Source

mutated_ocaml / typing / typecore.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: typecore.ml 12726 2012-07-18 03:34:36Z garrigue $ *)

(* Typechecking for the core language *)

open Misc
open Asttypes
open Parsetree
open Types
open Typedtree
open Btype
open Ctype

type error =
    Polymorphic_label of Longident.t
  | Constructor_arity_mismatch of Longident.t * int * int
  | Label_mismatch of Longident.t * (type_expr * type_expr) list
  | Pattern_type_clash of (type_expr * type_expr) list
  | Multiply_bound_variable of string
  | Orpat_vars of Ident.t
  | Expr_type_clash of (type_expr * type_expr) list
  | Apply_non_function of type_expr
  | Apply_wrong_label of label * type_expr
  | Label_multiply_defined of Longident.t
  | Label_missing of Ident.t list
  | Label_not_mutable of Longident.t
  | Incomplete_format of string
  | Bad_conversion of string * int * char
  | Undefined_method of type_expr * string
  | Undefined_inherited_method of string
  | Virtual_class of Longident.t
  | Private_type of type_expr
  | Private_label of Longident.t * type_expr
  | Unbound_instance_variable of string
  | Instance_variable_not_mutable of bool * string
  | Not_subtype of (type_expr * type_expr) list * (type_expr * type_expr) list
  | Outside_class
  | Value_multiply_overridden of string
  | Coercion_failure of
      type_expr * type_expr * (type_expr * type_expr) list * bool
  | Too_many_arguments of bool * type_expr
  | Abstract_wrong_label of label * type_expr
  | Scoping_let_module of string * type_expr
  | Masked_instance_variable of Longident.t
  | Not_a_variant_type of Longident.t
  | Incoherent_label_order
  | Less_general of string * (type_expr * type_expr) list
  | Modules_not_allowed
  | Cannot_infer_signature
  | Not_a_packed_module of type_expr
  | Recursive_local_constraint of (type_expr * type_expr) list
  | Unexpected_existential

exception Error of Location.t * error

(* Forward declaration, to be filled in by Typemod.type_module *)

let type_module =
  ref ((fun env md -> assert false) :
       Env.t -> Parsetree.module_expr -> Typedtree.module_expr)

(* Forward declaration, to be filled in by Typemod.type_open *)

let type_open =
  ref (fun _ -> assert false)

(* Forward declaration, to be filled in by Typemod.type_package *)

let type_package =
  ref (fun _ -> assert false)

(* Forward declaration, to be filled in by Typeclass.class_structure *)
let type_object =
  ref (fun env s -> assert false :
       Env.t -> Location.t -> Parsetree.class_structure ->
         Typedtree.class_structure * Types.class_signature * string list)

(*
  Saving and outputting type information.
  We keep these function names short, because they have to be
  called each time we create a record of type [Typedtree.expression]
  or [Typedtree.pattern] that will end up in the typed AST.
*)
let re node =
  Cmt_format.add_saved_type (Cmt_format.Partial_expression node);
  Stypes.record (Stypes.Ti_expr node);
  node
;;
let rp node =
  Cmt_format.add_saved_type (Cmt_format.Partial_pattern node);
  Stypes.record (Stypes.Ti_pat node);
  node
;;


let snd3 (_,x,_) = x
let thd4 (_,_, x,_) = x

(* Upper approximation of free identifiers on the parse tree *)

let iter_expression f e =

  let rec expr e =
    f e;
    match e.pexp_desc with
    | Pexp_ident _
    | Pexp_assertfalse
    | Pexp_new _
    | Pexp_constant _ -> ()
    | Pexp_function (_, eo, pel) ->
        may expr eo; List.iter (fun (_, e) -> expr e) pel
    | Pexp_apply (e, lel) -> expr e; List.iter (fun (_, e) -> expr e) lel
    | Pexp_let (_, pel, e)
    | Pexp_match (e, pel)
    | Pexp_try (e, pel) -> expr e; List.iter (fun (_, e) -> expr e) pel
    | Pexp_array el
    | Pexp_tuple el -> List.iter expr el
    | Pexp_construct (_, eo, _)
    | Pexp_variant (_, eo) -> may expr eo
    | Pexp_record (iel, eo) ->
        may expr eo; List.iter (fun (_, e) -> expr e) iel
    | Pexp_open (_, e)
    | Pexp_newtype (_, e)
    | Pexp_poly (e, _)
    | Pexp_lazy e
    | Pexp_assert e
    | Pexp_setinstvar (_, e)
    | Pexp_send (e, _)
    | Pexp_constraint (e, _, _)
    | Pexp_field (e, _) -> expr e
    | Pexp_when (e1, e2)
    | Pexp_while (e1, e2)
    | Pexp_sequence (e1, e2)
    | Pexp_setfield (e1, _, e2) -> expr e1; expr e2
    | Pexp_ifthenelse (e1, e2, eo) -> expr e1; expr e2; may expr eo
    | Pexp_for (_, e1, e2, _, e3) -> expr e1; expr e2; expr e3
    | Pexp_override sel -> List.iter (fun (_, e) -> expr e) sel
    | Pexp_letmodule (_, me, e) -> expr e; module_expr me
    | Pexp_object { pcstr_fields = fs } -> List.iter class_field fs
    | Pexp_pack me -> module_expr me

  and module_expr me =
    match me.pmod_desc with
    | Pmod_ident _ -> ()
    | Pmod_structure str -> List.iter structure_item str
    | Pmod_constraint (me, _)
    | Pmod_functor (_, _, me) -> module_expr me
    | Pmod_apply (me1, me2) -> module_expr me1; module_expr me2
    | Pmod_unpack e -> expr e

  and structure_item str =
    match str.pstr_desc with
    | Pstr_eval e -> expr e
    | Pstr_value (_, pel) -> List.iter (fun (_, e) -> expr e) pel
    | Pstr_primitive _
    | Pstr_type _
    | Pstr_exception _
    | Pstr_modtype _
    | Pstr_open _
    | Pstr_class_type _
    | Pstr_exn_rebind _ -> ()
    | Pstr_include me
    | Pstr_module (_, me) -> module_expr me
    | Pstr_recmodule l -> List.iter (fun (_, _, me) -> module_expr me) l
    | Pstr_class cdl -> List.iter (fun c -> class_expr c.pci_expr) cdl

  and class_expr ce =
    match ce.pcl_desc with
    | Pcl_constr _ -> ()
    | Pcl_structure { pcstr_fields = fs } -> List.iter class_field fs
    | Pcl_fun (_, eo, _,  ce) -> may expr eo; class_expr ce
    | Pcl_apply (ce, lel) ->
        class_expr ce; List.iter (fun (_, e) -> expr e) lel
    | Pcl_let (_, pel, ce) ->
        List.iter (fun (_, e) -> expr e) pel; class_expr ce
    | Pcl_constraint (ce, _) -> class_expr ce

  and class_field cf =
    match cf.pcf_desc with
    | Pcf_inher (_, ce, _) -> class_expr ce
    | Pcf_valvirt _ | Pcf_virt _ | Pcf_constr _ -> ()
    | Pcf_val (_,_,_,e) | Pcf_meth (_,_,_,e) -> expr e
    | Pcf_init e -> expr e

  in
  expr e


let all_idents el =
  let idents = Hashtbl.create 8 in
  let f = function
    | {pexp_desc=Pexp_ident { txt = Longident.Lident id; _ }; _} ->
        Hashtbl.replace idents id ()
    | _ -> ()
  in
  List.iter (iter_expression f) el;
  Hashtbl.fold (fun x () rest -> x :: rest) idents []


(* Typing of constants *)

let type_constant = function
    Const_int _ -> instance_def Predef.type_int
  | Const_char _ -> instance_def Predef.type_char
  | Const_string _ -> instance_def Predef.type_string
  | Const_float _ -> instance_def Predef.type_float
  | Const_int32 _ -> instance_def Predef.type_int32
  | Const_int64 _ -> instance_def Predef.type_int64
  | Const_nativeint _ -> instance_def Predef.type_nativeint

(* Specific version of type_option, using newty rather than newgenty *)

let type_option ty =
  newty (Tconstr(Predef.path_option,[ty], ref Mnil))

let mkexp exp_desc exp_type exp_loc exp_env =
  { exp_desc; exp_type; exp_loc; exp_env; exp_extra = [] }

let option_none ty loc =
  let lid = Longident.Lident "None" in
  let (path, cnone) = Env.lookup_constructor lid Env.initial in
  mkexp (Texp_construct( path, mknoloc lid, cnone, [], false))
    ty loc Env.initial

let option_some texp =
  let lid = Longident.Lident "Some" in
  let (path, csome) = Env.lookup_constructor lid Env.initial in
  mkexp ( Texp_construct(path, mknoloc lid , csome, [texp],false) )
    (type_option texp.exp_type) texp.exp_loc texp.exp_env

let extract_option_type env ty =
  match expand_head env ty with {desc = Tconstr(path, [ty], _)}
    when Path.same path Predef.path_option -> ty
  | _ -> assert false

let rec extract_label_names sexp env ty =
  let ty = expand_head env ty in
  match ty.desc with
  | Tconstr (path, _, _) ->
      let td = Env.find_type path env in
      begin match td.type_kind with
      | Type_record (fields, _) ->
          List.map (fun (name, _, _) -> name) fields
      | Type_abstract when td.type_manifest <> None ->
          extract_label_names sexp env (expand_head env ty)
      | _ -> assert false
      end
  | _ ->
      assert false

(* Typing of patterns *)

(* unification inside type_pat*)
let unify_pat_types loc env ty ty' =
  try
    unify env ty ty'
  with
    Unify trace ->
      raise(Error(loc, Pattern_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(loc, Typetexp.Variant_tags (l1, l2)))

(* unification inside type_exp and type_expect *)
let unify_exp_types loc env ty expected_ty =
  (* Format.eprintf "@[%a@ %a@]@." Printtyp.raw_type_expr exp.exp_type
    Printtyp.raw_type_expr expected_ty; *)
  try
    unify env ty expected_ty
  with
    Unify trace ->
      raise(Error(loc, Expr_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(loc, Typetexp.Variant_tags (l1, l2)))

(* level at which to create the local type declarations *)
let newtype_level = ref None
let get_newtype_level () =
  match !newtype_level with
    Some y -> y
  | None -> assert false

let unify_pat_types_gadt loc env ty ty' =
  let newtype_level =
    match !newtype_level with
    | None -> assert false
    | Some x -> x
  in
  try
    unify_gadt ~newtype_level env ty ty'
  with
    Unify trace ->
      raise(Error(loc, Pattern_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(loc, Typetexp.Variant_tags (l1, l2)))
  | Unification_recursive_abbrev trace ->
      raise(Error(loc, Recursive_local_constraint trace))


(* Creating new conjunctive types is not allowed when typing patterns *)

let unify_pat env pat expected_ty =
  unify_pat_types pat.pat_loc env pat.pat_type expected_ty

(* make all Reither present in open variants *)
let finalize_variant pat =
  match pat.pat_desc with
    Tpat_variant(tag, opat, r) ->
      let row =
        match expand_head pat.pat_env pat.pat_type with
          {desc = Tvariant row} -> r := row; row_repr row
        | _ -> assert false
      in
      begin match row_field tag row with
      | Rabsent -> assert false
      | Reither (true, [], _, e) when not row.row_closed ->
          set_row_field e (Rpresent None)
      | Reither (false, ty::tl, _, e) when not row.row_closed ->
          set_row_field e (Rpresent (Some ty));
          begin match opat with None -> assert false
          | Some pat -> List.iter (unify_pat pat.pat_env pat) (ty::tl)
          end
      | Reither (c, l, true, e) when not (row_fixed row) ->
          set_row_field e (Reither (c, [], false, ref None))
      | _ -> ()
      end;
      (* Force check of well-formedness   WHY? *)
      (* unify_pat pat.pat_env pat
        (newty(Tvariant{row_fields=[]; row_more=newvar(); row_closed=false;
                        row_bound=(); row_fixed=false; row_name=None})); *)
  | _ -> ()

let rec iter_pattern f p =
  f p;
  iter_pattern_desc (iter_pattern f) p.pat_desc

let has_variants p =
  try
    iter_pattern (function {pat_desc=Tpat_variant _} -> raise Exit | _ -> ())
      p;
    false
  with Exit ->
    true


(* pattern environment *)
let pattern_variables = ref ([] :
 (Ident.t * type_expr * string loc * Location.t * bool (* as-variable *)) list)
let pattern_force = ref ([] : (unit -> unit) list)
let pattern_scope = ref (None : Annot.ident option);;
let allow_modules = ref false
let module_variables = ref ([] : (string loc * Location.t) list)
let reset_pattern scope allow =
  pattern_variables := [];
  pattern_force := [];
  pattern_scope := scope;
  allow_modules := allow;
  module_variables := [];
;;

let enter_variable ?(is_module=false) ?(is_as_variable=false) loc name ty =
  if List.exists (fun (id, _, _, _, _) -> Ident.name id = name.txt)
      !pattern_variables
  then raise(Error(loc, Multiply_bound_variable name.txt));
  let id = Ident.create name.txt in
  pattern_variables :=
    (id, ty, name, loc, is_as_variable) :: !pattern_variables;
  if is_module then begin
    (* Note: unpack patterns enter a variable of the same name *)
    if not !allow_modules then raise (Error (loc, Modules_not_allowed));
    module_variables := (name, loc) :: !module_variables
  end else
    (* moved to genannot *)
    may (fun s -> Stypes.record (Stypes.An_ident (name.loc, name.txt, s)))
        !pattern_scope;
  id

let sort_pattern_variables vs =
  List.sort
    (fun (x,_,_,_,_) (y,_,_,_,_) ->
      Pervasives.compare (Ident.name x) (Ident.name y))
    vs

let enter_orpat_variables loc env  p1_vs p2_vs =
  (* unify_vars operate on sorted lists *)

  let p1_vs = sort_pattern_variables p1_vs
  and p2_vs = sort_pattern_variables p2_vs in

  let rec unify_vars p1_vs p2_vs = match p1_vs, p2_vs with
      | (x1,t1,_,l1,a1)::rem1, (x2,t2,_,l2,a2)::rem2 when Ident.equal x1 x2 ->
          if x1==x2 then
            unify_vars rem1 rem2
          else begin
            begin try
              unify env t1 t2
            with
            | Unify trace ->
                raise(Error(loc, Pattern_type_clash(trace)))
            end;
          (x2,x1)::unify_vars rem1 rem2
          end
      | [],[] -> []
      | (x,_,_,_,_)::_, [] -> raise (Error (loc, Orpat_vars x))
      | [],(x,_,_,_,_)::_  -> raise (Error (loc, Orpat_vars x))
      | (x,_,_,_,_)::_, (y,_,_,_,_)::_ ->
          let min_var =
            if Ident.name x < Ident.name y then x
            else y in
          raise (Error (loc, Orpat_vars min_var)) in
  unify_vars p1_vs p2_vs

