Source

mutated_ocaml / asmcomp / closure.ml

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: closure.ml 12800 2012-07-30 18:59:07Z doligez $ *)

(* Introduction of closures, uncurrying, recognition of direct calls *)

open Misc
open Asttypes
open Primitive
open Lambda
open Switch
open Clambda

(* Auxiliaries for compiling functions *)

let rec split_list n l =
  if n <= 0 then ([], l) else begin
    match l with
      [] -> fatal_error "Closure.split_list"
    | a::l -> let (l1, l2) = split_list (n-1) l in (a::l1, l2)
  end

let rec build_closure_env env_param pos = function
    [] -> Tbl.empty
  | id :: rem ->
      Tbl.add id (Uprim(Pfield pos, [Uvar env_param], Debuginfo.none))
              (build_closure_env env_param (pos+1) rem)

(* Auxiliary for accessing globals.  We change the name of the global
   to the name of the corresponding asm symbol.  This is done here
   and no longer in Cmmgen so that approximations stored in .cmx files
   contain the right names if the -for-pack option is active. *)

let getglobal id =
  Uprim(Pgetglobal (Ident.create_persistent (Compilenv.symbol_for_global id)),
        [], Debuginfo.none)

(* Check if a variable occurs in a [clambda] term. *)

let occurs_var var u =
  let rec occurs = function
      Uvar v -> v = var
    | Uconst (cst,_) -> false
    | Udirect_apply(lbl, args, _) -> List.exists occurs args
    | Ugeneric_apply(funct, args, _) -> occurs funct || List.exists occurs args
    | Uclosure(fundecls, clos) -> List.exists occurs clos
    | Uoffset(u, ofs) -> occurs u
    | Ulet(id, def, body) -> occurs def || occurs body
    | Uletrec(decls, body) ->
        List.exists (fun (id, u) -> occurs u) decls || occurs body
    | Uprim(p, args, _) -> List.exists occurs args
    | Uswitch(arg, s) ->
        occurs arg ||
        occurs_array s.us_actions_consts || occurs_array s.us_actions_blocks
    | Ustaticfail (_, args) -> List.exists occurs args
    | Ucatch(_, _, body, hdlr) -> occurs body || occurs hdlr
    | Utrywith(body, exn, hdlr) -> occurs body || occurs hdlr
    | Uifthenelse(cond, ifso, ifnot) ->
        occurs cond || occurs ifso || occurs ifnot
    | Usequence(u1, u2) -> occurs u1 || occurs u2
    | Uwhile(cond, body) -> occurs cond || occurs body
    | Ufor(id, lo, hi, dir, body) -> occurs lo || occurs hi || occurs body
    | Uassign(id, u) -> id = var || occurs u
    | Usend(_, met, obj, args, _) ->
        occurs met || occurs obj || List.exists occurs args
  and occurs_array a =
    try
      for i = 0 to Array.length a - 1 do
        if occurs a.(i) then raise Exit
      done;
      false
    with Exit ->
      true
  in occurs u

(* Determine whether the estimated size of a clambda term is below
   some threshold *)

let prim_size prim args =
  match prim with
    Pidentity -> 0
  | Pgetglobal id -> 1
  | Psetglobal id -> 1
  | Pmakeblock(tag, mut) -> 5 + List.length args
  | Pfield f -> 1
  | Psetfield(f, isptr) -> if isptr then 4 else 1
  | Pfloatfield f -> 1
  | Psetfloatfield f -> 1
  | Pduprecord _ -> 10 + List.length args
  | Pccall p -> (if p.prim_alloc then 10 else 4) + List.length args
  | Praise -> 4
  | Pstringlength -> 5
  | Pstringrefs | Pstringsets -> 6
  | Pmakearray kind -> 5 + List.length args
  | Parraylength kind -> if kind = Pgenarray then 6 else 2
  | Parrayrefu kind -> if kind = Pgenarray then 12 else 2
  | Parraysetu kind -> if kind = Pgenarray then 16 else 4
  | Parrayrefs kind -> if kind = Pgenarray then 18 else 8
  | Parraysets kind -> if kind = Pgenarray then 22 else 10
  | Pbittest -> 3
  | Pbigarrayref(_, ndims, _, _) -> 4 + ndims * 6
  | Pbigarrayset(_, ndims, _, _) -> 4 + ndims * 6
  | _ -> 2 (* arithmetic and comparisons *)

