BiolLite Documentation
Release 0.3.5

Mark Howison
Casey Dunn
Nick Sinnott-Armstrong
Felipe Zapata

November 23, 2013

CONTENTS

1 Contents
.1 Installation oo e e e e e e e e e e e e
1.2 Configuration o e e e e e e e e e
1.3 Cataloging data o v i i e e e e e e e e e e e e e e
L4 DIagnostiCs . . . v v v v v o e
1.5 Building pipelines e
1.6 Generating TePOTLS v v v v it e
1.7 Callingexternal tools L e e e
1.8 Automating workflows L e e e e e e e
19 Internals L e e e e

2 Citing

3 Funding

4 License

5 Indices and tables

Python Module Index

Index

33

35

37

39

41

43

BiolLite Documentation, Release 0.3.5

BioLite is a Python/C++ framework for implementing bioinformatics pipelines for Next-Generation Sequencing
(NGS) data, in particular pair-end Illumina data.

BioLite is designed around three priorities:
* automating the collection and reporting of diagnostics;
* tracking provenance of analyses;
* and providing lightweight tools for building out customized analysis pipelines.

Where possible, we have wrapped existing bioinformatics tools, especially for assembly, alignment and annotation.
For analyses where a tool does not exist or is not optimized for the high computational and storage requirements of
NGS data, we have developed custom tools in C++ after the standard UNIX “pipe and filter” design pattern.

Our primary motivation for developing BioLite is to implement Agalma, a de novo transcriptome assembly and anno-
tation pipeline for Illumina data.

CONTENTS 1

http://en.wikipedia.org/wiki/Unix_philosophy
http://www.dunnlab.org/agalma

BioLite Documentation, Release 0.3.5

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Installation

For quick installation instructions for OS X and Ubuntu, see the BioLite homepage. This file has more detailed
instructions for installation on other platforms or for developers.

After installation, proceed to the configuration instructions at the end of this document.

If you would like to install to a location other than /usr/local (if you don’t have permission to write to
/usr/local, for example), see the “Installing to an alternative location” section.

1.1.1 Prerequisites

This section lists required and optional prerequisites, with notes on specific versions we have tested and found to work.
To compile and install BioLite, you must at a minimum have:
* A C/C++ compiler that supports OpenMP and the TR1 standard. Tested:
— gcc 4.4.6 (CentOS 6.3)
— gcc 4.6.3 (Ubuntu 12.04)
— XCode gcc 4.2.1 (OS X 10.8)
e Python (2.7.2, 2.7.3) with packages:
— biopython (1.60, 1.61)
— dendropy (3.12.0)
— docutils (0.9.1, 0.10)
— matplotlib (1.1.0, 1.1.1rc, 1.1.1)
— networkx (1.6, 1.7)
— numpy (1.6.1, 1.6.2)
- Ixml (3.2.1)
wget (2.0)

BioLite provides a large collection of wrappers for the following 3rd party bioinformatics tools. While you do not have
to install these to be able to load the BioLite python library or to use the BioLite command-line tools, a BioLite script
that calls a wrapper must be able to find the corresponding program in your PATH. BioLite comes with a shell script to
automate downloading and building many of these 3rd party programs. See the “Installing 3rd Party Software” section
below for more details. Alternatively, you can install these packages manually. If you are using a shared or research

https://bitbucket.org/caseywdunn/biolite

BioLite Documentation, Release 0.3.5

computing system, it is possible that many of these packages are already available and you will not need to install
them. At runtime, BioLite will automatically attempt to find installed versions of these packages using your PATH.

¢ FastQC 0.10.0
* Blast+2.2.28
* Bowtie 0.12.8
* Bowtie2 2.0.6
e samtools 0.1.18
e Velvet 1.2.08
Note: with LONGSEQUENCES=1 and MAXKMERLENGTH >= 61, recommended 127
e Qases 0.2.08
Note: with LONGSEQUENCES=1 and MAXKMERLENGTH >= 61, recommended 127
* Trinity r2013-08-14

Note: if you install manually, you must link Butterfly/Butterfly.jar, Inchworm/bin/inchworm, Chrysalis/Chrysalis,
Chrysalis/QuantifyGraph, trinity-plugins/jellyfish/bin/jellyfish and util/partition_chrysalis_graphs_n_reads.pl into
your PATH.

