Source

mutated_ocaml / stdlib / scanf.ml

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Pierre Weis, projet Cristal, INRIA Rocquencourt          *)
(*                                                                     *)
(*  Copyright 2002 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

(* $Id: scanf.ml 12506 2012-05-29 12:51:50Z frisch $ *)

(* The run-time library for scanners. *)

(* Scanning buffers. *)
module type SCANNING = sig

  type in_channel;;

  type scanbuf = in_channel;;

  type file_name = string;;

  val stdin : in_channel;;
  (* The scanning buffer reading from [Pervasives.stdin].
      [stdib] is equivalent to [Scanning.from_channel Pervasives.stdin]. *)

  val stdib : in_channel;;
  (* An alias for [Scanf.stdin], the scanning buffer reading from
     [Pervasives.stdin]. *)

  val next_char : scanbuf -> char;;
  (* [Scanning.next_char ib] advance the scanning buffer for
      one character.
      If no more character can be read, sets a end of file condition and
      returns '\000'. *)

  val invalidate_current_char : scanbuf -> unit;;
  (* [Scanning.invalidate_current_char ib] mark the current_char as already
      scanned. *)

  val peek_char : scanbuf -> char;;
  (* [Scanning.peek_char ib] returns the current char available in
      the buffer or reads one if necessary (when the current character is
      already scanned).
      If no character can be read, sets an end of file condition and
      returns '\000'. *)

  val checked_peek_char : scanbuf -> char;;
  (* Same as above but always returns a valid char or fails:
      instead of returning a null char when the reading method of the
      input buffer has reached an end of file, the function raises exception
      [End_of_file]. *)

  val store_char : int -> scanbuf -> char -> int;;
  (* [Scanning.store_char lim ib c] adds [c] to the token buffer
      of the scanning buffer. It also advances the scanning buffer for one
      character and returns [lim - 1], indicating the new limit
      for the length of the current token. *)

  val skip_char : int -> scanbuf -> int;;
  (* [Scanning.skip_char lim ib] ignores the current character. *)

  val ignore_char : int -> scanbuf -> int;;
  (* [Scanning.ignore_char ib lim] ignores the current character and
     decrements the limit. *)

  val token : scanbuf -> string;;
  (* [Scanning.token ib] returns the string stored into the token
      buffer of the scanning buffer: it returns the token matched by the
      format. *)

  val reset_token : scanbuf -> unit;;
  (* [Scanning.reset_token ib] resets the token buffer of
      the given scanning buffer. *)

  val char_count : scanbuf -> int;;
  (* [Scanning.char_count ib] returns the number of characters
      read so far from the given buffer. *)

  val line_count : scanbuf -> int;;
  (* [Scanning.line_count ib] returns the number of new line
      characters read so far from the given buffer. *)

  val token_count : scanbuf -> int;;
  (* [Scanning.token_count ib] returns the number of tokens read
      so far from [ib]. *)

  val eof : scanbuf -> bool;;
  (* [Scanning.eof ib] returns the end of input condition
      of the given buffer. *)

  val end_of_input : scanbuf -> bool;;
  (* [Scanning.end_of_input ib] tests the end of input condition
      of the given buffer (if no char has ever been read, an attempt to
      read one is performed). *)

  val beginning_of_input : scanbuf -> bool;;
  (* [Scanning.beginning_of_input ib] tests the beginning of input
      condition of the given buffer. *)

  val name_of_input : scanbuf -> string;;
  (* [Scanning.name_of_input ib] returns the name of the character
      source for input buffer [ib]. *)

  val open_in : file_name -> in_channel;;
  val open_in_bin : file_name -> in_channel;;
  val from_file : file_name -> in_channel;;
  val from_file_bin : file_name -> in_channel;;
  val from_string : string -> in_channel;;
  val from_function : (unit -> char) -> in_channel;;
  val from_channel : Pervasives.in_channel -> in_channel;;

  val close_in : in_channel -> unit;;

end
;;

module Scanning : SCANNING = struct

  (* The run-time library for scanf. *)
  type in_channel_name =
    | From_file of string * Pervasives.in_channel
    | From_string
    | From_function
    | From_channel of Pervasives.in_channel
  ;;

  type in_channel = {
    mutable eof : bool;
    mutable current_char : char;
    mutable current_char_is_valid : bool;
    mutable char_count : int;
    mutable line_count : int;
    mutable token_count : int;
    mutable get_next_char : unit -> char;
    tokbuf : Buffer.t;
    input_name : in_channel_name;
  }
  ;;

  type scanbuf = in_channel;;

  type file_name = string;;

  let null_char = '\000';;

  (* Reads a new character from input buffer.  Next_char never fails,
     even in case of end of input: it then simply sets the end of file
     condition. *)
  let next_char ib =
    try
      let c = ib.get_next_char () in
      ib.current_char <- c;
      ib.current_char_is_valid <- true;
      ib.char_count <- succ ib.char_count;
      if c = '\n' then ib.line_count <- succ ib.line_count;
      c with
    | End_of_file ->
      let c = null_char in
      ib.current_char <- c;
      ib.current_char_is_valid <- false;
      ib.eof <- true;
      c
  ;;

  let peek_char ib =
    if ib.current_char_is_valid then ib.current_char else next_char ib;;

  (* Returns a valid current char for the input buffer. In particular
     no irrelevant null character (as set by [next_char] in case of end
     of input) is returned, since [End_of_file] is raised when
     [next_char] sets the end of file condition while trying to read a
     new character. *)
  let checked_peek_char ib =
    let c = peek_char ib in
    if ib.eof then raise End_of_file;
    c
  ;;

  let end_of_input ib =
    ignore (peek_char ib);
    ib.eof
  ;;

  let eof ib = ib.eof;;

  let beginning_of_input ib = ib.char_count = 0;;
  let name_of_input ib =
    match ib.input_name with
    | From_file (fname, _ic) -> fname
    | From_string -> "unnamed character string"
    | From_function -> "unnamed function"
    | From_channel _ic -> "unnamed pervasives input channel"
  ;;

  let char_count ib =
    if ib.current_char_is_valid then ib.char_count - 1 else ib.char_count
  ;;
  let line_count ib = ib.line_count;;
  let reset_token ib = Buffer.reset ib.tokbuf;;
  let invalidate_current_char ib = ib.current_char_is_valid <- false;;