(* Very raw approximation of switch cost *)

let lambda_smaller lam threshold =
  let size = ref 0 in
  let rec lambda_size lam =
    if !size > threshold then raise Exit;
    match lam with
      Uvar v -> ()
    | Uconst(
        (Const_base(Const_int _ | Const_char _ | Const_float _ |
                        Const_int32 _ | Const_int64 _ | Const_nativeint _) |
             Const_pointer _), _) -> incr size
(* Structured Constants are now emitted during closure conversion. *)
    | Uconst (_, Some _) -> incr size
    | Uconst _ ->
        raise Exit (* avoid duplication of structured constants *)
    | Udirect_apply(fn, args, _) ->
        size := !size + 4; lambda_list_size args
    | Ugeneric_apply(fn, args, _) ->
        size := !size + 6; lambda_size fn; lambda_list_size args
    | Uclosure(defs, vars) ->
        raise Exit (* inlining would duplicate function definitions *)
    | Uoffset(lam, ofs) ->
        incr size; lambda_size lam
    | Ulet(id, lam, body) ->
        lambda_size lam; lambda_size body
    | Uletrec(bindings, body) ->
        raise Exit (* usually too large *)
    | Uprim(prim, args, _) ->
        size := !size + prim_size prim args;
        lambda_list_size args
    | Uswitch(lam, cases) ->
        if Array.length cases.us_actions_consts > 1 then size := !size + 5 ;
        if Array.length cases.us_actions_blocks > 1 then size := !size + 5 ;
        lambda_size lam;
        lambda_array_size cases.us_actions_consts ;
        lambda_array_size cases.us_actions_blocks
    | Ustaticfail (_,args) -> lambda_list_size args
    | Ucatch(_, _, body, handler) ->
        incr size; lambda_size body; lambda_size handler
    | Utrywith(body, id, handler) ->
        size := !size + 8; lambda_size body; lambda_size handler
    | Uifthenelse(cond, ifso, ifnot) ->
        size := !size + 2;
        lambda_size cond; lambda_size ifso; lambda_size ifnot
    | Usequence(lam1, lam2) ->
        lambda_size lam1; lambda_size lam2
    | Uwhile(cond, body) ->
        size := !size + 2; lambda_size cond; lambda_size body
    | Ufor(id, low, high, dir, body) ->
        size := !size + 4; lambda_size low; lambda_size high; lambda_size body
    | Uassign(id, lam) ->
        incr size;  lambda_size lam
    | Usend(_, met, obj, args, _) ->
        size := !size + 8;
        lambda_size met; lambda_size obj; lambda_list_size args
  and lambda_list_size l = List.iter lambda_size l
  and lambda_array_size a = Array.iter lambda_size a in
  try
    lambda_size lam; !size <= threshold
  with Exit ->
    false

(* Check if a clambda term is ``pure'',
   that is without side-effects *and* not containing function definitions *)

let rec is_pure_clambda = function
    Uvar v -> true
  | Uconst _ -> true
  | Uprim((Psetglobal _ | Psetfield _ | Psetfloatfield _ | Pduprecord _ |
           Pccall _ | Praise | Poffsetref _ | Pstringsetu | Pstringsets |
           Parraysetu _ | Parraysets _ | Pbigarrayset _), _, _) -> false
  | Uprim(p, args, _) -> List.for_all is_pure_clambda args
  | _ -> false

(* Simplify primitive operations on integers *)

let make_const_int n = (Uconst(Const_base(Const_int n), None), Value_integer n)
let make_const_ptr n = (Uconst(Const_pointer n, None), Value_constptr n)
let make_const_bool b = make_const_ptr(if b then 1 else 0)

