Source

mutated_ocaml / asmcomp / i386 / emit_nt.mlp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: emit_nt.mlp 12800 2012-07-30 18:59:07Z doligez $ *)

(* Emission of Intel 386 assembly code, MASM syntax. *)

module StringSet =
  Set.Make(struct type t = string let compare = compare end)

open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux

(* Tradeoff between code size and code speed *)

let fastcode_flag = ref true

(* Layout of the stack frame *)

let stack_offset = ref 0

let frame_size () =                     (* includes return address *)
  !stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + 4

let slot_offset loc cl =
  match loc with
    Incoming n ->
      assert (n >= 0);
      frame_size() + n
  | Local n ->
      if cl = 0
      then !stack_offset + n * 4
      else !stack_offset + num_stack_slots.(0) * 4 + n * 8
  | Outgoing n ->
      assert (n >= 0);
      n
(* Record symbols used and defined - at the end generate extern for those
   used but not defined *)

let symbols_defined = ref StringSet.empty
let symbols_used = ref StringSet.empty

let add_def_symbol s =
  symbols_defined := StringSet.add s !symbols_defined

let add_used_symbol s =
  symbols_used := StringSet.add s !symbols_used

let emit_symbol s =
  emit_string "_"; Emitaux.emit_symbol '$' s

let emit_int32 n = emit_printf "0%lxh" n

(* Output a label *)

let emit_label lbl =
  emit_string "L"; emit_int lbl

let emit_data_label lbl =
  emit_string "Ld"; emit_int lbl

(* Output an align directive. *)

let emit_align n = `	ALIGN	{emit_int n}\n`

(* Output a pseudo-register *)

let emit_reg = function
    { loc = Reg r } ->
      emit_string (register_name r)
  | { loc = Stack(Incoming n | Outgoing n) } when n < 0 ->
      `{emit_symbol "caml_extra_params"} + {emit_int (n + 64)}`
  | { loc = Stack s; typ = Float } as r ->
      let ofs = slot_offset s (register_class r) in
      `REAL8 PTR {emit_int ofs}[esp]`
  | { loc = Stack s } as r ->
      let ofs = slot_offset s (register_class r) in
      `DWORD PTR {emit_int ofs}[esp]`
  | { loc = Unknown } ->
      fatal_error "Emit.emit_reg"

(* Output a reference to the lower 8 bits or lower 16 bits of a register *)

let reg_low_byte_name = [| "al"; "bl"; "cl"; "dl" |]
let reg_low_half_name = [| "ax"; "bx"; "cx"; "dx"; "si"; "di"; "bp" |]

let emit_reg8 r =
  match r.loc with
    Reg r when r < 4 -> emit_string (reg_low_byte_name.(r))
  | _ -> fatal_error "Emit.emit_reg8"

let emit_reg16 r =
  match r.loc with
    Reg r when r < 7 -> emit_string (reg_low_half_name.(r))
  | _ -> fatal_error "Emit.emit_reg16"

(* Check if the given register overlaps (same location) with the given
   array of registers *)

let register_overlap reg arr =
  try
    for i = 0 to Array.length arr - 1 do
      if reg.loc = arr.(i).loc then raise Exit
    done;
    false
  with Exit ->
    true

(* Output an addressing mode *)

let emit_signed_int d =
  if d > 0 then emit_char '+';
  if d <> 0 then emit_int d

let emit_addressing addr r n =
  match addr with
    Ibased(s, d) ->
      add_used_symbol s;
      `{emit_symbol s}{emit_signed_int d}`
  | Iindexed d ->
      `[{emit_reg r.(n)}{emit_signed_int d}]`
  | Iindexed2 d ->
      `[{emit_reg r.(n)}+{emit_reg r.(n+1)}{emit_signed_int d}]`
  | Iscaled(2, d) ->
      `[{emit_reg r.(n)}+{emit_reg r.(n)}{emit_signed_int d}]`
  | Iscaled(scale, d) ->
      `[{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]`
  | Iindexed2scaled(scale, d) ->
      `[{emit_reg r.(n)}+{emit_reg r.(n+1)}*{emit_int scale}{emit_signed_int d}]`

(* Record live pointers at call points *)

let record_frame_label live dbg =
  let lbl = new_label() in
  let live_offset = ref [] in
  Reg.Set.iter
    (function
        {typ = Addr; loc = Reg r} ->
          live_offset := ((r lsl 1) + 1) :: !live_offset
      | {typ = Addr; loc = Stack s} as reg ->
          live_offset := slot_offset s (register_class reg) :: !live_offset
      | _ -> ())
    live;
  frame_descriptors :=
    { fd_lbl = lbl;
      fd_frame_size = frame_size();
      fd_live_offset = !live_offset;
      fd_debuginfo = dbg } :: !frame_descriptors;
  lbl

let record_frame live dbg =
  let lbl = record_frame_label live dbg in `{emit_label lbl}:\n`