let rec build_as_type env p =
  match p.pat_desc with
    Tpat_alias(p1,_, _) -> build_as_type env p1
  | Tpat_tuple pl ->
      let tyl = List.map (build_as_type env) pl in
      newty (Ttuple tyl)
  | Tpat_construct(_, _, cstr, pl,_) ->
      let keep = cstr.cstr_private = Private || cstr.cstr_existentials <> [] in
      if keep then p.pat_type else
      let tyl = List.map (build_as_type env) pl in
      let ty_args, ty_res = instance_constructor cstr in
      List.iter2 (fun (p,ty) -> unify_pat env {p with pat_type = ty})
        (List.combine pl tyl) ty_args;
      ty_res
  | Tpat_variant(l, p', _) ->
      let ty = may_map (build_as_type env) p' in
      newty (Tvariant{row_fields=[l, Rpresent ty]; row_more=newvar();
                      row_bound=(); row_name=None;
                      row_fixed=false; row_closed=false})
  | Tpat_record (lpl,_) ->
      let lbl = thd4 (List.hd lpl) in
      if lbl.lbl_private = Private then p.pat_type else
      let ty = newvar () in
      let ppl = List.map (fun (_, _, l, p) -> l.lbl_pos, p) lpl in
      let do_label lbl =
        let _, ty_arg, ty_res = instance_label false lbl in
        unify_pat env {p with pat_type = ty} ty_res;
        let refinable =
          lbl.lbl_mut = Immutable && List.mem_assoc lbl.lbl_pos ppl &&
          match (repr lbl.lbl_arg).desc with Tpoly _ -> false | _ -> true in
        if refinable then begin
          let arg = List.assoc lbl.lbl_pos ppl in
          unify_pat env {arg with pat_type = build_as_type env arg} ty_arg
        end else begin
          let _, ty_arg', ty_res' = instance_label false lbl in
          unify env ty_arg ty_arg';
          unify_pat env p ty_res'
        end in
      Array.iter do_label lbl.lbl_all;
      ty
  | Tpat_or(p1, p2, row) ->
      begin match row with
        None ->
          let ty1 = build_as_type env p1 and ty2 = build_as_type env p2 in
          unify_pat env {p2 with pat_type = ty2} ty1;
          ty1
      | Some row ->
          let row = row_repr row in
          newty (Tvariant{row with row_closed=false; row_more=newvar()})
      end
  | Tpat_any | Tpat_var _ | Tpat_constant _
  | Tpat_array _ | Tpat_lazy _ -> p.pat_type

let build_or_pat env loc lid =
  let path, decl = Typetexp.find_type env loc lid
  in
  let tyl = List.map (fun _ -> newvar()) decl.type_params in
  let row0 =
    let ty = expand_head env (newty(Tconstr(path, tyl, ref Mnil))) in
    match ty.desc with
      Tvariant row when static_row row -> row
    | _ -> raise(Error(loc, Not_a_variant_type lid))
  in
  let pats, fields =
    List.fold_left
      (fun (pats,fields) (l,f) ->
        match row_field_repr f with
          Rpresent None ->
            (l,None) :: pats,
            (l, Reither(true,[], true, ref None)) :: fields
        | Rpresent (Some ty) ->
            (l, Some {pat_desc=Tpat_any; pat_loc=Location.none; pat_env=env;
                      pat_type=ty; pat_extra=[];})
            :: pats,
            (l, Reither(false, [ty], true, ref None)) :: fields
        | _ -> pats, fields)
      ([],[]) (row_repr row0).row_fields in
  let row =
    { row_fields = List.rev fields; row_more = newvar(); row_bound = ();
      row_closed = false; row_fixed = false; row_name = Some (path, tyl) }
  in
  let ty = newty (Tvariant row) in
  let gloc = {loc with Location.loc_ghost=true} in
  let row' = ref {row with row_more=newvar()} in
  let pats =
    List.map (fun (l,p) -> {pat_desc=Tpat_variant(l,p,row'); pat_loc=gloc;
                            pat_env=env; pat_type=ty; pat_extra=[];})
      pats
  in
  match pats with
    [] -> raise(Error(loc, Not_a_variant_type lid))
  | pat :: pats ->
      let r =
        List.fold_left
          (fun pat pat0 -> {pat_desc=Tpat_or(pat0,pat,Some row0); pat_extra=[];
                            pat_loc=gloc; pat_env=env; pat_type=ty})
          pat pats in
      (path, rp { r with pat_loc = loc },ty)

(* Records *)

let rec find_record_qual = function
  | [] -> None
  | ({ txt = Longident.Ldot (modname, _) }, _) :: _ -> Some modname
  | _ :: rest -> find_record_qual rest

let type_label_a_list ?labels env type_lbl_a lid_a_list =
  let record_qual = find_record_qual lid_a_list in
  let lbl_a_list =
    List.map
      (fun (lid, a) ->
        let path, label =
          match lid.txt, labels, record_qual with
              Longident.Lident s, Some labels, _ when Hashtbl.mem labels s ->
                (Hashtbl.find labels s : Path.t * Types.label_description)
            | Longident.Lident s, _, Some modname ->
              Typetexp.find_label env lid.loc (Longident.Ldot (modname, s))
            | _ ->
              Typetexp.find_label env lid.loc lid.txt
        in (path, lid, label, a)
      )  lid_a_list in
  (* Invariant: records are sorted in the typed tree *)
  let lbl_a_list =
    List.sort
      (fun ( _, _, lbl1,_) ( _,_, lbl2,_) -> compare lbl1.lbl_pos lbl2.lbl_pos)
      lbl_a_list
  in
  List.map type_lbl_a lbl_a_list
;;

let lid_of_label label =
  match repr label.lbl_res with
  | {desc = Tconstr(Path.Pdot(mpath,_,_),_,_)} ->
      Longident.Ldot(lid_of_path mpath, label.lbl_name)
  | _ -> Longident.Lident label.lbl_name

(* Checks over the labels mentioned in a record pattern:
   no duplicate definitions (error); properly closed (warning) *)

let check_recordpat_labels loc lbl_pat_list closed =
  match lbl_pat_list with
  | [] -> ()                            (* should not happen *)
  | (_, _, label1, _) :: _ ->
      let all = label1.lbl_all in
      let defined = Array.make (Array.length all) false in
      let check_defined (_, _, label, _) =
        if defined.(label.lbl_pos)
        then raise(Error(loc, Label_multiply_defined
                                       (Longident.Lident label.lbl_name)))
        else defined.(label.lbl_pos) <- true in
      List.iter check_defined lbl_pat_list;
      if closed = Closed
      && Warnings.is_active (Warnings.Non_closed_record_pattern "")
      then begin
        let undefined = ref [] in
        for i = 0 to Array.length all - 1 do
          if not defined.(i) then undefined := all.(i).lbl_name :: !undefined
        done;
        if !undefined <> [] then begin
          let u = String.concat ", " (List.rev !undefined) in
          Location.prerr_warning loc (Warnings.Non_closed_record_pattern u)
        end
      end

(* unification of a type with a tconstr with
   freshly created arguments *)
let unify_head_only loc env ty constr =
  let (_, ty_res) = instance_constructor constr in
  match (repr ty_res).desc with
  | Tconstr(p,args,m) ->
      ty_res.desc <- Tconstr(p,List.map (fun _ -> newvar ()) args,m);
      enforce_constraints env ty_res;
      unify_pat_types loc env ty ty_res
  | _ -> assert false

(* Typing of patterns *)

(* type_pat does not generate local constraints inside or patterns *)
type type_pat_mode =
  | Normal
  | Inside_or

(* type_pat propagates the expected type as well as maps for
   constructors and labels.
   Unification may update the typing environment. *)
let rec type_pat ~constrs ~labels ~no_existentials ~mode ~env sp expected_ty =
  let type_pat ?(mode=mode) ?(env=env) =
    type_pat ~constrs ~labels ~no_existentials ~mode ~env in
  let loc = sp.ppat_loc in
  match sp.ppat_desc with
    Ppat_any ->
      rp {
        pat_desc = Tpat_any;
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_var name ->
      let id = enter_variable loc name expected_ty in
      rp {
        pat_desc = Tpat_var (id, name);
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_unpack name ->
      let id = enter_variable loc name expected_ty ~is_module:true in
      rp {
        pat_desc = Tpat_var (id, name);
        pat_loc = sp.ppat_loc;
        pat_extra=[Tpat_unpack, loc];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_constraint({ppat_desc=Ppat_var name; ppat_loc=lloc},
                    ({ptyp_desc=Ptyp_poly _} as sty)) ->
      (* explicitly polymorphic type *)
      let cty, force = Typetexp.transl_simple_type_delayed !env sty in
      let ty = cty.ctyp_type in
      unify_pat_types lloc !env ty expected_ty;
      pattern_force := force :: !pattern_force;
      begin match ty.desc with
      | Tpoly (body, tyl) ->
          begin_def ();
          let _, ty' = instance_poly ~keep_names:true false tyl body in
          end_def ();
          generalize ty';
          let id = enter_variable lloc name ty' in
          rp {
            pat_desc = Tpat_var (id, name);
            pat_loc = lloc;
            pat_extra = [Tpat_constraint cty, loc];
            pat_type = ty;
            pat_env = !env
          }
      | _ -> assert false
      end
  | Ppat_alias(sq, name) ->
      let q = type_pat sq expected_ty in
      begin_def ();
      let ty_var = build_as_type !env q in
      end_def ();
      generalize ty_var;
      let id = enter_variable ~is_as_variable:true loc name ty_var in
      rp {
        pat_desc = Tpat_alias(q, id, name);
        pat_loc = loc; pat_extra=[];
        pat_type = q.pat_type;
        pat_env = !env }
  | Ppat_constant cst ->
      unify_pat_types loc !env (type_constant cst) expected_ty;
      rp {
        pat_desc = Tpat_constant cst;
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_tuple spl ->
      let spl_ann = List.map (fun p -> (p,newvar ())) spl in
      let ty = newty (Ttuple(List.map snd spl_ann)) in
      unify_pat_types loc !env ty expected_ty;
      let pl = List.map (fun (p,t) -> type_pat p t) spl_ann in
      rp {
        pat_desc = Tpat_tuple pl;
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_construct(lid, sarg, explicit_arity) ->
      let (constr_path, constr) =
        match lid.txt, constrs with
          Longident.Lident s, Some constrs when Hashtbl.mem constrs s ->
            Hashtbl.find constrs s
        | _ ->  Typetexp.find_constructor !env loc lid.txt
      in
      Env.mark_constructor Env.Pattern !env (Longident.last lid.txt) constr;
      if no_existentials && constr.cstr_existentials <> [] then
        raise (Error (loc, Unexpected_existential));
      (* if constructor is gadt, we must verify that the expected type has the
         correct head *)
      if constr.cstr_generalized then
        unify_head_only loc !env expected_ty constr;
      let sargs =
        match sarg with
          None -> []
        | Some {ppat_desc = Ppat_tuple spl} when explicit_arity -> spl
        | Some {ppat_desc = Ppat_tuple spl} when constr.cstr_arity > 1 -> spl
        | Some({ppat_desc = Ppat_any} as sp) when constr.cstr_arity <> 1 ->
            if constr.cstr_arity = 0 then
              Location.prerr_warning sp.ppat_loc
                                     Warnings.Wildcard_arg_to_constant_constr;
            replicate_list sp constr.cstr_arity
        | Some sp -> [sp] in
      if List.length sargs <> constr.cstr_arity then
        raise(Error(loc, Constructor_arity_mismatch(lid.txt,
                                     constr.cstr_arity, List.length sargs)));
      let (ty_args, ty_res) =
        instance_constructor ~in_pattern:(env, get_newtype_level ()) constr
      in
      if constr.cstr_generalized && mode = Normal then
        unify_pat_types_gadt loc env ty_res expected_ty
      else
        unify_pat_types loc !env ty_res expected_ty;
      let args = List.map2 (fun p t -> type_pat p t) sargs ty_args in
      rp {
        pat_desc=Tpat_construct(constr_path, lid, constr, args,explicit_arity);
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_variant(l, sarg) ->
      let arg = may_map (fun p -> type_pat p (newvar())) sarg in
      let arg_type = match arg with None -> [] | Some arg -> [arg.pat_type]  in
      let row = { row_fields =
                    [l, Reither(arg = None, arg_type, true, ref None)];
                  row_bound = ();
                  row_closed = false;
                  row_more = newvar ();
                  row_fixed = false;
                  row_name = None } in
      unify_pat_types loc !env (newty (Tvariant row)) expected_ty;
      rp {
        pat_desc = Tpat_variant(l, arg, ref {row with row_more = newvar()});
        pat_loc = loc; pat_extra=[];
        pat_type =  expected_ty;
        pat_env = !env }
  | Ppat_record(lid_sp_list, closed) ->
      let type_label_pat (label_path, label_lid, label, sarg) =
        begin_def ();
        let (vars, ty_arg, ty_res) = instance_label false label in
        if vars = [] then end_def ();
        begin try
          unify_pat_types loc !env ty_res expected_ty
        with Unify trace ->
          raise(Error(loc, Label_mismatch(lid_of_label label, trace)))
        end;
        let arg = type_pat sarg ty_arg in
        if vars <> [] then begin
          end_def ();
          generalize ty_arg;
          List.iter generalize vars;
          let instantiated tv =
            let tv = expand_head !env tv in
            not (is_Tvar tv) || tv.level <> generic_level in
          if List.exists instantiated vars then
            raise (Error(loc, Polymorphic_label (lid_of_label label)))
        end;
        (label_path, label_lid, label, arg)
      in
      let lbl_pat_list =
        type_label_a_list ?labels !env type_label_pat lid_sp_list in
      check_recordpat_labels loc lbl_pat_list closed;
      rp {
        pat_desc = Tpat_record (lbl_pat_list, closed);
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_array spl ->
      let ty_elt = newvar() in
      unify_pat_types
        loc !env (instance_def (Predef.type_array ty_elt)) expected_ty;
      let spl_ann = List.map (fun p -> (p,newvar())) spl in
      let pl = List.map (fun (p,t) -> type_pat p ty_elt) spl_ann in
      rp {
        pat_desc = Tpat_array pl;
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_or(sp1, sp2) ->
      let initial_pattern_variables = !pattern_variables in
      let p1 = type_pat ~mode:Inside_or sp1 expected_ty in
      let p1_variables = !pattern_variables in
      pattern_variables := initial_pattern_variables;
      let p2 = type_pat ~mode:Inside_or sp2 expected_ty in
      let p2_variables = !pattern_variables in
      let alpha_env =
        enter_orpat_variables loc !env p1_variables p2_variables in
      pattern_variables := p1_variables;
      rp {
        pat_desc = Tpat_or(p1, alpha_pat alpha_env p2, None);
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_lazy sp1 ->
      let nv = newvar () in
      unify_pat_types loc !env (instance_def (Predef.type_lazy_t nv))
        expected_ty;
      let p1 = type_pat sp1 nv in
      rp {
        pat_desc = Tpat_lazy p1;
        pat_loc = loc; pat_extra=[];
        pat_type = expected_ty;
        pat_env = !env }
  | Ppat_constraint(sp, sty) ->
      (* Separate when not already separated by !principal *)
      let separate = true in
      if separate then begin_def();
      let cty, force = Typetexp.transl_simple_type_delayed !env sty in
      let ty = cty.ctyp_type in
      let ty, expected_ty' =
        if separate then begin
          end_def();
          generalize_structure ty;
          instance !env ty, instance !env ty
        end else ty, ty
      in
      unify_pat_types loc !env ty expected_ty;
      let p = type_pat sp expected_ty' in
      (*Format.printf "%a@.%a@."
        Printtyp.raw_type_expr ty
        Printtyp.raw_type_expr p.pat_type;*)
      pattern_force := force :: !pattern_force;
      if separate then
        match p.pat_desc with
          Tpat_var (id,s) ->
            {p with pat_type = ty;
             pat_desc = Tpat_alias ({p with pat_desc = Tpat_any}, id,s);
             pat_extra = [Tpat_constraint cty, loc];
            }
        | _ -> {p with pat_type = ty;
                pat_extra = (Tpat_constraint cty,loc) :: p.pat_extra}
      else p
  | Ppat_type lid ->
      let (path, p,ty) = build_or_pat !env loc lid.txt in
      unify_pat_types loc !env ty expected_ty;
      { p with pat_extra = (Tpat_type (path, lid), loc) :: p.pat_extra }

let type_pat ?(allow_existentials=false) ?constrs ?labels
    ?(lev=get_current_level()) env sp expected_ty =
  newtype_level := Some lev;
  try
    let r =
      type_pat ~no_existentials:(not allow_existentials) ~constrs ~labels
        ~mode:Normal ~env sp expected_ty in
    iter_pattern (fun p -> p.pat_env <- !env) r;
    newtype_level := None;
    r
  with e ->
    newtype_level := None;
    raise e