let simplif_prim_pure p (args, approxs) dbg =
  match approxs with
    [Value_integer x] ->
      begin match p with
        Pidentity -> make_const_int x
      | Pnegint -> make_const_int (-x)
      | Poffsetint y -> make_const_int (x + y)
      | _ -> (Uprim(p, args, dbg), Value_unknown)
      end
  | [Value_integer x; Value_integer y] ->
      begin match p with
        Paddint -> make_const_int(x + y)
      | Psubint -> make_const_int(x - y)
      | Pmulint -> make_const_int(x * y)
      | Pdivint when y <> 0 -> make_const_int(x / y)
      | Pmodint when y <> 0 -> make_const_int(x mod y)
      | Pandint -> make_const_int(x land y)
      | Porint -> make_const_int(x lor y)
      | Pxorint -> make_const_int(x lxor y)
      | Plslint -> make_const_int(x lsl y)
      | Plsrint -> make_const_int(x lsr y)
      | Pasrint -> make_const_int(x asr y)
      | Pintcomp cmp ->
          let result = match cmp with
              Ceq -> x = y
            | Cneq -> x <> y
            | Clt -> x < y
            | Cgt -> x > y
            | Cle -> x <= y
            | Cge -> x >= y in
          make_const_bool result
      | _ -> (Uprim(p, args, dbg), Value_unknown)
      end
  | [Value_constptr x] ->
      begin match p with
        Pidentity -> make_const_ptr x
      | Pnot -> make_const_bool(x = 0)
      | Pisint -> make_const_bool true
      | _ -> (Uprim(p, args, dbg), Value_unknown)
      end
  | [Value_constptr x; Value_constptr y] ->
      begin match p with
        Psequand -> make_const_bool(x <> 0 && y <> 0)
      | Psequor  -> make_const_bool(x <> 0 || y <> 0)
      | _ -> (Uprim(p, args, dbg), Value_unknown)
      end
  | _ ->
      (Uprim(p, args, dbg), Value_unknown)

let simplif_prim p (args, approxs as args_approxs) dbg =
  if List.for_all is_pure_clambda args
  then simplif_prim_pure p args_approxs dbg
  else (Uprim(p, args, dbg), Value_unknown)

(* Substitute variables in a [ulambda] term (a body of an inlined function)
   and perform some more simplifications on integer primitives.
   Also perform alpha-conversion on let-bound identifiers to avoid
   clashes with locally-generated identifiers.
   The variables must not be assigned in the term.
   This is used to substitute "trivial" arguments for parameters
   during inline expansion, and also for the translation of let rec
   over functions. *)

let approx_ulam = function
    Uconst(Const_base(Const_int n),_) -> Value_integer n
  | Uconst(Const_base(Const_char c),_) -> Value_integer(Char.code c)
  | Uconst(Const_pointer n,_) -> Value_constptr n
  | _ -> Value_unknown

let rec substitute sb ulam =
  match ulam with
    Uvar v ->
      begin try Tbl.find v sb with Not_found -> ulam end
  | Uconst _ -> ulam
  | Udirect_apply(lbl, args, dbg) ->
      Udirect_apply(lbl, List.map (substitute sb) args, dbg)
  | Ugeneric_apply(fn, args, dbg) ->
      Ugeneric_apply(substitute sb fn, List.map (substitute sb) args, dbg)
  | Uclosure(defs, env) ->
      (* Question: should we rename function labels as well?  Otherwise,
         there is a risk that function labels are not globally unique.
         This should not happen in the current system because:
         - Inlined function bodies contain no Uclosure nodes
           (cf. function [lambda_smaller])
         - When we substitute offsets for idents bound by let rec
           in [close], case [Lletrec], we discard the original
           let rec body and use only the substituted term. *)
      Uclosure(defs, List.map (substitute sb) env)
  | Uoffset(u, ofs) -> Uoffset(substitute sb u, ofs)
  | Ulet(id, u1, u2) ->
      let id' = Ident.rename id in
      Ulet(id', substitute sb u1, substitute (Tbl.add id (Uvar id') sb) u2)
  | Uletrec(bindings, body) ->
      let bindings1 =
        List.map (fun (id, rhs) -> (id, Ident.rename id, rhs)) bindings in
      let sb' =
        List.fold_right
          (fun (id, id', _) s -> Tbl.add id (Uvar id') s)
          bindings1 sb in
      Uletrec(
        List.map (fun (id, id', rhs) -> (id', substitute sb' rhs)) bindings1,
        substitute sb' body)
  | Uprim(p, args, dbg) ->
      let sargs = List.map (substitute sb) args in
      let (res, _) = simplif_prim p (sargs, List.map approx_ulam sargs) dbg in
      res
  | Uswitch(arg, sw) ->
      Uswitch(substitute sb arg,
              { sw with
                us_actions_consts =
                  Array.map (substitute sb) sw.us_actions_consts;
                us_actions_blocks =
                  Array.map (substitute sb) sw.us_actions_blocks;
               })
  | Ustaticfail (nfail, args) ->
      Ustaticfail (nfail, List.map (substitute sb) args)
  | Ucatch(nfail, ids, u1, u2) ->
      Ucatch(nfail, ids, substitute sb u1, substitute sb u2)
  | Utrywith(u1, id, u2) ->
      let id' = Ident.rename id in
      Utrywith(substitute sb u1, id', substitute (Tbl.add id (Uvar id') sb) u2)
  | Uifthenelse(u1, u2, u3) ->
      begin match substitute sb u1 with
        Uconst(Const_pointer n, _) ->
          if n <> 0 then substitute sb u2 else substitute sb u3
      | su1 ->
          Uifthenelse(su1, substitute sb u2, substitute sb u3)
      end
  | Usequence(u1, u2) -> Usequence(substitute sb u1, substitute sb u2)
  | Uwhile(u1, u2) -> Uwhile(substitute sb u1, substitute sb u2)
  | Ufor(id, u1, u2, dir, u3) ->
      let id' = Ident.rename id in
      Ufor(id', substitute sb u1, substitute sb u2, dir,
           substitute (Tbl.add id (Uvar id') sb) u3)
  | Uassign(id, u) ->
      let id' =
        try
          match Tbl.find id sb with Uvar i -> i | _ -> assert false
        with Not_found ->
          id in
      Uassign(id', substitute sb u)
  | Usend(k, u1, u2, ul, dbg) ->
      Usend(k, substitute sb u1, substitute sb u2, List.map (substitute sb) ul, dbg)