* MACSE 0.9b1
Note: if you install manually, make sure the MACSE jar file is in your PATH.
* MAFFT 7.122
* RAXML 7.7.6
* Gblocks 0.91b
e mcl 12-135
* SRA Toolkit

1.1.2 Generic instructions for installing from the tar ball

Download the tarball. Then unpack it:

tar xf biolite-X.X.X.tar.gz
cd biolite-X.X.X

Build and install 3rd party tools and bioLite:

sudo ./build_3rd_party.sh /usr/local
./configure

make

sudo make install

Proceed to “Configuration” at the end of this document.

1.1.3 Installing from the git repo

(Skip this unless you are building a development version that you cloned from Bitbucket.)
Fork the repository and clone the fork to your machine.

On Ubuntu, you can can install BioLite and its dependencies from the local git repository by running:

4 Chapter 1. Contents

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://blast.ncbi.nlm.nih.gov/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://samtools.sourceforge.net/
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.ebi.ac.uk/~zerbino/oases/
http://trinityrnaseq.sourceforge.net/
http://mbb.univ-montp2.fr/macse/
http://mafft.cbrc.jp/alignment/software/
http://sco.h-its.org/exelixis/web/software/raxml/
http://molevol.cmima.csic.es/castresana/Gblocks.html
http://micans.org/mcl
http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=std
https://bitbucket.org/caseywdunn/biolite/downloads

BiolLite Documentation, Release 0.3.5

sudo sh install_biolite_ubuntu.sh

For other systems, see the Prerequisites section above for other software you may need to install. You will also need
to have the automake, autoconf and libtool packages installed. Then run:

sudo ./build_3rd_party.sh /usr/local
./autogen.sh

./configure

make

sudo make install

Proceed to “Configuration” at the end of this document.

1.1.4 Installing to an alternative location

The instructions above assume that you are installing BioLite to /usr/local, which requires root access. If you are
installing to another location, modify the installation instructions as follows. These are not full instructions, they just
explain how to modify the instructions above.

In the instructions below, we use [installation_path] as a placeholder for the path that you would like to
install to, e.g. /home/lucy/local. Note that [installation_path] needs to be an absolute path.

Modify the command to build and install 3rd party tools to specify the alternative path:

./build_3rd_party.sh [installation_path]

Modify the configure command to both change the install location and tell it where third party packages were installed:

./configure —--prefix=[installation_path]
make
make install

If you are installing somewhere that you have write access to, you don’t need to use sudo for
build_3rd_party.shormake install.

Proceed to the next section for instructions on setting paths.

1.1.5 Setting PATH and PYTHONPATH
If you install to a canonical location on your system, like /usr/local, the scripts and programs will already be in
your PATH and the python module will be ready to import.

Otherwise, if you want to be able to call the programs without specifying their full path, you need to add the new ‘bin’
directory to your PATH. In bash (you can add add this to ~/ .bashrc):

export PATH=[installation_path]/bin:S$SPATH

orin csh:

setenv PATH [installation_path]/bin:$PATH

To be able to import BioLite’s python modules in python, you will also need to add the full path to you PYTHONPATH,
replacing the python version below with your version of python (most likely “2.7”). In bash:

export PYTHONPATH=[installation_path]/lib/python2.7/site-packages:$PYTHONPATH

orin csh:

1.1. Installation 5

BioLite Documentation, Release 0.3.5

setenv PYTHONPATH [installation_path]/lib/python2.7/site-packages:S$PYTHONPATH

1.1.6 Installing 3rd Party Software
The BioLite source comes with a shell script that will download and install much of the required 3rd party software.
The usage for the script is:

./build_3rd_party.sh -h
usage: build_3rd_party.sh [PREFIX] [CC] [CXX] [OPT]

NOTE: We use this script internally to install and test BioLite, and we have only tested it on our own systems. It is
likely that you will need to manually install additional dependencies on OS X (or use a system like homebrew), or
install additional packages on Linux through your distro’s package manager (especially some development packages
that end in -dev or -devel).

