Source

mutated_ocaml / testsuite / tests / typing-recmod / t22ok.ml

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(* Tests for recursive modules *)

let test number result expected =
  if result = expected
  then Printf.printf "Test %d passed.\n" number
  else Printf.printf "Test %d FAILED.\n" number;
  flush stdout

(* Tree of sets *)

module rec A
 : sig
     type t = Leaf of int | Node of ASet.t
     val compare: t -> t -> int
   end
 = struct
     type t = Leaf of int | Node of ASet.t
     let compare x y =
       match (x,y) with
         (Leaf i, Leaf j) -> Pervasives.compare i j
       | (Leaf i, Node t) -> -1
       | (Node s, Leaf j) -> 1
       | (Node s, Node t) -> ASet.compare s t
   end

and ASet : Set.S with type elt = A.t = Set.Make(A)
;;

let _ =
  let x = A.Node (ASet.add (A.Leaf 3) (ASet.singleton (A.Leaf 2))) in
  let y = A.Node (ASet.add (A.Leaf 1) (ASet.singleton x)) in
  test 10 (A.compare x x) 0;
  test 11 (A.compare x (A.Leaf 3)) 1;
  test 12 (A.compare (A.Leaf 0) x) (-1);
  test 13 (A.compare y y) 0;
  test 14 (A.compare x y) 1
;;

(* Simple value recursion *)

module rec Fib
  : sig val f : int -> int end
  = struct let f x = if x < 2 then 1 else Fib.f(x-1) + Fib.f(x-2) end
;;

let _ =
  test 20 (Fib.f 10) 89
;;

(* Update function by infix *)

module rec Fib2
  : sig val f : int -> int end
  = struct let rec g x = Fib2.f(x-1) + Fib2.f(x-2)
               and f x = if x < 2 then 1 else g x
    end
;;

let _ =
  test 21 (Fib2.f 10) 89
;;

(* Early application *)

let _ =
  let res =
    try
      let module A =
        struct
          module rec Bad
            : sig val f : int -> int end
            = struct let f = let y = Bad.f 5 in fun x -> x+y end
          end in
      false
    with Undefined_recursive_module _ ->
      true in
  test 30 res true
;;

(* Early strict evaluation *)

(*
module rec Cyclic
  : sig val x : int end
  = struct let x = Cyclic.x + 1 end
;;
*)

(* Reordering of evaluation based on dependencies *)

module rec After
  : sig val x : int end
  = struct let x = Before.x + 1 end
and Before
  : sig val x : int end
  = struct let x = 3 end
;;

let _ =
  test 40 After.x 4
;;

(* Type identity between A.t and t within A's definition *)

module rec Strengthen
  : sig type t val f : t -> t end
  = struct
      type t = A | B
      let _ = (A : Strengthen.t)
      let f x = if true then A else Strengthen.f B
    end
;;

module rec Strengthen2
  : sig type t
        val f : t -> t
        module M : sig type u end
        module R : sig type v end
    end
  = struct
      type t = A | B
      let _ = (A : Strengthen2.t)
      let f x = if true then A else Strengthen2.f B
      module M =
        struct
          type u = C
          let _ = (C: Strengthen2.M.u)
        end
      module rec R : sig type v  = Strengthen2.R.v end =
        struct
          type v = D
          let _ = (D : R.v)
          let _ = (D : Strengthen2.R.v)
        end
    end
;;

(* Polymorphic recursion *)

module rec PolyRec
  : sig
      type 'a t = Leaf of 'a | Node of 'a list t * 'a list t
      val depth: 'a t -> int
    end
  = struct
      type 'a t = Leaf of 'a | Node of 'a list t * 'a list t
      let x = (PolyRec.Leaf 1 : int t)
      let depth = function
        Leaf x -> 0
      | Node(l,r) -> 1 + max (PolyRec.depth l) (PolyRec.depth r)
    end
;;

(* Wrong LHS signatures (PR#4336) *)

(*
module type ASig = sig type a val a:a val print:a -> unit end
module type BSig = sig type b val b:b val print:b -> unit end

module A = struct type a = int let a = 0 let print = print_int end
module B = struct type b = float let b = 0.0 let print = print_float end

module MakeA (Empty:sig end) : ASig = A
module MakeB (Empty:sig end) : BSig = B

module
   rec NewA : ASig = MakeA (struct end)
   and NewB : BSig with type b = NewA.a = MakeB (struct end);;

*)