(* Record calls to the GC -- we've moved them out of the way *)

type gc_call =
  { gc_lbl: label;                      (* Entry label *)
    gc_return_lbl: label;               (* Where to branch after GC *)
    gc_frame: label }                   (* Label of frame descriptor *)

let call_gc_sites = ref ([] : gc_call list)

let emit_call_gc gc =
  `{emit_label gc.gc_lbl}:	call	_caml_call_gc\n`;
  `{emit_label gc.gc_frame}:	jmp	{emit_label gc.gc_return_lbl}\n`

(* Record calls to caml_ml_array_bound_error.
   In -g mode, we maintain one call to caml_ml_array_bound_error
   per bound check site.  Without -g, we can share a single call. *)

type bound_error_call =
  { bd_lbl: label;                      (* Entry label *)
    bd_frame: label }                   (* Label of frame descriptor *)

let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0

let bound_error_label dbg =
  if !Clflags.debug then begin
    let lbl_bound_error = new_label() in
    let lbl_frame = record_frame_label Reg.Set.empty dbg in
    bound_error_sites :=
     { bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
   lbl_bound_error
 end else begin
   if !bound_error_call = 0 then bound_error_call := new_label();
   !bound_error_call
 end

let emit_call_bound_error bd =
  `{emit_label bd.bd_lbl}:	call	_caml_ml_array_bound_error\n`;
  `{emit_label bd.bd_frame}:\n`

let emit_call_bound_errors () =
  List.iter emit_call_bound_error !bound_error_sites;
  if !bound_error_call > 0 then
    `{emit_label !bound_error_call}:	call	_caml_ml_array_bound_error\n`

(* Names for instructions *)

let instr_for_intop = function
    Iadd -> "add"
  | Isub -> "sub"
  | Imul -> "imul"
  | Iand -> "and"
  | Ior -> "or"
  | Ixor -> "xor"
  | Ilsl -> "sal"
  | Ilsr -> "shr"
  | Iasr -> "sar"
  | _ -> fatal_error "Emit: instr_for_intop"

let instr_for_floatop = function
    Inegf -> "fchs"
  | Iabsf -> "fabs"
  | Iaddf -> "fadd"
  | Isubf -> "fsub"
  | Imulf -> "fmul"
  | Idivf -> "fdiv"
  | Ispecific Isubfrev -> "fsubr"
  | Ispecific Idivfrev -> "fdivr"
  | _ -> fatal_error "Emit: instr_for_floatop"

let instr_for_floatop_reversed = function
    Iaddf -> "fadd"
  | Isubf -> "fsubr"
  | Imulf -> "fmul"
  | Idivf -> "fdivr"
  | Ispecific Isubfrev -> "fsub"
  | Ispecific Idivfrev -> "fdiv"
  | _ -> fatal_error "Emit: instr_for_floatop_reversed"

let instr_for_floatarithmem = function
    Ifloatadd -> "fadd"
  | Ifloatsub -> "fsub"
  | Ifloatsubrev -> "fsubr"
  | Ifloatmul -> "fmul"
  | Ifloatdiv -> "fdiv"
  | Ifloatdivrev -> "fdivr"

let name_for_cond_branch = function
    Isigned Ceq -> "e"     | Isigned Cne -> "ne"
  | Isigned Cle -> "le"    | Isigned Cgt -> "g"
  | Isigned Clt -> "l"     | Isigned Cge -> "ge"
  | Iunsigned Ceq -> "e"   | Iunsigned Cne -> "ne"
  | Iunsigned Cle -> "be"  | Iunsigned Cgt -> "a"
  | Iunsigned Clt -> "b"   | Iunsigned Cge -> "ae"

(* Output an = 0 or <> 0 test. *)

let output_test_zero arg =
  match arg.loc with
    Reg r -> `	test   {emit_reg arg}, {emit_reg arg}\n`
  | _     -> `	cmp    {emit_reg arg}, 0\n`

(* Deallocate the stack frame before a return or tail call *)

let output_epilogue () =
  let n = frame_size() - 4 in
  if n > 0 then `	add    esp, {emit_int n}\n`