(* this function is passed to Partial.parmatch
   to type check gadt nonexhaustiveness *)
let partial_pred ~lev env expected_ty constrs labels p =
  let snap = snapshot () in
  try
    reset_pattern None true;
    let typed_p =
      type_pat ~allow_existentials:true ~lev
        ~constrs ~labels (ref env) p expected_ty
    in
    backtrack snap;
    (* types are invalidated but we don't need them here *)
    Some typed_p
  with _ ->
    backtrack snap;
    None

let rec iter3 f lst1 lst2 lst3 =
  match lst1,lst2,lst3 with
  | x1::xs1,x2::xs2,x3::xs3 ->
      f x1 x2 x3;
      iter3 f xs1 xs2 xs3
  | [],[],[] ->
      ()
  | _ ->
      assert false

let add_pattern_variables ?check ?check_as env =
  let pv = get_ref pattern_variables in
  (List.fold_right
    (fun (id, ty, name, loc, as_var) env ->
       let check = if as_var then check_as else check in
       let e1 = Env.add_value ?check id
           {val_type = ty; val_kind = Val_reg; Types.val_loc = loc} env in
       Env.add_annot id (Annot.Iref_internal loc) e1)
    pv env,
   get_ref module_variables)

let type_pattern ~lev env spat scope expected_ty =
  reset_pattern scope true;
  let new_env = ref env in
  let pat = type_pat ~allow_existentials:true ~lev new_env spat expected_ty in
  let new_env, unpacks =
    add_pattern_variables !new_env
      ~check:(fun s -> Warnings.Unused_var_strict s)
      ~check_as:(fun s -> Warnings.Unused_var s) in
  (pat, new_env, get_ref pattern_force, unpacks)

let type_pattern_list env spatl scope expected_tys allow =
  reset_pattern scope allow;
  let new_env = ref env in
  let patl = List.map2 (type_pat new_env) spatl expected_tys in
  let new_env, unpacks = add_pattern_variables !new_env in
  (patl, new_env, get_ref pattern_force, unpacks)

let type_class_arg_pattern cl_num val_env met_env l spat =
  reset_pattern None false;
  let nv = newvar () in
  let pat = type_pat (ref val_env) spat nv in
  if has_variants pat then begin
    Parmatch.pressure_variants val_env [pat];
    iter_pattern finalize_variant pat
  end;
  List.iter (fun f -> f()) (get_ref pattern_force);
  if is_optional l then unify_pat val_env pat (type_option (newvar ()));
  let (pv, met_env) =
    List.fold_right
      (fun (id, ty, name, loc, as_var) (pv, env) ->
         let check s =
           if as_var then Warnings.Unused_var s
           else Warnings.Unused_var_strict s in
         let id' = Ident.create (Ident.name id) in
         ((id', name, id, ty)::pv,
          Env.add_value id' {val_type = ty;
                             val_kind = Val_ivar (Immutable, cl_num);
                             Types.val_loc = loc;
                            } ~check
            env))
      !pattern_variables ([], met_env)
  in
  let val_env, _ = add_pattern_variables val_env in
  (pat, pv, val_env, met_env)

let mkpat d = { ppat_desc = d; ppat_loc = Location.none }

let type_self_pattern cl_num privty val_env met_env par_env spat =
  let spat =
    mkpat (Ppat_alias (mkpat(Ppat_alias (spat, mknoloc "selfpat-*")),
                       mknoloc ("selfpat-" ^ cl_num)))
  in
  reset_pattern None false;
  let nv = newvar() in
  let pat = type_pat (ref val_env) spat nv in
  List.iter (fun f -> f()) (get_ref pattern_force);
  let meths = ref Meths.empty in
  let vars = ref Vars.empty in
  let pv = !pattern_variables in
  pattern_variables := [];
  let (val_env, met_env, par_env) =
    List.fold_right
      (fun (id, ty, name, loc, as_var) (val_env, met_env, par_env) ->
         (Env.add_value id {val_type = ty;
                            val_kind = Val_unbound;
                            Types.val_loc = loc;
                           } val_env,
          Env.add_value id {val_type = ty;
                            val_kind = Val_self (meths, vars, cl_num, privty);
                            Types.val_loc = loc;
                           }
            ~check:(fun s -> if as_var then Warnings.Unused_var s
                             else Warnings.Unused_var_strict s)
            met_env,
          Env.add_value id {val_type = ty; val_kind = Val_unbound;
                            Types.val_loc = loc;
                           } par_env))
      pv (val_env, met_env, par_env)
  in
  (pat, meths, vars, val_env, met_env, par_env)

let delayed_checks = ref []
let reset_delayed_checks () = delayed_checks := []
let add_delayed_check f = delayed_checks := f :: !delayed_checks
let force_delayed_checks () =
  (* checks may change type levels *)
  let snap = Btype.snapshot () in
  List.iter (fun f -> f ()) (List.rev !delayed_checks);
  reset_delayed_checks ();
  Btype.backtrack snap

let fst3 (x, _, _) = x
let snd3 (_, x, _) = x

(* Generalization criterion for expressions *)

let rec is_nonexpansive exp =
  match exp.exp_desc with
    Texp_ident(_,_,_) -> true
  | Texp_constant _ -> true
  | Texp_let(rec_flag, pat_exp_list, body) ->
      List.for_all (fun (pat, exp) -> is_nonexpansive exp) pat_exp_list &&
      is_nonexpansive body
  | Texp_function _ -> true
  | Texp_apply(e, (_,None,_)::el) ->
      is_nonexpansive e && List.for_all is_nonexpansive_opt (List.map snd3 el)
  | Texp_tuple el ->
      List.for_all is_nonexpansive el
  | Texp_construct(_, _, _, el,_) ->
      List.for_all is_nonexpansive el
  | Texp_variant(_, arg) -> is_nonexpansive_opt arg
  | Texp_record(lbl_exp_list, opt_init_exp) ->
      List.for_all
        (fun (_, _, lbl, exp) -> lbl.lbl_mut = Immutable && is_nonexpansive exp)
        lbl_exp_list
      && is_nonexpansive_opt opt_init_exp
  | Texp_field(exp, _, lbl, _) -> is_nonexpansive exp
  | Texp_array [] -> true
  | Texp_ifthenelse(cond, ifso, ifnot) ->
      is_nonexpansive ifso && is_nonexpansive_opt ifnot
  | Texp_sequence (e1, e2) -> is_nonexpansive e2  (* PR#4354 *)
  | Texp_new (_, _, cl_decl) when Ctype.class_type_arity cl_decl.cty_type > 0 ->
      true
  (* Note: nonexpansive only means no _observable_ side effects *)
  | Texp_lazy e -> is_nonexpansive e
  | Texp_object ({cstr_fields=fields; cstr_type = { cty_vars=vars}}, _) ->
      let count = ref 0 in
      List.for_all
        (fun field -> match field.cf_desc with
            Tcf_meth _ -> true
          | Tcf_val (_,_, _, _, Tcfk_concrete e,_) ->
              incr count; is_nonexpansive e
          | Tcf_val (_,_, _, _, Tcfk_virtual _,_) ->
              incr count; true
          | Tcf_init e -> is_nonexpansive e
          | Tcf_constr _ -> true
          | Tcf_inher _ -> false)
        fields &&
      Vars.fold (fun _ (mut,_,_) b -> decr count; b && mut = Immutable)
        vars true &&
      !count = 0
  | Texp_letmodule (_, _, mexp, e) ->
      is_nonexpansive_mod mexp && is_nonexpansive e
  | Texp_pack mexp ->
      is_nonexpansive_mod mexp
  | _ -> false

and is_nonexpansive_mod mexp =
  match mexp.mod_desc with
  | Tmod_ident _ -> true
  | Tmod_functor _ -> true
  | Tmod_unpack (e, _) -> is_nonexpansive e
  | Tmod_constraint (m, _, _, _) -> is_nonexpansive_mod m
  | Tmod_structure str ->
      List.for_all
        (fun item -> match item.str_desc with
          | Tstr_eval _ | Tstr_primitive _ | Tstr_type _ | Tstr_modtype _
          | Tstr_open _ | Tstr_class_type _ | Tstr_exn_rebind _ -> true
          | Tstr_value (_, pat_exp_list) ->
              List.for_all (fun (_, exp) -> is_nonexpansive exp) pat_exp_list
          | Tstr_module (_, _, m) | Tstr_include (m, _) -> is_nonexpansive_mod m
          | Tstr_recmodule id_mod_list ->
              List.for_all (fun (_, _, _, m) -> is_nonexpansive_mod m)
                id_mod_list
          | Tstr_exception _ -> false (* true would be unsound *)
          | Tstr_class _ -> false (* could be more precise *)
        )
        str.str_items
  | Tmod_apply _ -> false

and is_nonexpansive_opt = function
    None -> true
  | Some e -> is_nonexpansive e

(* Typing format strings for printing or reading.

   These format strings are used by functions in modules Printf, Format, and
   Scanf.

   (Handling of * modifiers contributed by Thorsten Ohl.) *)

external string_to_format :
 string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
external format_to_string :
 ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string = "%identity"

let type_format loc fmt =

  let ty_arrow gty ty = newty (Tarrow ("", instance_def gty, ty, Cok)) in

  let bad_conversion fmt i c =
    raise (Error (loc, Bad_conversion (fmt, i, c))) in
  let incomplete_format fmt =
    raise (Error (loc, Incomplete_format fmt)) in

  let rec type_in_format fmt =

    let len = String.length fmt in

    let ty_input = newvar ()
    and ty_result = newvar ()
    and ty_aresult = newvar ()
    and ty_uresult = newvar () in

    let meta = ref 0 in

    let rec scan_format i =
      if i >= len then
        if !meta = 0
        then ty_uresult, ty_result
        else incomplete_format fmt else
      match fmt.[i] with
      | '%' -> scan_opts i (i + 1)
      | _ -> scan_format (i + 1)
    and scan_opts i j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | '_' -> scan_rest true i (j + 1)
      | _ -> scan_rest false i j
    and scan_rest skip i j =
      let rec scan_flags i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '#' | '0' | '-' | ' ' | '+' -> scan_flags i (j + 1)
        | _ -> scan_width i j
      and scan_width i j = scan_width_or_prec_value scan_precision i j
      and scan_decimal_string scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '0' .. '9' -> scan_decimal_string scan i (j + 1)
        | _ -> scan i j
      and scan_width_or_prec_value scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '*' ->
          let ty_uresult, ty_result = scan i (j + 1) in
          ty_uresult, ty_arrow Predef.type_int ty_result
        | '-' | '+' -> scan_decimal_string scan i (j + 1)
        | _ -> scan_decimal_string scan i j
      and scan_precision i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '.' -> scan_width_or_prec_value scan_conversion i (j + 1)
        | _ -> scan_conversion i j
      and scan_indication j =
        if j >= len then j - 1 else
        match fmt.[j] with
        | '@' ->
          let k = j + 1 in
          if k >= len then j - 1 else
          begin match fmt.[k] with
          | '%' ->
            let k = k + 1 in
            if k >= len then j - 1 else
            begin match fmt.[k] with
            | '%' | '@' -> k
            | _c -> j - 1
            end
          | _c -> k
          end
        | _c -> j - 1
      and scan_range j =
        let rec scan_closing j =
          if j >= len then incomplete_format fmt else
          match fmt.[j] with
          | ']' -> j
          | '%' ->
            let j = j + 1 in
            if j >= len then incomplete_format fmt else
            begin match fmt.[j] with
            | '%' | '@' -> scan_closing (j + 1)
            | c -> bad_conversion fmt j c
            end
          | c -> scan_closing (j + 1) in
        let scan_first_pos j =
          if j >= len then incomplete_format fmt else
          match fmt.[j] with
          | ']' -> scan_closing (j + 1)
          | c -> scan_closing j in
        let rec scan_first_neg j =
          if j >= len then incomplete_format fmt else
          match fmt.[j] with
          | '^' -> scan_first_pos (j + 1)
          | c -> scan_first_pos j in

        scan_first_neg j

      and conversion j ty_arg =
        let ty_uresult, ty_result = scan_format (j + 1) in
        ty_uresult,
        if skip then ty_result else ty_arrow ty_arg ty_result

      and conversion_a j ty_e ty_arg =
        let ty_uresult, ty_result = conversion j ty_arg in
        let ty_a = ty_arrow ty_input (ty_arrow ty_e ty_aresult) in
        ty_uresult, ty_arrow ty_a ty_result

      and conversion_r j ty_e ty_arg =
        let ty_uresult, ty_result = conversion j ty_arg in
        let ty_r = ty_arrow ty_input ty_e in
        ty_arrow ty_r ty_uresult, ty_result

