text / Text / Fusion.hs

The default branch has multiple heads

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
{-# OPTIONS_GHC -fglasgow-exts #-}
{-# LANGUAGE BangPatterns #-}

module Text.Fusion where

import Prelude hiding (map, tail, head, foldr, filter,concat)

import Data.Char
import Control.Exception(assert)
import Control.Monad(liftM2)
import Control.Monad.ST(runST,ST(..))
import Data.Array.Base
import Data.Bits
import qualified Data.ByteString as B
import Data.ByteString.Internal(ByteString(..),mallocByteString,memcpy)
import qualified Data.List as L
import Data.Word(Word8(..),Word16(..),Word32(..))
import Foreign.ForeignPtr(withForeignPtr,ForeignPtr(..))
import Foreign.Storable(pokeByteOff)
import GHC.Exts
import System.IO.Unsafe(unsafePerformIO)

import Text.Internal(Text(..),empty)
import Text.UnsafeChar(unsafeChr,unsafeChr8,unsafeChr32)
import qualified Text.Utf8 as U8
import qualified Text.Utf16 as U16
import qualified Text.Utf32 as U32

default(Int)

infixl 2 :!:
data PairS a b = !a :!: !b

data Switch = S1 | S2

data EitherS a b = LeftS !a | RightS !b

data Stream a = forall s. Stream (s -> Step s a) !s {-# UNPACK #-}!Int

data Step s a = Done
              | Skip !s
              | Yield !a !s

data Encoding = ASCII | Utf8 | Utf16BE | Utf16LE | Utf32BE | Utf32LE

-- | /O(n)/ Convert a Text into a Stream Char.
stream :: Text -> Stream Char
stream (Text arr off len) = Stream next off len
    where
      end = off+len
      {-# INLINE next #-}
      next !i
          | i >= end = Done
          | n >= 0xD800 && n <= 0xDBFF = Yield (U16.chr2 n n2) (i + 2)
          | otherwise = Yield (unsafeChr n) (i + 1)
          where
            n  = unsafeAt arr i
            n2 = unsafeAt arr (i + 1)
{-# INLINE [0] stream #-}

-- | /O(n)/ Convert a Stream Char into a Text.
unstream :: Stream Char -> Text
unstream (Stream next0 s0 len) = x `seq` Text (fst x) 0 (snd x)
    where
      x :: ((UArray Int Word16),Int)
      x = runST ((unsafeNewArray_ (0,len+1) :: ST s (STUArray s Int Word16))
                 >>= (\arr -> loop arr 0 (len+1) s0))
      loop arr !i !max !s
          | i + 1 > max = do arr' <- unsafeNewArray_ (0,max*2)
                             case next0 s of
                               Done -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
                               _    -> copy arr arr' >> loop arr' i (max*2) s
          | otherwise = case next0 s of
               Done       -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
               Skip s'    -> loop arr i max s'
               Yield x s'
                   | n < 0x10000 -> do
                        unsafeWrite arr i (fromIntegral n :: Word16)
                        loop arr (i+1) max s'
                   | otherwise   -> do
                        unsafeWrite arr i       l
                        unsafeWrite arr (i + 1) r
                        loop arr (i+2) max s'
                   where
                     n :: Int
                     n = ord x
                     m :: Int
                     m = n - 0x10000
                     l :: Word16
                     l = fromIntegral $ (shiftR m 10) + (0xD800 :: Int)
                     r :: Word16
                     r = fromIntegral $ (m .&. (0x3FF :: Int)) + (0xDC00 :: Int)
{-# INLINE [0] unstream #-}


copy src dest = (do
                   (_,max) <- getBounds src
                   copy_loop 0 max)
    where
      copy_loop !i !max
          | i > max    = return ()
          | otherwise = do v <- unsafeRead src i
                           unsafeWrite dest i v
                           copy_loop (i+1) max

-- | /O(n)/ Determines if two streams are equal.
eq :: Ord a => Stream a -> Stream a -> Bool
eq (Stream next1 s1 _) (Stream next2 s2 _) = compare (next1 s1) (next2 s2)
    where
      compare Done Done = True
      compare Done _    = False
      compare _    Done = False
      compare (Skip s1')     (Skip s2')     = compare (next1 s1') (next2 s2')
      compare (Skip s1')     x2             = compare (next1 s1') x2
      compare x1             (Skip s2')     = compare x1          (next2 s2')
      compare (Yield x1 s1') (Yield x2 s2') = x1 == x2 &&
                                              compare (next1 s1') (next2 s2')
{-# SPECIALISE eq :: Stream Char -> Stream Char -> Bool #-}