  let token ib =
    let tokbuf = ib.tokbuf in
    let tok = Buffer.contents tokbuf in
    Buffer.clear tokbuf;
    ib.token_count <- succ ib.token_count;
    tok
  ;;

  let token_count ib = ib.token_count;;

  let skip_char width ib =
    invalidate_current_char ib;
    width
  ;;

  let ignore_char width ib = skip_char (width - 1) ib;;

  let store_char width ib c =
    Buffer.add_char ib.tokbuf c;
    ignore_char width ib
  ;;

  let default_token_buffer_size = 1024;;

  let create iname next = {
    eof = false;
    current_char = null_char;
    current_char_is_valid = false;
    char_count = 0;
    line_count = 0;
    token_count = 0;
    get_next_char = next;
    tokbuf = Buffer.create default_token_buffer_size;
    input_name = iname;
  }
  ;;

  let from_string s =
    let i = ref 0 in
    let len = String.length s in
    let next () =
      if !i >= len then raise End_of_file else
      let c = s.[!i] in
      incr i;
      c in
    create From_string next
  ;;

  let from_function = create From_function;;

  (* Scanning from an input channel. *)

  (* Position of the problem:

     We cannot prevent the scanning mechanism to use one lookahead character,
     if needed by the semantics of the format string specifications (e.g. a
     trailing ``skip space'' specification in the format string); in this case,
     the mandatory lookahead character is indeed read from the input and not
     used to return the token read. It is thus mandatory to be able to store
     an unused lookahead character somewhere to get it as the first character
     of the next scan.

     To circumvent this problem, all the scanning functions get a low level
     input buffer argument where they store the lookahead character when
     needed; additionally, the input buffer is the only source of character of
     a scanner. The [scanbuf] input buffers are defined in module {!Scanning}.

     Now we understand that it is extremely important that related successive
     calls to scanners indeed read from the same input buffer. In effect, if a
     scanner [scan1] is reading from [ib1] and stores an unused lookahead
     character [c1] into its input buffer [ib1], then another scanner [scan2]
     not reading from the same buffer [ib1] will miss the character [c],
     seemingly vanished in the air from the point of view of [scan2].

     This mechanism works perfectly to read from strings, from files, and from
     functions, since in those cases, allocating two buffers reading from the
     same source is unnatural.

     Still, there is a difficulty in the case of scanning from an input
     channel. In effect, when scanning from an input channel [ic], this channel
     may not have been allocated from within this library. Hence, it may be
     shared (two functions of the user's program may successively read from
     [ic]). This is highly error prone since, one of the function may seek the
     input channel, while the other function has still an unused lookahead
     character in its input buffer. In conclusion, you should never mix direct
     low level reading and high level scanning from the same input channel.

     This phenomenon of reading mess is even worse when one defines more than
     one scanning buffer reading from the same input channel
     [ic]. Unfortunately, we have no simple way to get rid of this problem
     (unless the basic input channel API is modified to offer a ``consider this
     char as unread'' procedure to keep back the unused lookahead character as
     available in the input channel for further reading).

     To prevent some of the confusion the scanning buffer allocation function
     is a memo function that never allocates two different scanning buffers for
     the same input channel. This way, the user can naively perform successive
     call to [fscanf] below, without allocating a new scanning buffer at each
     invocation and hence preserving the expected semantics.

     As mentioned above, a more ambitious fix could be to change the input
     channel API to allow arbitrary mixing of direct and formatted reading from
     input channels. *)

  (* Perform bufferized input to improve efficiency. *)
  let file_buffer_size = ref 1024;;

  (* The scanner closes the input channel at end of input. *)
  let scan_close_at_end ic = close_in ic; raise End_of_file;;

  (* The scanner does not close the input channel at end of input:
     it just raises [End_of_file]. *)
  let scan_raise_at_end _ic = raise End_of_file;;

  let from_ic scan_close_ic iname ic =
    let len = !file_buffer_size in
    let buf = String.create len in
    let i = ref 0 in
    let lim = ref 0 in
    let eof = ref false in
    let next () =
      if !i < !lim then begin let c = buf.[!i] in incr i; c end else
      if !eof then raise End_of_file else begin
        lim := input ic buf 0 len;
        if !lim = 0 then begin eof := true; scan_close_ic ic end else begin
          i := 1;
          buf.[0]
        end
      end in
    create iname next
  ;;

  let from_ic_close_at_end = from_ic scan_close_at_end;;

  (* The scanning buffer reading from [Pervasives.stdin].
     One could try to define [stdib] as a scanning buffer reading a character at a
     time (no bufferization at all), but unfortunately the top-level
     interaction would be wrong.
     This is due to some kind of ``race condition'' when reading from [Pervasives.stdin],
     since the interactive compiler and [scanf] will simultaneously read the
     material they need from [Pervasives.stdin]; then, confusion will result from what should
     be read by the top-level and what should be read by [scanf].
     This is even more complicated by the one character lookahead that [scanf]
     is sometimes obliged to maintain: the lookahead character will be available
     for the next ([scanf]) entry, seemingly coming from nowhere.
     Also no [End_of_file] is raised when reading from stdin: if not enough
     characters have been read, we simply ask to read more. *)
  let stdin =
    from_ic scan_raise_at_end
      (From_file ("-", Pervasives.stdin)) Pervasives.stdin
  ;;

  let stdib = stdin;;

  let open_in fname =
    match fname with
    | "-" -> stdin
    | fname ->
      let ic = open_in fname in
      from_ic_close_at_end (From_file (fname, ic)) ic
  ;;

  let open_in_bin fname =
    match fname with
    | "-" -> stdin
    | fname ->
      let ic = open_in_bin fname in
      from_ic_close_at_end (From_file (fname, ic)) ic
  ;;

  let from_file = open_in;;
  let from_file_bin = open_in_bin;;

  let memo_from_ic =
    let memo = ref [] in
    (fun scan_close_ic ic ->
     try List.assq ic !memo with
     | Not_found ->
       let ib = from_ic scan_close_ic (From_channel ic) ic in
       memo := (ic, ib) :: !memo;
       ib)
  ;;

  let from_channel = memo_from_ic scan_raise_at_end;;

  let close_in ib =
    match ib.input_name with
    | From_file (_fname, ic) -> Pervasives.close_in ic
    | From_string | From_function -> ()
    | From_channel ic -> Pervasives.close_in ic
  ;;

end
;;