(* Determine if the given register is the top of the floating-point stack *)

let is_tos = function { loc = Reg _; typ = Float } -> true | _ -> false

(* Emit the code for a floating-point comparison *)

let emit_float_test cmp neg arg lbl =
  let actual_cmp =
    match (is_tos arg.(0), is_tos arg.(1)) with
      (true, true) ->
      (* both args on top of FP stack *)
      `	fcompp\n`;
      cmp
    | (true, false) ->
      (* first arg on top of FP stack *)
      `	fcomp	{emit_reg arg.(1)}\n`;
      cmp
    | (false, true) ->
      (* second arg on top of FP stack *)
      `	fcomp	{emit_reg arg.(0)}\n`;
      Cmm.swap_comparison cmp
    | (false, false) ->
      `	fld	{emit_reg arg.(0)}\n`;
      `	fcomp	{emit_reg arg.(1)}\n`;
      cmp
    in
  `	fnstsw	ax\n`;
  begin match actual_cmp with
    Ceq ->
      if neg then begin
      `	and	ah, 68\n`;
      `	xor	ah, 64\n`;
      `	jne	`
      end else begin
      `	and	ah, 69\n`;
      `	cmp	ah, 64\n`;
      `	je	`
      end
  | Cne ->
      if neg then begin
      `	and	ah, 69\n`;
      `	cmp	ah, 64\n`;
      `	je	`
      end else begin
      `	and	ah, 68\n`;
      `	xor	ah, 64\n`;
      `	jne	`
      end
  | Cle ->
      `	and	ah, 69\n`;
      `	dec	ah\n`;
      `	cmp	ah, 64\n`;
      if neg
      then `	jae	`
      else `	jb	`
  | Cge ->
      `	and	ah, 5\n`;
      if neg
      then `	jne	`
      else `	je	`
  | Clt ->
      `	and	ah, 69\n`;
      `	cmp	ah, 1\n`;
      if neg
      then `	jne	`
      else `	je	`
  | Cgt ->
      `	and	ah, 69\n`;
      if neg
      then `	jne	`
      else `	je	`
  end;
  `{emit_label lbl}\n`

(* Emit a Ifloatspecial instruction *)

let emit_floatspecial = function
    "atan"  -> `	fld1\n\tfpatan\n`
  | "atan2" -> `	fpatan\n`
  | "cos"   -> `	fcos\n`
  | "log"   -> `	fldln2\n\tfxch\n\tfyl2x\n`
  | "log10" -> `	fldlg2\n\tfxch\n\tfyl2x\n`
  | "sin"   -> `	fsin\n`
  | "sqrt"  -> `	fsqrt\n`
  | "tan"   -> `	fptan\n\tfstp st(0)\n`
  | _ -> assert false

(* Output the assembly code for an instruction *)

(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0

let float_constants = ref ([] : (int * string) list)