To install to /usr/local/, you can call the script with no arguments. To use a different install path, specify a
PREFIX, for instance your home directory:

./build_3rd_party.sh $HOME

If you want to specify a different compiler, use the CC and CXX options. For instance, your linux distro may have a
gce 4.6 package that installs ‘gcc46’, so you would use:

./build_3rd_party.sh /usr/local gcc46 g++46

Finally, if you want to specify more aggressive compiler optimizations, use the OPT option. If you have a newer CPU
that supports SSE4.2 instructions (e.g. Intel Nehalem), you could use:

./build_3rd_party.sh /usr/local gcc g++ -mssed.2

1.1.7 Generating a tarball from the git repo

The included release.sh script will update the git version, rebuild the documentation and run the necessary config-
ure/make commands to create a tar ball.

To build the documentation, you must install the ‘sphinx’ Python package, for instance with:

sudo pip install sphinx

or:

sudo easy_install sphinx

You must also install the pandoc utility for document conversion.

1.2 Configuration

After successfully installing BioLite with make install, you should see a message like:

|
|
| Your default configuration file is located at:
|
|

/usr/local/share/biolite/biolite.cfqg

6 Chapter 1. Contents

http://johnmacfarlane.net/pandoc/installing.html

BiolLite Documentation, Release 0.3.5

pointing to the location of your default BioLite configuration file. This file serves as the default configuration for any
user on the system. To override it on a per-user basis, simply copy the file to SHOME/ .biolite/biolite.cfg

and make any required changes.

You can also override the location of the configuration file with an environment variable. In bash:

export BIOLITE_CONFIG=/your/path/to/biolite.cfg

orin csh:

setenv BIOLITE_CONFIG /your/path/to/biolite.cfg

Finally, the BIOLITE_RESOURCE environment variable allows you to temporarily override specific values in the
resources section of the configuration. For instance, if your configuration file is set to 2 threads, but want to test out a

run with 8 threads instead, you could use (in bash):

export BIOLITE_RESOURCES="threads=8"

The value of this variable can be a comma-separated list of key=value pairs.

1.3 Cataloging data

The easiest way to interact with the BioLite catalog is using the catalog script packaged wit BioLite:

$ catalog -h

usage: catalog [-h] {insert,all, search,sizes}

Command-line tool for interacting with the agalma catalog.

agalma maintains a ’‘catalog’ stored in an SQLite database of metadata

associated with your raw Illumina data,

including:

— A unique ID that you make up to reference this data set.
- Paths to the FASTQ files containing the raw forward and reverse reads.

— The species name and NCBI ID.

— The sequencing center where the data was collected.

optional arguments:

-h, --help show this help message and exit
commands :
{insert,all, search, sizes}
insert Add a new record to the catalog, or overwrite the
existing record with the same id.
all List all catalog entries.
search Search all fields (except ’'paths’) for entries
matching the provided pattern, which can include x as
a wildcard.
sizes List all paths in the catalog, ordered by size on

disk.

The documentation below describes the catalog module, for manually interacting with the catalog from within a

Python script.

1.3. Cataloging data

BioLite Documentation, Release 0.3.5

1.3.1 catalog Module

The BioLite catalog table pairs metadata with the raw NGS data files (identified by their absolute path on disk). It
includes the following:

* A unique ID for referencing the data set. If the data is paired-end [llumina HiSeq data, the ID can be automati-
cally generated using unique information in the Illumina header.

* Paths to the raw sequence data. For paired-end Illumina data, this is expected to be two FASTQ files (possibly
compressed) containing the forward and reverse reads.

* Notes about the species, the sample preparation and origin, the species, IDs from NCBI and ITIS taxonomies,
and the sequencing machine and center where the data were collected.