      and scan_conversion i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '%' | '@' | '!' | ',' -> scan_format (j + 1)
        | 's' | 'S' ->
          let j = scan_indication (j + 1) in
          conversion j Predef.type_string
        | '[' ->
          let j = scan_range (j + 1) in
          let j = scan_indication (j + 1) in
          conversion j Predef.type_string
        | 'c' | 'C' -> conversion j Predef.type_char
        | 'd' | 'i' | 'o' | 'u' | 'x' | 'X' | 'N' ->
          conversion j Predef.type_int
        | 'f' | 'e' | 'E' | 'g' | 'G' | 'F' -> conversion j Predef.type_float
        | 'B' | 'b' -> conversion j Predef.type_bool
        | 'a' | 'r' as conv ->
          let conversion =
            if conv = 'a' then conversion_a else conversion_r in
          let ty_e = newvar () in
          let j = j + 1 in
          if j >= len then conversion (j - 1) ty_e ty_e else begin
            match fmt.[j] with
(*            | 'a' | 'A' -> conversion j ty_e (Predef.type_array ty_e)
            | 'l' | 'L' -> conversion j ty_e (Predef.type_list ty_e)
            | 'o' | 'O' -> conversion j ty_e (Predef.type_option ty_e)*)
            | _ -> conversion (j - 1) ty_e ty_e end
(*        | 'r' ->
          let ty_e = newvar () in
          let j = j + 1 in
          if j >= len then conversion_r (j - 1) ty_e ty_e else begin
            match fmt.[j] with
            | 'a' | 'A' -> conversion_r j ty_e (Pref.type_array ty_e)
            | 'l' | 'L' -> conversion_r j ty_e (Pref.type_list ty_e)
            | 'o' | 'O' -> conversion_r j ty_e (Pref.type_option ty_e)
            | _ -> conversion_r (j - 1) ty_e ty_e end *)
        | 't' -> conversion j (ty_arrow ty_input ty_aresult)
        | 'l' | 'n' | 'L' as c ->
          let j = j + 1 in
          if j >= len then conversion (j - 1) Predef.type_int else begin
            match fmt.[j] with
            | 'd' | 'i' | 'o' | 'u' | 'x' | 'X' ->
              let ty_arg =
                match c with
                | 'l' -> Predef.type_int32
                | 'n' -> Predef.type_nativeint
                | _ -> Predef.type_int64 in
              conversion j ty_arg
            | c -> conversion (j - 1) Predef.type_int
          end
        | '{' | '(' as c ->
          let j = j + 1 in
          if j >= len then incomplete_format fmt else
          let sj =
            Printf.CamlinternalPr.Tformat.sub_format
              (fun fmt -> incomplete_format (format_to_string fmt))
              (fun fmt -> bad_conversion (format_to_string fmt))
              c (string_to_format fmt) j in
          let sfmt = String.sub fmt j (sj - 2 - j) in
          let ty_sfmt = type_in_format sfmt in
          begin match c with
          | '{' -> conversion (sj - 1) ty_sfmt
          | _ -> incr meta; conversion (j - 1) ty_sfmt end
        | ')' when !meta > 0 -> decr meta; scan_format (j + 1)
        | c -> bad_conversion fmt i c in
      scan_flags i j in

    let ty_ureader, ty_args = scan_format 0 in
    newty
      (Tconstr
        (Predef.path_format6,
         [ ty_args; ty_input; ty_aresult;
           ty_ureader; ty_uresult; ty_result; ],
         ref Mnil)) in

  type_in_format fmt

(* Approximate the type of an expression, for better recursion *)

let rec approx_type env sty =
  match sty.ptyp_desc with
    Ptyp_arrow (p, _, sty) ->
      let ty1 = if is_optional p then type_option (newvar ()) else newvar () in
      newty (Tarrow (p, ty1, approx_type env sty, Cok))
  | Ptyp_tuple args ->
      newty (Ttuple (List.map (approx_type env) args))
  | Ptyp_constr (lid, ctl) ->
      begin try
        let (path, decl) = Env.lookup_type lid.txt env in
        if List.length ctl <> decl.type_arity then raise Not_found;
        let tyl = List.map (approx_type env) ctl in
        newconstr path tyl
      with Not_found -> newvar ()
      end
  | Ptyp_poly (_, sty) ->
      approx_type env sty
  | _ -> newvar ()

let rec type_approx env sexp =
  match sexp.pexp_desc with
    Pexp_let (_, _, e) -> type_approx env e
  | Pexp_function (p,_,(_,e)::_) when is_optional p ->
       newty (Tarrow(p, type_option (newvar ()), type_approx env e, Cok))
  | Pexp_function (p,_,(_,e)::_) ->
       newty (Tarrow(p, newvar (), type_approx env e, Cok))
  | Pexp_match (_, (_,e)::_) -> type_approx env e
  | Pexp_try (e, _) -> type_approx env e
  | Pexp_tuple l -> newty (Ttuple(List.map (type_approx env) l))
  | Pexp_ifthenelse (_,e,_) -> type_approx env e
  | Pexp_sequence (_,e) -> type_approx env e
  | Pexp_constraint (e, sty1, sty2) ->
      let approx_ty_opt = function
        | None -> newvar ()
        | Some sty -> approx_type env sty
      in
      let ty = type_approx env e
      and ty1 = approx_ty_opt sty1
      and ty2 = approx_ty_opt sty2 in
      begin try unify env ty ty1 with Unify trace ->
        raise(Error(sexp.pexp_loc, Expr_type_clash trace))
      end;
      if sty2 = None then ty1 else ty2
  | _ -> newvar ()

(* List labels in a function type, and whether return type is a variable *)
let rec list_labels_aux env visited ls ty_fun =
  let ty = expand_head env ty_fun in
  if List.memq ty visited then
    List.rev ls, false
  else match ty.desc with
    Tarrow (l, _, ty_res, _) ->
      list_labels_aux env (ty::visited) (l::ls) ty_res
  | _ ->
      List.rev ls, is_Tvar ty

let list_labels env ty = list_labels_aux env [] [] ty

(* Check that all univars are safe in a type *)
let check_univars env expans kind exp ty_expected vars =
  if expans && not (is_nonexpansive exp) then
    generalize_expansive env exp.exp_type;
  (* need to expand twice? cf. Ctype.unify2 *)
  let vars = List.map (expand_head env) vars in
  let vars = List.map (expand_head env) vars in
  let vars' =
    List.filter
      (fun t ->
        let t = repr t in
        generalize t;
        match t.desc with
          Tvar name when t.level = generic_level ->
            log_type t; t.desc <- Tunivar name; true
        | _ -> false)
      vars in
  if List.length vars = List.length vars' then () else
  let ty = newgenty (Tpoly(repr exp.exp_type, vars'))
  and ty_expected = repr ty_expected in
  raise (Error (exp.exp_loc,
                Less_general(kind, [ty, ty; ty_expected, ty_expected])))

(* Check that a type is not a function *)
let check_application_result env statement exp =
  let loc = exp.exp_loc in
  match (expand_head env exp.exp_type).desc with
  | Tarrow _ ->
      Location.prerr_warning exp.exp_loc Warnings.Partial_application
  | Tvar _ -> ()
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | _ ->
      if statement then
        Location.prerr_warning loc Warnings.Statement_type

(* Check that a type is generalizable at some level *)
let generalizable level ty =
  let rec check ty =
    let ty = repr ty in
    if ty.level < lowest_level then () else
    if ty.level <= level then raise Exit else
    (mark_type_node ty; iter_type_expr check ty)
  in
  try check ty; unmark_type ty; true
  with Exit -> unmark_type ty; false

(* Hack to allow coercion of self. Will clean-up later. *)
let self_coercion = ref ([] : (Path.t * Location.t list ref) list)

(* Helpers for packaged modules. *)
let create_package_type loc env (p, l) =
  let s = !Typetexp.transl_modtype_longident loc env p in
  let fields = List.map (fun (name, ct) ->
			   name, Typetexp.transl_simple_type env false ct) l in
  let ty = newty (Tpackage (s,
                    List.map fst l,
                   List.map (fun (_, cty) -> cty.ctyp_type) fields))
  in
   (s, fields, ty)

 let wrap_unpacks sexp unpacks =
   List.fold_left
     (fun sexp (name, loc) ->
       {pexp_loc = sexp.pexp_loc; pexp_desc = Pexp_letmodule (
        name,
        {pmod_loc = loc; pmod_desc = Pmod_unpack
           {pexp_desc=Pexp_ident(mkloc (Longident.Lident name.txt) name.loc);
            pexp_loc=name.loc}},
       sexp)})
    sexp unpacks

(* Helpers for type_cases *)
let iter_ppat f p =
  match p.ppat_desc with
  | Ppat_any | Ppat_var _ | Ppat_constant _
  | Ppat_type _ | Ppat_unpack _ -> ()
  | Ppat_array pats -> List.iter f pats
  | Ppat_or (p1,p2) -> f p1; f p2
  | Ppat_variant (_, arg) | Ppat_construct (_, arg, _) -> may f arg
  | Ppat_tuple lst ->  List.iter f lst
  | Ppat_alias (p,_) | Ppat_constraint (p,_) | Ppat_lazy p -> f p
  | Ppat_record (args, flag) -> List.iter (fun (_,p) -> f p) args

let contains_polymorphic_variant p =
  let rec loop p =
    match p.ppat_desc with
      Ppat_variant _ | Ppat_type _ -> raise Exit
    | _ -> iter_ppat loop p
  in
  try loop p; false with Exit -> true

let contains_gadt env p =
  let rec loop p =
    match p.ppat_desc with
      Ppat_construct (lid, _, _) ->
        begin try
                let (_path, cstr) = Env.lookup_constructor lid.txt env in
          if cstr.cstr_generalized then raise Exit
        with Not_found -> ()
        end; iter_ppat loop p
    | _ -> iter_ppat loop p
  in
  try loop p; false with Exit -> true

let dummy_expr = {pexp_desc = Pexp_tuple []; pexp_loc = Location.none}

(* Duplicate types of values in the environment *)
(* XXX Should we do something about global type variables too? *)

let duplicate_ident_types loc caselist env =
  let caselist =
    List.filter (fun (pat, _) -> contains_gadt env pat) caselist in
  let idents = all_idents (List.map snd caselist) in
  List.fold_left
    (fun env s ->
      try
        (* XXX This will mark the value as being used;
           I don't think this is what we want *)
        let (path, desc) = Env.lookup_value (Longident.Lident s) env in
        match path with
          Path.Pident id ->
            let desc = {desc with val_type = correct_levels desc.val_type} in
            Env.add_value id desc env
        | _ -> env
      with Not_found -> env)
    env idents

(* Typing of expressions *)

let unify_exp env exp expected_ty =
  (* Format.eprintf "@[%a@ %a@]@." Printtyp.raw_type_expr exp.exp_type
    Printtyp.raw_type_expr expected_ty; *)
    unify_exp_types exp.exp_loc env exp.exp_type expected_ty

let rec type_exp env sexp =
  (* We now delegate everything to type_expect *)
  type_expect env sexp (newvar ())

(* Typing of an expression with an expected type.
   This provide better error messages, and allows controlled
   propagation of return type information.
   In the principal case, [type_expected'] may be at generic_level.
 *)