(* Expressions and bindings *)

module StringSet = Set.Make(String);;

module rec Expr
  : sig
      type t =
        Var of string
      | Const of int
      | Add of t * t
      | Binding of Binding.t * t
      val make_let: string -> t -> t -> t
      val fv: t -> StringSet.t
      val simpl: t -> t
    end
  = struct
      type t =
        Var of string
      | Const of int
      | Add of t * t
      | Binding of Binding.t * t
      let make_let id e1 e2 = Binding([id, e1], e2)
      let rec fv = function
        Var s -> StringSet.singleton s
      | Const n -> StringSet.empty
      | Add(t1,t2) -> StringSet.union (fv t1) (fv t2)
      | Binding(b,t) ->
          StringSet.union (Binding.fv b)
            (StringSet.diff (fv t) (Binding.bv b))
      let rec simpl = function
        Var s -> Var s
      | Const n -> Const n
      | Add(Const i, Const j) -> Const (i+j)
      | Add(Const 0, t) -> simpl t
      | Add(t, Const 0) -> simpl t
      | Add(t1,t2) -> Add(simpl t1, simpl t2)
      | Binding(b, t) -> Binding(Binding.simpl b, simpl t)
    end

and Binding
  : sig
      type t = (string * Expr.t) list
      val fv: t -> StringSet.t
      val bv: t -> StringSet.t
      val simpl: t -> t
    end
  = struct
      type t = (string * Expr.t) list
      let fv b =
        List.fold_left (fun v (id,e) -> StringSet.union v (Expr.fv e))
                       StringSet.empty b
      let bv b =
        List.fold_left (fun v (id,e) -> StringSet.add id v)
                       StringSet.empty b
      let simpl b =
        List.map (fun (id,e) -> (id, Expr.simpl e)) b
    end
;;

let _ =
  let e = Expr.make_let "x" (Expr.Add (Expr.Var "y", Expr.Const 0))
                            (Expr.Var "x") in
  let e' = Expr.make_let "x" (Expr.Var "y") (Expr.Var "x") in
  test 50 (StringSet.elements (Expr.fv e)) ["y"];
  test 51 (Expr.simpl e) e'
;;

(* Okasaki's bootstrapping *)

module type ORDERED =
  sig
    type t
    val eq: t -> t -> bool
    val lt: t -> t -> bool
    val leq: t -> t -> bool
  end

module type HEAP =
  sig
    module Elem: ORDERED
    type heap
    val empty: heap
    val isEmpty: heap -> bool
    val insert: Elem.t -> heap -> heap
    val merge: heap -> heap -> heap
    val findMin: heap -> Elem.t
    val deleteMin: heap -> heap
  end

module Bootstrap (MakeH: functor (Element:ORDERED) ->
                                    HEAP with module Elem = Element)
                 (Element: ORDERED) : HEAP with module Elem = Element =
  struct
    module Elem = Element
    module rec BE
    : sig type t = E | H of Elem.t * PrimH.heap
          val eq: t -> t -> bool
          val lt: t -> t -> bool
          val leq: t -> t -> bool
      end
    = struct
        type t = E | H of Elem.t * PrimH.heap
        let leq t1 t2 =
          match t1, t2 with
          | (H(x, _)), (H(y, _)) -> Elem.leq x y
          | H _, E -> false
          | E, H _ -> true
          | E, E -> true
        let eq t1 t2 =
          match t1, t2 with
          | (H(x, _)), (H(y, _)) -> Elem.eq x y
          | H _, E -> false
          | E, H _ -> false
          | E, E -> true
        let lt t1 t2 =
          match t1, t2 with
          | (H(x, _)), (H(y, _)) -> Elem.lt x y
          | H _, E -> false
          | E, H _ -> true
          | E, E -> false
      end
    and PrimH
    : HEAP with type Elem.t = BE.t
    = MakeH(BE)
    type heap = BE.t
    let empty = BE.E
    let isEmpty = function BE.E -> true | _ -> false
    let rec merge x y =
      match (x,y) with
        (BE.E, _) -> y
      | (_, BE.E) -> x
      | (BE.H(e1,p1) as h1), (BE.H(e2,p2) as h2) ->
          if Elem.leq e1 e2
          then BE.H(e1, PrimH.insert h2 p1)
          else BE.H(e2, PrimH.insert h1 p2)
    let insert x h =
      merge (BE.H(x, PrimH.empty)) h
    let findMin = function
        BE.E -> raise Not_found
      | BE.H(x, _) -> x
    let deleteMin = function
        BE.E -> raise Not_found
      | BE.H(x, p) ->
          if PrimH.isEmpty p then BE.E else begin
            match PrimH.findMin p with
            | (BE.H(y, p1)) ->
              let p2 = PrimH.deleteMin p in
              BE.H(y, PrimH.merge p1 p2)
            | BE.E -> assert false
          end
  end
;;