-- | /O(n) Convert a ByteString into a Stream Char, using the specified encoding standard.
stream_bs :: Encoding -> ByteString -> Stream Char
stream_bs ASCII bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l    = Done
          | otherwise = Yield (unsafeChr8 x1) (i+1)
          where
            l  = B.length bs
            x1 = B.index bs i
stream_bs Utf8 bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l = Done
          | U8.validate1 x1 = Yield (unsafeChr8 x1) (i+1)
          | i+1 < l && U8.validate2 x1 x2 = Yield (U8.chr2 x1 x2) (i+2)
          | i+2 < l && U8.validate3 x1 x2 x3 = Yield (U8.chr3 x1 x2 x3) (i+3)
          | i+3 < l && U8.validate4 x1 x2 x3 x4 = Yield (U8.chr4 x1 x2 x3 x4) (i+4)
          | otherwise = error "bsStream: bad UTF-8 stream"
          where
            l  = B.length bs
            x1 = index i
            x2 = index (i + 1)
            x3 = index (i + 2)
            x4 = index (i + 3)
            index = B.index bs
stream_bs Utf16LE bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l                         = Done
          | i+1 < l && U16.validate1 x1    = Yield (unsafeChr x1) (i+2)
          | i+3 < l && U16.validate2 x1 x2 = Yield (U16.chr2 x1 x2) (i+4)
          | otherwise = error $ "bsStream: bad UTF-16LE stream"
          where
            x1    :: Word16
            x1    = (shiftL (index (i + 1)) 8) + (index i)
            x2    :: Word16
            x2    = (shiftL (index (i + 3)) 8) + (index (i + 2))
            l     = B.length bs
            index = fromIntegral . B.index bs :: Int -> Word16
stream_bs Utf16BE bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l                         = Done
          | i+1 < l && U16.validate1 x1    = Yield (unsafeChr x1) (i+2)
          | i+3 < l && U16.validate2 x1 x2 = Yield (U16.chr2 x1 x2) (i+4)
          | otherwise = error $ "bsStream: bad UTF16-BE stream "
          where
            x1    :: Word16
            x1    = (shiftL (index i) 8) + (index (i + 1))
            x2    :: Word16
            x2    = (shiftL (index (i + 2)) 8) + (index (i + 3))
            l     = B.length bs
            index = fromIntegral . B.index bs
stream_bs Utf32BE bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l                    = Done
          | i+3 < l && U32.validate x = Yield (unsafeChr32 x) (i+4)
          | otherwise                 = error "bsStream: bad UTF-32BE stream"
          where
            l     = B.length bs
            x     = shiftL x1 24 + shiftL x2 16 + shiftL x3 8 + x4
            x1    = index i
            x2    = index (i+1)
            x3    = index (i+2)
            x4    = index (i+3)
            index = fromIntegral . B.index bs :: Int -> Word32
stream_bs Utf32LE bs = Stream next 0 (B.length bs)
    where
      {-# INLINE next #-}
      next i
          | i >= l                    = Done
          | i+3 < l && U32.validate x = Yield (unsafeChr32 x) (i+4)
          | otherwise                 = error "bsStream: bad UTF-32LE stream"
          where
            l     = B.length bs
            x     = shiftL x4 24 + shiftL x3 16 + shiftL x2 8 + x1
            x1    = index i
            x2    = index $ i+1
            x3    = index $ i+2
            x4    = index $ i+3
            index = fromIntegral . B.index bs :: Int -> Word32
{-# INLINE [0] stream_bs #-}

