Source

compiler-libs-hack / ocaml / otherlibs / threads / scheduler.c

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/***********************************************************************/
/*                                                                     */
/*                                OCaml                                */
/*                                                                     */
/*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         */
/*                                                                     */
/*  Copyright 1996 Institut National de Recherche en Informatique et   */
/*  en Automatique.  All rights reserved.  This file is distributed    */
/*  under the terms of the GNU Library General Public License, with    */
/*  the special exception on linking described in file ../../LICENSE.  */
/*                                                                     */
/***********************************************************************/

/* The thread scheduler */

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#include "alloc.h"
#include "backtrace.h"
#include "callback.h"
#include "config.h"
#include "fail.h"
#include "io.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "printexc.h"
#include "roots.h"
#include "signals.h"
#include "stacks.h"
#include "sys.h"

#if ! (defined(HAS_SELECT) && \
       defined(HAS_SETITIMER) && \
       defined(HAS_GETTIMEOFDAY) && \
       (defined(HAS_WAITPID) || defined(HAS_WAIT4)))
#include "Cannot compile libthreads, system calls missing"
#endif

#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifdef HAS_UNISTD
#include <unistd.h>
#endif
#ifdef HAS_SYS_SELECT_H
#include <sys/select.h>
#endif

#ifndef HAS_WAITPID
#define waitpid(pid,status,opts) wait4(pid,status,opts,NULL)
#endif

#ifndef O_NONBLOCK
#define O_NONBLOCK O_NDELAY
#endif

/* Configuration */

/* Initial size of stack when a thread is created (4kB) */
#define Thread_stack_size (Stack_size / 4)

/* Max computation time before rescheduling, in microseconds (50ms) */
#define Thread_timeout 50000

/* The thread descriptors */

struct caml_thread_struct {
  value ident;                  /* Unique id (for equality comparisons) */
  struct caml_thread_struct * next;  /* Double linking of threads */
  struct caml_thread_struct * prev;
  value * stack_low;            /* The execution stack for this thread */
  value * stack_high;
  value * stack_threshold;
  value * sp;
  value * trapsp;
  value backtrace_pos;          /* The backtrace info for this thread */
  code_t * backtrace_buffer;
  value backtrace_last_exn;
  value status;                 /* RUNNABLE, KILLED. etc (see below) */
  value fd;     /* File descriptor on which we're doing read or write */
  value readfds, writefds, exceptfds;
                /* Lists of file descriptors on which we're doing select() */
  value delay;                  /* Time until which this thread is blocked */
  value joining;                /* Thread we're trying to join */
  value waitpid;                /* PID of process we're waiting for */
  value retval;                 /* Value to return when thread resumes */
};

typedef struct caml_thread_struct * caml_thread_t;

#define RUNNABLE Val_int(0)
#define KILLED Val_int(1)
#define SUSPENDED Val_int(2)
#define BLOCKED_READ Val_int(4)
#define BLOCKED_WRITE Val_int(8)
#define BLOCKED_SELECT Val_int(16)
#define BLOCKED_DELAY Val_int(32)
#define BLOCKED_JOIN Val_int(64)
#define BLOCKED_WAIT Val_int(128)

#define RESUMED_WAKEUP Val_int(0)
#define RESUMED_DELAY Val_int(1)
#define RESUMED_JOIN Val_int(2)
#define RESUMED_IO Val_int(3)

#define TAG_RESUMED_SELECT 0
#define TAG_RESUMED_WAIT 1

#define NO_FDS Val_unit
#define NO_DELAY Val_unit
#define NO_JOINING Val_unit
#define NO_WAITPID Val_int(0)

#define DELAY_INFTY 1E30        /* +infty, for this purpose */

/* The thread currently active */
static caml_thread_t curr_thread = NULL;
/* Identifier for next thread creation */
static value next_ident = Val_int(0);

#define Assign(dst,src) modify((value *)&(dst), (value)(src))

/* Scan the stacks of the other threads */

static void (*prev_scan_roots_hook) (scanning_action);

static void thread_scan_roots(scanning_action action)
{
  caml_thread_t th, start;