(* Formatted input functions. *)

type ('a, 'b, 'c, 'd) scanner =
     ('a, Scanning.in_channel, 'b, 'c, 'a -> 'd, 'd) format6 -> 'c
;;

external string_to_format :
 string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
;;

(* Reporting errors. *)
exception Scan_failure of string;;

let bad_input s = raise (Scan_failure s);;

let bad_input_escape c =
  bad_input (Printf.sprintf "illegal escape character %C" c)
;;

let bad_token_length message =
  bad_input
    (Printf.sprintf
       "scanning of %s failed: \
        the specified length was too short for token" message)
;;

let bad_end_of_input message =
  bad_input
    (Printf.sprintf
       "scanning of %s failed: \
        premature end of file occurred before end of token" message)
;;

let int_of_width_opt = function
  | None -> max_int
  | Some width -> width
;;

let int_of_prec_opt = function
  | None -> max_int
  | Some prec -> prec
;;

module Sformat = Printf.CamlinternalPr.Sformat;;
module Tformat = Printf.CamlinternalPr.Tformat;;

let bad_conversion fmt i c =
  invalid_arg
    (Printf.sprintf
       "scanf: bad conversion %%%C, at char number %i \
        in format string ``%s''" c i (Sformat.to_string fmt))
;;

let incomplete_format fmt =
  invalid_arg
    (Printf.sprintf "scanf: premature end of format string ``%s''"
       (Sformat.to_string fmt))
;;

let bad_float () =
  bad_input "no dot or exponent part found in float token"
;;

let character_mismatch_err c ci =
  Printf.sprintf "looking for %C, found %C" c ci
;;

let character_mismatch c ci =
  bad_input (character_mismatch_err c ci)
;;

let format_mismatch_err fmt1 fmt2 =
  Printf.sprintf
    "format read ``%s'' does not match specification ``%s''" fmt1 fmt2
;;

let format_mismatch fmt1 fmt2 = bad_input (format_mismatch_err fmt1 fmt2);;

(* Checking that 2 format strings are type compatible. *)
let compatible_format_type fmt1 fmt2 =
  Tformat.summarize_format_type (string_to_format fmt1) =
  Tformat.summarize_format_type (string_to_format fmt2);;

(* Checking that [c] is indeed in the input, then skips it.
   In this case, the character c has been explicitly specified in the
   format as being mandatory in the input; hence we should fail with
   End_of_file in case of end_of_input. (Remember that Scan_failure is raised
   only when (we can prove by evidence) that the input does not match the
   format string given. We must thus differentiate End_of_file as an error
   due to lack of input, and Scan_failure which is due to provably wrong
   input. I am not sure this is worth to burden: it is complex and somehow
   subliminal; should be clearer to fail with Scan_failure "Not enough input
   to complete scanning"!)

   That's why, waiting for a better solution, we use checked_peek_char here.
   We are also careful to treat "\r\n" in the input as a end of line marker: it
   always matches a '\n' specification in the input format string. *)
let rec check_char ib c =
  let ci = Scanning.checked_peek_char ib in
  if ci = c then Scanning.invalidate_current_char ib else begin
    match ci with
    | '\r' when c = '\n' ->
      Scanning.invalidate_current_char ib; check_char ib '\n'
    | _ -> character_mismatch c ci
  end
;;

(* Checks that the current char is indeed one of the stopper characters,
   then skips it.
   Be careful that if ib has no more character this procedure should
   just do nothing (since %s@c defaults to the entire rest of the
   buffer, when no character c can be found in the input). *)
let ignore_stoppers stps ib =
  if stps <> [] && not (Scanning.eof ib) then
  let ci = Scanning.peek_char ib in
  if List.memq ci stps then Scanning.invalidate_current_char ib else
  let sr = String.concat "" (List.map (String.make 1) stps) in
  bad_input
    (Printf.sprintf "looking for one of range %S, found %C" sr ci)
;;

(* Extracting tokens from the output token buffer. *)

let token_char ib = (Scanning.token ib).[0];;

let token_string = Scanning.token;;

let token_bool ib =
  match Scanning.token ib with
  | "true" -> true
  | "false" -> false
  | s -> bad_input (Printf.sprintf "invalid boolean %S" s)
;;

(* Extract an integer literal token.
   Since the functions Pervasives.*int*_of_string do not accept a leading +,
   we skip it if necessary. *)
let token_int_literal conv ib =
  let tok =
    match conv with
    | 'd' | 'i' | 'u' -> Scanning.token ib
    | 'o' -> "0o" ^ Scanning.token ib
    | 'x' | 'X' -> "0x" ^ Scanning.token ib
    | 'b' -> "0b" ^ Scanning.token ib
    | _ -> assert false in
  let l = String.length tok in
  if l = 0 || tok.[0] <> '+' then tok else String.sub tok 1 (l - 1)
;;

(* All the functions that convert a string to a number raise the exception
   Failure when the conversion is not possible.
   This exception is then trapped in [kscanf]. *)
let token_int conv ib = int_of_string (token_int_literal conv ib);;

let token_float ib = float_of_string (Scanning.token ib);;

(* To scan native ints, int32 and int64 integers.
   We cannot access to conversions to/from strings for those types,
   Nativeint.of_string, Int32.of_string, and Int64.of_string,
   since those modules are not available to [Scanf].
   However, we can bind and use the corresponding primitives that are
   available in the runtime. *)
external nativeint_of_string : string -> nativeint
  = "caml_nativeint_of_string"
;;
external int32_of_string : string -> int32
  = "caml_int32_of_string"
;;
external int64_of_string : string -> int64
  = "caml_int64_of_string"
;;

let token_nativeint conv ib = nativeint_of_string (token_int_literal conv ib);;
let token_int32 conv ib = int32_of_string (token_int_literal conv ib);;
let token_int64 conv ib = int64_of_string (token_int_literal conv ib);;

(* Scanning numbers. *)

(* Digits scanning functions suppose that one character has been checked and
   is available, since they return at end of file with the currently found
   token selected.