The catalog acts as a bridge between the BioLite diagnostics and a more detailed laboratory information management
system (LIMS) for tracking provenance of sample preparation and data collection upstream of and during sequencing.
It contains the minimal context needed to associate diagnostics reports of downstream analyses with the raw sequence
data, but without replicating or reimplementing the full functionality of a LIMS.

classbiolite.catalog.CatalogRecord
Bases: tuple

A named tuple for holding records from the catalog Table.

extraction id

Alias for field number 5
id

Alias for field number 0
itis_id

Alias for field number 4

library_id
Alias for field number 6

library type

Alias for field number 7
ncbi_id

Alias for field number 3

note
Alias for field number 11

paths
Alias for field number 1

sample_prep
Alias for field number 12

seq_center
Alias for field number 10

sequencer
Alias for field number 9

species
Alias for field number 2

timestamp
Alias for field number 13

8 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

tissue
Alias for field number 8

biolite.catalog.split_paths (paths)
Splits a catalog path entry to return a list of paths.

biolite.catalog.insert (**kwargs)
Insert or update a catalog entry, where keyword arguments specify the column/value pairs. If an entry for the
given ID already exists, then the specified column/values pairs are used to update the entry. If the ID does not
exist, a new entry is created with the specified values.

biolite.catalog.select (id)
Returns a CatalogRecord object for the given catalog ID, or :keyword:None if the ID is not found in the catalog.

biolite.catalog.select_all ()
Yields a list of CatalogRecord objects for all entries in the catalog, ordered with the default ordering that SQLite
provides.

biolite.catalog.search (string)
Yields a list of CatalogRecord objects for all entries in the catalog with an indexed column matching the given
search string. The indexed columns are all the columns in the catalog except paths.

biolite.catalog.make_record (**kwargs)
Returns a CatalogRecord object by mapping the provided keyword arguments to field names.

biolite.catalog.print_record (*args)
A human-readable printout of CatalogRecord record, using colors if the current tty supports it and the termcolor
module is installed.

1.4 Diagnostics

Diagnostics usually come in the form of plots or summary statistics. They can serve many purposes, such as:
¢ diagnosing problems in sample preparation and optimizing future preparations;
* providing feedback on the sequencing itself, e.g. on read quality;
» implementing ‘sanity checks’ at intermediate steps of analysis;
* finding optimal parameters by comparing previous runs;
* recording computational and storage demands, and predicting future demands.

The diagnostics database table archives summary statistics that can be accessed across multiple stages of a pipeline,
from different pipelines, and in HTML reports.

A diagnostics record looks like:

catalog_id | run_id | entity | attribute | value | timestamp

The entity field acts as a namespace to prevent attribute collisions, since the same attribute name can arise multiple
times within a pipeline run.

When running a BioLite pipeline, the default entity is the pipeline name plus the stage name, so that values can be
traced to the pipeline and stage during which they were entered. Entries in the diagnostics table can include paths to
derivative files, which can be summaries of intermediate files that are used to generate reports or intermediate data
files that serve as input to other stages and pipelines.

1.4. Diagnostics 9

BioLite Documentation, Release 0.3.5

1.4.1 Initializing

Before logging to diagnostics, your script must initialize this module with a BioLite catalog ID and a name for the run
using the init method. This will return a new run ID from the runs Table. Optionally, you can pass an existing run ID
to init to continue a previous run.

Diagnostics are automatically initialized by the Pipeline and IlluminaPipeline classes in the pipeline Module.

1.4.2 Logging a record

Use the log function described below.

Detailed system utilization statistics, including memory high-water marks and compute wall-time are recorded auto-
matically (by the wrapper base class) for any wrapper that your pipeline calls, and for the overall pipeline itself.

1.4.3 Provenance

Because every wrapper call is automatically logged, the diagnostics table holds a complete non-executable history of
the analysis, which complements the original scripts that were used to run the analysis. In combination, the diagnostics
table and original scripts provide provenance for all analyses.

classbiolite.diagnostics.OutputPattern
Bases: tuple

OutputPattern(re, entity, attr)

attr
Alias for field number 2

entity
Alias for field number 1

re
Alias for field number O

classbiolite.diagnostics.Run
Bases: tuple

Run(done, run_id, id, name, hostname, username, timestamp, hidden)

done
Alias for field number 0

hidden
Alias for field number 7

hostname

Alias for field number 4
id

Alias for field number 2

name
Alias for field number 3

run_id
Alias for field number 1

timestamp
Alias for field number 6

10 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

username
Alias for field number 5

biolite.diagnostics.timestamp ()
Returns the current time in ISO 8601 format, e.g. YYYY-MM-DDTHH :MM: SS [. mmmmmm] [+HH:MM] .