  /* Scan all active descriptors */
  start = curr_thread;
  (*action)((value) curr_thread, (value *) &curr_thread);
  /* Don't scan curr_thread->sp, this has already been done.
     Don't scan local roots either, for the same reason. */
  for (th = start->next; th != start; th = th->next) {
    do_local_roots(action, th->sp, th->stack_high, NULL);
  }
  /* Hook */
  if (prev_scan_roots_hook != NULL) (*prev_scan_roots_hook)(action);
}

/* Forward declarations for async I/O handling */

static int stdin_initial_status, stdout_initial_status, stderr_initial_status;
static void thread_restore_std_descr(void);

/* Initialize the thread machinery */

value thread_initialize(value unit)       /* ML */
{
  /* Protect against repeated initialization (PR#1325) */
  if (curr_thread != NULL) return Val_unit;
  /* Create a descriptor for the current thread */
  curr_thread =
    (caml_thread_t) alloc_shr(sizeof(struct caml_thread_struct)
                              / sizeof(value), 0);
  curr_thread->ident = next_ident;
  next_ident = Val_int(Int_val(next_ident) + 1);
  curr_thread->next = curr_thread;
  curr_thread->prev = curr_thread;
  curr_thread->stack_low = stack_low;
  curr_thread->stack_high = stack_high;
  curr_thread->stack_threshold = stack_threshold;
  curr_thread->sp = extern_sp;
  curr_thread->trapsp = trapsp;
  curr_thread->backtrace_pos = Val_int(backtrace_pos);
  curr_thread->backtrace_buffer = backtrace_buffer;
  caml_initialize (&curr_thread->backtrace_last_exn, backtrace_last_exn);
  curr_thread->status = RUNNABLE;
  curr_thread->fd = Val_int(0);
  curr_thread->readfds = NO_FDS;
  curr_thread->writefds = NO_FDS;
  curr_thread->exceptfds = NO_FDS;
  curr_thread->delay = NO_DELAY;
  curr_thread->joining = NO_JOINING;
  curr_thread->waitpid = NO_WAITPID;
  curr_thread->retval = Val_unit;
  /* Initialize GC */
  prev_scan_roots_hook = scan_roots_hook;
  scan_roots_hook = thread_scan_roots;
  /* Set standard file descriptors to non-blocking mode */
  stdin_initial_status = fcntl(0, F_GETFL);
  stdout_initial_status = fcntl(1, F_GETFL);
  stderr_initial_status = fcntl(2, F_GETFL);
  if (stdin_initial_status != -1)
    fcntl(0, F_SETFL, stdin_initial_status | O_NONBLOCK);
  if (stdout_initial_status != -1)
    fcntl(1, F_SETFL, stdout_initial_status | O_NONBLOCK);
  if (stderr_initial_status != -1)
    fcntl(2, F_SETFL, stderr_initial_status | O_NONBLOCK);
  /* Register an at-exit function to restore the standard file descriptors */
  atexit(thread_restore_std_descr);
  return Val_unit;
}

/* Initialize the interval timer used for preemption */

value thread_initialize_preemption(value unit)     /* ML */
{
  struct itimerval timer;

  timer.it_interval.tv_sec = 0;
  timer.it_interval.tv_usec = Thread_timeout;
  timer.it_value = timer.it_interval;
  setitimer(ITIMER_VIRTUAL, &timer, NULL);
  return Val_unit;
}

/* Create a thread */

value thread_new(value clos)          /* ML */
{
  caml_thread_t th;
  /* Allocate the thread and its stack */
  Begin_root(clos);
    th = (caml_thread_t) alloc_shr(sizeof(struct caml_thread_struct)
                                   / sizeof(value), 0);
  End_roots();
  th->ident = next_ident;
  next_ident = Val_int(Int_val(next_ident) + 1);
  th->stack_low = (value *) caml_stat_alloc(Thread_stack_size);
  th->stack_high = th->stack_low + Thread_stack_size / sizeof(value);
  th->stack_threshold = th->stack_low + Stack_threshold / sizeof(value);
  th->sp = th->stack_high;
  th->trapsp = th->stack_high;
  /* Set up a return frame that pretends we're applying the function to ().
     This way, the next RETURN instruction will run the function. */
  th->sp -= 5;
  th->sp[0] = Val_unit;         /* dummy local to be popped by RETURN 1 */
  th->sp[1] = (value) Code_val(clos);
  th->sp[2] = clos;
  th->sp[3] = Val_long(0);      /* no extra args */
  th->sp[4] = Val_unit;         /* the () argument */
  /* Fake a C call frame */
  th->sp--;
  th->sp[0] = Val_unit;         /* a dummy environment */
  /* Finish initialization of th */
  th->backtrace_pos = Val_int(0);
  th->backtrace_buffer = NULL;
  th->backtrace_last_exn = Val_unit;
  /* The thread is initially runnable */
  th->status = RUNNABLE;
  th->fd = Val_int(0);
  th->readfds = NO_FDS;
  th->writefds = NO_FDS;
  th->exceptfds = NO_FDS;
  th->delay = NO_DELAY;
  th->joining = NO_JOINING;
  th->waitpid = NO_WAITPID;
  th->retval = Val_unit;
  /* Insert thread in doubly linked list of threads */
  th->prev = curr_thread->prev;
  th->next = curr_thread;
  Assign(curr_thread->prev->next, th);
  Assign(curr_thread->prev, th);
  /* Return thread */
  return (value) th;
}