(* Perform an inline expansion *)

let is_simple_argument = function
    Uvar _ -> true
  | Uconst(Const_base(Const_int _ | Const_char _ | Const_float _ |
                      Const_int32 _ | Const_int64 _ | Const_nativeint _),_) ->
      true
  | Uconst(Const_pointer _, _) -> true
  | _ -> false

let no_effects = function
    Uclosure _ -> true
  | Uconst(Const_base(Const_string _),_) -> true
  | u -> is_simple_argument u

let rec bind_params_rec subst params args body =
  match (params, args) with
    ([], []) -> substitute subst body
  | (p1 :: pl, a1 :: al) ->
      if is_simple_argument a1 then
        bind_params_rec (Tbl.add p1 a1 subst) pl al body
      else begin
        let p1' = Ident.rename p1 in
        let body' =
          bind_params_rec (Tbl.add p1 (Uvar p1') subst) pl al body in
        if occurs_var p1 body then Ulet(p1', a1, body')
        else if no_effects a1 then body'
        else Usequence(a1, body')
      end
  | (_, _) -> assert false

let bind_params params args body =
  (* Reverse parameters and arguments to preserve right-to-left
     evaluation order (PR#2910). *)
  bind_params_rec Tbl.empty (List.rev params) (List.rev args) body

(* Check if a lambda term is ``pure'',
   that is without side-effects *and* not containing function definitions *)

let rec is_pure = function
    Lvar v -> true
  | Lconst cst -> true
  | Lprim((Psetglobal _ | Psetfield _ | Psetfloatfield _ | Pduprecord _ |
           Pccall _ | Praise | Poffsetref _ | Pstringsetu | Pstringsets |
           Parraysetu _ | Parraysets _ | Pbigarrayset _), _) -> false
  | Lprim(p, args) -> List.for_all is_pure args
  | Levent(lam, ev) -> is_pure lam
  | _ -> false

(* Generate a direct application *)

let direct_apply fundesc funct ufunct uargs =
  let app_args =
    if fundesc.fun_closed then uargs else uargs @ [ufunct] in
  let app =
    match fundesc.fun_inline with
      None -> Udirect_apply(fundesc.fun_label, app_args, Debuginfo.none)
    | Some(params, body) -> bind_params params app_args body in
  (* If ufunct can contain side-effects or function definitions,
     we must make sure that it is evaluated exactly once.
     If the function is not closed, we evaluate ufunct as part of the
     arguments.
     If the function is closed, we force the evaluation of ufunct first. *)
  if not fundesc.fun_closed || is_pure funct
  then app
  else Usequence(ufunct, app)

(* Add [Value_integer] or [Value_constptr] info to the approximation
   of an application *)

let strengthen_approx appl approx =
  match approx_ulam appl with
    (Value_integer _ | Value_constptr _) as intapprox -> intapprox
  | _ -> approx

(* If a term has approximation Value_integer or Value_constptr and is pure,
   replace it by an integer constant *)

let check_constant_result lam ulam approx =
  match approx with
    Value_integer n when is_pure lam -> make_const_int n
  | Value_constptr n when is_pure lam -> make_const_ptr n
  | _ -> (ulam, approx)

(* Evaluate an expression with known value for its side effects only,
   or discard it if it's pure *)

let sequence_constant_expr lam ulam1 (ulam2, approx2 as res2) =
  if is_pure lam then res2 else (Usequence(ulam1, ulam2), approx2)