biolite.diagnostics.str2list (data)
Converts a diagnostics string with key name in self.data into a list, by parsing it as a typical Python list repre-
sentation [iteml, item2, ... 1].

biolite.diagnostics.get_run_id()
Returns the run_id (as a string)

biolite.diagnostics.get_entity ()
Returns the current entity as a dot-delimited string.

biolite.diagnostics.init (id, name, run_id=None, workdir="/gpfs/home/mhowison/code/biolite/doc’)
By default, appends to a file diagnostics.txt in the current working directory, but you can override this with the
workdir argument.

You must specify a catalog id and a name for the run. If no run_id is specified, an auto-incremented run ID will
be allocated by inserting a new row into the runs Table.

Returns the run_id (as a string).

biolite.diagnostics.check_init ()
Aborts if the biolite.diagnostics.init() has not been called yet.

biolite.diagnostics.merge ()
Merges the diagnostics and program caches into the SQLite database.

biolite.diagnostics.merge_cwd (run_id)
Merges the ‘diagnostics.txt’ and ‘programs.txt’ in the current working directory (cwd) into the diagnostics
database.

biolite.diagnostics.load_cache ()
Similar to a merge, but loads the local diagnostics file into an in-memory cache instead of the SQLite database.

Uses the filename specified with name, or the file diagnostics.txt in the current working directory (default).

biolite.diagnostics.log (attribute, value)
Log an attribute/value pair in the diagnostics using the currently set entity. The pair is written to the local
diagnostics text file and also into the local in-memory cache.

biolite.diagnostics.log_entity (attribute, value)
Log an attribute/value pair in the diagnostics, where the aftribute can contain an entity that is separated from
the attribute name by dots. Example:

log_entity(‘a.b.x’, 1)
would store the attribute/value pair (x,1) in an entity ‘a.b’ appended to the current entity.

biolite.diagnostics.log_path (path, log_prefix=None)
Logs a path by writing these attributes at the current entity, with an optional prefix for this entry: 1) the full path
string 2) the full path string, converted to an absolute path by os.path.abspath() 3) the size of the file/directory
at the path (according to os.stat) 4) the access time of the file/directory at the path (according to os.star) 5) the
modify time of the file/directory at the path (according to os.star) 6) the permissions of the file/directory at the
path (according to os.stat)

biolite.diagnostics.log_dict (d, prefix=None, filter=False)
Log a dictionary d by calling log for each key/value pair.

1.4. Diagnostics 11

BioLite Documentation, Release 0.3.5

biolite.diagnostics.log_program_version (name, version, path)
Enter the version string and a hash of the binary file at path into the programs table.

biolite.diagnostics.log_program_output (filename, patterns=None)
Read backwards through a program’s output to find any [biolite] markers, then log their key=value pairs in the
diagnostics.

A marker can specify an entity suffix with the form [biolite.suffix].

[biolite.profile] markers are handled specially, since mem= and vmem= entries need to be accumulated. These
are inserted into a program’s output on Linux systems by the preloaded memusage.so library.

You can optionally include a list of additional patterns, specified as OutputPattern tuples with:
(regular expression string, entity, attribute)

and the first line of program output matching the pattern will be logged to that entity and attribute name. The
value will be the subexpressions matched by the regular expression, either a single value if there is one subex-
pression, or a string of the tuple if there are more.

biolite.diagnostics.lookup (run_id, entity)
Returns a dictionary of attribute/value pairs for the given run_id and entity in the SQLite database.

Returns an empty dictionary if no records are found.

biolite.diagnostics.local_lookup (entity)
Similar to lookup, but queries the in-memory cache instead of the SQLite database. This can provide lookups
when the local diagnostics text file has not yet been merged into the SQLite database (for instance, after restarting
a pipeline that never completed, and hence never reached a diagnostics merge).