/* Return the thread identifier */

value thread_id(value th)             /* ML */
{
  return ((caml_thread_t)th)->ident;
}

/* Return the current time as a floating-point number */

static double timeofday(void)
{
  struct timeval tv;
  gettimeofday(&tv, NULL);
  return (double) tv.tv_sec + (double) tv.tv_usec * 1e-6;
}

/* Find a runnable thread and activate it */

#define FOREACH_THREAD(x) x = curr_thread; do { x = x->next;
#define END_FOREACH(x) } while (x != curr_thread)

static value alloc_process_status(int pid, int status);
static void add_fdlist_to_set(value fdl, fd_set *set);
static value inter_fdlist_set(value fdl, fd_set *set, int *count);
static void find_bad_fd(int fd, fd_set *set);
static void find_bad_fds(value fdl, fd_set *set);

static value schedule_thread(void)
{
  caml_thread_t run_thread, th;
  fd_set readfds, writefds, exceptfds;
  double delay, now;
  int need_select, need_wait;

  /* Don't allow preemption during a callback */
  if (callback_depth > 1) return curr_thread->retval;

  /* Save the status of the current thread */
  curr_thread->stack_low = stack_low;
  curr_thread->stack_high = stack_high;
  curr_thread->stack_threshold = stack_threshold;
  curr_thread->sp = extern_sp;
  curr_thread->trapsp = trapsp;
  curr_thread->backtrace_pos = Val_int(backtrace_pos);
  curr_thread->backtrace_buffer = backtrace_buffer;
  caml_modify (&curr_thread->backtrace_last_exn, backtrace_last_exn);

try_again:
  /* Find if a thread is runnable.
     Build fdsets and delay for select.
     See if some join or wait operations succeeded. */
  run_thread = NULL;
  FD_ZERO(&readfds);
  FD_ZERO(&writefds);
  FD_ZERO(&exceptfds);
  delay = DELAY_INFTY;
  now = -1.0;
  need_select = 0;
  need_wait = 0;

  FOREACH_THREAD(th)
    if (th->status <= SUSPENDED) continue;

    if (th->status & (BLOCKED_READ - 1)) {
      FD_SET(Int_val(th->fd), &readfds);
      need_select = 1;
    }
    if (th->status & (BLOCKED_WRITE - 1)) {
      FD_SET(Int_val(th->fd), &writefds);
      need_select = 1;
    }
    if (th->status & (BLOCKED_SELECT - 1)) {
      add_fdlist_to_set(th->readfds, &readfds);
      add_fdlist_to_set(th->writefds, &writefds);
      add_fdlist_to_set(th->exceptfds, &exceptfds);
      need_select = 1;
    }
    if (th->status & (BLOCKED_DELAY - 1)) {
      double th_delay;
      if (now < 0.0) now = timeofday();
      th_delay = Double_val(th->delay) - now;
      if (th_delay <= 0) {
        th->status = RUNNABLE;
        Assign(th->retval,RESUMED_DELAY);
      } else {
        if (th_delay < delay) delay = th_delay;
      }
    }
    if (th->status & (BLOCKED_JOIN - 1)) {
      if (((caml_thread_t)(th->joining))->status == KILLED) {
        th->status = RUNNABLE;
        Assign(th->retval, RESUMED_JOIN);
      }
    }
    if (th->status & (BLOCKED_WAIT - 1)) {
      int status, pid;
      pid = waitpid(Int_val(th->waitpid), &status, WNOHANG);
      if (pid > 0) {
        th->status = RUNNABLE;
        Assign(th->retval, alloc_process_status(pid, status));
      } else {
        need_wait = 1;
      }
    }
  END_FOREACH(th);