(* Maintain the approximation of the global structure being defined *)

let global_approx = ref([||] : value_approximation array)

(* Maintain the nesting depth for functions *)

let function_nesting_depth = ref 0
let excessive_function_nesting_depth = 5

(* Decorate clambda term with debug information *)

let rec add_debug_info ev u =
  match ev.lev_kind with
  | Lev_after _ ->
      begin match u with
      | Udirect_apply(lbl, args, dinfo) ->
          Udirect_apply(lbl, args, Debuginfo.from_call ev)
      | Ugeneric_apply(Udirect_apply(lbl, args1, dinfo1),
                       args2, dinfo2) ->
          Ugeneric_apply(Udirect_apply(lbl, args1, Debuginfo.from_call ev),
                         args2, Debuginfo.from_call ev)
      | Ugeneric_apply(fn, args, dinfo) ->
          Ugeneric_apply(fn, args, Debuginfo.from_call ev)
      | Uprim(Praise, args, dinfo) ->
          Uprim(Praise, args, Debuginfo.from_call ev)
      | Uprim(p, args, dinfo) ->
          Uprim(p, args, Debuginfo.from_call ev)
      | Usend(kind, u1, u2, args, dinfo) ->
          Usend(kind, u1, u2, args, Debuginfo.from_call ev)
      | Usequence(u1, u2) ->
          Usequence(u1, add_debug_info ev u2)
      | _ -> u
      end
  | _ -> u

(* Uncurry an expression and explicitate closures.
   Also return the approximation of the expression.
   The approximation environment [fenv] maps idents to approximations.
   Idents not bound in [fenv] approximate to [Value_unknown].
   The closure environment [cenv] maps idents to [ulambda] terms.
   It is used to substitute environment accesses for free identifiers. *)

let close_approx_var fenv cenv id =
  let approx = try Tbl.find id fenv with Not_found -> Value_unknown in
  match approx with
    Value_integer n ->
      make_const_int n
  | Value_constptr n ->
      make_const_ptr n
  | approx ->
      let subst = try Tbl.find id cenv with Not_found -> Uvar id in
      (subst, approx)

let close_var fenv cenv id =
  let (ulam, app) = close_approx_var fenv cenv id in ulam

let rec close fenv cenv = function
    Lvar id ->
      close_approx_var fenv cenv id
  | Lconst cst ->
      begin match cst with
        Const_base(Const_int n) -> (Uconst (cst,None), Value_integer n)
      | Const_base(Const_char c) -> (Uconst (cst,None), Value_integer(Char.code c))
      | Const_pointer n -> (Uconst (cst, None), Value_constptr n)
      | _ -> (Uconst (cst, Some (Compilenv.new_structured_constant cst true)), Value_unknown)
      end
  | Lfunction(kind, params, body) as funct ->
      close_one_function fenv cenv (Ident.create "fun") funct

    (* We convert [f a] to [let a' = a in fun b c -> f a' b c]
       when fun_arity > nargs *)
  | Lapply(funct, args, loc) ->
      let nargs = List.length args in
      begin match (close fenv cenv funct, close_list fenv cenv args) with
        ((ufunct, Value_closure(fundesc, approx_res)),
         [Uprim(Pmakeblock(_, _), uargs, _)])
        when List.length uargs = - fundesc.fun_arity ->
          let app = direct_apply fundesc funct ufunct uargs in
          (app, strengthen_approx app approx_res)
      | ((ufunct, Value_closure(fundesc, approx_res)), uargs)
        when nargs = fundesc.fun_arity ->
          let app = direct_apply fundesc funct ufunct uargs in
          (app, strengthen_approx app approx_res)

      | ((ufunct, Value_closure(fundesc, approx_res)), uargs)
          when nargs < fundesc.fun_arity ->
        let first_args = List.map (fun arg ->
          (Ident.create "arg", arg) ) uargs in
        let final_args = Array.to_list (Array.init (fundesc.fun_arity - nargs) (fun _ ->
          Ident.create "arg")) in
        let rec iter args body =
          match args with
              [] -> body
            | (arg1, arg2) :: args ->
              iter args
                (Ulet ( arg1, arg2, body))
        in
        let internal_args =
          (List.map (fun (arg1, arg2) -> Lvar arg1) first_args)
          @ (List.map (fun arg -> Lvar arg ) final_args)
        in
        let (new_fun, approx) = close fenv cenv
          (Lfunction(
            Curried, final_args, Lapply(funct, internal_args, loc)))
        in
        let new_fun = iter first_args new_fun in
        (new_fun, approx)