-- | /O(n)/ Convert a Stream Char into a Stream Word8 using the specified encoding standard.
restream :: Encoding -> Stream Char -> Stream Word8
restream ASCII (Stream next0 s0 len) =  Stream next s0 (len*2)
    where
      next !s = case next0 s of
                  Done -> Done
                  Skip s' -> Skip s'
                  Yield x xs -> Yield x' xs
                      where x' = fromIntegral (ord x) :: Word8
restream Utf8 (Stream next0 s0 len) =
    Stream next ((Just s0) :!: Nothing :!: Nothing :!: Nothing) (len*2)
    where
      {-# INLINE next #-}
      next ((Just s) :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
                  Done              -> Done
                  Skip s'           -> Skip ((Just s') :!: Nothing :!: Nothing :!: Nothing)
                  Yield x xs
                      | n <= 0x7F   -> Yield c         ((Just xs) :!: Nothing   :!: Nothing   :!: Nothing)
                      | n <= 0x07FF -> Yield (fst c2)  ((Just xs) :!: (Just $ snd c2)  :!: Nothing   :!: Nothing)
                      | n <= 0xFFFF -> Yield (fst3 c3) ((Just xs) :!: (Just $ snd3 c3) :!: (Just $ trd3 c3) :!: Nothing)
                      | otherwise   -> Yield (fst4 c4) ((Just xs) :!: (Just $ snd4 c4) :!: (Just $ trd4 c4) :!: (Just $ fth4 c4))
                      where
                        n  = ord x
                        c  = fromIntegral n
                        c2 = U8.ord2 x
                        c3 = U8.ord3 x
                        c4 = U8.ord4 x
      next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: Nothing)      = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: x4)           = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)
restream Utf16BE (Stream next0 s0 len) =
    Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
    where
      {-# INLINE next #-}
      next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
          Done -> Done
          Skip s' -> Skip (Just s' :!: Nothing :!: Nothing :!: Nothing)
          Yield x xs
              | n < 0x10000 -> Yield (fromIntegral $ shiftR n 8) (Just xs :!: Just (fromIntegral n) :!: Nothing :!: Nothing)
              | otherwise   -> Yield c1                          (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
              where
                n  = ord x
                n1 = n - 0x10000
                c1 = fromIntegral (shiftR n1 18 + 0xD8)
                c2 = fromIntegral (shiftR n1 10)
                n2 = n1 .&. 0x3FF
                c3 = fromIntegral (shiftR n2 8 + 0xDC)
                c4 = fromIntegral n2
      next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: Nothing)      = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: x4)           = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)
restream Utf16LE (Stream next0 s0 len) =
    Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
    where
      {-# INLINE next #-}
      next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
          Done -> Done
          Skip s' -> Skip (Just s' :!: Nothing :!: Nothing :!: Nothing)
          Yield x xs
              | n < 0x10000 -> Yield (fromIntegral n) (Just xs :!: Just (fromIntegral $ shiftR n 8) :!: Nothing :!: Nothing)
              | otherwise   -> Yield c1                          (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
              where
                n  = ord x
                n1 = n - 0x10000
                c2 = fromIntegral (shiftR n1 18 + 0xD8)
                c1 = fromIntegral (shiftR n1 10)
                n2 = n1 .&. 0x3FF
                c4 = fromIntegral (shiftR n2 8 + 0xDC)
                c3 = fromIntegral n2
      next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: Nothing)      = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
      next ((Just s) :!: (Just x2) :!: x3 :!: x4)           = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)
restream Utf32BE (Stream next0 s0 len) =
    Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
    where
    {-# INLINE next #-}
    next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
        Done       -> Done
        Skip s'    -> Skip (Just s' :!: Nothing :!: Nothing :!: Nothing)
        Yield x xs -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
          where
            n  = ord x
            c1 = fromIntegral $ shiftR n 24
            c2 = fromIntegral $ shiftR n 16
            c3 = fromIntegral $ shiftR n 8
            c4 = fromIntegral n
    next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
    next ((Just s) :!: (Just x2) :!: x3 :!: Nothing)      = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
    next ((Just s) :!: (Just x2) :!: x3 :!: x4)           = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)
restream Utf32LE (Stream next0 s0 len) =
    Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
    where
    {-# INLINE next #-}
    next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
        Done       -> Done
        Skip s'    -> Skip (Just s' :!: Nothing :!: Nothing :!: Nothing)
        Yield x xs -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
          where
            n  = ord x
            c4 = fromIntegral $ shiftR n 24
            c3 = fromIntegral $ shiftR n 16
            c2 = fromIntegral $ shiftR n 8
            c1 = fromIntegral n
    next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
    next ((Just s) :!: (Just x2) :!: x3 :!: Nothing)      = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
    next ((Just s) :!: (Just x2) :!: x3 :!: x4)           = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)
{-# INLINE restream #-}


fst3 (x1,_,_)   = x1
snd3 (_,x2,_)   = x2
trd3 (_,_,x3)   = x3
fst4 (x1,_,_,_) = x1
snd4 (_,x2,_,_) = x2
trd4 (_,_,x3,_) = x3
fth4 (_,_,_,x4) = x4