let emit_instr i =
    match i.desc with
      Lend -> ()
    | Lop(Imove | Ispill | Ireload) ->
        let src = i.arg.(0) and dst = i.res.(0) in
        if src.loc <> dst.loc then begin
          if src.typ = Float then
            if is_tos src then
              `	fstp	{emit_reg dst}\n`
            else if is_tos dst then
              `	fld	{emit_reg src}\n`
            else begin
              `	fld	{emit_reg src}\n`;
              `	fstp	{emit_reg dst}\n`
            end
          else
            `	mov	{emit_reg dst}, {emit_reg src}\n`
        end
    | Lop(Iconst_int n) ->
        if n = 0n then begin
          match i.res.(0).loc with
            Reg n -> `	xor	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
          | _     -> `	mov	{emit_reg i.res.(0)}, 0\n`
        end else
          `	mov	{emit_reg i.res.(0)}, {emit_nativeint n}\n`
    | Lop(Iconst_float s) ->
        begin match Int64.bits_of_float (float_of_string s) with
        | 0x0000_0000_0000_0000L ->       (* +0.0 *)
          `	fldz\n`
        | 0x8000_0000_0000_0000L ->       (* -0.0 *)
          `	fldz\n	fchs\n`
        | 0x3FF0_0000_0000_0000L ->       (*  1.0 *)
          `	fld1\n`
        | 0xBFF0_0000_0000_0000L ->       (* -1.0 *)
          `	fld1\n	fchs\n`
        | _ ->
          let lbl = new_label() in
          float_constants := (lbl, s) :: !float_constants;
          `	fld	{emit_label lbl}\n`
        end
    | Lop(Iconst_symbol s) ->
        add_used_symbol s;
        `	mov	{emit_reg i.res.(0)}, OFFSET {emit_symbol s}\n`
    | Lop(Icall_ind) ->
        `	call	{emit_reg i.arg.(0)}\n`;
        record_frame i.live i.dbg
    | Lop(Icall_imm s) ->
        add_used_symbol s;
        `	call	{emit_symbol s}\n`;
        record_frame i.live i.dbg
    | Lop(Itailcall_ind) ->
        output_epilogue();
        `	jmp	{emit_reg i.arg.(0)}\n`
    | Lop(Itailcall_imm s) ->
        if s = !function_name then
          `	jmp	{emit_label !tailrec_entry_point}\n`
        else begin
          output_epilogue();
          add_used_symbol s;
          `	jmp	{emit_symbol s}\n`
        end
    | Lop(Iextcall(s, alloc)) ->
        add_used_symbol s ;
        if alloc then begin
          `	mov	eax, OFFSET {emit_symbol s}\n`;
          `	call	_caml_c_call\n`;
          record_frame i.live i.dbg
        end else begin
          `	call	{emit_symbol s}\n`
        end
    | Lop(Istackoffset n) ->
        if n >= 0
        then `	sub	esp, {emit_int n}\n`
        else `	add	esp, {emit_int(-n)}\n`;
        stack_offset := !stack_offset + n
    | Lop(Iload(chunk, addr)) ->
        let dest = i.res.(0) in
        begin match chunk with
          | Word | Thirtytwo_signed | Thirtytwo_unsigned ->
            `	mov	{emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n`
          | Byte_unsigned ->
              `	movzx	{emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
          | Byte_signed ->
              `	movsx	{emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
          | Sixteen_unsigned ->
              `	movzx	{emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
          | Sixteen_signed ->
              `	movsx	{emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
          | Single ->
            `	fld	REAL4 PTR {emit_addressing addr i.arg 0}\n`
          | Double | Double_u ->
            `	fld	REAL8 PTR {emit_addressing addr i.arg 0}\n`
        end
    | Lop(Istore(chunk, addr)) ->
        begin match chunk with
          | Word | Thirtytwo_signed | Thirtytwo_unsigned ->
            `	mov	DWORD PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n`
          | Byte_unsigned | Byte_signed ->
            `	mov	BYTE PTR {emit_addressing addr i.arg 1}, {emit_reg8 i.arg.(0)}\n`
          | Sixteen_unsigned | Sixteen_signed ->
            `	mov	WORD PTR {emit_addressing addr i.arg 1}, {emit_reg16 i.arg.(0)}\n`
          | Single ->
              if is_tos i.arg.(0) then
                `	fstp	REAL4 PTR {emit_addressing addr i.arg 1}\n`
              else begin
                `	fld	{emit_reg i.arg.(0)}\n`;
                `	fstp	REAL4 PTR {emit_addressing addr i.arg 1}\n`
              end
          | Double | Double_u ->
              if is_tos i.arg.(0) then
                `	fstp	REAL8 PTR {emit_addressing addr i.arg 1}\n`
              else begin
                `	fld	{emit_reg i.arg.(0)}\n`;
                `	fstp	REAL8 PTR {emit_addressing addr i.arg 1}\n`
              end
        end
    | Lop(Ialloc n) ->
        if !fastcode_flag then begin
          let lbl_redo = new_label() in
          `{emit_label lbl_redo}:	mov	eax, _caml_young_ptr\n`;
          `	sub	eax, {emit_int n}\n`;
          `	mov	_caml_young_ptr, eax\n`;
          `	cmp	eax, _caml_young_limit\n`;
          let lbl_call_gc = new_label() in
          let lbl_frame = record_frame_label i.live Debuginfo.none in
          `	jb	{emit_label lbl_call_gc}\n`;
          `	lea	{emit_reg i.res.(0)}, [eax+4]\n`;
          call_gc_sites :=
            { gc_lbl = lbl_call_gc;
              gc_return_lbl = lbl_redo;