   Put it in another way, the digits scanning functions scan for a possibly
   empty sequence of digits, (hence, a successful scanning from one of those
   functions does not imply that the token is a well-formed number: to get a
   true number, it is mandatory to check that at least one valid digit is
   available before calling one of the digit scanning functions). *)

(* The decimal case is treated especially for optimization purposes. *)
let rec scan_decimal_digits width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | '0' .. '9' as c ->
    let width = Scanning.store_char width ib c in
    scan_decimal_digits width ib
  | '_' ->
    let width = Scanning.ignore_char width ib in
    scan_decimal_digits width ib
  | _ -> width
;;

let scan_decimal_digits_plus width ib =
  if width = 0 then bad_token_length "decimal digits" else
  let c = Scanning.checked_peek_char ib in
  match c with
  | '0' .. '9' ->
    let width = Scanning.store_char width ib c in
    scan_decimal_digits width ib
  | c ->
    bad_input (Printf.sprintf "character %C is not a decimal digit" c)
;;

let scan_digits_plus digitp width ib =
  (* To scan numbers from other bases, we use a predicate argument to
     scan_digits. *)
  let rec scan_digits width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    match c with
    | c when digitp c ->
      let width = Scanning.store_char width ib c in
      scan_digits width
    | '_' ->
      let width = Scanning.ignore_char width ib in
      scan_digits width
    | _ -> width in

  (* Ensure we have got enough width left,
     and read at list one digit. *)
  if width = 0 then bad_token_length "digits" else
  let c = Scanning.checked_peek_char ib in

  if digitp c then
    let width = Scanning.store_char width ib c in
    scan_digits width
  else
    bad_input (Printf.sprintf "character %C is not a digit" c)
;;

let is_binary_digit = function
  | '0' .. '1' -> true
  | _ -> false
;;

let scan_binary_int = scan_digits_plus is_binary_digit;;

let is_octal_digit = function
  | '0' .. '7' -> true
  | _ -> false
;;

let scan_octal_int = scan_digits_plus is_octal_digit;;

let is_hexa_digit = function
  | '0' .. '9' | 'a' .. 'f' | 'A' .. 'F' -> true
  | _ -> false
;;

let scan_hexadecimal_int = scan_digits_plus is_hexa_digit;;

(* Scan a decimal integer. *)
let scan_unsigned_decimal_int = scan_decimal_digits_plus;;

let scan_sign width ib =
  let c = Scanning.checked_peek_char ib in
  match c with
  | '+' -> Scanning.store_char width ib c
  | '-' -> Scanning.store_char width ib c
  | _ -> width
;;

let scan_optionally_signed_decimal_int width ib =
  let width = scan_sign width ib in
  scan_unsigned_decimal_int width ib
;;

(* Scan an unsigned integer that could be given in any (common) basis.
   If digits are prefixed by one of 0x, 0X, 0o, or 0b, the number is
   assumed to be written respectively in hexadecimal, hexadecimal,
   octal, or binary. *)
let scan_unsigned_int width ib =
  match Scanning.checked_peek_char ib with
  | '0' as c ->
    let width = Scanning.store_char width ib c in
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    begin match c with
    | 'x' | 'X' -> scan_hexadecimal_int (Scanning.store_char width ib c) ib
    | 'o' -> scan_octal_int (Scanning.store_char width ib c) ib
    | 'b' -> scan_binary_int (Scanning.store_char width ib c) ib
    | _ -> scan_decimal_digits width ib end
  | _ -> scan_unsigned_decimal_int width ib
;;

let scan_optionally_signed_int width ib =
  let width = scan_sign width ib in
  scan_unsigned_int width ib
;;

let scan_int_conv conv width _prec ib =
  match conv with
  | 'b' -> scan_binary_int width ib
  | 'd' -> scan_optionally_signed_decimal_int width ib
  | 'i' -> scan_optionally_signed_int width ib
  | 'o' -> scan_octal_int width ib
  | 'u' -> scan_unsigned_decimal_int width ib
  | 'x' | 'X' -> scan_hexadecimal_int width ib
  | _ -> assert false
;;

(* Scanning floating point numbers. *)
(* Fractional part is optional and can be reduced to 0 digits. *)
let scan_frac_part width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | '0' .. '9' as c ->
    scan_decimal_digits (Scanning.store_char width ib c) ib
  | _ -> width
;;

(* Exp part is optional and can be reduced to 0 digits. *)
let scan_exp_part width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | 'e' | 'E' as c ->
    scan_optionally_signed_decimal_int (Scanning.store_char width ib c) ib
  | _ -> width
;;

(* Scan the integer part of a floating point number, (not using the
   OCaml lexical convention since the integer part can be empty):
   an optional sign, followed by a possibly empty sequence of decimal
   digits (e.g. -.1). *)
let scan_int_part width ib =
  let width = scan_sign width ib in
  scan_decimal_digits width ib
;;

(*
   For the time being we have (as found in scanf.mli):
   The field width is composed of an optional integer literal
   indicating the maximal width of the token to read.
   Unfortunately, the type-checker let the user write an optional precision,
   since this is valid for printf format strings.

   Thus, the next step for Scanf is to support a full width and precision
   indication, more or less similar to the one for printf, possibly extended
   to the specification of a [max, min] range for the width of the token read
   for strings. Something like the following spec for scanf.mli:

   The optional [width] is an integer indicating the maximal
   width of the token read. For instance, [%6d] reads an integer,
   having at most 6 characters.

   The optional [precision] is a dot [.] followed by an integer:

   - in the floating point number conversions ([%f], [%e], [%g], [%F], [%E],
   and [%F] conversions, the [precision] indicates the maximum number of
   digits that may follow the decimal point. For instance, [%.4f] reads a
   [float] with at most 4 fractional digits,

   - in the string conversions ([%s], [%S], [%\[ range \]]), and in the
   integer number conversions ([%i], [%d], [%u], [%x], [%o], and their
   [int32], [int64], and [native_int] correspondent), the [precision]
   indicates the required minimum width of the token read,

   - on all other conversions, the width and precision are meaningless and
   ignored (FIXME: lead to a runtime error ? type checking error ?).
*)

let scan_float width precision ib =
  let width = scan_int_part width ib in
  if width = 0 then width, precision else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width, precision else
  match c with
  | '.' ->
    let width = Scanning.store_char width ib c in
    let precision = min width precision in
    let width = width - (precision - scan_frac_part precision ib) in
    scan_exp_part width ib, precision
  | _ ->
    scan_exp_part width ib, precision
;;

let scan_Float width precision ib =
  let width = scan_optionally_signed_decimal_int width ib in
  if width = 0 then bad_float () else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then bad_float () else
  match c with
  | '.' ->
    let width = Scanning.store_char width ib c in
    let precision = min width precision in
    let width = width - (precision - scan_frac_part precision ib) in
    scan_exp_part width ib
  | 'e' | 'E' ->
    scan_exp_part width ib
  | _ -> bad_float ()
;;