-- | /O(n)/ Convert a Stream Word8 to a ByteString
unstream_bs :: Stream Word8 -> ByteString
unstream_bs (Stream next s0 len) = unsafePerformIO $ do
    fp0 <- mallocByteString len
    loop fp0 len 0 s0
    where
      loop !fp !n !off !s = case next s of
          Done -> trimUp fp n off
          Skip s' -> loop fp n off s'
          Yield x s'
              | n == off -> realloc fp n off s' x
              | otherwise -> do
            withForeignPtr fp $ \p -> pokeByteOff p off x
            loop fp n (off+1) s'
      {-# NOINLINE realloc #-}
      realloc fp n off s x = do
        let n' = n+n
        fp' <- copy0 fp n n'
        withForeignPtr fp' $ \p -> pokeByteOff p off x
        loop fp' n' (off+1) s
      {-# NOINLINE trimUp #-}
      trimUp fp _ off = return $! PS fp 0 off
      copy0 :: ForeignPtr Word8 -> Int -> Int -> IO (ForeignPtr Word8)
      copy0 !src !srcLen !destLen = assert (srcLen <= destLen) $ do
          dest <- mallocByteString destLen
          withForeignPtr src  $ \src'  ->
              withForeignPtr dest $ \dest' ->
                  memcpy dest' src' (fromIntegral destLen)
          return dest
{-# RULES "STREAM stream/unstream fusion" forall s. stream (unstream s) = s #-}

-- ----------------------------------------------------------------------------
-- * Basic stream functions

-- | /O(n)/ Adds a character to the front of a Stream Char.
cons :: Char -> Stream Char -> Stream Char
cons w (Stream next0 s0 len) = Stream next (S2 :!: s0) (len+2)
    where
      {-# INLINE next #-}
      next (S2 :!: s) = Yield w (S1 :!: s)
      next (S1 :!: s) = case next0 s of
                          Done -> Done
                          Skip s' -> Skip (S1 :!: s')
                          Yield x s' -> Yield x (S1 :!: s')
{-# INLINE [0] cons #-}

-- | /O(n)/ Adds a character to the end of a stream.
snoc :: Stream Char -> Char -> Stream Char
snoc (Stream next0 xs0 len) w = Stream next (Just xs0) (len+2)
  where
    {-# INLINE next #-}
    next (Just xs) = case next0 xs of
      Done        -> Yield w Nothing
      Skip xs'    -> Skip    (Just xs')
      Yield x xs' -> Yield x (Just xs')
    next Nothing = Done
{-# INLINE [0] snoc #-}

-- | /O(n)/ Appends one Stream to the other.
append :: Stream Char -> Stream Char -> Stream Char
append (Stream next0 s01 len1) (Stream next1 s02 len2) =
    Stream next (Left s01) (len1 + len2)
    where
      {-# INLINE next #-}
      next (Left s1) = case next0 s1 of
                         Done        -> Skip    (Right s02)
                         Skip s1'    -> Skip    (Left s1')
                         Yield x s1' -> Yield x (Left s1')
      next (Right s2) = case next1 s2 of
                          Done        -> Done
                          Skip s2'    -> Skip    (Right s2')
                          Yield x s2' -> Yield x (Right s2')
{-# INLINE [0] append #-}

-- | /O(1)/ Returns the first character of a Text, which must be non-empty.
-- Subject to array fusion.
head :: Stream Char -> Char
head (Stream next s0 len) = loop_head s0
    where
      loop_head !s = case next s of
                      Yield x _ -> x
                      Skip s' -> loop_head s'
                      Done -> error "head: Empty list"
{-# INLINE [0] head #-}

-- | /O(n)/ Returns the last character of a Stream Char, which must be non-empty.
last :: Stream Char -> Char
last (Stream next s0 len) = loop0_last s0
    where
      loop0_last !s = case next s of
                        Done       -> error "last: Empty list"
                        Skip s'    -> seq s' $ loop0_last  s'
                        Yield x s' -> seq s' $ loop_last x s'
      loop_last !x !s = case next s of
                         Done        -> x
                         Skip s'     -> seq s' $ loop_last x  s'
                         Yield x' s' -> seq s' $ loop_last x' s'
{-# INLINE[0] last #-}

-- | /O(1)/ Returns all characters after the head of a Stream Char, which must
-- be non-empty.
tail :: Stream Char -> Stream Char
tail (Stream next0 s0 len) = Stream next (False :!: s0) (len-1)
    where
      {-# INLINE next #-}
      next (False :!: s) = case next0 s of
                          Done -> error "tail"
                          Skip s' -> Skip (False :!: s')
                          Yield _ s' -> Skip (True :!: s')
      next (True :!: s) = case next0 s of
                          Done -> Done
                          Skip s' -> Skip (True :!: s')
                          Yield x s' -> Yield x (True :!: s')
{-# INLINE [0] tail #-}