and type_expect ?in_function env sexp ty_expected =
  let loc = sexp.pexp_loc in
  (* Record the expression type before unifying it with the expected type *)
  let rue exp =
    Cmt_format.add_saved_type (Cmt_format.Partial_expression exp);
    Stypes.record (Stypes.Ti_expr exp);
    unify_exp env exp (instance env ty_expected);
    exp
  in
  match sexp.pexp_desc with
  | Pexp_ident lid ->
      begin
        if !Clflags.annotations then begin
          try let (path, annot) = Env.lookup_annot lid.txt env in
              Stypes.record
                (Stypes.An_ident (
                 loc, Path.name ~paren:Oprint.parenthesized_ident path, annot))
          with _ -> ()
        end;
        let (path, desc) = Typetexp.find_value env loc lid.txt in
        rue {
          exp_desc =
            begin match desc.val_kind with
              Val_ivar (_, cl_num) ->
                let (self_path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_instvar(self_path, path,
                             match lid.txt with
                                 Longident.Lident txt -> { txt; loc = lid.loc }
                               | _ -> assert false)
            | Val_self (_, _, cl_num, _) ->
                let (path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_ident(path, lid, desc)
            | Val_unbound ->
                raise(Error(loc, Masked_instance_variable lid.txt))
            | _ ->
                Texp_ident(path, lid, desc)
          end;
          exp_loc = loc; exp_extra = [];
          exp_type = instance env desc.val_type;
          exp_env = env }
      end
  | Pexp_constant(Const_string s as cst) ->
      rue {
        exp_desc = Texp_constant cst;
        exp_loc = loc; exp_extra = [];
        exp_type =
        (* Terrible hack for format strings *)
           begin match (repr (expand_head env ty_expected)).desc with
             Tconstr(path, _, _) when Path.same path Predef.path_format6 ->
               type_format loc s
           | _ -> instance_def Predef.type_string
           end;
        exp_env = env }
  | Pexp_constant cst ->
      rue {
        exp_desc = Texp_constant cst;
        exp_loc = loc; exp_extra = [];
        exp_type = type_constant cst;
        exp_env = env }
  | Pexp_let(Nonrecursive, [spat, sval], sbody) when contains_gadt env spat ->
      type_expect ?in_function env
        {sexp with pexp_desc = Pexp_match (sval, [spat, sbody])}
        ty_expected
  | Pexp_let(rec_flag, spat_sexp_list, sbody) ->
      let scp =
        match rec_flag with
        | Recursive -> Some (Annot.Idef loc)
        | Nonrecursive -> Some (Annot.Idef sbody.pexp_loc)
        | Default -> None
      in
      let (pat_exp_list, new_env, unpacks) =
        type_let env rec_flag spat_sexp_list scp true in
      let body =
        type_expect new_env (wrap_unpacks sbody unpacks) ty_expected in
      re {
        exp_desc = Texp_let(rec_flag, pat_exp_list, body);
        exp_loc = loc; exp_extra = [];
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_function (l, Some default, [spat, sbody]) ->
      let default_loc = default.pexp_loc in
      let scases = [
         {ppat_loc = default_loc;
          ppat_desc =
            Ppat_construct
              (mknoloc (Longident.(Ldot (Lident "*predef*", "Some"))),
               Some {ppat_loc = default_loc;
                     ppat_desc = Ppat_var (mknoloc "*sth*")},
               false)},
         {pexp_loc = default_loc;
          pexp_desc = Pexp_ident(mknoloc (Longident.Lident "*sth*"))};
         {ppat_loc = default_loc;
          ppat_desc = Ppat_construct
             (mknoloc (Longident.(Ldot (Lident "*predef*", "None"))),
              None, false)},
         default;
      ] in
      let smatch = {
        pexp_loc = loc;
        pexp_desc =
          Pexp_match ({
            pexp_loc = loc;
            pexp_desc = Pexp_ident(mknoloc (Longident.Lident "*opt*"))
            },
            scases
          )
      } in
      let sfun = {
        pexp_loc = loc;
        pexp_desc =
         Pexp_function (
           l, None,
           [ {ppat_loc = loc;
              ppat_desc = Ppat_var (mknoloc "*opt*")},
             {pexp_loc = loc;
              pexp_desc = Pexp_let(Default, [spat, smatch], sbody);
             }
           ]
         )
      } in
      type_expect ?in_function env sfun ty_expected
  | Pexp_function (l, _, caselist) ->
      let (loc_fun, ty_fun) =
        match in_function with Some p -> p
        | None -> (loc, instance env ty_expected)
      in
      let separate = !Clflags.principal || Env.has_local_constraints env in
      if separate then begin_def ();
      let (ty_arg, ty_res) =
        try filter_arrow env (instance env ty_expected) l
        with Unify _ ->
          match expand_head env ty_expected with
            {desc = Tarrow _} as ty ->
              raise(Error(loc, Abstract_wrong_label(l, ty)))
          | _ ->
              raise(Error(loc_fun,
                          Too_many_arguments (in_function <> None, ty_fun)))
      in
      let ty_arg =
        if is_optional l then
          let tv = newvar() in
          begin
            try unify env ty_arg (type_option tv)
            with Unify _ -> assert false
          end;
          type_option tv
        else ty_arg
      in
      if separate then begin
        end_def ();
        generalize_structure ty_arg;
        generalize_structure ty_res
      end;
      let cases, partial =
        type_cases ~in_function:(loc_fun,ty_fun) env ty_arg ty_res
          true loc caselist in
      let not_function ty =
        let ls, tvar = list_labels env ty in
        ls = [] && not tvar
      in
      if is_optional l && not_function ty_res then
        Location.prerr_warning (fst (List.hd cases)).pat_loc
          Warnings.Unerasable_optional_argument;
      re {
        exp_desc = Texp_function(l,cases, partial);
        exp_loc = loc; exp_extra = [];
        exp_type = instance env (newgenty (Tarrow(l, ty_arg, ty_res, Cok)));
        exp_env = env }
  | Pexp_apply(sfunct, sargs) ->
      begin_def (); (* one more level for non-returning functions *)
      if !Clflags.principal then begin_def ();
      let funct = type_exp env sfunct in
      if !Clflags.principal then begin
          end_def ();
          generalize_structure funct.exp_type
        end;
      let rec lower_args seen ty_fun =
        let ty = expand_head env ty_fun in
        if List.memq ty seen then () else
        match ty.desc with
          Tarrow (l, ty_arg, ty_fun, com) ->
            (try unify_var env (newvar()) ty_arg with Unify _ -> assert false);
            lower_args (ty::seen) ty_fun
        | _ -> ()
      in
      let ty = instance env funct.exp_type in
      end_def ();
      lower_args [] ty;
      begin_def ();
      let (args, ty_res) = type_application env funct sargs in
      end_def ();
      unify_var env (newvar()) funct.exp_type;
      rue {
        exp_desc = Texp_apply(funct, args);
        exp_loc = loc; exp_extra = [];
        exp_type = ty_res;
        exp_env = env }
  | Pexp_match(sarg, caselist) ->
      begin_def ();
      let arg = type_exp env sarg in
      end_def ();
      if is_nonexpansive arg then generalize arg.exp_type
      else generalize_expansive env arg.exp_type;
      let cases, partial =
        type_cases env arg.exp_type ty_expected true loc caselist
      in
      re {
        exp_desc = Texp_match(arg, cases, partial);
        exp_loc = loc; exp_extra = [];
        exp_type = instance env ty_expected;
        exp_env = env }
  | Pexp_try(sbody, caselist) ->
      let body = type_expect env sbody ty_expected in
      let cases, _ =
        type_cases env Predef.type_exn ty_expected false loc caselist in
      re {
        exp_desc = Texp_try(body, cases);
        exp_loc = loc; exp_extra = [];
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_tuple sexpl ->
      let subtypes = List.map (fun _ -> newgenvar ()) sexpl in
      let to_unify = newgenty (Ttuple subtypes) in
      unify_exp_types loc env to_unify ty_expected;
      let expl =
        List.map2 (fun body ty -> type_expect env body ty) sexpl subtypes
      in
      re {
        exp_desc = Texp_tuple expl;
        exp_loc = loc; exp_extra = [];
        (* Keep sharing *)
        exp_type = newty (Ttuple (List.map (fun e -> e.exp_type) expl));
        exp_env = env }
  | Pexp_construct(lid, sarg, explicit_arity) ->
      type_construct env loc lid sarg explicit_arity ty_expected
  | Pexp_variant(l, sarg) ->
      (* Keep sharing *)
      let ty_expected0 = instance env ty_expected in
      begin try match
        sarg, expand_head env ty_expected, expand_head env ty_expected0 with
      | Some sarg, {desc = Tvariant row}, {desc = Tvariant row0} ->
          let row = row_repr row in
          begin match row_field_repr (List.assoc l row.row_fields),
          row_field_repr (List.assoc l row0.row_fields) with
            Rpresent (Some ty), Rpresent (Some ty0) ->
              let arg = type_argument env sarg ty ty0 in
              re { exp_desc = Texp_variant(l, Some arg);
                   exp_loc = loc; exp_extra = [];
                   exp_type = ty_expected0;
                   exp_env = env }
          | _ -> raise Not_found
          end
      | _ -> raise Not_found
      with Not_found ->
        let arg = may_map (type_exp env) sarg in
        let arg_type = may_map (fun arg -> arg.exp_type) arg in
        rue {
          exp_desc = Texp_variant(l, arg);
          exp_loc = loc; exp_extra = [];
          exp_type= newty (Tvariant{row_fields = [l, Rpresent arg_type];
                                    row_more = newvar ();
                                    row_bound = ();
                                    row_closed = false;
                                    row_fixed = false;
                                    row_name = None});
          exp_env = env }
      end
  | Pexp_record(lid_sexp_list, opt_sexp) ->
      let lbl_exp_list =
        type_label_a_list env (type_label_exp true env loc ty_expected)
          lid_sexp_list in
      let rec check_duplicates seen_pos lid_sexp lbl_exp =
        match (lid_sexp, lbl_exp) with
          ((lid, _) :: rem1, (_, _, lbl, _) :: rem2) ->
            if List.mem lbl.lbl_pos seen_pos
            then raise(Error(loc, Label_multiply_defined lid.txt))
            else check_duplicates (lbl.lbl_pos :: seen_pos) rem1 rem2
        | (_, _) -> () in
      check_duplicates [] lid_sexp_list lbl_exp_list;
      let opt_exp =
        match opt_sexp, lbl_exp_list with
          None, _ -> None
        | Some sexp, (_, _, lbl, _) :: _ ->
            if !Clflags.principal then begin_def ();
            let ty_exp = newvar () in
            let unify_kept lbl =
              if List.for_all
                  (fun (_, _, lbl',_) -> lbl'.lbl_pos <> lbl.lbl_pos)
                  lbl_exp_list
              then begin
                let _, ty_arg1, ty_res1 = instance_label false lbl
                and _, ty_arg2, ty_res2 = instance_label false lbl in
                unify env ty_exp ty_res1;
                unify env (instance env ty_expected) ty_res2;
                unify env ty_arg1 ty_arg2
              end in
            Array.iter unify_kept lbl.lbl_all;
            if !Clflags.principal then begin
              end_def ();
              generalize_structure ty_exp
            end;
            Some(type_expect env sexp ty_exp)
        | _ -> assert false
      in
      let num_fields =
        match lbl_exp_list with [] -> assert false
        | (_,_, lbl,_)::_ -> Array.length lbl.lbl_all in
      if opt_sexp = None && List.length lid_sexp_list <> num_fields then begin
        let present_indices =
          List.map (fun (_,_, lbl, _) -> lbl.lbl_pos) lbl_exp_list in
        let label_names = extract_label_names sexp env ty_expected in
        let rec missing_labels n = function
            [] -> []
          | lbl :: rem ->
              if List.mem n present_indices then missing_labels (n + 1) rem
              else lbl :: missing_labels (n + 1) rem
        in
        let missing = missing_labels 0 label_names in
        raise(Error(loc, Label_missing missing))
      end
      else if opt_sexp <> None && List.length lid_sexp_list = num_fields then
        Location.prerr_warning loc Warnings.Useless_record_with;
      re {
        exp_desc = Texp_record(lbl_exp_list, opt_exp);
        exp_loc = loc; exp_extra = [];
        exp_type = instance env ty_expected;
        exp_env = env }
  | Pexp_field(sarg, lid) ->
      let arg = type_exp env sarg in
      let (label_path,label) = Typetexp.find_label env loc lid.txt in
      let (_, ty_arg, ty_res) = instance_label false label in
      unify_exp env arg ty_res;
      rue {
        exp_desc = Texp_field(arg, label_path, lid, label);
        exp_loc = loc; exp_extra = [];
        exp_type = ty_arg;
        exp_env = env }
  | Pexp_setfield(srecord, lid, snewval) ->
      let record = type_exp env srecord in
      let (label_path, label) = Typetexp.find_label env loc lid.txt in
      let (label_path, label_loc, label, newval) =
        type_label_exp false env loc record.exp_type
          (label_path, lid, label, snewval) in
      if label.lbl_mut = Immutable then
        raise(Error(loc, Label_not_mutable lid.txt));
      rue {
        exp_desc = Texp_setfield(record, label_path, label_loc, label, newval);
        exp_loc = loc; exp_extra = [];
        exp_type = instance_def Predef.type_unit;
        exp_env = env }
  | Pexp_array(sargl) ->
      let ty = newgenvar() in
      let to_unify = Predef.type_array ty in
      unify_exp_types loc env to_unify ty_expected;
      let argl = List.map (fun sarg -> type_expect env sarg ty) sargl in
      re {
        exp_desc = Texp_array argl;
        exp_loc = loc; exp_extra = [];
        exp_type = instance env ty_expected;
        exp_env = env }
  | Pexp_ifthenelse(scond, sifso, sifnot) ->
      let cond = type_expect env scond Predef.type_bool in
      begin match sifnot with
        None ->
          let ifso = type_expect env sifso Predef.type_unit in
          rue {
            exp_desc = Texp_ifthenelse(cond, ifso, None);
            exp_loc = loc; exp_extra = [];
            exp_type = ifso.exp_type;
            exp_env = env }
      | Some sifnot ->
          let ifso = type_expect env sifso ty_expected in
          let ifnot = type_expect env sifnot ty_expected in
          (* Keep sharing *)
          unify_exp env ifnot ifso.exp_type;
          re {
            exp_desc = Texp_ifthenelse(cond, ifso, Some ifnot);
            exp_loc = loc; exp_extra = [];
            exp_type = ifso.exp_type;
            exp_env = env }
      end
  | Pexp_sequence(sexp1, sexp2) ->
      let exp1 = type_statement env sexp1 in
      let exp2 = type_expect env sexp2 ty_expected in
      re {
        exp_desc = Texp_sequence(exp1, exp2);
        exp_loc = loc; exp_extra = [];
        exp_type = exp2.exp_type;
        exp_env = env }
  | Pexp_while(scond, sbody) ->
      let cond = type_expect env scond Predef.type_bool in
      let body = type_statement env sbody in
      rue {
        exp_desc = Texp_while(cond, body);
        exp_loc = loc; exp_extra = [];
        exp_type = instance_def Predef.type_unit;
        exp_env = env }
  | Pexp_for(param, slow, shigh, dir, sbody) ->
      let low = type_expect env slow Predef.type_int in
      let high = type_expect env shigh Predef.type_int in
      let (id, new_env) =
        Env.enter_value param.txt {val_type = instance_def Predef.type_int;
          val_kind = Val_reg; Types.val_loc = loc; } env
          ~check:(fun s -> Warnings.Unused_for_index s)
      in
      let body = type_statement new_env sbody in
      rue {
        exp_desc = Texp_for(id, param, low, high, dir, body);
        exp_loc = loc; exp_extra = [];
        exp_type = instance_def Predef.type_unit;
        exp_env = env }
  | Pexp_constraint(sarg, sty, sty') ->