(* Scan a regular string:
   stops when encountering a space, if no scanning indication has been given;
   otherwise, stops when encountering one of the characters in the scanning
   indication list [stp].
   It also stops at end of file or when the maximum number of characters has
   been read.*)
let scan_string stp width ib =
  let rec loop width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if stp = [] then
      match c with
      | ' ' | '\t' | '\n' | '\r' -> width
      | c -> loop (Scanning.store_char width ib c) else
    if List.memq c stp then Scanning.skip_char width ib else
    loop (Scanning.store_char width ib c) in
  loop width
;;

(* Scan a char: peek strictly one character in the input, whatsoever. *)
let scan_char width ib =
  (* The case width = 0 could not happen here, since it is tested before
     calling scan_char, in the main scanning function.
    if width = 0 then bad_token_length "a character" else *)
  Scanning.store_char width ib (Scanning.checked_peek_char ib)
;;

let char_for_backslash = function
  | 'n' -> '\010'
  | 'r' -> '\013'
  | 'b' -> '\008'
  | 't' -> '\009'
  | c -> c
;;

(* The integer value corresponding to the facial value of a valid
   decimal digit character. *)
let decimal_value_of_char c = int_of_char c - int_of_char '0';;

let char_for_decimal_code c0 c1 c2 =
  let c =
    100 * decimal_value_of_char c0 +
     10 * decimal_value_of_char c1 +
          decimal_value_of_char c2 in
  if c < 0 || c > 255 then
    bad_input
      (Printf.sprintf
         "bad character decimal encoding \\%c%c%c" c0 c1 c2) else
  char_of_int c
;;

(* The integer value corresponding to the facial value of a valid
   hexadecimal digit character. *)
let hexadecimal_value_of_char c =
  let d = int_of_char c in
  (* Could also be:
    if d <= int_of_char '9' then d - int_of_char '0' else
    if d <= int_of_char 'F' then 10 + d - int_of_char 'A' else
    if d <= int_of_char 'f' then 10 + d - int_of_char 'a' else assert false
  *)
  if d >= int_of_char 'a' then
    d - 87 (* 10 + int_of_char c - int_of_char 'a' *) else
  if d >= int_of_char 'A' then
    d - 55  (* 10 + int_of_char c - int_of_char 'A' *) else
    d - int_of_char '0'
;;

let char_for_hexadecimal_code c1 c2 =
  let c =
    16 * hexadecimal_value_of_char c1 +
         hexadecimal_value_of_char c2 in
  if c < 0 || c > 255 then
    bad_input
      (Printf.sprintf "bad character hexadecimal encoding \\%c%c" c1 c2) else
  char_of_int c
;;

(* Called in particular when encountering '\\' as starter of a char.
   Stops before the corresponding '\''. *)
let check_next_char message width ib =
  if width = 0 then bad_token_length message else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then bad_end_of_input message else
  c
;;

let check_next_char_for_char = check_next_char "a Char";;
let check_next_char_for_string = check_next_char "a String";;

let scan_backslash_char width ib =
  match check_next_char_for_char width ib with
  | '\\' | '\'' | '\"' | 'n' | 't' | 'b' | 'r' as c ->
    Scanning.store_char width ib (char_for_backslash c)
  | '0' .. '9' as c ->
    let get_digit () =
      let c = Scanning.next_char ib in
      match c with
      | '0' .. '9' as c -> c
      | c -> bad_input_escape c in
    let c0 = c in
    let c1 = get_digit () in
    let c2 = get_digit () in
    Scanning.store_char (width - 2) ib (char_for_decimal_code c0 c1 c2)
  | 'x' ->
    let get_digit () =
      let c = Scanning.next_char ib in
      match c with
      | '0' .. '9' | 'A' .. 'F' | 'a' .. 'f' as c -> c
      | c -> bad_input_escape c in
    let c1 = get_digit () in
    let c2 = get_digit () in
    Scanning.store_char (width - 2) ib (char_for_hexadecimal_code c1 c2)
  | c ->
    bad_input_escape c
;;

(* Scan a character (an OCaml token). *)
let scan_Char width ib =

  let rec find_start width =
    match Scanning.checked_peek_char ib with
    | '\'' -> find_char (Scanning.ignore_char width ib)
    | c -> character_mismatch '\'' c

  and find_char width =
    match check_next_char_for_char width ib with
    | '\\' -> find_stop (scan_backslash_char (Scanning.ignore_char width ib) ib)
    | c -> find_stop (Scanning.store_char width ib c)

  and find_stop width =
    match check_next_char_for_char width ib with
    | '\'' -> Scanning.ignore_char width ib
    | c -> character_mismatch '\'' c in

  find_start width
;;

(* Scan a delimited string (an OCaml token). *)
let scan_String width ib =

  let rec find_start width =
    match Scanning.checked_peek_char ib with
    | '\"' -> find_stop (Scanning.ignore_char width ib)
    | c -> character_mismatch '\"' c

  and find_stop width =
    match check_next_char_for_string width ib with
    | '\"' -> Scanning.ignore_char width ib
    | '\\' -> scan_backslash (Scanning.ignore_char width ib)
    | c -> find_stop (Scanning.store_char width ib c)

  and scan_backslash width =
    match check_next_char_for_string width ib with
    | '\r' -> skip_newline (Scanning.ignore_char width ib)
    | '\n' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop (scan_backslash_char width ib)

  and skip_newline width =
    match check_next_char_for_string width ib with
    | '\n' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop (Scanning.store_char width ib '\r')

  and skip_spaces width =
    match check_next_char_for_string width ib with
    | ' ' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop width in

  find_start width
;;

(* Scan a boolean (an OCaml token). *)
let scan_bool width ib =
  if width < 4 then bad_token_length "a boolean" else
  let c = Scanning.checked_peek_char ib in
  let m =
    match c with
    | 't' -> 4
    | 'f' -> 5
    | c ->
      bad_input
        (Printf.sprintf "the character %C cannot start a boolean" c) in
  scan_string [] (min width m) ib
;;

(* Reading char sets in %[...] conversions. *)
type char_set =
   | Pos_set of string (* Positive (regular) set. *)
   | Neg_set of string (* Negative (complementary) set. *)
;;


