= v1 * B(i1,j );
1384 C(i,j+1UL) -= v1 * B(i1,j+1UL);
1385 C(i,j+2UL) -= v1 * B(i1,j+2UL);
1386 C(i,j+3UL) -= v1 * B(i1,j+3UL);
1391 for( ; (j+2UL) <= N; j+=2UL ) {
1392 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+2UL : M ); ++i )
1401 const size_t nonzeros( end - element );
1402 const size_t kpos( nonzeros &
size_t(-4) );
1405 for(
size_t k=0UL; k<kpos; k+=4UL )
1407 const size_t i1( element->index() );
1408 const ET1 v1( element->value() );
1410 const size_t i2( element->index() );
1411 const ET1 v2( element->value() );
1413 const size_t i3( element->index() );
1414 const ET1 v3( element->value() );
1416 const size_t i4( element->index() );
1417 const ET1 v4( element->value() );
1422 C(i,j ) -= v1 * B(i1,j ) + v2 * B(i2,j ) + v3 * B(i3,j ) + v4 * B(i4,j );
1423 C(i,j+1UL) -= v1 * B(i1,j+1UL) + v2 * B(i2,j+1UL) + v3 * B(i3,j+1UL) + v4 * B(i4,j+1UL);
1426 for( ; element!=
end; ++element )
1428 const size_t i1( element->index() );
1429 const ET1 v1( element->value() );
1431 C(i,j ) -= v1 * B(i1,j );
1432 C(i,j+1UL) -= v1 * B(i1,j+1UL);
1438 for(
size_t i=( LOW ? j : 0UL ); i<( UPP ? j+1UL : M ); ++i )
1447 const size_t nonzeros( end - element );
1448 const size_t kpos( nonzeros &
size_t(-4) );
1451 for(
size_t k=0UL; k<kpos; k+=4UL )
1453 const size_t i1( element->index() );
1454 const ET1 v1( element->value() );
1456 const size_t i2( element->index() );
1457 const ET1 v2( element->value() );
1459 const size_t i3( element->index() );
1460 const ET1 v3( element->value() );
1462 const size_t i4( element->index() );
1463 const ET1 v4( element->value() );
1468 C(i,j) -= v1 * B(i1,j) + v2 * B(i2,j) + v3 * B(i3,j) + v4 * B(i4,j);
1471 for( ; element!=
end; ++element )
1473 const size_t i1( element->index() );
1474 const ET1 v1( element->value() );
1476 C(i,j) -= v1 * B(i1,j);
1500 template<
typename MT
1510 const ForwardFunctor fwd;
1512 subAssign( ~lhs, fwd( rhs.lhs_ *
trans( rhs.rhs_ ) ) );
1534 template<
typename MT
1548 schurAssign( ~lhs, tmp );
1580 template<
typename MT
1620 template<
typename MT
1639 const ForwardFunctor fwd;
1641 const TmpType tmp( rhs );
1662 template<
typename MT
1672 const ForwardFunctor fwd;
1695 template<
typename MT
1735 template<
typename MT
1745 const ForwardFunctor fwd;
1772 template<
typename MT
1812 template<
typename MT
1822 const ForwardFunctor fwd;
1846 template<
typename MT
1929 template<
typename MT1
1931 inline decltype(
auto)
1980 template<
typename MT1
1995 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2027 template<
typename MT1
2042 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2074 template<
typename MT1
2089 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2121 template<
typename MT1
2136 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2168 template<
typename MT1
2183 return ReturnType( dm.leftOperand(), dm.rightOperand() );
2199 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2200 struct Size< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF>, 0UL >
2201 :
public Size<MT1,0UL>
2204 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2205 struct Size< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF>, 1UL >
2206 :
public Size<MT2,1UL>
2222 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2223 struct IsAligned< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2240 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2241 struct IsSymmetric< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2242 :
public Or< Bool<SF>
2244 , IsBuiltin< ElementType_< SMatTDMatMultExpr<MT1,MT2,false,true,false,false> > > >
2245 , And< Bool<LF>, Bool<UF> > >
2261 template<
typename MT1,
typename MT2,
bool SF,
bool LF,
bool UF >
2262 struct IsHermitian< SMatTDMatMultExpr<MT1,MT2,SF,true,LF,UF> >
2279 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2280 struct IsLower< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2281 :
public Or< Bool<LF>
2282 , And< IsLower<MT1>, IsLower<MT2> >
2283 , And< Or< Bool<SF>, Bool<HF> >
2284 , IsUpper<MT1>, IsUpper<MT2> > >
2300 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2301 struct IsUniLower< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2302 :
public Or< And< IsUniLower<MT1>, IsUniLower<MT2> >
2303 , And< Or< Bool<SF>, Bool<HF> >
2304 , IsUniUpper<MT1>, IsUniUpper<MT2> > >