              gc_frame = lbl_frame } :: !call_gc_sites
        end else begin
          begin match n with
            8  -> `	call	_caml_alloc1\n`
          | 12 -> `	call	_caml_alloc2\n`
          | 16 -> `	call	_caml_alloc3\n`
          | _  -> `	mov	eax, {emit_int n}\n`;
                  `	call	_caml_allocN\n`
          end;
          `{record_frame i.live Debuginfo.none}        lea     {emit_reg i.res.(0)}, [eax+4]\n`
        end
    | Lop(Iintop(Icomp cmp)) ->
        `	cmp	{emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`;
        let b = name_for_cond_branch cmp in
        `	set{emit_string b}      al\n`;
        `	movzx	{emit_reg i.res.(0)}, al\n`
    | Lop(Iintop_imm(Icomp cmp, n)) ->
        `	cmp	{emit_reg i.arg.(0)}, {emit_int n}\n`;
        let b = name_for_cond_branch cmp in
        `	set{emit_string b}      al\n`;
        `	movzx	{emit_reg i.res.(0)}, al\n`
    | Lop(Iintop Icheckbound) ->
        let lbl = bound_error_label i.dbg in
        `	cmp	{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
        `	jbe	{emit_label lbl}\n`
    | Lop(Iintop_imm(Icheckbound, n)) ->
        let lbl = bound_error_label i.dbg in
        `	cmp	{emit_reg i.arg.(0)}, {emit_int n}\n`;
        `	jbe	{emit_label lbl}\n`
    | Lop(Iintop(Idiv | Imod)) ->
        `	cdq\n`;
        `	idiv	{emit_reg i.arg.(1)}\n`
    | Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
        (* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %ecx *)
        `	{emit_string(instr_for_intop op)}	{emit_reg i.res.(0)}, cl\n`
    | Lop(Iintop op) ->
        (* We have i.arg.(0) = i.res.(0) *)
        `	{emit_string(instr_for_intop op)}	{emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`
    | Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
        `	lea	{emit_reg i.res.(0)}, [{emit_reg i.arg.(0)}+{emit_int n}]\n`
    | Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
        `	inc	{emit_reg i.res.(0)}\n`
    | Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
        `	dec	{emit_reg i.res.(0)}\n`
    | Lop(Iintop_imm(Idiv, n)) ->
        let l = Misc.log2 n in
        let lbl = new_label() in
        output_test_zero i.arg.(0);
        `	jge	{emit_label lbl}\n`;
        `	add	{emit_reg i.arg.(0)}, {emit_int(n-1)}\n`;
        `{emit_label lbl}:	sar	{emit_reg i.arg.(0)}, {emit_int l}\n`
    | Lop(Iintop_imm(Imod, n)) ->
        let lbl = new_label() in
        `	mov	eax, {emit_reg i.arg.(0)}\n`;
        `	test	eax, eax\n`;
        `	jge	{emit_label lbl}\n`;
        `	add	eax, {emit_int(n-1)}\n`;
        `{emit_label lbl}:	and	eax, {emit_int(-n)}\n`;
        `	sub	{emit_reg i.arg.(0)}, eax\n`
    | Lop(Iintop_imm(op, n)) ->
        (* We have i.arg.(0) = i.res.(0) *)
        `	{emit_string(instr_for_intop op)}	{emit_reg i.res.(0)}, {emit_int n}\n`
    | Lop(Inegf | Iabsf as floatop) ->
        if not (is_tos i.arg.(0)) then
          `	fld	{emit_reg i.arg.(0)}\n`;
        `	{emit_string(instr_for_floatop floatop)}\n`
    | Lop(Iaddf | Isubf | Imulf | Idivf | Ispecific(Isubfrev | Idivfrev)
          as floatop) ->
        begin match (is_tos i.arg.(0), is_tos i.arg.(1)) with
          (true, true) ->
          (* both operands on top of FP stack *)
          `	{emit_string(instr_for_floatop_reversed floatop)}\n`
        | (true, false) ->
          (* first operand on stack *)
          `	{emit_string(instr_for_floatop floatop)}	{emit_reg i.arg.(1)}\n`
        | (false, true) ->
          (* second operand on stack *)
          `	{emit_string(instr_for_floatop_reversed floatop)}	{emit_reg i.arg.(0)}\n`
        | (false, false) ->
          (* both operands in memory *)
          `	fld	{emit_reg i.arg.(0)}\n`;
          `	{emit_string(instr_for_floatop floatop)}	{emit_reg i.arg.(1)}\n`
        end
    | Lop(Ifloatofint) ->
        begin match i.arg.(0).loc with
          Stack s ->
            `	fild	{emit_reg i.arg.(0)}\n`
        | _ ->
            `	push	{emit_reg i.arg.(0)}\n`;
            `	fild	DWORD PTR [esp]\n`;
            `	add	esp, 4\n`
        end
    | Lop(Iintoffloat) ->
        if not (is_tos i.arg.(0)) then
          `	fld	{emit_reg i.arg.(0)}\n`;
        stack_offset := !stack_offset - 8;
        `	sub	esp, 8\n`;
        `	fnstcw	[esp+4]\n`;
        `	mov	ax, [esp+4]\n`;
        `	mov	ah, 12\n`;
        `	mov	[esp], ax\n`;
        `	fldcw	[esp]\n`;
        begin match i.res.(0).loc with
          Stack s ->
            `	fistp	{emit_reg i.res.(0)}\n`
        | _ ->
            `	fistp	DWORD PTR [esp]\n`;
            `	mov	{emit_reg i.res.(0)}, [esp]\n`
        end;
        `	fldcw	[esp+4]\n`;
        `	add	esp, 8\n`;
        stack_offset := !stack_offset + 8
    | Lop(Ispecific(Ilea addr)) ->
        `	lea	{emit_reg i.res.(0)}, DWORD PTR {emit_addressing addr i.arg 0}\n`
    | Lop(Ispecific(Istore_int(n, addr))) ->
        `	mov	DWORD PTR {emit_addressing addr i.arg 0},{emit_nativeint n}\n`
    | Lop(Ispecific(Istore_symbol(s, addr))) ->
        add_used_symbol s ;
        `	mov	DWORD PTR {emit_addressing addr i.arg 0},OFFSET {emit_symbol s}\n`