      let separate = true (* always separate, 1% slowdown for lablgtk *)
        (* !Clflags.principal || Env.has_local_constraints env *) in
      let (arg, ty',cty,cty') =
        match (sty, sty') with
          (None, None) ->               (* Case actually unused *)
            let arg = type_exp env sarg in
            (arg, arg.exp_type,None,None)
        | (Some sty, None) ->
            if separate then begin_def ();
            let cty = Typetexp.transl_simple_type env false sty in
            let ty = cty.ctyp_type in
            if separate then begin
              end_def ();
              generalize_structure ty;
              (type_argument env sarg ty (instance env ty),
               instance env ty, Some cty, None)
            end else
              (type_argument env sarg ty ty, ty, Some cty, None)
        | (None, Some sty') ->
            let (cty', force) =
              Typetexp.transl_simple_type_delayed env sty'
            in
            let ty' = cty'.ctyp_type in
            if separate then begin_def ();
            let arg = type_exp env sarg in
            let gen =
              if separate then begin
                end_def ();
                let tv = newvar () in
                let gen = generalizable tv.level arg.exp_type in
                unify_var env tv arg.exp_type;
                gen
              end else true
            in
            begin match arg.exp_desc, !self_coercion, (repr ty').desc with
              Texp_ident(_, _, {val_kind=Val_self _}), (path,r) :: _,
              Tconstr(path',_,_) when Path.same path path' ->
                (* prerr_endline "self coercion"; *)
                r := loc :: !r;
                force ()
            | _ when free_variables ~env arg.exp_type = []
                  && free_variables ~env ty' = [] ->
                if not gen && (* first try a single coercion *)
                  let snap = snapshot () in
                  let ty, b = enlarge_type env ty' in
                  try
                    force (); Ctype.unify env arg.exp_type ty; true
                  with Unify _ ->
                    backtrack snap; false
                then ()
                else begin try
                  let force' = subtype env arg.exp_type ty' in
                  force (); force' ();
                  if not gen then
                    Location.prerr_warning loc
                      (Warnings.Not_principal "this ground coercion");
                with Subtype (tr1, tr2) ->
                  (* prerr_endline "coercion failed"; *)
                  raise(Error(loc, Not_subtype(tr1, tr2)))
                end;
            | _ ->
                let ty, b = enlarge_type env ty' in
                force ();
                begin try Ctype.unify env arg.exp_type ty with Unify trace ->
                  raise(Error(sarg.pexp_loc,
                        Coercion_failure(ty', full_expand env ty', trace, b)))
                end
            end;
            (arg, ty', None, Some cty')
        | (Some sty, Some sty') ->
            if separate then begin_def ();
            let (cty, force) =
              Typetexp.transl_simple_type_delayed env sty
            and (cty', force') =
              Typetexp.transl_simple_type_delayed env sty'
            in
            let ty = cty.ctyp_type in
            let ty' = cty'.ctyp_type in
            begin try
              let force'' = subtype env ty ty' in
              force (); force' (); force'' ()
            with Subtype (tr1, tr2) ->
              raise(Error(loc, Not_subtype(tr1, tr2)))
            end;
            if separate then begin
              end_def ();
              generalize_structure ty;
              generalize_structure ty';
              (type_argument env sarg ty (instance env ty),
               instance env ty', Some cty, Some cty')
            end else
              (type_argument env sarg ty ty, ty', Some cty, Some cty')
      in
      rue {
        exp_desc = arg.exp_desc;
        exp_loc = arg.exp_loc;
        exp_type = ty';
        exp_env = env;
        exp_extra = (Texp_constraint (cty, cty'), loc) :: arg.exp_extra;
      }
  | Pexp_when(scond, sbody) ->
      let cond = type_expect env scond Predef.type_bool in
      let body = type_expect env sbody ty_expected in
      re {
        exp_desc = Texp_when(cond, body);
        exp_loc = loc; exp_extra = [];
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_send (e, met) ->
      if !Clflags.principal then begin_def ();
      let obj = type_exp env e in
      begin try
        let (meth, exp, typ) =
          match obj.exp_desc with
            Texp_ident(path, _, {val_kind = Val_self (meths, _, _, privty)}) ->
              let (id, typ) =
                filter_self_method env met Private meths privty
              in
              if is_Tvar (repr typ) then
                Location.prerr_warning loc
                  (Warnings.Undeclared_virtual_method met);
              (Tmeth_val id, None, typ)
          | Texp_ident(path, lid, {val_kind = Val_anc (methods, cl_num)}) ->
              let method_id =
                begin try List.assoc met methods with Not_found ->
                  raise(Error(e.pexp_loc, Undefined_inherited_method met))
                end
              in
              begin match
                Env.lookup_value (Longident.Lident ("selfpat-" ^ cl_num)) env,
                Env.lookup_value (Longident.Lident ("self-" ^cl_num)) env
              with
                (_, ({val_kind = Val_self (meths, _, _, privty)} as desc)),
                (path, _) ->
                  let (_, typ) =
                    filter_self_method env met Private meths privty
                  in
                  let method_type = newvar () in
                  let (obj_ty, res_ty) = filter_arrow env method_type "" in
                  unify env obj_ty desc.val_type;
                  unify env res_ty (instance env typ);
		  let exp =
		    Texp_apply({exp_desc =
                                Texp_ident(Path.Pident method_id, lid,
                                           {val_type = method_type;
                                            val_kind = Val_reg;
                                            Types.val_loc = Location.none});
                                exp_loc = loc; exp_extra = [];
                                exp_type = method_type;
                                exp_env = env},
                          ["",
                            Some {exp_desc = Texp_ident(path, lid, desc);
                                  exp_loc = obj.exp_loc; exp_extra = [];
                                  exp_type = desc.val_type;
                                  exp_env = env},
                               Required])
		  in
                  (Tmeth_name met, Some (re {exp_desc = exp;
					     exp_loc = loc; exp_extra = [];
					     exp_type = typ;
					     exp_env = env}), typ)
              |  _ ->
                  assert false
              end
          | _ ->
              (Tmeth_name met, None,
               filter_method env met Public obj.exp_type)
        in
        if !Clflags.principal then begin
          end_def ();
          generalize_structure typ;
        end;
        let typ =
          match repr typ with
            {desc = Tpoly (ty, [])} ->
              instance env ty
          | {desc = Tpoly (ty, tl); level = l} ->
              if !Clflags.principal && l <> generic_level then
                Location.prerr_warning loc
                  (Warnings.Not_principal "this use of a polymorphic method");
              snd (instance_poly false tl ty)
          | {desc = Tvar _} as ty ->
              let ty' = newvar () in
              unify env (instance_def ty) (newty(Tpoly(ty',[])));
              (* if not !Clflags.nolabels then
                 Location.prerr_warning loc (Warnings.Unknown_method met); *)
              ty'
          | _ ->
              assert false
        in
        rue {
          exp_desc = Texp_send(obj, meth, exp);
          exp_loc = loc; exp_extra = [];
          exp_type = typ;
          exp_env = env }
      with Unify _ ->
        raise(Error(e.pexp_loc, Undefined_method (obj.exp_type, met)))
      end
  | Pexp_new cl ->
      let (cl_path, cl_decl) = Typetexp.find_class env loc cl.txt in
        begin match cl_decl.cty_new with
          None ->
            raise(Error(loc, Virtual_class cl.txt))
        | Some ty ->
            rue {
              exp_desc = Texp_new (cl_path, cl, cl_decl);
              exp_loc = loc; exp_extra = [];
              exp_type = instance_def ty;
              exp_env = env }
        end
  | Pexp_setinstvar (lab, snewval) ->
      begin try
        let (path, desc) = Env.lookup_value (Longident.Lident lab.txt) env in
        match desc.val_kind with
          Val_ivar (Mutable, cl_num) ->
            let newval =
              type_expect env snewval (instance env desc.val_type) in
            let (path_self, _) =
              Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
            in
            rue {
              exp_desc = Texp_setinstvar(path_self, path, lab, newval);
              exp_loc = loc; exp_extra = [];
              exp_type = instance_def Predef.type_unit;
              exp_env = env }
        | Val_ivar _ ->
            raise(Error(loc,Instance_variable_not_mutable(true,lab.txt)))
        | _ ->
            raise(Error(loc,Instance_variable_not_mutable(false,lab.txt)))
      with
        Not_found ->
          raise(Error(loc, Unbound_instance_variable lab.txt))
      end
  | Pexp_override lst ->
      let _ =
       List.fold_right
        (fun (lab, _) l ->
           if List.exists (fun l -> l.txt = lab.txt) l then
             raise(Error(loc,
                         Value_multiply_overridden lab.txt));
           lab::l)
        lst
        [] in
      begin match
        try
          Env.lookup_value (Longident.Lident "selfpat-*") env,
          Env.lookup_value (Longident.Lident "self-*") env
        with Not_found ->
          raise(Error(loc, Outside_class))
      with
        (_, {val_type = self_ty; val_kind = Val_self (_, vars, _, _)}),
        (path_self, _) ->
          let type_override (lab, snewval) =
            begin try
              let (id, _, _, ty) = Vars.find lab.txt !vars in
              (Path.Pident id, lab, type_expect env snewval (instance env ty))
            with
              Not_found ->
                raise(Error(loc, Unbound_instance_variable lab.txt))
            end
          in
          let modifs = List.map type_override lst in
          rue {
            exp_desc = Texp_override(path_self, modifs);
            exp_loc = loc; exp_extra = [];
            exp_type = self_ty;
            exp_env = env }
      | _ ->
          assert false
      end
  | Pexp_letmodule(name, smodl, sbody) ->
      let ty = newvar() in
      (* remember original level *)
      begin_def ();
      Ident.set_current_time ty.level;
      let context = Typetexp.narrow () in
      let modl = !type_module env smodl in
      let (id, new_env) = Env.enter_module name.txt modl.mod_type env in
      Ctype.init_def(Ident.current_time());
      Typetexp.widen context;
      let body = type_expect new_env sbody ty_expected in
      (* go back to original level *)
      end_def ();
      (* Unification of body.exp_type with the fresh variable ty
         fails if and only if the prefix condition is violated,
         i.e. if generative types rooted at id show up in the
         type body.exp_type.  Thus, this unification enforces the
         scoping condition on "let module". *)
      begin try
        Ctype.unify_var new_env ty body.exp_type
      with Unify _ ->
        raise(Error(loc, Scoping_let_module(name.txt, body.exp_type)))
      end;
      re {
        exp_desc = Texp_letmodule(id, name, modl, body);
        exp_loc = loc; exp_extra = [];
        exp_type = ty;
        exp_env = env }
  | Pexp_assert (e) ->
      let cond = type_expect env e Predef.type_bool in
      rue {
        exp_desc = Texp_assert (cond);
        exp_loc = loc; exp_extra = [];
        exp_type = instance_def Predef.type_unit;
        exp_env = env;
      }
  | Pexp_assertfalse ->
      re {
        exp_desc = Texp_assertfalse;
        exp_loc = loc; exp_extra = [];
        exp_type = instance env ty_expected;
        exp_env = env;
      }
  | Pexp_lazy e ->
      let ty = newgenvar () in
      let to_unify = Predef.type_lazy_t ty in
      unify_exp_types loc env to_unify ty_expected;
      let arg = type_expect env e ty in
      re {
        exp_desc = Texp_lazy arg;
        exp_loc = loc; exp_extra = [];
        exp_type = instance env ty_expected;
        exp_env = env;
      }
  | Pexp_object s ->
      let desc, sign, meths = !type_object env loc s in
      rue {
        exp_desc = Texp_object (desc, (*sign,*) meths);
        exp_loc = loc; exp_extra = [];
        exp_type = sign.cty_self;
        exp_env = env;
      }
  | Pexp_poly(sbody, sty) ->
      if !Clflags.principal then begin_def ();
      let ty, cty =
        match sty with None -> repr ty_expected, None
        | Some sty ->
            let cty = Typetexp.transl_simple_type env false sty in
            repr cty.ctyp_type, Some cty
      in
      if !Clflags.principal then begin
        end_def ();
        generalize_structure ty
      end;
      if sty <> None then
        unify_exp_types loc env (instance env ty) (instance env ty_expected);
      let exp =
        match (expand_head env ty).desc with
          Tpoly (ty', []) ->
            let exp = type_expect env sbody ty' in
            { exp with exp_type = instance env ty }
        | Tpoly (ty', tl) ->
            (* One more level to generalize locally *)
            begin_def ();
            if !Clflags.principal then begin_def ();
            let vars, ty'' = instance_poly true tl ty' in
            if !Clflags.principal then begin
              end_def ();
              generalize_structure ty''
            end;
            let exp = type_expect env sbody ty'' in
            end_def ();
            check_univars env false "method" exp ty_expected vars;
            { exp with exp_type = instance env ty }
        | Tvar _ ->
            let exp = type_exp env sbody in
            let exp = {exp with exp_type = newty (Tpoly (exp.exp_type, []))} in
            unify_exp env exp ty;
            exp
        | _ -> assert false
      in
      re { exp with exp_extra = (Texp_poly cty, loc) :: exp.exp_extra }
  | Pexp_newtype(name, sbody) ->
      let ty = newvar () in
      (* remember original level *)
      begin_def ();
      (* Create a fake abstract type declaration for name. *)
      let level = get_current_level () in
      let decl = {
        type_params = [];
        type_arity = 0;
        type_kind = Type_abstract;
        type_private = Public;
        type_manifest = None;
        type_variance = [];
        type_newtype_level = Some (level, level);
        type_loc = loc;
      }
      in
      Ident.set_current_time ty.level;
      let (id, new_env) = Env.enter_type name decl env in
      Ctype.init_def(Ident.current_time());

      let body = type_exp new_env sbody in
      (* Replace every instance of this type constructor in the resulting
         type. *)
      let seen = Hashtbl.create 8 in
      let rec replace t =
        if Hashtbl.mem seen t.id then ()
        else begin
          Hashtbl.add seen t.id ();
          match t.desc with
          | Tconstr (Path.Pident id', _, _) when id == id' -> link_type t ty
          | _ -> Btype.iter_type_expr replace t
        end
      in
      let ety = Subst.type_expr Subst.identity body.exp_type in
      replace ety;
      (* back to original level *)
      end_def ();
      (* lower the levels of the result type *)
      (* unify_var env ty ety; *)

      (* non-expansive if the body is non-expansive, so we don't introduce
         any new extra node in the typed AST. *)
      rue { body with exp_loc = loc; exp_type = ety;
            exp_extra = (Texp_newtype name, loc) :: body.exp_extra }
  | Pexp_pack m ->
      let (p, nl, tl) =
        match Ctype.expand_head env (instance env ty_expected) with
          {desc = Tpackage (p, nl, tl)} ->
            if !Clflags.principal &&
              (Ctype.expand_head env ty_expected).level < Btype.generic_level
            then
              Location.prerr_warning loc
                (Warnings.Not_principal "this module packing");
            (p, nl, tl)
        | {desc = Tvar _} ->
            raise (Error (loc, Cannot_infer_signature))
        | _ ->
            raise (Error (loc, Not_a_packed_module ty_expected))
      in
      let (modl, tl') = !type_package env m p nl tl in
      rue {
        exp_desc = Texp_pack modl;
        exp_loc = loc; exp_extra = [];
        exp_type = newty (Tpackage (p, nl, tl'));
        exp_env = env }
  | Pexp_open (lid, e) ->
      let (path, newenv) = !type_open env sexp.pexp_loc lid in
      let exp = type_expect newenv e ty_expected in
      { exp with
        exp_extra = (Texp_open (path, lid, newenv), loc) :: exp.exp_extra;
      }

and type_label_exp create env loc ty_expected
          (label_path, lid, label, sarg) =
  (* Here also ty_expected may be at generic_level *)
  begin_def ();
  let separate = !Clflags.principal || Env.has_local_constraints env in
  if separate then (begin_def (); begin_def ());
  let (vars, ty_arg, ty_res) = instance_label true label in
  if separate then begin
    end_def ();
    (* Generalize label information *)
    generalize_structure ty_arg;
    generalize_structure ty_res
  end;
  begin try
    unify env (instance_def ty_res) (instance env ty_expected)
  with Unify trace ->
    raise (Error(lid.loc, Label_mismatch(lid_of_label label, trace)))
  end;
  (* Instantiate so that we can generalize internal nodes *)
  let ty_arg = instance_def ty_arg in
  if separate then begin
    end_def ();
    (* Generalize information merged from ty_expected *)
    generalize_structure ty_arg
  end;
  if label.lbl_private = Private then
    if create then
      raise (Error(loc, Private_type ty_expected))
    else
      raise (Error(lid.loc, Private_label(lid_of_label label, ty_expected)));
  let arg =
    let snap = if vars = [] then None else Some (Btype.snapshot ()) in
    let arg = type_argument env sarg ty_arg (instance env ty_arg) in
    end_def ();
    try
      check_univars env (vars <> []) "field value" arg label.lbl_arg vars;
      arg
    with exn when not (is_nonexpansive arg) -> try
      (* Try to retype without propagating ty_arg, cf PR#4862 *)
      may Btype.backtrack snap;
      begin_def ();
      let arg = type_exp env sarg in
      end_def ();
      generalize_expansive env arg.exp_type;
      unify_exp env arg ty_arg;
      check_univars env false "field value" arg label.lbl_arg vars;
      arg
    with Error (_, Less_general _) as e -> raise e
    | _ -> raise exn    (* In case of failure return the first error *)
  in
  (label_path, lid, label, {arg with exp_type = instance env arg.exp_type})