(* Char sets are read as sub-strings in the format string. *)
let scan_range fmt j =

  let len = Sformat.length fmt in

  let buffer = Buffer.create len in

  let rec scan_closing j =
    if j >= len then incomplete_format fmt else
    match Sformat.get fmt j with
    | ']' -> j, Buffer.contents buffer
    | '%' ->
      let j = j + 1 in
      if j >= len then incomplete_format fmt else
      begin match Sformat.get fmt j with
      | '%' | '@' as c ->
        Buffer.add_char buffer c;
        scan_closing (j + 1)
      | c -> bad_conversion fmt j c
      end
    | c ->
      Buffer.add_char buffer c;
      scan_closing (j + 1) in

  let scan_first_pos j =
    if j >= len then incomplete_format fmt else
    match Sformat.get fmt j with
    | ']' as c ->
      Buffer.add_char buffer c;
      scan_closing (j + 1)
    | _ -> scan_closing j in

  let scan_first_neg j =
    if j >= len then incomplete_format fmt else
    match Sformat.get fmt j with
    | '^' ->
      let j = j + 1 in
      let k, char_set = scan_first_pos j in
      k, Neg_set char_set
    | _ ->
      let k, char_set = scan_first_pos j in
      k, Pos_set char_set in

  scan_first_neg j
;;

(* Char sets are now represented as bit vectors that are represented as
   byte strings. *)

(* Bit manipulations into bytes. *)
let set_bit_of_byte byte idx b =
  (b lsl idx) lor (byte land (* mask idx *) (lnot (1 lsl idx)))
;;

let get_bit_of_byte byte idx = (byte lsr idx) land 1;;

(* Bit manipulations in vectors of bytes represented as strings. *)
let set_bit_of_range r c b =
  let idx = c land 0x7 in
  let ydx = c lsr 3 in
  let byte = r.[ydx] in
  r.[ydx] <- char_of_int (set_bit_of_byte (int_of_char byte) idx b)
;;

let get_bit_of_range r c =
  let idx = c land 0x7 in
  let ydx = c lsr 3 in
  let byte = r.[ydx] in
  get_bit_of_byte (int_of_char byte) idx
;;

(* Char sets represented as bit vectors represented as fixed length byte
   strings. *)
(* Create a full or empty set of chars. *)
let make_range bit =
  let c = char_of_int (if bit = 0 then 0 else 0xFF) in
  String.make 32 c
;;

(* Test if a char belongs to a set of chars. *)
let get_char_in_range r c = get_bit_of_range r (int_of_char c);;

let bit_not b = (lnot b) land 1;;

(* Build the bit vector corresponding to the set of characters
   that belongs to the string argument [set].
   (In the [Scanf] module [set] is always a sub-string of the format.) *)
let make_char_bit_vect bit set =
  let r = make_range (bit_not bit) in
  let lim = String.length set - 1 in
  let rec loop bit rp i =
    if i <= lim then
    match set.[i] with
    | '-' when rp ->
      (* if i = 0 then rp is false (since the initial call is
         loop bit false 0). Hence i >= 1 and the following is safe. *)
      let c1 = set.[i - 1] in
      let i = succ i in
      if i > lim then loop bit false (i - 1) else
      let c2 = set.[i] in
      for j = int_of_char c1 to int_of_char c2 do
        set_bit_of_range r j bit done;
      loop bit false (succ i)
    | _ ->
      set_bit_of_range r (int_of_char set.[i]) bit;
      loop bit true (succ i) in
  loop bit false 0;
  r
;;

(* Compute the predicate on chars corresponding to a char set. *)
let make_predicate bit set stp =
  let r = make_char_bit_vect bit set in
  List.iter
    (fun c -> set_bit_of_range r (int_of_char c) (bit_not bit)) stp;
  (fun c -> get_char_in_range r c)
;;

let make_setp stp char_set =
  match char_set with
  | Pos_set set ->
    begin match String.length set with
    | 0 -> (fun _ -> 0)
    | 1 ->
      let p = set.[0] in
      (fun c -> if c == p then 1 else 0)
    | 2 ->
      let p1 = set.[0] and p2 = set.[1] in
      (fun c -> if c == p1 || c == p2 then 1 else 0)
    | 3 ->
      let p1 = set.[0] and p2 = set.[1] and p3 = set.[2] in
      if p2 = '-' then make_predicate 1 set stp else
      (fun c -> if c == p1 || c == p2 || c == p3 then 1 else 0)
    | _ -> make_predicate 1 set stp
    end
  | Neg_set set ->
    begin match String.length set with
    | 0 -> (fun _ -> 1)
    | 1 ->
      let p = set.[0] in
      (fun c -> if c != p then 1 else 0)
    | 2 ->
      let p1 = set.[0] and p2 = set.[1] in
      (fun c -> if c != p1 && c != p2 then 1 else 0)
    | 3 ->
      let p1 = set.[0] and p2 = set.[1] and p3 = set.[2] in
      if p2 = '-' then make_predicate 0 set stp else
      (fun c -> if c != p1 && c != p2 && c != p3 then 1 else 0)
    | _ -> make_predicate 0 set stp
    end
;;

let setp_table = Hashtbl.create 7;;

let add_setp stp char_set setp =
  let char_set_tbl =
    try Hashtbl.find setp_table char_set with
    | Not_found ->
      let char_set_tbl = Hashtbl.create 3 in
      Hashtbl.add setp_table char_set char_set_tbl;
      char_set_tbl in
  Hashtbl.add char_set_tbl stp setp
;;

let find_setp stp char_set =
  try Hashtbl.find (Hashtbl.find setp_table char_set) stp with
  | Not_found ->
    let setp = make_setp stp char_set in
    add_setp stp char_set setp;
    setp
;;

let scan_chars_in_char_set stp char_set width ib =
  let rec loop_pos1 cp1 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c == cp1
    then loop_pos1 cp1 (Scanning.store_char width ib c)
    else width
  and loop_pos2 cp1 cp2 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c == cp1 || c == cp2
    then loop_pos2 cp1 cp2 (Scanning.store_char width ib c)
    else width
  and loop_pos3 cp1 cp2 cp3 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c == cp1 || c == cp2 || c == cp3
    then loop_pos3 cp1 cp2 cp3 (Scanning.store_char width ib c)
    else width
  and loop_neg1 cp1 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c != cp1
    then loop_neg1 cp1 (Scanning.store_char width ib c)
    else width
  and loop_neg2 cp1 cp2 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c != cp1 && c != cp2
    then loop_neg2 cp1 cp2 (Scanning.store_char width ib c)
    else width
  and loop_neg3 cp1 cp2 cp3 width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if c != cp1 && c != cp2 && c != cp3
    then loop_neg3 cp1 cp2 cp3 (Scanning.store_char width ib c)
    else width
  and loop setp width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    if setp c == 1
    then loop setp (Scanning.store_char width ib c)
    else width in