    | Lop(Ispecific(Ioffset_loc(n, addr))) ->
        `	add	DWORD PTR {emit_addressing addr i.arg 0},{emit_int n}\n`
    | Lop(Ispecific(Ipush)) ->
        (* Push arguments in reverse order *)
        for n = Array.length i.arg - 1 downto 0 do
          let r = i.arg.(n) in
          match r with
            {loc = Reg rn; typ = Float} ->
              `	sub	esp, 8\n`;
              `	fstp	REAL8 PTR 0[esp]\n`;
              stack_offset := !stack_offset + 8
          | {loc = Stack sl; typ = Float} ->
              let ofs = slot_offset sl 1 in
              `	push	DWORD PTR {emit_int (ofs + 4)}[esp]\n`;
              `	push	DWORD PTR {emit_int (ofs + 4)}[esp]\n`;
              stack_offset := !stack_offset + 8
          | _ ->
              `	push	{emit_reg r}\n`;
              stack_offset := !stack_offset + 4
        done
    | Lop(Ispecific(Ipush_int n)) ->
        `	push	{emit_nativeint n}\n`;
        stack_offset := !stack_offset + 4
    | Lop(Ispecific(Ipush_symbol s)) ->
        add_used_symbol s;
        `	push	OFFSET {emit_symbol s}\n`;
        stack_offset := !stack_offset + 4
    | Lop(Ispecific(Ipush_load addr)) ->
        `	push	DWORD PTR {emit_addressing addr i.arg 0}\n`;
        stack_offset := !stack_offset + 4
    | Lop(Ispecific(Ipush_load_float addr)) ->
        `	push	DWORD PTR {emit_addressing (offset_addressing addr 4) i.arg 0}\n`;
        `	push	DWORD PTR {emit_addressing addr i.arg 0}\n`;
        stack_offset := !stack_offset + 8
    | Lop(Ispecific(Ifloatarithmem(double, op, addr))) ->
        if not (is_tos i.arg.(0)) then
          `	fld	{emit_reg i.arg.(0)}\n`;
        let size = if double then "REAL8" else "REAL4" in
        `	{emit_string(instr_for_floatarithmem op)}	{emit_string size} PTR {emit_addressing addr i.arg 1}\n`
    | Lop(Ispecific(Ifloatspecial s)) ->
        (* Push args on float stack if necessary *)
        for k = 0 to Array.length i.arg - 1 do
          if not (is_tos i.arg.(k)) then `	fld	{emit_reg i.arg.(k)}\n`
        done;
        (* Fix-up for binary instrs whose args were swapped *)
        if Array.length i.arg = 2 && is_tos i.arg.(1) then
          `	fxch	st(1)\n`;
        emit_floatspecial s
    | Lreloadretaddr ->
        ()
    | Lreturn ->
        output_epilogue();
        `	ret\n`
    | Llabel lbl ->
        `{emit_label lbl}:\n`
    | Lbranch lbl ->
        `	jmp	{emit_label lbl}\n`
    | Lcondbranch(tst, lbl) ->
        begin match tst with
          Itruetest ->
            output_test_zero i.arg.(0);
            `	jne	{emit_label lbl}\n`
        | Ifalsetest ->
            output_test_zero i.arg.(0);
            `	je	{emit_label lbl}\n`
        | Iinttest cmp ->
            `	cmp	{emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`;
            let b = name_for_cond_branch cmp in
            `	j{emit_string b}        {emit_label lbl}\n`
        | Iinttest_imm((Isigned Ceq | Isigned Cne |
                        Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
            output_test_zero i.arg.(0);
            let b = name_for_cond_branch cmp in
            `	j{emit_string b}	{emit_label lbl}\n`
        | Iinttest_imm(cmp, n) ->
            `	cmp	{emit_reg i.arg.(0)}, {emit_int n}\n`;
            let b = name_for_cond_branch cmp in
            `	j{emit_string b}	{emit_label lbl}\n`
        | Ifloattest(cmp, neg) ->
            emit_float_test cmp neg i.arg lbl
        | Ioddtest ->
            `	test	{emit_reg i.arg.(0)}, 1\n`;
            `	jne	{emit_label lbl}\n`
        | Ieventest ->
            `	test	{emit_reg i.arg.(0)}, 1\n`;
            `	je	{emit_label lbl}\n`
        end
    | Lcondbranch3(lbl0, lbl1, lbl2) ->
            `	cmp	{emit_reg i.arg.(0)}, 1\n`;
            begin match lbl0 with
              None -> ()
            | Some lbl -> `	jb	{emit_label lbl}\n`
            end;
            begin match lbl1 with
              None -> ()
            | Some lbl -> `	je	{emit_label lbl}\n`
            end;
            begin match lbl2 with
              None -> ()
            | Some lbl -> `	jg	{emit_label lbl}\n`
            end
    | Lswitch jumptbl ->
        let lbl = new_label() in
        `	jmp	[{emit_reg i.arg.(0)} * 4 + {emit_label lbl}]\n`;
        `	.DATA\n`;
        `{emit_label lbl}`;
        for i = 0 to Array.length jumptbl - 1 do
          `	DWORD	{emit_label jumptbl.(i)}\n`
        done;
        `	.CODE\n`
    | Lsetuptrap lbl ->
        `	call	{emit_label lbl}\n`
    | Lpushtrap ->
        `	push	_caml_exception_pointer\n`;
        `	mov	_caml_exception_pointer, esp\n`;
        stack_offset := !stack_offset + 8
    | Lpoptrap ->
        `	pop	_caml_exception_pointer\n`;
        `	add	esp, 4\n`;
        stack_offset := !stack_offset - 8
    | Lraise ->
        if !Clflags.debug then begin
          `	call	_caml_raise_exn\n`;
          record_frame Reg.Set.empty i.dbg
        end else begin
          `	mov	esp, _caml_exception_pointer\n`;
          `	pop	_caml_exception_pointer\n`;
          `	ret\n`
        end