and type_argument env sarg ty_expected' ty_expected =
  (* ty_expected' may be generic *)
  let no_labels ty =
    let ls, tvar = list_labels env ty in
    not tvar && List.for_all ((=) "") ls
  in
  let rec is_inferred sexp =
    match sexp.pexp_desc with
      Pexp_ident _ | Pexp_apply _ | Pexp_send _ | Pexp_field _ -> true
    | Pexp_open (_, e) -> is_inferred e
    | _ -> false
  in
  match expand_head env ty_expected' with
    {desc = Tarrow("",ty_arg,ty_res,_); level = lv} when is_inferred sarg ->
      (* apply optional arguments when expected type is "" *)
      (* we must be very careful about not breaking the semantics *)
      if !Clflags.principal then begin_def ();
      let texp = type_exp env sarg in
      if !Clflags.principal then begin
        end_def ();
        generalize_structure texp.exp_type
      end;
      let rec make_args args ty_fun =
        match (expand_head env ty_fun).desc with
        | Tarrow (l,ty_arg,ty_fun,_) when is_optional l ->
            make_args
              ((Some(option_none (instance env ty_arg) sarg.pexp_loc), Optional)
               :: args)
              ty_fun
        | Tarrow (l,_,ty_res',_) when l = "" || !Clflags.classic ->
            args, ty_fun, no_labels ty_res'
        | Tvar _ ->  args, ty_fun, false
        |  _ -> [], texp.exp_type, false
      in
      let args, ty_fun', simple_res = make_args [] texp.exp_type in
      let warn = !Clflags.principal &&
        (lv <> generic_level || (repr ty_fun').level <> generic_level)
      and texp = {texp with exp_type = instance env texp.exp_type}
      and ty_fun = instance env ty_fun' in
      if not (simple_res || no_labels ty_res) then begin
        unify_exp env texp ty_expected;
        texp
      end else begin
      unify_exp env {texp with exp_type = ty_fun} ty_expected;
      if args = [] then texp else
      (* eta-expand to avoid side effects *)
      let var_pair name ty =
        let id = Ident.create name in
        {pat_desc = Tpat_var (id, mknoloc name); pat_type = ty;pat_extra=[];
         pat_loc = Location.none; pat_env = env},
        {exp_type = ty; exp_loc = Location.none; exp_env = env;
         exp_extra = [];
         exp_desc =
         Texp_ident(Path.Pident id, mknoloc (Longident.Lident name),
                    {val_type = ty; val_kind = Val_reg;
                     Types.val_loc = Location.none})}
      in
      let eta_pat, eta_var = var_pair "eta" ty_arg in
      let func texp =
        { texp with exp_type = ty_fun; exp_desc =
          Texp_function("", [eta_pat, {texp with exp_type = ty_res; exp_desc =
                    Texp_apply (texp,
                      (List.map (fun (label, exp) ->
                          ("", label, exp)) args)@
                                               ["", Some eta_var, Required])}],
                        Total) } in
      if warn then Location.prerr_warning texp.exp_loc
          (Warnings.Without_principality "eliminated optional argument");
      if is_nonexpansive texp then func texp else
      (* let-expand to have side effects *)
      let let_pat, let_var = var_pair "let" texp.exp_type in
      re { texp with exp_type = ty_fun; exp_desc =
           Texp_let (Nonrecursive, [let_pat, texp], func let_var) }
      end
  | _ ->
      let texp = type_expect env sarg ty_expected' in
      unify_exp env texp ty_expected;
      texp

and type_application env funct sargs =
  (* funct.exp_type may be generic *)
  let result_type omitted ty_fun =
    List.fold_left
      (fun ty_fun (l,ty,lv) -> newty2 lv (Tarrow(l,ty,ty_fun,Cok)))
      ty_fun omitted
  in
  let has_label l ty_fun =
    let ls, tvar = list_labels env ty_fun in
    tvar || List.mem l ls
  in
  let ignored = ref [] in
  let rec type_unknown_args
      (args :
      (Asttypes.label * (unit -> Typedtree.expression) option *
         Typedtree.optional) list)
    omitted ty_fun = function
      [] ->
        (List.map
            (function l, None, x -> l, None, x
                | l, Some f, x -> l, Some (f ()), x)
           (List.rev args),
         instance env (result_type omitted ty_fun))
    | (l1, sarg1) :: sargl ->
        let (ty1, ty2) =
          let ty_fun = expand_head env ty_fun in
          match ty_fun.desc with
            Tvar _ ->
              let t1 = newvar () and t2 = newvar () in
              let not_identity = function
                  Texp_ident(_,_,{val_kind=Val_prim
                                  {Primitive.prim_name="%identity"}}) ->
                    false
                | _ -> true
              in
              if ty_fun.level >= t1.level && not_identity funct.exp_desc then
                Location.prerr_warning sarg1.pexp_loc Warnings.Unused_argument;
              unify env ty_fun (newty (Tarrow(l1,t1,t2,Clink(ref Cunknown))));
              (t1, t2)
          | Tarrow (l,t1,t2,_) when l = l1
            || !Clflags.classic && l1 = "" && not (is_optional l) ->
              (t1, t2)
          | td ->
              let ty_fun =
                match td with Tarrow _ -> newty td | _ -> ty_fun in
              let ty_res = result_type (omitted @ !ignored) ty_fun in
              match ty_res.desc with
                Tarrow _ ->
                  if (!Clflags.classic || not (has_label l1 ty_fun)) then
                    raise(Error(sarg1.pexp_loc, Apply_wrong_label(l1, ty_res)))
                  else
                    raise(Error(funct.exp_loc, Incoherent_label_order))
              | _ ->
                  raise(Error(funct.exp_loc, Apply_non_function
                                (expand_head env funct.exp_type)))
        in
        let optional = if is_optional l1 then Optional else Required in
        let arg1 () =
          let arg1 = type_expect env sarg1 ty1 in
          if optional = Optional then
            unify_exp env arg1 (type_option(newvar()));
          arg1
        in
        type_unknown_args ((l1, Some arg1, optional) :: args) omitted ty2 sargl
  in
  let ignore_labels =
    !Clflags.classic ||
    begin
      let ls, tvar = list_labels env funct.exp_type in
      not tvar &&
      let labels = List.filter (fun l -> not (is_optional l)) ls in
      List.length labels = List.length sargs &&
      List.for_all (fun (l,_) -> l = "") sargs &&
      List.exists (fun l -> l <> "") labels &&
      (Location.prerr_warning funct.exp_loc Warnings.Labels_omitted;
       true)
    end
  in
  let warned = ref false in
  let rec type_args args omitted ty_fun ty_fun0 ty_old sargs more_sargs =
    match expand_head env ty_fun, expand_head env ty_fun0 with
      {desc=Tarrow (l, ty, ty_fun, com); level=lv} as ty_fun',
      {desc=Tarrow (_, ty0, ty_fun0, _)}
      when (sargs <> [] || more_sargs <> []) && commu_repr com = Cok ->
        let may_warn loc w =
          if not !warned && !Clflags.principal && lv <> generic_level
          then begin
            warned := true;
            Location.prerr_warning loc w
          end
        in
        let name = label_name l
        and optional = if is_optional l then Optional else Required in
        let sargs, more_sargs, arg =
          if ignore_labels && not (is_optional l) then begin
            (* In classic mode, omitted = [] *)
            match sargs, more_sargs with
              (l', sarg0) :: _, _ ->
                raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_old)))
            | _, (l', sarg0) :: more_sargs ->
                if l <> l' && l' <> "" then
                  raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_fun')))
                else
                  ([], more_sargs,
                   Some (fun () -> type_argument env sarg0 ty ty0))
            | _ ->
                assert false
          end else try
            let (l', sarg0, sargs, more_sargs) =
              try
                let (l', sarg0, sargs1, sargs2) = extract_label name sargs in
                if sargs1 <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs1 @ sargs2, more_sargs)
              with Not_found ->
                let (l', sarg0, sargs1, sargs2) =
                  extract_label name more_sargs in
                if sargs1 <> [] || sargs <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs @ sargs1, sargs2)
            in
            sargs, more_sargs,
            if optional = Required || is_optional l' then
              Some (fun () -> type_argument env sarg0 ty ty0)
            else begin
              may_warn sarg0.pexp_loc
                (Warnings.Not_principal "using an optional argument here");
              Some (fun () -> option_some (type_argument env sarg0
                                             (extract_option_type env ty)
                                             (extract_option_type env ty0)))
            end
          with Not_found ->
            sargs, more_sargs,
            if optional = Optional &&
              (List.mem_assoc "" sargs || List.mem_assoc "" more_sargs)
            then begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "eliminated optional argument");
              ignored := (l,ty,lv) :: !ignored;
              Some (fun () -> option_none (instance env ty) Location.none)
            end else begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "commuted an argument");
              None
            end
        in
        let omitted =
          if arg = None then (l,ty,lv) :: omitted else omitted in
        let ty_old = if sargs = [] then ty_fun else ty_old in
        type_args ((l,arg,optional)::args) omitted ty_fun ty_fun0
          ty_old sargs more_sargs
    | _ ->
        match sargs with
          (l, sarg0) :: _ when ignore_labels ->
            raise(Error(sarg0.pexp_loc, Apply_wrong_label(l, ty_old)))
        | _ ->
            type_unknown_args args omitted ty_fun0
              (sargs @ more_sargs)
  in
  match funct.exp_desc, sargs with
    (* Special case for ignore: avoid discarding warning *)
    Texp_ident (_, _, {val_kind=Val_prim{Primitive.prim_name="%ignore"}}),
    ["", sarg] ->
      let ty_arg, ty_res = filter_arrow env (instance env funct.exp_type) "" in
      let exp = type_expect env sarg ty_arg in
      begin match (expand_head env exp.exp_type).desc with
      | Tarrow _ ->
          Location.prerr_warning exp.exp_loc Warnings.Partial_application
      | Tvar _ ->
          add_delayed_check (fun () -> check_application_result env false exp)
      | _ -> ()
      end;
      (["", Some exp, Required], ty_res)
  | _ ->
      let ty = funct.exp_type in
      if ignore_labels then
        type_args [] [] ty (instance env ty) ty [] sargs
      else
        type_args [] [] ty (instance env ty) ty sargs []

and type_construct env loc lid sarg explicit_arity ty_expected =
  let (path,constr) = Typetexp.find_constructor env loc lid.txt in
  Env.mark_constructor Env.Positive env (Longident.last lid.txt) constr;
  let sargs =
    match sarg with
      None -> []
    | Some {pexp_desc = Pexp_tuple sel} when explicit_arity -> sel
    | Some {pexp_desc = Pexp_tuple sel} when constr.cstr_arity > 1 -> sel
    | Some se -> [se] in
  if List.length sargs <> constr.cstr_arity then
    raise(Error(loc, Constructor_arity_mismatch
                  (lid.txt, constr.cstr_arity, List.length sargs)));
  let separate = !Clflags.principal || Env.has_local_constraints env in
  if separate then (begin_def (); begin_def ());
  let (ty_args, ty_res) = instance_constructor constr in
  let texp =
    re {
      exp_desc = Texp_construct(path, lid, constr, [],explicit_arity);
      exp_loc = loc; exp_extra = [];
      exp_type = ty_res;
      exp_env = env } in
  if separate then begin
    end_def ();
    generalize_structure ty_res;
    unify_exp env {texp with exp_type = instance_def ty_res}
                  (instance env ty_expected);
    end_def ();
    List.iter generalize_structure ty_args;
    generalize_structure ty_res;
  end;
  let ty_args0, ty_res =
    match instance_list env (ty_res :: ty_args) with
      t :: tl -> tl, t
    | _ -> assert false
  in
  let texp = {texp with exp_type = ty_res} in
  if not separate then unify_exp env texp (instance env ty_expected);
  let args = List.map2 (fun e (t,t0) -> type_argument env e t t0) sargs
      (List.combine ty_args ty_args0) in
  if constr.cstr_private = Private then
    raise(Error(loc, Private_type ty_res));
  { texp with
    exp_desc = Texp_construct(path, lid, constr, args, explicit_arity) }

(* Typing of statements (expressions whose values are discarded) *)

and type_statement env sexp =
  let loc = sexp.pexp_loc in
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  if !Clflags.strict_sequence then
    let expected_ty = instance_def Predef.type_unit in
    unify_exp env exp expected_ty;
    exp else
  let ty = expand_head env exp.exp_type and tv = newvar() in
  begin match ty.desc with
  | Tarrow _ ->
      Location.prerr_warning loc Warnings.Partial_application
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | Tvar _ when ty.level > tv.level ->
      Location.prerr_warning loc Warnings.Nonreturning_statement
  | Tvar _ ->
      add_delayed_check (fun () -> check_application_result env true exp)
  | _ ->
      Location.prerr_warning loc Warnings.Statement_type
  end;
  unify_var env tv ty;
  exp

(* Typing of match cases *)

and type_cases ?in_function env ty_arg ty_res partial_flag loc caselist =
  (* ty_arg is _fully_ generalized *)
  let dont_propagate, has_gadts =
    let patterns = List.map fst caselist in
    List.exists contains_polymorphic_variant patterns,
    List.exists (contains_gadt env) patterns in
(*  prerr_endline ( if has_gadts then "contains gadt" else "no gadt"); *)
  let ty_arg, ty_res, env =
    if has_gadts && not !Clflags.principal then
      correct_levels ty_arg, correct_levels ty_res,
      duplicate_ident_types loc caselist env
    else ty_arg, ty_res, env in
  let lev, env =
    if has_gadts then begin
      (* raise level for existentials *)
      begin_def ();
      Ident.set_current_time (get_current_level ());
      let lev = Ident.current_time () in
      Ctype.init_def (lev+1000);                 (* up to 1000 existentials *)
      (lev, Env.add_gadt_instance_level lev env)
    end else (get_current_level (), env)
  in
(*  if has_gadts then
    Format.printf "lev = %d@.%a@." lev Printtyp.raw_type_expr ty_res; *)
  begin_def (); (* propagation of the argument *)
  let ty_arg' = newvar () in
  let pattern_force = ref [] in
(*  Format.printf "@[%i %i@ %a@]@." lev (get_current_level())
    Printtyp.raw_type_expr ty_arg; *)
  let pat_env_list =
    List.map
      (fun (spat, sexp) ->
        let loc = sexp.pexp_loc in
        if !Clflags.principal then begin_def (); (* propagation of pattern *)
        let scope = Some (Annot.Idef loc) in
        let (pat, ext_env, force, unpacks) =
          let partial =
            if !Clflags.principal then Some false else None in
          let ty_arg =
            if dont_propagate then newvar () else instance ?partial env ty_arg
          in type_pattern ~lev env spat scope ty_arg
        in
        pattern_force := force @ !pattern_force;
        let pat =
          if !Clflags.principal then begin
            end_def ();
            iter_pattern (fun {pat_type=t} -> generalize_structure t) pat;
            { pat with pat_type = instance env pat.pat_type }
          end else pat
        in
        unify_pat env pat ty_arg';
        (pat, (ext_env, unpacks)))
      caselist in
  (* Check for polymorphic variants to close *)
  let patl = List.map fst pat_env_list in
  if List.exists has_variants patl then begin
    Parmatch.pressure_variants env patl;
    List.iter (iter_pattern finalize_variant) patl
  end;
  (* `Contaminating' unifications start here *)
  List.iter (fun f -> f()) !pattern_force;
  (* Post-processing and generalization *)
  let patl = List.map fst pat_env_list in
  List.iter (iter_pattern (fun {pat_type=t} -> unify_var env t (newvar())))
    patl;
  List.iter (fun pat -> unify_pat env pat (instance env ty_arg)) patl;
  end_def ();
  List.iter (iter_pattern (fun {pat_type=t} -> generalize t)) patl;
  (* type bodies *)
  let in_function = if List.length caselist = 1 then in_function else None in
  let cases =
    List.map2
      (fun (pat, (ext_env, unpacks)) (spat, sexp) ->
        let sexp = wrap_unpacks sexp unpacks in
        let ty_res' =
          if !Clflags.principal then begin
            begin_def ();
            let ty = instance ~partial:true env ty_res in
            end_def ();
            generalize_structure ty; ty
          end
          else if contains_gadt env spat then correct_levels ty_res
          else ty_res in
(*        Format.printf "@[%i %i, ty_res' =@ %a@]@." lev (get_current_level())
          Printtyp.raw_type_expr ty_res'; *)
        let exp = type_expect ?in_function ext_env sexp ty_res' in
        (pat, {exp with exp_type = instance env ty_res'}))
      pat_env_list caselist
  in
  if !Clflags.principal || has_gadts then begin
    let ty_res' = instance env ty_res in
    List.iter (fun (_,exp) -> unify_exp env exp ty_res') cases
  end;
  let partial =
    if partial_flag then
      Parmatch.check_partial_gadt (partial_pred ~lev env ty_arg) loc cases
    else
      Partial
  in
  add_delayed_check (fun () -> Parmatch.check_unused env cases);
  if has_gadts then begin
    end_def ();
    (* Ensure that existential types do not escape *)
    unify_exp_types loc env (instance env ty_res) (newvar ()) ;
  end;
  cases, partial