module LeftistHeap(Element: ORDERED): HEAP with module Elem = Element =
  struct
    module Elem = Element
    type heap = E | T of int * Elem.t * heap * heap
    let rank = function E -> 0 | T(r,_,_,_) -> r
    let make x a b =
      if rank a >= rank b
      then T(rank b + 1, x, a, b)
      else T(rank a + 1, x, b, a)
    let empty = E
    let isEmpty = function E -> true | _ -> false
    let rec merge h1 h2 =
      match (h1, h2) with
        (_, E) -> h1
      | (E, _) -> h2
      | (T(_, x1, a1, b1), T(_, x2, a2, b2)) ->
          if Elem.leq x1 x2
          then make x1 a1 (merge b1 h2)
          else make x2 a2 (merge h1 b2)
    let insert x h = merge (T(1, x, E, E)) h
    let findMin = function
      E -> raise Not_found
    | T(_, x, _, _) -> x
    let deleteMin = function
      E -> raise Not_found
    | T(_, x, a, b) -> merge a b
  end
;;

module Ints =
  struct
    type t = int
    let eq = (=)
    let lt = (<)
    let leq = (<=)
  end
;;

module C = Bootstrap(LeftistHeap)(Ints);;

let _ =
  let h = List.fold_right C.insert [6;4;8;7;3;1] C.empty in
  test 60 (C.findMin h) 1;
  test 61 (C.findMin (C.deleteMin h)) 3;
  test 62 (C.findMin (C.deleteMin (C.deleteMin h))) 4
;;

(* Classes *)

module rec Class1
  : sig
      class c : object method m : int -> int end
    end
  = struct
      class c =
        object
          method m x = if x <= 0 then x else (new Class2.d)#m x
        end
    end
and Class2
  : sig
      class d : object method m : int -> int end
    end
  = struct
      class d =
        object(self)
          inherit Class1.c as super
          method m (x:int) = super#m 0
        end
    end
;;

let _ =
  test 70 ((new Class1.c)#m 7) 0
;;

let _ =
  try
    let module A = struct
       module rec BadClass1
         : sig
             class c : object method m : int end
           end
         = struct
             class c = object method m = 123 end
           end
       and BadClass2
         : sig
             val x: int
           end
         = struct
             let x = (new BadClass1.c)#m
           end
    end in
      test 71 true false
  with Undefined_recursive_module _ ->
    test 71 true true
;;

(* Coercions *)

module rec Coerce1
  : sig
      val g: int -> int
      val f: int -> int
    end
  = struct
      module A = (Coerce1: sig val f: int -> int end)
      let g x = x
      let f x = if x <= 0 then 1 else A.f (x-1) * x
    end
;;

let _ =
  test 80 (Coerce1.f 10) 3628800
;;

module CoerceF(S: sig end) = struct
  let f1 () = 1
  let f2 () = 2
  let f3 () = 3
  let f4 () = 4
  let f5 () = 5
end

module rec Coerce2: sig val f1: unit -> int end = CoerceF(Coerce3)
       and Coerce3: sig end = struct end
;;

let _ =
  test 81 (Coerce2.f1 ()) 1
;;

module Coerce4(A : sig val f : int -> int end) = struct
  let x = 0
  let at a = A.f a
end

module rec Coerce5
  : sig val blabla: int -> int val f: int -> int end
  = struct let blabla x = 0 let f x = 5 end
and Coerce6
  : sig val at: int -> int end
  = Coerce4(Coerce5)

let _ =
  test 82 (Coerce6.at 100) 5
;;

(* Miscellaneous bug reports *)

module rec F
  : sig type t = X of int | Y of int
        val f: t -> bool
    end
  = struct
      type t = X of int | Y of int
      let f = function
        | X _ -> false
        | _ -> true
    end;;

let _ =
  test 100 (F.f (F.X 1)) false;
  test 101 (F.f (F.Y 2)) true

(* PR#4316 *)
module G(S : sig val x : int Lazy.t end) = struct include S end

module M1 = struct let x = lazy 3 end

let _ = Lazy.force M1.x

module rec M2 : sig val x : int Lazy.t end = G(M1)

let _ =
  test 102 (Lazy.force M2.x) 3

let _ = Gc.full_major()   (* will shortcut forwarding in M1.x *)

module rec M3 : sig val x : int Lazy.t end = G(M1)

let _ =
  test 103 (Lazy.force M3.x) 3


(** Pure type-checking tests: see recmod/*.ml  *)