let rec emit_all i =
  match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next

(* Emission of the floating-point constants *)

let emit_float s =
  (* MASM doesn't like floating-point constants such as 2e9.
     Turn them into 2.0e9. *)
  let pos_e = ref (-1) and pos_dot = ref (-1) in
  for i = 0 to String.length s - 1 do
    match s.[i] with
      'e'|'E' -> pos_e := i
    | '.'     -> pos_dot := i
    | _       -> ()
  done;
  if !pos_dot < 0 && !pos_e >= 0 then begin
    emit_string (String.sub s 0 !pos_e);
    emit_string ".0";
    emit_string (String.sub s !pos_e (String.length s - !pos_e))
  end else
    emit_string s

let emit_float_constant (lbl, cst) =
  `{emit_label lbl}     REAL8   {emit_float cst}\n`

(* Emission of a function declaration *)

let fundecl fundecl =
  function_name := fundecl.fun_name;
  fastcode_flag := fundecl.fun_fast;
  tailrec_entry_point := new_label();
  stack_offset := 0;
  float_constants := [];
  call_gc_sites := [];
  bound_error_sites := [];
  bound_error_call := 0;
  `	.CODE\n`;
  add_def_symbol fundecl.fun_name;
  emit_align 4;
  `	PUBLIC	{emit_symbol fundecl.fun_name}\n`;
  `{emit_symbol fundecl.fun_name}:\n`;
  let n = frame_size() - 4 in
  if n > 0 then
    `	sub	esp, {emit_int n}\n`;
  `{emit_label !tailrec_entry_point}:\n`;
  emit_all fundecl.fun_body;
  List.iter emit_call_gc !call_gc_sites;
  emit_call_bound_errors ();
  begin match !float_constants with
    [] -> ()
  | _  ->
      `	.DATA\n`;
      List.iter emit_float_constant !float_constants;
      float_constants := []
  end