-- | /O(1)/ Returns all but the last character of a Stream Char, which
-- must be non-empty.
init :: Stream Char -> Stream Char
init (Stream next0 s0 len) = Stream next (Nothing :!: s0) (len-1)
    where
      {-# INLINE next #-}
      next (Nothing :!: s) = case next0 s of
                               Done       -> errorEmptyList "init"
                               Skip s'    -> seq s' $ Skip (Nothing :!: s')
                               Yield x s' -> seq s' $ Skip (Just x  :!: s')
      next (Just x :!: s)  = case next0 s of
                               Done        -> Done
                               Skip s'     -> seq s' $ Skip    (Just x  :!: s')
                               Yield x' s' -> seq s' $ Yield x (Just x' :!: s')
{-# INLINE [0] init #-}

-- | /O(1)/ Tests whether a Stream Char is empty or not.
null :: Stream Char -> Bool
null (Stream next s0 len) = loop_null s0
    where
      loop_null !s = case next s of
                       Done      -> True
                       Yield _ _ -> False
                       Skip s'   -> loop_null s'
{-# INLINE[0] null #-}

-- | /O(n)/ Returns the number of characters in a text.
length :: Stream Char -> Int
length (Stream next s0 len) = loop_length 0# s0
    where

      loop_length z# !s  = case next s of
                            Done       -> (I# z#)
                            Skip    s' -> loop_length z# s'
                            Yield _ s' -> loop_length (z# +# 1#) s'
{-# INLINE[0] length #-}

-- ----------------------------------------------------------------------------
-- * Stream transformations

-- | /O(n)/ 'map' @f @xs is the Stream Char obtained by applying @f@ to each element of
-- @xs@.
map :: (Char -> Char) -> Stream Char -> Stream Char
map f (Stream next0 s0 len) = Stream next s0 len
    where
      {-# INLINE next #-}
      next !s = case next0 s of
                  Done       -> Done
                  Skip s'    -> Skip s'
                  Yield x s' -> Yield (f x) s'
{-# INLINE [0] map #-}

{-#
  RULES "STREAM map/map fusion" forall f g s.
     map f (map g s) = map (\x -> f (g x)) s
 #-}

-- | /O(n)/ The 'intersperse' function takes a character and places it between each of
-- the characters of a Stream.
intersperse :: Char -> Stream Char -> Stream Char
intersperse c (Stream next0 s0 len) = Stream next (s0 :!: Nothing :!: S1) len
    where
      {-# INLINE next #-}
      next (s :!: Nothing :!: S1) = case next0 s of
        Done       -> Done
        Skip s'    -> Skip (s' :!: Nothing :!: S1)
        Yield x s' -> Skip (s' :!: Just x :!: S1)
      next (s :!: Just x :!: S1)  = Yield x (s :!: Nothing :!: S2)
      next (s :!: Nothing :!: S2) = case next0 s of
        Done       -> Done
        Skip s'    -> Skip    (s' :!: Nothing :!: S2)
        Yield x s' -> Yield c (s' :!: Just x :!: S1)

-- ----------------------------------------------------------------------------
-- * Reducing Streams (folds)

-- | foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a Stream, reduces the Stream using the
-- binary operator, from left to right.
foldl :: (b -> Char -> b) -> b -> Stream Char -> b
foldl f z0 (Stream next s0 len) = loop_foldl z0 s0
    where
      loop_foldl z !s = case next s of
                          Done -> z
                          Skip s' -> loop_foldl z s'
                          Yield x s' -> loop_foldl (f z x) s'
{-# INLINE [0] foldl #-}

-- | A strict version of foldl.
foldl' :: (b -> Char -> b) -> b -> Stream Char -> b
foldl' f z0 (Stream next s0 len) = loop_foldl' z0 s0
    where
      loop_foldl' !z !s = case next s of
                            Done -> z
                            Skip s' -> loop_foldl' z s'
                            Yield x s' -> loop_foldl' (f z x) s'
{-# INLINE [0] foldl' #-}

-- | foldl1 is a variant of foldl that has no starting value argument,
-- and thus must be applied to non-empty Streams.
foldl1 :: (Char -> Char -> Char) -> Stream Char -> Char
foldl1 f (Stream next s0 len) = loop0_foldl1 s0
    where
      loop0_foldl1 !s = case next s of
                          Skip s' -> loop0_foldl1 s'
                          Yield x s' -> loop_foldl1 x s'
                          Done -> errorEmptyList "foldl1"
      loop_foldl1 z !s = case next s of
                           Done -> z
                           Skip s' -> loop_foldl1 z s'
                           Yield x s' -> loop_foldl1 (f z x) s'
{-# INLINE [0] foldl1 #-}