      | ((ufunct, Value_closure(fundesc, approx_res)), uargs)
        when fundesc.fun_arity > 0 && nargs > fundesc.fun_arity ->
          let (first_args, rem_args) = split_list fundesc.fun_arity uargs in
          (Ugeneric_apply(direct_apply fundesc funct ufunct first_args,
                          rem_args, Debuginfo.none),
           Value_unknown)
      | ((ufunct, _), uargs) ->
          (Ugeneric_apply(ufunct, uargs, Debuginfo.none), Value_unknown)
      end
  | Lsend(kind, met, obj, args, _) ->
      let (umet, _) = close fenv cenv met in
      let (uobj, _) = close fenv cenv obj in
      (Usend(kind, umet, uobj, close_list fenv cenv args, Debuginfo.none),
       Value_unknown)
  | Llet(str, id, lam, body) ->
      let (ulam, alam) = close_named fenv cenv id lam in
      begin match (str, alam) with
        (Variable, _) ->
          let (ubody, abody) = close fenv cenv body in
          (Ulet(id, ulam, ubody), abody)
      | (_, (Value_integer _ | Value_constptr _))
        when str = Alias || is_pure lam ->
          close (Tbl.add id alam fenv) cenv body
      | (_, _) ->
          let (ubody, abody) = close (Tbl.add id alam fenv) cenv body in
          (Ulet(id, ulam, ubody), abody)
      end
  | Lletrec(defs, body) ->
      if List.for_all
           (function (id, Lfunction(_, _, _)) -> true | _ -> false)
           defs
      then begin
        (* Simple case: only function definitions *)
        let (clos, infos) = close_functions fenv cenv defs in
        let clos_ident = Ident.create "clos" in
        let fenv_body =
          List.fold_right
            (fun (id, pos, approx) fenv -> Tbl.add id approx fenv)
            infos fenv in
        let (ubody, approx) = close fenv_body cenv body in
        let sb =
          List.fold_right
            (fun (id, pos, approx) sb ->
              Tbl.add id (Uoffset(Uvar clos_ident, pos)) sb)
            infos Tbl.empty in
        (Ulet(clos_ident, clos, substitute sb ubody),
         approx)
      end else begin
        (* General case: recursive definition of values *)
        let rec clos_defs = function
          [] -> ([], fenv)
        | (id, lam) :: rem ->
            let (udefs, fenv_body) = clos_defs rem in
            let (ulam, approx) = close fenv cenv lam in
            ((id, ulam) :: udefs, Tbl.add id approx fenv_body) in
        let (udefs, fenv_body) = clos_defs defs in
        let (ubody, approx) = close fenv_body cenv body in
        (Uletrec(udefs, ubody), approx)
      end
  | Lprim(Pdirapply loc,[funct;arg])
  | Lprim(Prevapply loc,[arg;funct]) ->
      close fenv cenv (Lapply(funct, [arg], loc))
  | Lprim(Pgetglobal id, []) as lam ->
      check_constant_result lam
                            (getglobal id)
                            (Compilenv.global_approx id)
  | Lprim(Pmakeblock(tag, mut) as prim, lams) ->
      let (ulams, approxs) = List.split (List.map (close fenv cenv) lams) in
      (Uprim(prim, ulams, Debuginfo.none),
       begin match mut with
           Immutable -> Value_tuple(Array.of_list approxs)
         | Mutable -> Value_unknown
       end)
  | Lprim(Pfield n, [lam]) ->