(* Emission of data *)

let emit_item = function
    Cglobal_symbol s ->
      `	PUBLIC	{emit_symbol s}\n`;
  | Cdefine_symbol s ->
      add_def_symbol s ;
      `{emit_symbol s} LABEL DWORD\n`
  | Cdefine_label lbl ->
      `{emit_data_label lbl}	LABEL DWORD\n`
  | Cint8 n ->
      `	BYTE	{emit_int n}\n`
  | Cint16 n ->
      `	WORD	{emit_int n}\n`
  | Cint n ->
      `	DWORD	{emit_nativeint n}\n`
  | Cint32 n ->
      `	DWORD	{emit_nativeint n}\n`
  | Csingle f ->
      `	REAL4	{emit_float f}\n`
  | Cdouble f ->
      `	REAL8	{emit_float f}\n`
  | Csymbol_address s ->
      add_used_symbol s ;
      `	DWORD	{emit_symbol s}\n`
  | Clabel_address lbl ->
      `	DWORD	{emit_data_label lbl}\n`
  | Cstring s ->
      emit_bytes_directive "	BYTE	" s
  | Cskip n ->
      if n > 0 then `	BYTE	{emit_int n} DUP (?)\n`
  | Calign n ->
      emit_align n

let data l =
  `	.DATA\n`;
  List.iter emit_item l

(* Beginning / end of an assembly file *)

let begin_assembly() =
  `.386\n`;
  `	.MODEL	FLAT\n\n`;
  `	EXTERN _caml_young_ptr: DWORD\n`;
  `	EXTERN _caml_young_limit: DWORD\n`;
  `	EXTERN _caml_exception_pointer: DWORD\n`;
  `	EXTERN _caml_extra_params: DWORD\n`;
  `	EXTERN _caml_call_gc: PROC\n`;
  `	EXTERN _caml_c_call: PROC\n`;
  `	EXTERN _caml_allocN: PROC\n`;
  `	EXTERN _caml_alloc1: PROC\n`;
  `	EXTERN _caml_alloc2: PROC\n`;
  `	EXTERN _caml_alloc3: PROC\n`;
  `	EXTERN _caml_ml_array_bound_error: PROC\n`;
  `	EXTERN _caml_raise_exn: PROC\n`;
  `	.DATA\n`;
  let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
  add_def_symbol lbl_begin;
  `	PUBLIC	{emit_symbol lbl_begin}\n`;
  `{emit_symbol lbl_begin}	LABEL	DWORD\n`;
  `	.CODE\n`;
  let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
  add_def_symbol lbl_begin;
  `	PUBLIC	{emit_symbol lbl_begin}\n`;
  `{emit_symbol lbl_begin}	LABEL	DWORD\n`

let end_assembly() =
  `	.CODE\n`;
  let lbl_end = Compilenv.make_symbol (Some "code_end") in
  add_def_symbol lbl_end;
  `	PUBLIC	{emit_symbol lbl_end}\n`;
  `{emit_symbol lbl_end}	LABEL	DWORD\n`;
  `	.DATA\n`;
  let lbl_end = Compilenv.make_symbol (Some "data_end") in
  add_def_symbol lbl_end;
  `	PUBLIC	{emit_symbol lbl_end}\n`;
  `{emit_symbol lbl_end}	LABEL	DWORD\n`;
  `	DWORD	0\n`;
  let lbl = Compilenv.make_symbol (Some "frametable") in
  add_def_symbol lbl;
  `	PUBLIC	{emit_symbol lbl}\n`;
  `{emit_symbol lbl}`;
  emit_frames
    { efa_label = (fun l -> `	DWORD	{emit_label l}\n`);
      efa_16 = (fun n -> `	WORD	{emit_int n}\n`);
      efa_32 = (fun n -> `	DWORD	{emit_int32 n}\n`);
      efa_word = (fun n -> `	DWORD	{emit_int n}\n`);
      efa_align = emit_align;
      efa_label_rel = (fun lbl ofs ->
                           `	DWORD	{emit_label lbl} - THIS BYTE + {emit_int32 ofs}\n`);
      efa_def_label = (fun l -> `{emit_label l}	LABEL	DWORD\n`);
      efa_string = (fun s -> emit_bytes_directive  "	BYTE	" (s ^ "\000")) };
  `\n;External functions\n\n`;
  StringSet.iter
    (fun s ->
      if not (StringSet.mem s !symbols_defined) then
        `	EXTERN	{emit_symbol s}: PROC\n`)
    !symbols_used;
  symbols_used := StringSet.empty;
  symbols_defined := StringSet.empty;
  `END\n`