  /* Find if a thread is runnable. */
  run_thread = NULL;
  FOREACH_THREAD(th)
    if (th->status == RUNNABLE) { run_thread = th; break; }
  END_FOREACH(th);

  /* Do the select if needed */
  if (need_select || run_thread == NULL) {
    struct timeval delay_tv, * delay_ptr;
    int retcode;
    /* If a thread is blocked on wait, don't block forever */
    if (need_wait && delay > Thread_timeout * 1e-6) {
      delay = Thread_timeout * 1e-6;
    }
    /* Convert delay to a timeval */
    /* If a thread is runnable, just poll */
    if (run_thread != NULL) {
      delay_tv.tv_sec = 0;
      delay_tv.tv_usec = 0;
      delay_ptr = &delay_tv;
    }
    else if (delay != DELAY_INFTY) {
      delay_tv.tv_sec = (unsigned int) delay;
      delay_tv.tv_usec = (delay - (double) delay_tv.tv_sec) * 1E6;
      delay_ptr = &delay_tv;
    }
    else {
      delay_ptr = NULL;
    }
    enter_blocking_section();
    retcode = select(FD_SETSIZE, &readfds, &writefds, &exceptfds, delay_ptr);
    leave_blocking_section();
    if (retcode == -1)
      switch (errno) {
      case EINTR:
        break;
      case EBADF:
        /* One of the descriptors in the sets was closed or is bad.
           Find it using fstat() and wake up the threads waiting on it
           so that they'll get an error when operating on it. */
        FOREACH_THREAD(th)
          if (th->status & (BLOCKED_READ - 1)) {
            find_bad_fd(Int_val(th->fd), &readfds);
          }
          if (th->status & (BLOCKED_WRITE - 1)) {
            find_bad_fd(Int_val(th->fd), &writefds);
          }
          if (th->status & (BLOCKED_SELECT - 1)) {
            find_bad_fds(th->readfds, &readfds);
            find_bad_fds(th->writefds, &writefds);
            find_bad_fds(th->exceptfds, &exceptfds);
          }
        END_FOREACH(th);
        retcode = FD_SETSIZE;
        break;
      default:
        sys_error(NO_ARG);
      }
    if (retcode > 0) {
      /* Some descriptors are ready.
         Mark the corresponding threads runnable. */
      FOREACH_THREAD(th)
        if (retcode <= 0) break;
        if ((th->status & (BLOCKED_READ - 1)) &&
            FD_ISSET(Int_val(th->fd), &readfds)) {
          Assign(th->retval, RESUMED_IO);
          th->status = RUNNABLE;
          if (run_thread == NULL) run_thread = th; /* Found one. */
          /* Wake up only one thread per fd */
          FD_CLR(Int_val(th->fd), &readfds);
          retcode--;
        }
        if ((th->status & (BLOCKED_WRITE - 1)) &&
            FD_ISSET(Int_val(th->fd), &writefds)) {
          Assign(th->retval, RESUMED_IO);
          th->status = RUNNABLE;
          if (run_thread == NULL) run_thread = th; /* Found one. */
          /* Wake up only one thread per fd */
          FD_CLR(Int_val(th->fd), &readfds);
          retcode--;
        }
        if (th->status & (BLOCKED_SELECT - 1)) {
          value r = Val_unit, w = Val_unit, e = Val_unit;
          Begin_roots3(r,w,e)
            r = inter_fdlist_set(th->readfds, &readfds, &retcode);
            w = inter_fdlist_set(th->writefds, &writefds, &retcode);
            e = inter_fdlist_set(th->exceptfds, &exceptfds, &retcode);
            if (r != NO_FDS || w != NO_FDS || e != NO_FDS) {
              value retval = alloc_small(3, TAG_RESUMED_SELECT);
              Field(retval, 0) = r;
              Field(retval, 1) = w;
              Field(retval, 2) = e;
              Assign(th->retval, retval);
              th->status = RUNNABLE;
              if (run_thread == NULL) run_thread = th; /* Found one. */
            }
          End_roots();
        }
      END_FOREACH(th);
    }
    /* If we get here with run_thread still NULL, one of the following
       may have happened:
       - a delay has expired
       - a wait() needs to be polled again
       - the select() failed (e.g. was interrupted)
       In these cases, we go through the loop once more to make the
       corresponding threads runnable. */
    if (run_thread == NULL &&
        (delay != DELAY_INFTY || need_wait || retcode == -1))
      goto try_again;
  }