2320 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2322 :
public Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2323 , And< IsStrictlyLower<MT2>, IsLower<MT1> >
2324 , And< Or< Bool<SF>, Bool<HF> >
2325 , Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2326 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> > > > >
2342 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2343 struct IsUpper< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2344 :
public Or< Bool<UF>
2345 , And< IsUpper<MT1>, IsUpper<MT2> >
2346 , And< Or< Bool<SF>, Bool<HF> >
2347 , IsLower<MT1>, IsLower<MT2> > >
2363 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2364 struct IsUniUpper< SMatTDMatMultExpr<MT1,MT2,SF,HF,LF,UF> >
2365 :
public Or< And< IsUniUpper<MT1>, IsUniUpper<MT2> >
2366 , And< Or< Bool<SF>, Bool<HF> >
2367 , IsUniLower<MT1>, IsUniLower<MT2> > >
2383 template<
typename MT1,
typename MT2,
bool SF,
bool HF,
bool LF,
bool UF >
2385 :
public Or< And< IsStrictlyUpper<MT1>, IsUpper<MT2> >
2386 , And< IsStrictlyUpper<MT2>, IsUpper<MT1> >
2387 , And< Or< Bool<SF>, Bool<HF> >
2388 , Or< And< IsStrictlyLower<MT1>, IsLower<MT2> >
2389 , And< IsStrictlyLower<MT2>, IsLower<MT1> > > > >
decltype(auto) subvector(Vector< VT, TF > &, RSAs...)
Creating a view on a specific subvector of the given vector.
Definition: Subvector.h:329
#define BLAZE_THROW_INVALID_ARGUMENT(MESSAGE)
Macro for the emission of a std::invalid_argument exception.This macro encapsulates the default way o...
Definition: Exception.h:235
Header file for auxiliary alias declarations.
decltype(auto) column(Matrix< MT, SO > &matrix, RCAs... args)
Creating a view on a specific column of the given matrix.
Definition: Column.h:131
Headerfile for the generic min algorithm.
Header file for the blaze::checked and blaze::unchecked instances.
Compile time check whether the given type is a computational expression template.This type trait clas...
Definition: IsComputation.h:71
IfTrue_< evaluateLeft, const RT1, CT1 > LT
Type for the assignment of the left-hand side sparse matrix operand.
Definition: SMatTDMatMultExpr.h:236
decltype(auto) decldiag(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as diagonal.
Definition: DMatDeclDiagExpr.h:996
Header file for the IsUniUpper type trait.
EnableIf_< IsDenseMatrix< MT1 > > smpSchurAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP Schur product assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:196
Compile time check for triangular matrix types.This type trait tests whether or not the given templat...
Definition: IsTriangular.h:86
Header file for basic type definitions.
Flag for upper matrices.
Definition: SMatTDMatMultExpr.h:151
ResultType_< MT2 > RT2
Result type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:128
const ElementType ReturnType
Return type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:226
RightOperand rightOperand() const noexcept
Returns the right-hand side transpose dense matrix operand.
Definition: SMatTDMatMultExpr.h:367
ResultType_< MT1 > RT1
Result type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:127
Flag for Hermitian matrices.
Definition: SMatTDMatMultExpr.h:149
EnableIf_< IsDenseMatrix< MT1 > > smpSubAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP subtraction assignment of a matrix to dense matrix.
Definition: DenseMatrix.h:164
Header file for the serial shim.
ElementType_< ResultType > ElementType
Resulting element type.
Definition: SMatTDMatMultExpr.h:225
Header file for the IsDiagonal type trait.
Generic wrapper for a compile time constant integral value.The IntegralConstant class template repres...
Definition: IntegralConstant.h:71
#define BLAZE_CONSTRAINT_MUST_BE_DENSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a dense, N-dimensional matrix type...
Definition: DenseMatrix.h:61
Header file for the DeclUpp functor.
BLAZE_ALWAYS_INLINE MT::Iterator begin(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator to the first element of row/column i.
Definition: Matrix.h:364
Flag for lower matrices.
Definition: SMatTDMatMultExpr.h:150
void reset(const DiagonalProxy< MT > &proxy)
Resetting the represented element to the default initial values.
Definition: DiagonalProxy.h:588
size_t columns() const noexcept
Returns the current number of columns of the matrix.