      let (ulam, approx) = close fenv cenv lam in
      let fieldapprox =
        match approx with
          Value_tuple a when n < Array.length a -> a.(n)
        | _ -> Value_unknown in
      check_constant_result lam (Uprim(Pfield n, [ulam], Debuginfo.none)) fieldapprox
  | Lprim(Psetfield(n, _), [Lprim(Pgetglobal id, []); lam]) ->
      let (ulam, approx) = close fenv cenv lam in
      (!global_approx).(n) <- approx;
      (Uprim(Psetfield(n, false), [getglobal id; ulam], Debuginfo.none),
       Value_unknown)
  | Lprim(Praise, [Levent(arg, ev)]) ->
      let (ulam, approx) = close fenv cenv arg in
      (Uprim(Praise, [ulam], Debuginfo.from_raise ev),
       Value_unknown)
  | Lprim(p, args) ->
      simplif_prim p (close_list_approx fenv cenv args) Debuginfo.none
  | Lswitch(arg, sw) ->
(* NB: failaction might get copied, thus it should be some Lstaticraise *)
      let (uarg, _) = close fenv cenv arg in
      let const_index, const_actions =
        close_switch fenv cenv sw.sw_consts sw.sw_numconsts sw.sw_failaction
      and block_index, block_actions =
        close_switch fenv cenv sw.sw_blocks sw.sw_numblocks sw.sw_failaction in
      (Uswitch(uarg,
               {us_index_consts = const_index;
                us_actions_consts = const_actions;
                us_index_blocks = block_index;
                us_actions_blocks = block_actions}),
       Value_unknown)
  | Lstaticraise (i, args) ->
      (Ustaticfail (i, close_list fenv cenv args), Value_unknown)
  | Lstaticcatch(body, (i, vars), handler) ->
      let (ubody, _) = close fenv cenv body in
      let (uhandler, _) = close fenv cenv handler in
      (Ucatch(i, vars, ubody, uhandler), Value_unknown)
  | Ltrywith(body, id, handler) ->
      let (ubody, _) = close fenv cenv body in
      let (uhandler, _) = close fenv cenv handler in
      (Utrywith(ubody, id, uhandler), Value_unknown)
  | Lifthenelse(arg, ifso, ifnot) ->
      begin match close fenv cenv arg with
        (uarg, Value_constptr n) ->
          sequence_constant_expr arg uarg
            (close fenv cenv (if n = 0 then ifnot else ifso))
      | (uarg, _ ) ->
          let (uifso, _) = close fenv cenv ifso in
          let (uifnot, _) = close fenv cenv ifnot in
          (Uifthenelse(uarg, uifso, uifnot), Value_unknown)
      end
  | Lsequence(lam1, lam2) ->
      let (ulam1, _) = close fenv cenv lam1 in
      let (ulam2, approx) = close fenv cenv lam2 in
      (Usequence(ulam1, ulam2), approx)
  | Lwhile(cond, body) ->
      let (ucond, _) = close fenv cenv cond in
      let (ubody, _) = close fenv cenv body in
      (Uwhile(ucond, ubody), Value_unknown)
  | Lfor(id, lo, hi, dir, body) ->
      let (ulo, _) = close fenv cenv lo in
      let (uhi, _) = close fenv cenv hi in
      let (ubody, _) = close fenv cenv body in
      (Ufor(id, ulo, uhi, dir, ubody), Value_unknown)
  | Lassign(id, lam) ->
      let (ulam, _) = close fenv cenv lam in
      (Uassign(id, ulam), Value_unknown)
  | Levent(lam, ev) ->
      let (ulam, approx) = close fenv cenv lam in
      (add_debug_info ev ulam, approx)
  | Lifused _ ->
      assert false