  /* If we haven't something to run at that point, we're in big trouble. */
  if (run_thread == NULL) invalid_argument("Thread: deadlock");

  /* Free everything the thread was waiting on */
  Assign(run_thread->readfds, NO_FDS);
  Assign(run_thread->writefds, NO_FDS);
  Assign(run_thread->exceptfds, NO_FDS);
  Assign(run_thread->delay, NO_DELAY);
  Assign(run_thread->joining, NO_JOINING);
  run_thread->waitpid = NO_WAITPID;

  /* Activate the thread */
  curr_thread = run_thread;
  stack_low = curr_thread->stack_low;
  stack_high = curr_thread->stack_high;
  stack_threshold = curr_thread->stack_threshold;
  extern_sp = curr_thread->sp;
  trapsp = curr_thread->trapsp;
  backtrace_pos = Int_val(curr_thread->backtrace_pos);
  backtrace_buffer = curr_thread->backtrace_buffer;
  backtrace_last_exn = curr_thread->backtrace_last_exn;
  return curr_thread->retval;
}

/* Since context switching is not allowed in callbacks, a thread that
   blocks during a callback is a deadlock. */

static void check_callback(void)
{
  if (callback_depth > 1)
    caml_fatal_error("Thread: deadlock during callback");
}

/* Reschedule without suspending the current thread */

value thread_yield(value unit)        /* ML */
{
  Assert(curr_thread != NULL);
  Assign(curr_thread->retval, Val_unit);
  return schedule_thread();
}

/* Honor an asynchronous request for re-scheduling */

static void thread_reschedule(void)
{
  value accu;

  Assert(curr_thread != NULL);
  /* Pop accu from event frame, making it look like a C_CALL frame
     followed by a RETURN frame */
  accu = *extern_sp++;
  /* Reschedule */
  Assign(curr_thread->retval, accu);
  accu = schedule_thread();
  /* Push accu below C_CALL frame so that it looks like an event frame */
  *--extern_sp = accu;
}

/* Request a re-scheduling as soon as possible */

value thread_request_reschedule(value unit)    /* ML */
{
  async_action_hook = thread_reschedule;
  something_to_do = 1;
  return Val_unit;
}

/* Suspend the current thread */

value thread_sleep(value unit)        /* ML */
{
  Assert(curr_thread != NULL);
  check_callback();
  curr_thread->status = SUSPENDED;
  return schedule_thread();
}

/* Suspend the current thread on a read() or write() request */

static value thread_wait_rw(int kind, value fd)
{
  /* Don't do an error if we're not initialized yet
     (we can be called from thread-safe Pervasives before initialization),
     just return immediately. */
  if (curr_thread == NULL) return RESUMED_WAKEUP;
  /* As a special case, if we're in a callback, don't fail but block
     the whole process till I/O is possible */
  if (callback_depth > 1) {
    fd_set fds;
    FD_ZERO(&fds);
    FD_SET(Int_val(fd), &fds);
    switch(kind) {
      case BLOCKED_READ: select(FD_SETSIZE, &fds, NULL, NULL, NULL); break;
      case BLOCKED_WRITE: select(FD_SETSIZE, NULL, &fds, NULL, NULL); break;
    }
    return RESUMED_IO;
  } else {
    curr_thread->fd = fd;
    curr_thread->status = kind;
    return schedule_thread();
  }
}

value thread_wait_read(value fd)
{
  return thread_wait_rw(BLOCKED_READ, fd);
}

value thread_wait_write(value fd)
{
  return thread_wait_rw(BLOCKED_WRITE, fd);
}