Returns an empty dictionary if no records are found.

biolite.diagnostics.lookup_like (run_id, entity)
Similar to lookup, but allows for wildcards in the entity name (either the SQL ‘%’ wildcard or the more standard
UNIX “*” wildcard).

Returns a dictinoary of dictionaries keyed on [entity][attribute].
biolite.diagnostics.lookup_by_ id (id, entity)

biolite.diagnostics.lookup_attribute (run_id, attribute)
Returns each value for the given attribute found in all entities for the given run_id, as an iterator of (entity,
value) tuples.

biolite.diagnostics.lookup_entities (run_id)
biolite.diagnostics.lookup_pipelines (run_id)
biolite.diagnostics.lookup_run (run_id)
biolite.diagnostics.lookup_runs (id=None, name=None, order="ASC’, hidden=True)
biolite.diagnostics.lookup_last_run (id, previous, *args)

biolite.diagnostics.lookup_prev_run (id, previous)
If previous is an integer, tries to lookup the exit diagnostics of a previous run with that run ID. If previous is any
string, To input the results from a previous pipeline run, use the (—previous, -p) argument with a ‘RUN_SPEC’,
which is either a specific run ID to lookup in the diagnostics, or the wildcard ‘*’, meaning the latest of any
previous run found in the diagnostics for the given catalog ID.

biolite.diagnostics.lookup_prev_val (id, previous, value, key, *args, **kwargs)
Determine a value based on the following order:

euse the specified value if it is not None

12 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

elookup the previous run ID if it is not None, and select key in the exit diagnostics
eJookup the latest run of a pipeline in *args and select key from the exit diagnostics

biolite.diagnostics.lookup_insert_size()
For tools that need insert sizes, use available estimates from the diagnostics database, or resort to the default
values in the BioLite configuration file.

Returns a Struct with the fields mean, stddev and max.
biolite.diagnostics.dump (run_id)
biolite.diagnostics.dump_commands (run_id)
biolite.diagnostics.dump_by_id (id)
biolite.diagnostics.dump_all ()
biolite.diagnostics.hide_run (*args)
biolite.diagnostics.unhide_run (*args)
biolite.diagnostics.dump_programs ()

biolite.diagnostics.exit_profiler (start)
Capture script resource usage, after a script run ends or as an exit handler if the script fails.

biolite.diagnostics.register_exit_profiler (start)

1.5 Building pipelines

1.5.1 pipeline Module

BioLite borrows from Ruffus (http://code.google.com/p/ruffus/) the idea of using Python function decorators to de-
lineate pipeline stages. Pipelines are created with a sequence of ordinary Python functions decorated by a pipeline
object, which registers each function as a stage in the pipeline. The pipeline object maintains a persistent, global
dictionary, called the state, and runs each stage by looking up the argument names in the stage function’s signature,
and calling the function with the values in the state dictionary whose keys match the function’s argument names. This
is implemented using the function inspection methods available from the inspect module in the Python standard
library. If the stage function returns a dictionary, it is ingested into the pipeline’s state by adding values for any new
keys and updating values for existing keys. Arguments passed on the command-line to the pipeline script form the
initial data in the pipeline’s state.

As an example, the following code setups a pipeline with two command-line arguments and one stage. Note how the
variable names in the stage function’s signature match the names of the arguments. The stage uses the ingest call
to pull the output path into the pipeline’s state. This way, it is accessible to other stages that might be added to this
pipeline.

from biolite.pipeline import BasePipeline
from biolite.wrappers import FilterIllumina

pipe = BasePipeline(’filter’, "Example pipeline™)

pipe.add_argument (/ input’, short="1’,
help="Input FASTA or FASTQ file to filter.")

pipe.add_argument (' quality’, short='qg’, type=int, metavar=’'MIN’,
default=28, help="Filter out reads that have a mean quality < MIN.")