Definition: SMatTDMatMultExpr.h:347
constexpr Unchecked unchecked
Global Unchecked instance.The blaze::unchecked instance is an optional token for the creation of view...
Definition: Check.h:138
typename DisableIf< Condition, T >::Type DisableIf_
Auxiliary type for the DisableIf class template.The DisableIf_ alias declaration provides a convenien...
Definition: DisableIf.h:224
Header file for the And class template.
const ElementType_< MT > min(const DenseMatrix< MT, SO > &dm)
Returns the smallest element of the dense matrix.
Definition: DenseMatrix.h:1903
Compile time check for lower triangular matrices.This type trait tests whether or not the given templ...
Definition: IsLower.h:87
decltype(auto) declupp(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as upper.
Definition: DMatDeclUppExpr.h:1026
bool isAliased(const T *alias) const noexcept
Returns whether the expression is aliased with the given address alias.
Definition: SMatTDMatMultExpr.h:391
TransposeType_< ResultType > TransposeType
Transpose type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:224
typename MultTrait< T1, T2 >::Type MultTrait_
Auxiliary alias declaration for the MultTrait class template.The MultTrait_ alias declaration provide...
Definition: MultTrait.h:291
Header file for the Computation base class.
Header file for the MatMatMultExpr base class.
Compile time check for upper triangular matrices.This type trait tests whether or not the given templ...
Definition: IsUpper.h:87
Constraints on the storage order of matrix types.
Header file for the RequiresEvaluation type trait.
System settings for performance optimizations.
Header file for the IsUniLower type trait.
typename T::ResultType ResultType_
Alias declaration for nested ResultType type definitions.The ResultType_ alias declaration provides a...
Definition: Aliases.h:343
const ElementType_< MT > max(const DenseMatrix< MT, SO > &dm)
Returns the largest element of the dense matrix.
Definition: DenseMatrix.h:1950
EnableIf_< IsDenseMatrix< MT1 > > smpAddAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP addition assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:133
CompositeType_< MT1 > CT1
Composite type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:131
size_t rows() const noexcept
Returns the current number of rows of the matrix.
Definition: SMatTDMatMultExpr.h:337
Base class for dense matrices.The DenseMatrix class is a base class for all dense matrix classes...
Definition: DenseMatrix.h:80
Base class for sparse matrices.The SparseMatrix class is a base class for all sparse matrix classes...
Definition: Forward.h:129
CompositeType_< MT2 > CT2
Composite type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:132
typename IfTrue< Condition, T1, T2 >::Type IfTrue_
Auxiliary alias declaration for the IfTrue class template.The IfTrue_ alias declaration provides a co...
Definition: If.h:109
Compile time check for the alignment of data types.This type trait tests whether the given data type ...
Definition: IsAligned.h:87
Constraint on the data type.
Constraint on the data type.
Compile time check to query the requirement to evaluate an expression.Via this type trait it is possi...
Definition: RequiresEvaluation.h:71
typename T::CompositeType CompositeType_
Alias declaration for nested CompositeType type definitions.The CompositeType_ alias declaration prov...
Definition: Aliases.h:83
bool canAlias(const T *alias) const noexcept
Returns whether the expression can alias with the given address alias.
Definition: SMatTDMatMultExpr.h:379
Compile time check for upper unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniUpper.h:86
Headerfile for the generic max algorithm.
Header file for the DisableIf class template.
Header file for the multiplication trait.
Header file for the IsStrictlyUpper type trait.
Header file for the IsSymmetric type trait.
Namespace of the Blaze C++ math library.
Definition: Blaze.h:58
Header file for the DeclLow functor.
Header file for the If class template.
#define BLAZE_CONSTRAINT_MUST_BE_COLUMN_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a column-major dense or sparse matri...
Definition: ColumnMajorMatrix.h:61
bool canSMPAssign() const noexcept
Returns whether the expression can be used in SMP assignments.
Definition: SMatTDMatMultExpr.h:411
OppositeType_< ResultType > OppositeType
Result type with opposite storage order for expression template evaluations.
Definition: SMatTDMatMultExpr.h:223
bool isAligned() const noexcept
Returns whether the operands of the expression are properly aligned in memory.
Definition: SMatTDMatMultExpr.h:401
Generic wrapper for the decllow() function.
Definition: DeclLow.h:58
EnableIf_< IsDenseMatrix< MT1 > > smpAssign(Matrix< MT1, SO1 > &lhs, const Matrix< MT2, SO2 > &rhs)
Default implementation of the SMP assignment of a matrix to a dense matrix.
Definition: DenseMatrix.h:102
Header file for the Or class template.