/* Suspend the current thread on a read() or write() request with timeout */

static value thread_wait_timed_rw(int kind, value arg)
{
  double date;

  check_callback();
  curr_thread->fd = Field(arg, 0);
  date = timeofday() + Double_val(Field(arg, 1));
  Assign(curr_thread->delay, copy_double(date));
  curr_thread->status = kind | BLOCKED_DELAY;
  return schedule_thread();
}

value thread_wait_timed_read(value arg)
{
  return thread_wait_timed_rw(BLOCKED_READ, arg);
}

value thread_wait_timed_write(value arg)
{
  return thread_wait_timed_rw(BLOCKED_WRITE, arg);
}

/* Suspend the current thread on a select() request */

value thread_select(value arg)        /* ML */
{
  double date;
  check_callback();
  Assign(curr_thread->readfds, Field(arg, 0));
  Assign(curr_thread->writefds, Field(arg, 1));
  Assign(curr_thread->exceptfds, Field(arg, 2));
  date = Double_val(Field(arg, 3));
  if (date >= 0.0) {
    date += timeofday();
    Assign(curr_thread->delay, copy_double(date));
    curr_thread->status = BLOCKED_SELECT | BLOCKED_DELAY;
  } else {
    curr_thread->status = BLOCKED_SELECT;
  }
  return schedule_thread();
}

/* Primitives to implement suspension on buffered channels */

value thread_inchan_ready(value vchan) /* ML */
{
  struct channel * chan = Channel(vchan);
  return Val_bool(chan->curr < chan->max);
}

value thread_outchan_ready(value vchan, value vsize) /* ML */
{
  struct channel * chan = Channel(vchan);
  intnat size = Long_val(vsize);
  /* Negative size means we want to flush the buffer entirely */
  if (size < 0) {
    return Val_bool(chan->curr == chan->buff);
  } else {
    int free = chan->end - chan->curr;
    if (chan->curr == chan->buff)
      return Val_bool(size < free);
    else
      return Val_bool(size <= free);
  }
}

/* Suspend the current thread for some time */

value thread_delay(value time)          /* ML */
{
  double date = timeofday() + Double_val(time);
  Assert(curr_thread != NULL);
  check_callback();
  curr_thread->status = BLOCKED_DELAY;
  Assign(curr_thread->delay, copy_double(date));
  return schedule_thread();
}

/* Suspend the current thread until another thread terminates */

value thread_join(value th)          /* ML */
{
  check_callback();
  Assert(curr_thread != NULL);
  if (((caml_thread_t)th)->status == KILLED) return Val_unit;
  curr_thread->status = BLOCKED_JOIN;
  Assign(curr_thread->joining, th);
  return schedule_thread();
}

/* Suspend the current thread until a Unix process exits */

value thread_wait_pid(value pid)          /* ML */
{
  Assert(curr_thread != NULL);
  check_callback();
  curr_thread->status = BLOCKED_WAIT;
  curr_thread->waitpid = pid;
  return schedule_thread();
}

/* Reactivate another thread */

value thread_wakeup(value thread)     /* ML */
{
  caml_thread_t th = (caml_thread_t) thread;
  switch (th->status) {
  case SUSPENDED:
    th->status = RUNNABLE;
    Assign(th->retval, RESUMED_WAKEUP);
    break;
  case KILLED:
    failwith("Thread.wakeup: killed thread");
  default:
    failwith("Thread.wakeup: thread not suspended");
  }
  return Val_unit;
}

/* Return the current thread */

value thread_self(value unit)         /* ML */
{
  Assert(curr_thread != NULL);
  return (value) curr_thread;
}

/* Kill a thread */

value thread_kill(value thread)       /* ML */
{
  value retval = Val_unit;
  caml_thread_t th = (caml_thread_t) thread;
  if (th->status == KILLED) failwith("Thread.kill: killed thread");
  /* Don't paint ourselves in a corner */
  if (th == th->next) failwith("Thread.kill: cannot kill the last thread");
  /* This thread is no longer waiting on anything */
  th->status = KILLED;
  /* If this is the current thread, activate another one */
  if (th == curr_thread) {
    Begin_root(thread);
    retval = schedule_thread();
    th = (caml_thread_t) thread;
    End_roots();
  }
  /* Remove thread from the doubly-linked list */
  Assign(th->prev->next, th->next);
  Assign(th->next->prev, th->prev);
  /* Free its resources */
  stat_free((char *) th->stack_low);
  th->stack_low = NULL;
  th->stack_high = NULL;
  th->stack_threshold = NULL;
  th->sp = NULL;
  th->trapsp = NULL;
  if (th->backtrace_buffer != NULL) {
    free(th->backtrace_buffer);
    th->backtrace_buffer = NULL;
  }
  return retval;
}