  let width =
    match char_set with
    | Pos_set set ->
      begin match String.length set with
      | 0 -> loop (fun _ -> 0) width
      | 1 -> loop_pos1 set.[0] width
      | 2 -> loop_pos2 set.[0] set.[1] width
      | 3 when set.[1] != '-' -> loop_pos3 set.[0] set.[1] set.[2] width
      | _ -> loop (find_setp stp char_set) width end
    | Neg_set set ->
      begin match String.length set with
      | 0 -> loop (fun _ -> 1) width
      | 1 -> loop_neg1 set.[0] width
      | 2 -> loop_neg2 set.[0] set.[1] width
      | 3 when set.[1] != '-' -> loop_neg3 set.[0] set.[1] set.[2] width
      | _ -> loop (find_setp stp char_set) width end in
  ignore_stoppers stp ib;
  width
;;

let get_count t ib =
  match t with
  | 'l' -> Scanning.line_count ib
  | 'n' -> Scanning.char_count ib
  | _ -> Scanning.token_count ib
;;

let rec skip_whites ib =
  let c = Scanning.peek_char ib in
  if not (Scanning.eof ib) then begin
    match c with
    | ' ' | '\t' | '\n' | '\r' ->
      Scanning.invalidate_current_char ib; skip_whites ib
    | _ -> ()
  end
;;

(* The global error report function for [Scanf]. *)
let scanf_bad_input ib = function
  | Scan_failure s | Failure s ->
    let i = Scanning.char_count ib in
    bad_input (Printf.sprintf "scanf: bad input at char number %i: ``%s''" i s)
  | x -> raise x
;;

let list_iter_i f l =
  let rec loop i = function
  | [] -> ()
  | [x] -> f i x (* Tail calling [f] *)
  | x :: xs -> f i x; loop (succ i) xs in
  loop 0 l
;;

let ascanf sc fmt =
  let ac = Tformat.ac_of_format fmt in
  match ac.Tformat.ac_rdrs with
  | 0 ->
    Obj.magic (fun f -> sc fmt [||] f)
  | 1 ->
    Obj.magic (fun x f -> sc fmt [| Obj.repr x |] f)
  | 2 ->
    Obj.magic (fun x y f -> sc fmt [| Obj.repr x; Obj.repr y; |] f)
  | 3 ->
    Obj.magic
      (fun x y z f -> sc fmt [| Obj.repr x; Obj.repr y; Obj.repr z; |] f)
  | nargs ->
    let rec loop i args =
      if i >= nargs then
        let a = Array.make nargs (Obj.repr 0) in
        list_iter_i (fun i arg -> a.(nargs - i - 1) <- arg) args;
        Obj.magic (fun f -> sc fmt a f)
      else Obj.magic (fun x -> loop (succ i) (x :: args)) in
    loop 0 []
;;

(* The [scan_format] main scanning function.
   It takes as arguments:
     - an input buffer [ib] from which to read characters,
     - an error handling function [ef],
     - a format [fmt] that specifies what to read in the input,
     - a vector of user's defined readers [rv],
     - and a function [f] to pass the tokens read to.

   Then [scan_format] scans the format and the input buffer in parallel to
   find out tokens as specified by the format; when it finds one token, it
   converts it as specified, remembers the converted value as a future
   argument to the function [f], and continues scanning.

   If the entire scanning succeeds (i.e. the format string has been
   exhausted and the buffer has provided tokens according to the
   format string), [f] is applied to the tokens read.

   If the scanning or some conversion fails, the main scanning function
   aborts and applies the scanning buffer and a string that explains
   the error to the error handling function [ef] (the error continuation). *)

let scan_format ib ef fmt rv f =

  let limr = Array.length rv - 1 in

  let return v = Obj.magic v () in
  let delay f x () = f x in
  let! stack f = delay (return f) in
  let! no_stack f _x = f in

  let rec scan fmt =

    let lim = Sformat.length fmt - 1 in

    let rec scan_fmt ir f i =
      if i > lim then ir, f else
      match Sformat.unsafe_get fmt i with
      | '%' -> scan_skip ir f (succ i)
      | ' ' -> skip_whites ib; scan_fmt ir f (succ i)
      | c -> check_char ib c; scan_fmt ir f (succ i)

    and scan_skip ir f i =
      if i > lim then ir, f else
      match Sformat.get fmt i with
      | '_' -> scan_limits true ir f (succ i)
      | _ -> scan_limits false ir f i

    and scan_limits skip ir f i =

      let rec scan_width i =
        if i > lim then incomplete_format fmt else
        match Sformat.get fmt i with
        | '0' .. '9' as conv ->
          let width, i = read_int_literal (decimal_value_of_char conv) (succ i) in
          Some width, i
        | _ -> None, i

      and scan_precision i =
        begin
          match Sformat.get fmt i with
          | '.' ->
            let precision, i = read_int_literal 0 (succ i) in
            (Some precision, i)
          | _ -> None, i
        end

      and read_int_literal accu i =
        if i > lim then accu, i else
        match Sformat.unsafe_get fmt i with
        | '0' .. '9' as c ->
          let accu = 10 * accu + decimal_value_of_char c in
          read_int_literal accu (succ i)
        | _ -> accu, i in

      if i > lim then ir, f else
      let width_opt, i = scan_width i in
      let prec_opt, i = scan_precision i in
      scan_conversion skip width_opt prec_opt ir f i