#define BLAZE_THROW_OUT_OF_RANGE(MESSAGE)
Macro for the emission of a std::out_of_range exception.This macro encapsulates the default way of Bl...
Definition: Exception.h:331
Header file for the DenseMatrix base class.
const Element * ConstIterator
Iterator over constant elements.
Definition: CompressedMatrix.h:3085
typename T::ElementType ElementType_
Alias declaration for nested ElementType type definitions.The ElementType_ alias declaration provides...
Definition: Aliases.h:163
decltype(auto) decllow(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as lower.
Definition: DMatDeclLowExpr.h:1026
Header file for the IsLower type trait.
LeftOperand lhs_
Left-hand side sparse matrix of the multiplication expression.
Definition: SMatTDMatMultExpr.h:418
Header file for the IsAligned type trait.
Compile time check for diagonal matrices.This type trait tests whether or not the given template para...
Definition: IsDiagonal.h:89
If_< IsExpression< MT2 >, const MT2, const MT2 &> RightOperand
Composite type of the right-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:233
Expression object for sparse matrix-transpose dense matrix multiplications.The SMatTDMatMultExpr clas...
Definition: Forward.h:121
const ResultType CompositeType
Data type for composite expression templates.
Definition: SMatTDMatMultExpr.h:227
Generic wrapper for the null function.
Definition: Noop.h:59
Header file for the IsTriangular type trait.
Constraints on the storage order of matrix types.
Compile time check for symmetric matrices.This type trait tests whether or not the given template par...
Definition: IsSymmetric.h:85
Header file for the exception macros of the math module.
Compile time check for strictly upper triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyUpper.h:86
BLAZE_ALWAYS_INLINE MT::Iterator end(Matrix< MT, SO > &matrix, size_t i)
Returns an iterator just past the last element of row/column i.
Definition: Matrix.h:430
Header file for the DeclDiag functor.
ElementType_< RT2 > ET2
Element type of the right-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:130
Constraint on the data type.
Header file for all forward declarations for expression class templates.
Header file for the EnableIf class template.
Header file for the IsStrictlyLower type trait.
#define BLAZE_CONSTRAINT_MUST_FORM_VALID_MATMATMULTEXPR(T1, T2)
Constraint on the data type.In case the given data types T1 and T2 do not form a valid matrix/matrix ...
Definition: MatMatMultExpr.h:107
Compile time check for lower unitriangular matrices.This type trait tests whether or not the given te...
Definition: IsUniLower.h:86
Header file for the conjugate shim.
Compile time check for resizable data types.This type trait tests whether the given data type is a re...
Definition: IsResizable.h:75
#define BLAZE_CONSTRAINT_MUST_BE_ROW_MAJOR_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a row-major dense or sparse matrix t...
Definition: RowMajorMatrix.h:61
Header file for run time assertion macros.
ElementType_< RT1 > ET1
Element type of the left-hand side dense matrix expression.
Definition: SMatTDMatMultExpr.h:129
typename If< T1, T2, T3 >::Type If_
Auxiliary alias declaration for the If class template.The If_ alias declaration provides a convenient...
Definition: If.h:154
decltype(auto) row(Matrix< MT, SO > &, RRAs...)
Creating a view on a specific row of the given matrix.
Definition: Row.h:131
Header file for the reset shim.
#define BLAZE_FUNCTION_TRACE
Function trace macro.This macro can be used to reliably trace function calls. In case function tracin...
Definition: FunctionTrace.h:94
decltype(auto) declsym(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as symmetric.
Definition: DMatDeclSymExpr.h:1028
Compile time check for Hermitian matrices.This type trait tests whether or not the given template par...
Definition: IsHermitian.h:85
Base class for matrices.The Matrix class is a base class for all dense and sparse matrix classes with...
Definition: Forward.h:101
Constraints on the storage order of matrix types.
Generic wrapper for the declherm() function.
Definition: DeclHerm.h:58
decltype(auto) serial(const DenseMatrix< MT, SO > &dm)
Forces the serial evaluation of the given dense matrix expression dm.
Definition: DMatSerialExpr.h:816
SMatTDMatMultExpr(const MT1 &lhs, const MT2 &rhs) noexcept
Constructor for the SMatTDMatMultExpr class.
Definition: SMatTDMatMultExpr.h:257
Header file for the Noop functor.
#define BLAZE_CONSTRAINT_MUST_NOT_REQUIRE_EVALUATION(T)
Constraint on the data type.In case the given data type T requires an intermediate evaluation within ...
Definition: RequiresEvaluation.h:81
Header file for the RemoveReference type trait.
typename EnableIf< Condition, T >::Type EnableIf_
Auxiliary alias declaration for the EnableIf class template.The EnableIf_ alias declaration provides ...