-- | A strict version of foldl1.
foldl1' :: (Char -> Char -> Char) -> Stream Char -> Char
foldl1' f (Stream next s0 len) = loop0_foldl1' s0
    where
      loop0_foldl1' !s = case next s of
                           Skip s' -> loop0_foldl1' s'
                           Yield x s' -> loop_foldl1' x s'
                           Done -> errorEmptyList "foldl1"
      loop_foldl1' !z !s = case next s of
                             Done -> z
                             Skip s' -> loop_foldl1' z s'
                             Yield x s' -> loop_foldl1' (f z x) s'
{-# INLINE [0] foldl1' #-}

-- | 'foldr', applied to a binary operator, a starting value (typically the
-- right-identity of the operator), and a stream, reduces the stream using the
-- binary operator, from right to left.
foldr :: (Char -> b -> b) -> b -> Stream Char -> b
foldr f z (Stream next s0 len) = loop_foldr s0
    where
      loop_foldr !s = case next s of
                        Done -> z
                        Skip s' -> loop_foldr s'
                        Yield x s' -> f x (loop_foldr s')
{-# INLINE [0] foldr #-}

-- | foldr1 is a variant of 'foldr' that has no starting value argument,
-- and thust must be applied to non-empty streams.
-- Subject to array fusion.
foldr1 :: (Char -> Char -> Char) -> Stream Char -> Char
foldr1 f (Stream next s0 len) = loop0_foldr1 s0
  where
    loop0_foldr1 !s = case next s of
      Done       -> error "foldr1"
      Skip    s' -> loop0_foldr1  s'
      Yield x s' -> loop_foldr1 x s'

    loop_foldr1 x !s = case next s of
      Done        -> x
      Skip     s' -> loop_foldr1 x s'
      Yield x' s' -> f x (loop_foldr1 x' s')
{-# INLINE [0] foldr1 #-}

-- ----------------------------------------------------------------------------
-- ** Special folds

-- | /O(n)/ Concatenate a list of streams. Subject to array fusion.
concat :: [Stream Char] -> Stream Char
concat = L.foldr append (Stream next Done 0)
    where
      next Done = Done

-- | Map a function over a stream that results in a steram and concatenate the
-- results.
concatMap :: (Char -> Stream Char) -> Stream Char -> Stream Char
concatMap f = foldr (append . f) (stream empty)

-- | /O(n)/ any @p @xs determines if any character in the stream
-- @xs@ satisifes the predicate @p@.
any :: (Char -> Bool) -> Stream Char -> Bool
any p (Stream next0 s0 len) = loop_any s0
    where
      loop_any !s = case next0 s of
                      Done                   -> False
                      Skip s'                -> seq s' $ loop_any s'
                      Yield x s' | p x       -> True
                                 | otherwise -> seq s' $ loop_any s'

-- | /O(n)/ all @p @xs determines if all characters in the 'Text'
-- @xs@ satisify the predicate @p@.
all :: (Char -> Bool) -> Stream Char -> Bool
all p (Stream next0 s0 len) = loop_all s0
    where
      loop_all !s = case next0 s of
                      Done                   -> True
                      Skip s'                -> seq s' $ loop_all s'
                      Yield x s' | p x       -> seq s' $ loop_all s'
                                 | otherwise -> False

-- | /O(n)/ maximum returns the maximum value from a stream, which must be
-- non-empty.
maximum :: Stream Char -> Char
maximum (Stream next0 s0 len) = loop0_maximum s0
    where
      loop0_maximum !s   = case next0 s of
                             Done       -> errorEmptyList "maximum"
                             Skip s'    -> seq s' $ loop0_maximum s'
                             Yield x s' -> seq s' $ loop_maximum x s'
      loop_maximum !z !s = case next0 s of
                             Done            -> z
                             Skip s'         -> seq s' $ loop_maximum z s'
                             Yield x s'
                                 | x > z     -> seq s' $ loop_maximum x s'
                                 | otherwise -> seq s' $ loop_maximum z s'

-- | /O(n)/ minimum returns the minimum value from a 'Text', which must be
-- non-empty.
minimum :: Stream Char -> Char
minimum (Stream next0 s0 len) = loop0_minimum s0
    where
      loop0_minimum !s   = case next0 s of
                             Done       -> errorEmptyList "minimum"
                             Skip s'    -> seq s' $ loop0_minimum s'
                             Yield x s' -> seq s' $ loop_minimum x s'
      loop_minimum !z !s = case next0 s of
                             Done            -> z
                             Skip s'         -> seq s' $ loop_minimum z s'
                             Yield x s'
                                 | x < z     -> seq s' $ loop_minimum x s'
                                 | otherwise -> seq s' $ loop_minimum z s'