and close_list fenv cenv = function
    [] -> []
  | lam :: rem ->
      let (ulam, _) = close fenv cenv lam in
      ulam :: close_list fenv cenv rem

and close_list_approx fenv cenv = function
    [] -> ([], [])
  | lam :: rem ->
      let (ulam, approx) = close fenv cenv lam in
      let (ulams, approxs) = close_list_approx fenv cenv rem in
      (ulam :: ulams, approx :: approxs)

and close_named fenv cenv id = function
    Lfunction(kind, params, body) as funct ->
      close_one_function fenv cenv id funct
  | lam ->
      close fenv cenv lam

(* Build a shared closure for a set of mutually recursive functions *)

and close_functions fenv cenv fun_defs =
  (* Update and check nesting depth *)
  incr function_nesting_depth;
  let initially_closed =
    !function_nesting_depth < excessive_function_nesting_depth in
  (* Determine the free variables of the functions *)
  let fv =
    IdentSet.elements (free_variables (Lletrec(fun_defs, lambda_unit))) in
  (* Build the function descriptors for the functions.
     Initially all functions are assumed not to need their environment
     parameter. *)
  let uncurried_defs =
    List.map
      (function
          (id, Lfunction(kind, params, body)) ->
            let label = Compilenv.make_symbol (Some (Ident.unique_name id)) in
            let arity = List.length params in
            let fundesc =
              {fun_label = label;
               fun_arity = (if kind = Tupled then -arity else arity);
               fun_closed = initially_closed;
               fun_inline = None } in
            (id, params, body, fundesc)
        | (_, _) -> fatal_error "Closure.close_functions")
      fun_defs in
  (* Build an approximate fenv for compiling the functions *)
  let fenv_rec =
    List.fold_right
      (fun (id, params, body, fundesc) fenv ->
        Tbl.add id (Value_closure(fundesc, Value_unknown)) fenv)
      uncurried_defs fenv in
  (* Determine the offsets of each function's closure in the shared block *)
  let env_pos = ref (-1) in
  let clos_offsets =
    List.map
      (fun (id, params, body, fundesc) ->
        let pos = !env_pos + 1 in
        env_pos := !env_pos + 1 + (if fundesc.fun_arity <> 1 then 3 else 2);
        pos)
      uncurried_defs in
  let fv_pos = !env_pos in
  (* This reference will be set to false if the hypothesis that a function
     does not use its environment parameter is invalidated. *)
  let useless_env = ref initially_closed in
  (* Translate each function definition *)
  let clos_fundef (id, params, body, fundesc) env_pos =
    let dbg = match body with
      | Levent (_,({lev_kind=Lev_function} as ev)) -> Debuginfo.from_call ev
      | _ -> Debuginfo.none in
    let env_param = Ident.create "env" in
    let cenv_fv =
      build_closure_env env_param (fv_pos - env_pos) fv in
    let cenv_body =
      List.fold_right2
        (fun (id, params, arity, body) pos env ->
          Tbl.add id (Uoffset(Uvar env_param, pos - env_pos)) env)
        uncurried_defs clos_offsets cenv_fv in
    let (ubody, approx) = close fenv_rec cenv_body body in
    if !useless_env && occurs_var env_param ubody then useless_env := false;
    let fun_params = if !useless_env then params else params @ [env_param] in
    ({ label  = fundesc.fun_label;
       arity  = fundesc.fun_arity;
       params = fun_params;
       body   = ubody;
       dbg },
     (id, env_pos, Value_closure(fundesc, approx))) in
  (* Translate all function definitions. *)
  let clos_info_list =
    if initially_closed then begin
      let cl = List.map2 clos_fundef uncurried_defs clos_offsets in
      (* If the hypothesis that the environment parameters are useless has been
         invalidated, then set [fun_closed] to false in all descriptions and
         recompile *)
      if !useless_env then cl else begin
        List.iter
          (fun (id, params, body, fundesc) -> fundesc.fun_closed <- false)
          uncurried_defs;
        List.map2 clos_fundef uncurried_defs clos_offsets
      end
    end else
      (* Excessive closure nesting: assume environment parameter is used *)
        List.map2 clos_fundef uncurried_defs clos_offsets
    in
  (* Update nesting depth *)
  decr function_nesting_depth;
  (* Return the Uclosure node and the list of all identifiers defined,
     with offsets and approximations. *)
  let (clos, infos) = List.split clos_info_list in
  (Uclosure(clos, List.map (close_var fenv cenv) fv), infos)

(* Same, for one non-recursive function *)

and close_one_function fenv cenv id funct =
  match close_functions fenv cenv [id, funct] with
      ((Uclosure([f], _) as clos),
       [_, _, (Value_closure(fundesc, _) as approx)]) ->
        (* See if the function can be inlined *)
        if lambda_smaller f.body
          (!Clflags.inline_threshold + List.length f.params)
        then fundesc.fun_inline <- Some(f.params, f.body);
        (clos, approx)
    | _ -> fatal_error "Closure.close_one_function"

(* Close a switch *)

and close_switch fenv cenv cases num_keys default =
  let index = Array.create num_keys 0
  and store = mk_store Lambda.same in

  (* First default case *)
  begin match default with
  | Some def when List.length cases < num_keys ->
      ignore (store.act_store def)
  | _ -> ()
  end ;
  (* Then all other cases *)
  List.iter
    (fun (key,lam) ->
     index.(key) <- store.act_store lam)
    cases ;
  (* Compile action *)
  let actions =
    Array.map
      (fun lam ->
        let ulam,_ = close fenv cenv lam in
        ulam)
      (store.act_get ()) in
  match actions with
  | [| |] -> [| |], [| |] (* May happen when default is None *)
  | _     -> index, actions


(* The entry point *)

let intro size lam =
  function_nesting_depth := 0;
  global_approx := Array.create size Value_unknown;
  Compilenv.set_global_approx(Value_tuple !global_approx);
  let (ulam, approx) = close Tbl.empty Tbl.empty lam in
  global_approx := [||];
  ulam