(* Typing of let bindings *)

and type_let ?(check = fun s -> Warnings.Unused_var s)
             ?(check_strict = fun s -> Warnings.Unused_var_strict s)
    env rec_flag spat_sexp_list scope allow =
  begin_def();
  if !Clflags.principal then begin_def ();

  let is_fake_let =
    match spat_sexp_list with
    | [_, {pexp_desc=Pexp_match(
           {pexp_desc=Pexp_ident({ txt = Longident.Lident "*opt*"})},_)}] ->
        true (* the fake let-declaration introduced by fun ?(x = e) -> ... *)
    | _ ->
        false
  in
  let check = if is_fake_let then check_strict else check in

  let spatl =
    List.map
      (fun (spat, sexp) ->
        match spat.ppat_desc, sexp.pexp_desc with
          (Ppat_any | Ppat_constraint _), _ -> spat
        | _, Pexp_constraint (_, _, Some sty)
        | _, Pexp_constraint (_, Some sty, None) when !Clflags.principal ->
            (* propagate type annotation to pattern,
               to allow it to be generalized in -principal mode *)
            {ppat_desc = Ppat_constraint (spat, sty);
             ppat_loc = {spat.ppat_loc with Location.loc_ghost=true}}
        | _ -> spat)
      spat_sexp_list in
  let nvs = List.map (fun _ -> newvar ()) spatl in
  let (pat_list, new_env, force, unpacks) =
    type_pattern_list env spatl scope nvs allow in
  let is_recursive = (rec_flag = Recursive) in
  (* If recursive, first unify with an approximation of the expression *)
  if is_recursive then
    List.iter2
      (fun pat (_, sexp) ->
        let pat =
          match pat.pat_type.desc with
          | Tpoly (ty, tl) ->
              {pat with pat_type =
               snd (instance_poly ~keep_names:true false tl ty)}
          | _ -> pat
        in unify_pat env pat (type_approx env sexp))
      pat_list spat_sexp_list;
  (* Polymorphic variant processing *)
  List.iter
    (fun pat ->
      if has_variants pat then begin
        Parmatch.pressure_variants env [pat];
        iter_pattern finalize_variant pat
      end)
    pat_list;
  (* Generalize the structure *)
  let pat_list =
    if !Clflags.principal then begin
      end_def ();
      List.map
        (fun pat ->
          iter_pattern (fun pat -> generalize_structure pat.pat_type) pat;
          {pat with pat_type = instance env pat.pat_type})
        pat_list
    end else pat_list in
  (* Only bind pattern variables after generalizing *)
  List.iter (fun f -> f()) force;
  let exp_env =
    if is_recursive then new_env else env in

  let current_slot = ref None in
  let rec_needed = ref false in
  let warn_unused =
    Warnings.is_active (check "") || Warnings.is_active (check_strict "") ||
    (is_recursive && (Warnings.is_active Warnings.Unused_rec_flag))
  in
  let pat_slot_list =
    (* Algorithm to detect unused declarations in recursive bindings:
       - During type checking of the definitions, we capture the 'value_used'
         events on the bound identifiers and record them in a slot corresponding
         to the current definition (!current_slot).
         In effect, this creates a dependency graph between definitions.

       - After type checking the definition (!current_slot = None),
         when one of the bound identifier is effectively used, we trigger
         again all the events recorded in the corresponding slot.
         The effect is to traverse the transitive closure of the graph created
         in the first step.

       We also keep track of whether *all* variables in a given pattern
       are unused. If this is the case, for local declarations, the issued
       warning is 26, not 27.
     *)
    List.map
      (fun pat ->
        if not warn_unused then pat, None
        else
          let some_used = ref false in
            (* has one of the identifier of this pattern been used? *)
          let slot = ref [] in
          List.iter
            (fun (id,_) ->
              let vd = Env.find_value (Path.Pident id) new_env in
              (* note: Env.find_value does not trigger the value_used event *)
              let name = Ident.name id in
              let used = ref false in
              if not (name = "" || name.[0] = '_' || name.[0] = '#') then
                add_delayed_check
                  (fun () ->
                    if not !used then
                      Location.prerr_warning vd.Types.val_loc
                        ((if !some_used then check_strict else check) name)
                  );
              Env.set_value_used_callback
                name vd
                (fun () ->
                  match !current_slot with
                  | Some slot ->
                      slot := (name, vd) :: !slot; rec_needed := true
                  | None ->
                      List.iter
                        (fun (name, vd) -> Env.mark_value_used name vd)
                        (get_ref slot);
                      used := true;
                      some_used := true
                )
            )
            (Typedtree.pat_bound_idents pat);
          pat, Some slot
        )
      pat_list
  in
  let exp_list =
    List.map2
      (fun (spat, sexp) (pat, slot) ->
        let sexp =
          if rec_flag = Recursive then wrap_unpacks sexp unpacks else sexp in
        if is_recursive then current_slot := slot;
        match pat.pat_type.desc with
        | Tpoly (ty, tl) ->
            begin_def ();
            if !Clflags.principal then begin_def ();
            let vars, ty' = instance_poly ~keep_names:true true tl ty in
            if !Clflags.principal then begin
              end_def ();
              generalize_structure ty'
            end;
            let exp = type_expect exp_env sexp ty' in
            end_def ();
            check_univars env true "definition" exp pat.pat_type vars;
            {exp with exp_type = instance env exp.exp_type}
        | _ -> type_expect exp_env sexp pat.pat_type)
      spat_sexp_list pat_slot_list in
  current_slot := None;
  if is_recursive && not !rec_needed
  && Warnings.is_active Warnings.Unused_rec_flag then
    Location.prerr_warning (fst (List.hd spat_sexp_list)).ppat_loc
      Warnings.Unused_rec_flag;
  List.iter2
    (fun pat exp -> ignore(Parmatch.check_partial pat.pat_loc [pat, exp]))
    pat_list exp_list;
  end_def();
  List.iter2
    (fun pat exp ->
       if not (is_nonexpansive exp) then
         iter_pattern (fun pat -> generalize_expansive env pat.pat_type) pat)
    pat_list exp_list;
  List.iter
    (fun pat -> iter_pattern (fun pat -> generalize pat.pat_type) pat)
    pat_list;
  (List.combine pat_list exp_list, new_env, unpacks)

(* Typing of toplevel bindings *)

let type_binding env rec_flag spat_sexp_list scope =
  Typetexp.reset_type_variables();
  let (pat_exp_list, new_env, unpacks) =
    type_let
      ~check:(fun s -> Warnings.Unused_value_declaration s)
      ~check_strict:(fun s -> Warnings.Unused_value_declaration s)
      env rec_flag spat_sexp_list scope false
  in
  (pat_exp_list, new_env)

let type_let env rec_flag spat_sexp_list scope =
  let (pat_exp_list, new_env, unpacks) =
    type_let env rec_flag spat_sexp_list scope false in
  (pat_exp_list, new_env)

(* Typing of toplevel expressions *)

let type_expression env sexp =
  Typetexp.reset_type_variables();
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  if is_nonexpansive exp then generalize exp.exp_type
  else generalize_expansive env exp.exp_type;
  match sexp.pexp_desc with
    Pexp_ident lid ->
      (* Special case for keeping type variables when looking-up a variable *)
      let (path, desc) = Env.lookup_value lid.txt env in
      {exp with exp_type = desc.val_type}
  | _ -> exp

(* Error report *)

open Format
open Printtyp

let report_error ppf = function
  | Polymorphic_label lid ->
      fprintf ppf "@[The record field label %a is polymorphic.@ %s@]"
        longident lid "You cannot instantiate it in a pattern."
  | Constructor_arity_mismatch(lid, expected, provided) ->
      fprintf ppf
       "@[The constructor %a@ expects %i argument(s),@ \
        but is applied here to %i argument(s)@]"
       longident lid expected provided
  | Label_mismatch(lid, trace) ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The record field label %a@ belongs to the type"
                   longident lid)
        (function ppf ->
           fprintf ppf "but is mixed here with labels of type")
  | Pattern_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
          fprintf ppf "This pattern matches values of type")
        (function ppf ->
          fprintf ppf "but a pattern was expected which matches values of type")
  | Multiply_bound_variable name ->
      fprintf ppf "Variable %s is bound several times in this matching" name
  | Orpat_vars id ->
      fprintf ppf "Variable %s must occur on both sides of this | pattern"
        (Ident.name id)
  | Expr_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This expression has type")
        (function ppf ->
           fprintf ppf "but an expression was expected of type")
  | Apply_non_function typ ->
      begin match (repr typ).desc with
        Tarrow _ ->
          fprintf ppf "This function is applied to too many arguments;@ ";
          fprintf ppf "maybe you forgot a `;'"
      | _ ->
          fprintf ppf
            "This expression is not a function; it cannot be applied"
      end
  | Apply_wrong_label (l, ty) ->
      let print_label ppf = function
        | "" -> fprintf ppf "without label"
        | l ->
            fprintf ppf "with label %s%s" (if is_optional l then "" else "~") l
      in
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[<2>The function applied to this argument has type@ %a@]@.\
          This argument cannot be applied %a@]"
        type_expr ty print_label l
  | Label_multiply_defined lid ->
      fprintf ppf "The record field label %a is defined several times"
              longident lid
  | Label_missing labels ->
      let print_labels ppf =
        List.iter (fun lbl -> fprintf ppf "@ %s" (Ident.name lbl)) in
      fprintf ppf "@[<hov>Some record field labels are undefined:%a@]"
        print_labels labels
  | Label_not_mutable lid ->
      fprintf ppf "The record field label %a is not mutable" longident lid
  | Incomplete_format s ->
      fprintf ppf "Premature end of format string ``%S''" s
  | Bad_conversion (fmt, i, c) ->
      fprintf ppf
        "Bad conversion %%%c, at char number %d \
         in format string ``%s''" c i fmt
  | Undefined_method (ty, me) ->
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[This expression has type@;<1 2>%a@]@,\
         It has no method %s@]" type_expr ty me
  | Undefined_inherited_method me ->
      fprintf ppf "This expression has no method %s" me
  | Virtual_class cl ->
      fprintf ppf "Cannot instantiate the virtual class %a"
        longident cl
  | Unbound_instance_variable v ->
      fprintf ppf "Unbound instance variable %s" v
  | Instance_variable_not_mutable (b, v) ->
      if b then
        fprintf ppf "The instance variable %s is not mutable" v
      else
        fprintf ppf "The value %s is not an instance variable" v
  | Not_subtype(tr1, tr2) ->
      report_subtyping_error ppf tr1 "is not a subtype of" tr2
  | Outside_class ->
      fprintf ppf "This object duplication occurs outside a method definition"
  | Value_multiply_overridden v ->
      fprintf ppf "The instance variable %s is overridden several times" v
  | Coercion_failure (ty, ty', trace, b) ->
      report_unification_error ppf trace
        (function ppf ->
           let ty, ty' = prepare_expansion (ty, ty') in
           fprintf ppf
             "This expression cannot be coerced to type@;<1 2>%a;@ it has type"
           (type_expansion ty) ty')
        (function ppf ->
           fprintf ppf "but is here used with type");
      if b then
        fprintf ppf ".@.@[<hov>%s@ %s@]"
          "This simple coercion was not fully general."
          "Consider using a double coercion."
  | Too_many_arguments (in_function, ty) ->
      reset_and_mark_loops ty;
      if in_function then begin
        fprintf ppf "This function expects too many arguments,@ ";
        fprintf ppf "it should have type@ %a"
          type_expr ty
      end else begin
        fprintf ppf "This expression should not be a function,@ ";
        fprintf ppf "the expected type is@ %a"
          type_expr ty
      end
  | Abstract_wrong_label (l, ty) ->
      let label_mark = function
        | "" -> "but its first argument is not labelled"
        |  l -> sprintf "but its first argument is labelled ~%s" l in
      reset_and_mark_loops ty;
      fprintf ppf "@[<v>@[<2>This function should have type@ %a@]@,%s@]"
      type_expr ty (label_mark l)
  | Scoping_let_module(id, ty) ->
      reset_and_mark_loops ty;
      fprintf ppf
       "This `let module' expression has type@ %a@ " type_expr ty;
      fprintf ppf
       "In this type, the locally bound module name %s escapes its scope" id
  | Masked_instance_variable lid ->
      fprintf ppf
        "The instance variable %a@ \
         cannot be accessed from the definition of another instance variable"
        longident lid
  | Private_type ty ->
      fprintf ppf "Cannot create values of the private type %a" type_expr ty
  | Private_label (lid, ty) ->
      fprintf ppf "Cannot assign field %a of the private type %a"
        longident lid type_expr ty
  | Not_a_variant_type lid ->
      fprintf ppf "The type %a@ is not a variant type" longident lid
  | Incoherent_label_order ->
      fprintf ppf "This function is applied to arguments@ ";
      fprintf ppf "in an order different from other calls.@ ";
      fprintf ppf "This is only allowed when the real type is known."
  | Less_general (kind, trace) ->
      report_unification_error ppf trace
        (fun ppf -> fprintf ppf "This %s has type" kind)
        (fun ppf -> fprintf ppf "which is less general than")
  | Modules_not_allowed ->
      fprintf ppf "Modules are not allowed in this pattern."
  | Cannot_infer_signature ->
      fprintf ppf
        "The signature for this packaged module couldn't be inferred."
  | Not_a_packed_module ty ->
      fprintf ppf
        "This expression is packed module, but the expected type is@ %a"
        type_expr ty
  | Recursive_local_constraint trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "Recursive local constraint when unifying")
        (function ppf ->
           fprintf ppf "with")
  | Unexpected_existential ->
      fprintf ppf
        "Unexpected existential"

let () =
  Env.add_delayed_check_forward := add_delayed_check

Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.