/* Print uncaught exception and backtrace */

value thread_uncaught_exception(value exn)  /* ML */
{
  char * msg = format_caml_exception(exn);
  fprintf(stderr, "Thread %d killed on uncaught exception %s\n",
          Int_val(curr_thread->ident), msg);
  free(msg);
  if (backtrace_active) print_exception_backtrace();
  fflush(stderr);
  return Val_unit;
}

/* Set a list of file descriptors in a fdset */

static void add_fdlist_to_set(value fdl, fd_set *set)
{
  for (/*nothing*/; fdl != NO_FDS; fdl = Field(fdl, 1)) {
    int fd = Int_val(Field(fdl, 0));
    /* Ignore funky file descriptors, which can cause crashes */
    if (fd >= 0 && fd < FD_SETSIZE) FD_SET(fd, set);
  }
}

/* Build the intersection of a list and a fdset (the list of file descriptors
   which are both in the list and in the fdset). */

static value inter_fdlist_set(value fdl, fd_set *set, int *count)
{
  value res = Val_unit;
  value cons;

  Begin_roots2(fdl, res);
    for (res = NO_FDS; fdl != NO_FDS; fdl = Field(fdl, 1)) {
      int fd = Int_val(Field(fdl, 0));
      if (FD_ISSET(fd, set)) {
        cons = alloc_small(2, 0);
        Field(cons, 0) = Val_int(fd);
        Field(cons, 1) = res;
        res = cons;
        FD_CLR(fd, set); /* wake up only one thread per fd ready */
        (*count)--;
      }
    }
  End_roots();
  return res;
}

/* Find closed file descriptors in a waiting list and set them to 1 in
   the given fdset */

static void find_bad_fd(int fd, fd_set *set)
{
  struct stat s;
  if (fd >= 0 && fd < FD_SETSIZE && fstat(fd, &s) == -1 && errno == EBADF)
    FD_SET(fd, set);
}

static void find_bad_fds(value fdl, fd_set *set)
{
  for (/*nothing*/; fdl != NO_FDS; fdl = Field(fdl, 1))
    find_bad_fd(Int_val(Field(fdl, 0)), set);
}

/* Auxiliary function for allocating the result of a waitpid() call */

#if !(defined(WIFEXITED) && defined(WEXITSTATUS) && defined(WIFSTOPPED) && \
      defined(WSTOPSIG) && defined(WTERMSIG))
/* Assume old-style V7 status word */
#define WIFEXITED(status) (((status) & 0xFF) == 0)
#define WEXITSTATUS(status) (((status) >> 8) & 0xFF)
#define WIFSTOPPED(status) (((status) & 0xFF) == 0xFF)
#define WSTOPSIG(status) (((status) >> 8) & 0xFF)
#define WTERMSIG(status) ((status) & 0x3F)
#endif

#define TAG_WEXITED 0
#define TAG_WSIGNALED 1
#define TAG_WSTOPPED 2

static value alloc_process_status(int pid, int status)
{
  value st, res;

  if (WIFEXITED(status)) {
    st = alloc_small(1, TAG_WEXITED);
    Field(st, 0) = Val_int(WEXITSTATUS(status));
  }
  else if (WIFSTOPPED(status)) {
    st = alloc_small(1, TAG_WSTOPPED);
    Field(st, 0) = Val_int(WSTOPSIG(status));
  }
  else {
    st = alloc_small(1, TAG_WSIGNALED);
    Field(st, 0) = Val_int(WTERMSIG(status));
  }
  Begin_root(st);
    res = alloc_small(2, TAG_RESUMED_WAIT);
    Field(res, 0) = Val_int(pid);
    Field(res, 1) = st;
  End_roots();
  return res;
}

/* Restore the standard file descriptors to their initial state */

static void thread_restore_std_descr(void)
{
  if (stdin_initial_status != -1) fcntl(0, F_SETFL, stdin_initial_status);
  if (stdout_initial_status != -1) fcntl(1, F_SETFL, stdout_initial_status);
  if (stderr_initial_status != -1) fcntl(2, F_SETFL, stderr_initial_status);
}