    and scan_conversion skip width_opt prec_opt ir f i =
      let! stack = if skip then no_stack else stack in
      let width = int_of_width_opt width_opt in
      let prec = int_of_prec_opt prec_opt in
      match Sformat.get fmt i with
      | '%' | '@' as c ->
        check_char ib c;
        scan_fmt ir f (succ i)
      | '!' ->
        if not (Scanning.end_of_input ib)
        then bad_input "end of input not found" else
        scan_fmt ir f (succ i)
      | ',' ->
        scan_fmt ir f (succ i)
      | 's' ->
        let i, stp = scan_indication (succ i) in
        let _x = scan_string stp width ib in
        scan_fmt ir (stack f (token_string ib)) (succ i)
      | 'S' ->
        let _x = scan_String width ib in
        scan_fmt ir (stack f (token_string ib)) (succ i)
      | '[' (* ']' *) ->
        let i, char_set = scan_range fmt (succ i) in
        let i, stp = scan_indication (succ i) in
        let _x = scan_chars_in_char_set stp char_set width ib in
        scan_fmt ir (stack f (token_string ib)) (succ i)
      | ('c' | 'C') when width = 0 ->
        let c = Scanning.checked_peek_char ib in
        scan_fmt ir (stack f c) (succ i)
      | 'c' ->
        let _x = scan_char width ib in
        scan_fmt ir (stack f (token_char ib)) (succ i)
      | 'C' ->
        let _x = scan_Char width ib in
        scan_fmt ir (stack f (token_char ib)) (succ i)
      | 'd' | 'i' | 'o' | 'u' | 'x' | 'X' as conv ->
        let _x = scan_int_conv conv width prec ib in
        scan_fmt ir (stack f (token_int conv ib)) (succ i)
      | 'N' as conv ->
        scan_fmt ir (stack f (get_count conv ib)) (succ i)
      | 'f' | 'e' | 'E' | 'g' | 'G' ->
        let _x = scan_float width prec ib in
        scan_fmt ir (stack f (token_float ib)) (succ i)
      | 'F' ->
        let _x = scan_Float width prec ib in
        scan_fmt ir (stack f (token_float ib)) (succ i)
(*      | 'B' | 'b' when width = Some 0 ->
        let _x = scan_bool width ib in
        scan_fmt ir (stack f (token_int ib)) (succ i) *)
      | 'B' | 'b' ->
        let _x = scan_bool width ib in
        scan_fmt ir (stack f (token_bool ib)) (succ i)
      | 'r' ->
        if ir > limr then assert false else
        let token = Obj.magic rv.(ir) ib in
        scan_fmt (succ ir) (stack f token) (succ i)
      | 'l' | 'n' | 'L' as conv0 ->
        let i = succ i in
        if i > lim then scan_fmt ir (stack f (get_count conv0 ib)) i else begin
        match Sformat.get fmt i with
        (* This is in fact an integer conversion (e.g. %ld, %ni, or %Lo). *)
        | 'd' | 'i' | 'o' | 'u' | 'x' | 'X' as conv1 ->
          let _x = scan_int_conv conv1 width prec ib in
          (* Look back to the character that triggered the integer conversion
             (this character is either 'l', 'n' or 'L') to find the
             conversion to apply to the integer token read. *)
          begin match conv0 with
          | 'l' -> scan_fmt ir (stack f (token_int32 conv1 ib)) (succ i)
          | 'n' -> scan_fmt ir (stack f (token_nativeint conv1 ib)) (succ i)
          | _ -> scan_fmt ir (stack f (token_int64 conv1 ib)) (succ i) end
        (* This is not an integer conversion, but a regular %l, %n or %L. *)
        | _ -> scan_fmt ir (stack f (get_count conv0 ib)) i end
      | '(' | '{' as conv (* ')' '}' *) ->
        let i = succ i in
        (* Find the static specification for the format to read. *)
        let j =
          Tformat.sub_format
            incomplete_format bad_conversion conv fmt i in
        let mf = Sformat.sub fmt (Sformat.index_of_int i) (j - 2 - i) in
        (* Read the specified format string in the input buffer,
           and check its correctness. *)
        let _x = scan_String width ib in
        let rf = token_string ib in
        if not (compatible_format_type rf mf) then format_mismatch rf mf else
        (* For conversion %{%}, just return this format string as the token
           read. *)
        if conv = '{' (* '}' *) then scan_fmt ir (stack f rf) j else
        (* Or else, read according to the format string just read. *)
        let ir, nf = scan (string_to_format rf) ir (stack f rf) 0 in
        (* Return the format string read and the value just read,
           then go on with the rest of the format. *)
        scan_fmt ir nf j

      | c -> bad_conversion fmt i c

    and scan_indication j =
      if j > lim then j - 1, [] else
      match Sformat.get fmt j with
      | '@' ->
        let k = j + 1 in
        if k > lim then j - 1, [] else
        begin match Sformat.get fmt k with
        | '%' ->
          let k = k + 1 in
          if k > lim then j - 1, [] else
          begin match Sformat.get fmt k with
          | '%' | '@' as c  -> k, [ c ]
          | _c -> j - 1, []
          end
        | c -> k, [ c ]
        end
      | _c -> j - 1, [] in

    scan_fmt in


  Scanning.reset_token ib;

  let v =
    try snd (scan fmt 0 (fun () -> f) 0) with
    | (Scan_failure _ | Failure _ | End_of_file) as exc ->
      stack (delay ef ib) exc in
  return v
;;

let mkscanf ib ef fmt =
  let sc = scan_format ib ef in
  ascanf sc fmt
;;

let kscanf ib ef fmt = mkscanf ib ef fmt;;

let bscanf ib = kscanf ib scanf_bad_input;;

let fscanf ic = bscanf (Scanning.from_channel ic);;

let sscanf : string -> ('a, 'b, 'c, 'd) scanner
  = fun s -> bscanf (Scanning.from_string s);;

let scanf fmt = bscanf Scanning.stdib fmt;;

let bscanf_format ib fmt f =
  let fmt = Sformat.unsafe_to_string fmt in
  let fmt1 =
    ignore (scan_String max_int ib);
    token_string ib in
  if not (compatible_format_type fmt1 fmt) then
    format_mismatch fmt1 fmt else
  f (string_to_format fmt1)
;;

let sscanf_format s fmt = bscanf_format (Scanning.from_string s) fmt;;

let string_to_String s =
  let l = String.length s in
  let b = Buffer.create (l + 2) in
  Buffer.add_char b '\"';
  for i = 0 to l - 1 do
    let c = s.[i] in
    if c = '\"' then Buffer.add_char b '\\';
    Buffer.add_char b c;
  done;
  Buffer.add_char b '\"';
  Buffer.contents b
;;

let format_from_string s fmt =
  sscanf_format (string_to_String s) fmt (fun x -> x)
;;

let unescaped s =
  sscanf ("\"" ^ s ^ "\"") "%S%!" (fun x -> x)

(*
 Local Variables:
  compile-command: "cd ..; make world"
  End:
*)