-- -----------------------------------------------------------------------------
-- * Building streams

-- -----------------------------------------------------------------------------
-- ** Generating and unfolding streams

-- | /O(n)/, where @n@ is the length of the result. The unfoldr function
-- is analogous to the List 'unfoldr'. unfoldr builds a stream
-- from a seed value. The function takes the element and returns
-- Nothing if it is done producing the stream or returns Just
-- (a,b), in which case, a is the next Char in the string, and b is
-- the seed value for further production.
unfoldr :: (a -> Maybe (Char,a)) -> a -> Stream Char
unfoldr f s0 = Stream next s0 1
    where
      {-# INLINE next #-}
      next !s = case f s of
                 Nothing      -> Done
                 Just (w, s') -> Yield w s'
{-# INLINE [0] unfoldr #-}

-- | O(n) Like unfoldr, unfoldrN builds a stream from a seed
-- value. However, the length of the result should be limited by the
-- first argument to unfoldrN. This function is more efficient than
-- unfoldr when the maximum length of the result and correct,
-- otherwise its complexity performance is similar to 'unfoldr'
unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> Stream Char
unfoldrN n f s0 = Stream next (0 :!: s0) (n*2)
    where
      {-# INLINE next #-}
      next (z :!: s) = case f s of
          Nothing                  -> Done
          Just (w, s') | z >= n    -> Done
                       | otherwise -> Yield w ((z + 1) :!: s')
-------------------------------------------------------------------------------
--  * Substreams

-- | /O(n)/ take n, applied to a stream, returns the prefix of the
-- stream of length @n@, or the stream itself if @n@ is greater than the
-- length of the stream.
take :: Int -> Stream Char -> Stream Char
take n0 (Stream next0 s0 len) = Stream next (n0 :!: s0) len
    where
      {-# INLINE next #-}
      next (n :!: s) | n <= 0    = Done
                     | otherwise = case next0 s of
                                     Done -> Done
                                     Skip s' -> Skip (n :!: s')
                                     Yield x s' -> Yield x ((n-1) :!: s')
{-# INLINE [0] take #-}

-- | /O(n)/ drop n, applied to a stream, returns the suffix of the
-- stream of length @n@, or the empty stream if @n@ is greater than the
-- length of the stream.
drop :: Int -> Stream Char -> Stream Char
drop n0 (Stream next0 s0 len) = Stream next (Just ((max 0 n0)) :!: s0) (len - n0)
  where
    {-# INLINE next #-}
    next (Just !n :!: s)
      | n == 0    = Skip (Nothing :!: s)
      | otherwise = case next0 s of
          Done       -> Done
          Skip    s' -> Skip (Just n    :!: s')
          Yield _ s' -> Skip (Just (n-1) :!: s')
    next (Nothing :!: s) = case next0 s of
      Done       -> Done
      Skip    s' -> Skip    (Nothing :!: s')
      Yield x s' -> Yield x (Nothing :!: s')
{-# INLINE [0] drop #-}

-- | takeWhile, applied to a predicate @p@ and a stream, returns the
-- longest prefix (possibly empty) of elements that satisfy p.
takeWhile :: (Char -> Bool) -> Stream Char -> Stream Char
takeWhile p (Stream next0 s0 len) = Stream next s0 len
    where
      {-# INLINE next #-}
      next !s = case next0 s of
                  Done    -> Done
                  Skip s' -> Skip s'
                  Yield x s' | p x       -> Yield x s'
                             | otherwise -> Done
{-# INLINE [0] takeWhile #-}

-- | dropWhile @p @xs returns the suffix remaining after takeWhile @p @xs.
dropWhile :: (Char -> Bool) -> Stream Char -> Stream Char
dropWhile p (Stream next0 s0 len) = Stream next (S1 :!: s0) len
    where
    {-# INLINE next #-}
    next (S1 :!: s)  = case next0 s of
      Done                   -> Done
      Skip    s'             -> Skip    (S1 :!: s')
      Yield x s' | p x       -> Skip    (S1 :!: s')
                 | otherwise -> Yield x (S2 :!: s')
    next (S2 :!: s) = case next0 s of
      Done       -> Done
      Skip    s' -> Skip    (S2 :!: s')
      Yield x s' -> Yield x (S2 :!: s')
{-# INLINE [0] dropWhile #-}

-- ----------------------------------------------------------------------------
-- * Searching

-------------------------------------------------------------------------------
-- ** Searching by equality