Definition: EnableIf.h:224
typename T::OppositeType OppositeType_
Alias declaration for nested OppositeType type definitions.The OppositeType_ alias declaration provid...
Definition: Aliases.h:263
#define BLAZE_CONSTRAINT_MATRICES_MUST_HAVE_SAME_STORAGE_ORDER(T1, T2)
Constraint on the data type.In case either of the two given data types T1 or T2 is not a matrix type ...
Definition: StorageOrder.h:84
Flag for symmetric matrices.
Definition: SMatTDMatMultExpr.h:148
Generic wrapper for the declupp() function.
Definition: DeclUpp.h:58
Compile time check for strictly lower triangular matrices.This type trait tests whether or not the gi...
Definition: IsStrictlyLower.h:86
const Type & ReturnType
Return type for expression template evaluations.
Definition: CompressedMatrix.h:3080
typename T::ConstIterator ConstIterator_
Alias declaration for nested ConstIterator type definitions.The ConstIterator_ alias declaration prov...
Definition: Aliases.h:103
decltype(auto) trans(const DenseMatrix< MT, SO > &dm)
Calculation of the transpose of the given dense matrix.
Definition: DMatTransExpr.h:789
LeftOperand leftOperand() const noexcept
Returns the left-hand side sparse matrix operand.
Definition: SMatTDMatMultExpr.h:357
decltype(auto) declherm(const DenseMatrix< MT, SO > &dm)
Declares the given dense matrix expression dm as Hermitian.
Definition: DMatDeclHermExpr.h:1028
Header file for the IsComputation type trait class.
RightOperand rhs_
Right-hand side dense matrix of the multiplication expression.
Definition: SMatTDMatMultExpr.h:419
Header file for the IsBuiltin type trait.
Compile time logical 'or' evaluation.The Or alias declaration performs at compile time a logical 'or'...
Definition: Or.h:76
ReturnType operator()(size_t i, size_t j) const
2D-access to the matrix elements.
Definition: SMatTDMatMultExpr.h:272
Compile time evaluation of the size of vectors and matrices.The Size type trait evaluates the size of...
Definition: Size.h:80
If_< IsExpression< MT1 >, const MT1, const MT1 &> LeftOperand
Composite type of the left-hand side sparse matrix expression.
Definition: SMatTDMatMultExpr.h:230
Generic wrapper for the decldiag() function.
Definition: DeclDiag.h:58
Header file for the DeclHerm functor.
IfTrue_< evaluateRight, const RT2, CT2 > RT
Type for the assignment of the right-hand side dense matrix operand.
Definition: SMatTDMatMultExpr.h:239
typename T::TransposeType TransposeType_
Alias declaration for nested TransposeType type definitions.The TransposeType_ alias declaration prov...
Definition: Aliases.h:423
Header file for the IsUpper type trait.
decltype(auto) conj(const DenseMatrix< MT, SO > &dm)
Returns a matrix containing the complex conjugate of each single element of dm.
Definition: DMatMapExpr.h:1321
Constraint on the data type.
Generic wrapper for the declsym() function.
Definition: DeclSym.h:58
BLAZE_ALWAYS_INLINE bool isSquare(const Matrix< MT, SO > &matrix) noexcept
Checks if the given matrix is a square matrix.
Definition: Matrix.h:908
Header file for the IsResizable type trait.
MultTrait_< RT1, RT2 > ResultType
Result type for expression template evaluations.
Definition: SMatTDMatMultExpr.h:222
Header file for the Size type trait.
Header file for the thresholds for matrix/vector and matrix/matrix multiplications.
#define BLAZE_INTERNAL_ASSERT(expr, msg)
Run time assertion macro for internal checks.In case of an invalid run time expression, the program execution is terminated. The BLAZE_INTERNAL_ASSERT macro can be disabled by setting the BLAZE_USER_ASSERTION flag to zero or by defining NDEBUG during the compilation.
Definition: Assert.h:101
Header file for the Bool class template.
Header file for the DeclSym functor.
#define BLAZE_CONSTRAINT_MUST_BE_SPARSE_MATRIX_TYPE(T)
Constraint on the data type.In case the given data type T is not a sparse, N-dimensional matrix type...
Definition: SparseMatrix.h:61
Header file for the TrueType type/value trait base class.
Header file for the IsExpression type trait class.
Header file for the function trace functionality.
ReturnType at(size_t i, size_t j) const
Checked access to the matrix elements.
Definition: SMatTDMatMultExpr.h:321