-- | /O(n)/ elem is the stream membership predicate.
elem :: Char -> Stream Char -> Bool
elem w (Stream next s0 len) = loop_elem s0
    where
      loop_elem !s = case next s of
                       Done -> False
                       Skip s' -> loop_elem s'
                       Yield x s' | x == w -> True
                                  | otherwise -> loop_elem s'
{-# INLINE [0] elem #-}

-------------------------------------------------------------------------------
-- ** Searching with a predicate

-- | /O(n)/ The 'find' function takes a predicate and a stream,
-- and returns the first element in matching the predicate, or 'Nothing'
-- if there is no such element.

find :: (Char -> Bool) -> Stream Char -> Maybe Char
find p (Stream next s0 len) = loop_find s0
    where
      loop_find !s = case next s of
                       Done -> Nothing
                       Skip s' -> loop_find s'
                       Yield x s' | p x -> Just x
                                  | otherwise -> loop_find s'
{-# INLINE [0] find #-}

-- | /O(n)/ 'filter', applied to a predicate and a stream,
-- returns a stream containing those characters that satisfy the
-- predicate.
filter :: (Char -> Bool) -> Stream Char -> Stream Char
filter p (Stream next0 s0 len) = Stream next s0 len
  where
    {-# INLINE next #-}
    next !s = case next0 s of
                Done                   -> Done
                Skip    s'             -> Skip    s'
                Yield x s' | p x       -> Yield x s'
                           | otherwise -> Skip    s'
{-# INLINE [0] filter #-}

{-# RULES
  "Stream filter/filter fusion" forall p q s.
  filter p (filter q s) = filter (\x -> q x && p x) s
  #-}

-------------------------------------------------------------------------------
-- ** Indexing streams

-- | /O(1)/ stream index (subscript) operator, starting from 0.
index :: Stream Char -> Int -> Char
index (Stream next s0 len) n0
  | n0 < 0    = error "Stream.(!!): negative index"
  | otherwise = loop_index n0 s0
  where
    loop_index !n !s = case next s of
      Done                   -> error "Stream.(!!): index too large"
      Skip    s'             -> loop_index  n    s'
      Yield x s' | n == 0    -> x
                 | otherwise -> loop_index (n-1) s'
{-# INLINE [0] index #-}

-- | The 'findIndex' function takes a predicate and a stream and
-- returns the index of the first element in the stream
-- satisfying the predicate.
findIndex :: (Char -> Bool) -> Stream Char -> Maybe Int
findIndex p (Stream next s0 len) = loop_findIndex 0 s0
  where
    loop_findIndex !i !s = case next s of
      Done                   -> Nothing
      Skip    s'             -> loop_findIndex i     s' -- hmm. not caught by QC
      Yield x s' | p x       -> Just i
                 | otherwise -> loop_findIndex (i+1) s'
{-# INLINE [0] findIndex #-}

-- | /O(n)/ The 'elemIndex' function returns the index of the first
-- element in the given stream which is equal to the query
-- element, or 'Nothing' if there is no such element.
elemIndex :: Char -> Stream Char -> Maybe Int
elemIndex a (Stream next s0 len) = loop_elemIndex 0 s0
  where
    loop_elemIndex !i !s = case next s of
      Done                   -> Nothing
      Skip    s'             -> loop_elemIndex i     s'
      Yield x s' | a == x    -> Just i
                 | otherwise -> loop_elemIndex (i+1) s'
{-# INLINE [0] elemIndex #-}

-------------------------------------------------------------------------------
-- * Zipping

-- | zipWith generalises 'zip' by zipping with the function given as
-- the first argument, instead of a tupling function.
zipWith :: (Char -> Char -> Char) -> Stream Char -> Stream Char -> Stream Char
zipWith f (Stream next0 sa0 len1) (Stream next1 sb0 len2) = Stream next (sa0 :!: sb0 :!: Nothing) (min len1 len2)
    where
      {-# INLINE next #-}
      next (sa :!: sb :!: Nothing) = case next0 sa of
                                       Done -> Done
                                       Skip sa' -> Skip (sa' :!: sb :!: Nothing)
                                       Yield a sa' -> Skip (sa' :!: sb :!: Just a)

      next (sa' :!: sb :!: Just a) = case next1 sb of
                                       Done -> Done
                                       Skip sb' -> Skip (sa' :!: sb' :!: Just a)
                                       Yield b sb' -> Yield (f a b) (sa' :!: sb' :!: Nothing)
{-# INLINE [0] zipWith #-}

errorEmptyList :: String -> a
errorEmptyList fun =
  error ("Prelude." ++ fun ++ ": empty list")
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.