@pipe.stage

1.5. Building pipelines 13

http://code.google.com/p/ruffus/

BioLite Documentation, Release 0.3.5

def filter (input, quality):

rrs

Filter out low—-quality and adapter—-contaminated reads
rr7s

output = input + ’.filtered’

FilterIllumina ([input], [output], quality=quality)
ingest (' output’)

if _ name_ == "__main_ ":
pipe.parse_args ()

pipe.run()

This script is available in examples/filter-pipeline.py and produces the following help message:

$ python examples/filter-pipeline.py -h
usage: filter-pipeline.py [-h] [--restart [CHK]] [--stage N] [--input INPUT]
[-—quality MIN]

Example pipeline

optional arguments:

-h, --help show this help message and exit

—--restart [CHK] Restart the pipeline from the last available
checkpoint, or from the specified checkpoint file CHK.

--stage N Start at stage number N. Note that some stages require

the output of previous stages, so starting in the
middle of a pipeline may not work.
——input INPUT, -i INPUT
Input FASTA or FASTQ file to filter.
—-—quality MIN, —-g MIN
Filter out reads that have a mean quality < MIN. [28]

pipeline stages:
0) [filter]
Filter out low-quality and adapter-contaminated reads

The pipeline module allows you to rapidly create full-featured pipeline scripts with help messages, checkpointing
and restart capabilities, and integration with the BioLite diagnostics and catalog databases (using the Pipeline or
HlluminaPipeline derived classes).

Meta-Pipelines

Modularity is a key design goal, and it is possible to reuse one or more stages of an existing pipeline when building a
new pipeline. It is also possible to build meta-pipelines that connect together several sub-pipelines.

Checkpoints

The pipeline object also incorporates fault tolerance. At the end of each stage, the pipeline stores a checkpoint by
dumping its current state to a binary file with the cPickle module. This way, if a run is interrupted, either due to an
internal error or to external conditions, such as a kill signal from a batch system or a hardware failure, the run can be
restarted from the last completed stage (or, optionally, from any previous stage in the checkpoint).

classbiolite.pipeline.BasePipeline (name, desc="")
BasePipeline is the more generic class. It is designed to be used independently of the BioLite diagnostics and
catalog features.

import_stages (pipe, start=0)

14 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

import_arguments (pipe, names=None)

import_module (module, names=None, start=0)
Imports another pipeline module. Adds the pipeline as a subpipeline and links to the module itself so that
it can be referenced later.

import_pipeline (pipe, names=None, start=0)
Imports another pipeline. This should only be used in cases where the pipeline is in the same file as another
pipeline.

make_state (*args)
get (key)

stage (func)
Decorator to add functions as stages of this pipeline.

add_stage (func)
list_stages ()

size ()
Returns the size of the pipeline (the number of stages it contains).

parse_args ()
Reads values passed as arguments into the pipeline’s state.

add_arg (flag, short=None, **kwargs)
Passes arguments through to the add_argument() method from ArgumentParser.

add_argument (name, **kwargs)
Adds an argument —name to the pipeline. The single character keyword argument ‘short’ is used as the
short versino of the argument (e.g. short='n’ for -n). All other keyword arguments are passed through
to the ArgumentParser when parse_args is called.

checkpoint ()
Writes checkpoint file by making a deep copy of the pipeline’s current state and pickling it to the value
of chkfile in the state (by default, this is the pipeline’s name followed by ‘.chk’ in the current working
directory).

restart (chkfile)
Restart the pipeline from the last stage written to the checkpoint file chkfile, which is unpickled and loaded
as the current state using a deepcopy.

run ()
Starts the pipeline at the stage specified with —stage, or at stage 0 if no stage was specified.

rerun (state, start=0, stdout=None)
Starts the pipeline without loading the command line arguments (e.g. for calling a full pipeline from within
the stage of another pipeline), and instead using the provided state.

The pipeline’s stdout stream can be temporarily redirected to a log file using stdout.

run_stage (func)
Runs the current stage (from self.nstage) by using the inspect module to read the function signature of
the decorated stage function, then injecting values from the state where the key matches the variable name
in the function signature.

ingest (*args)
Called from inside a pipeline stage to ingest values back into the pipeline’s state. It uses the inspect
module to get the calling functions (i.e. the stage function’s) local variable dictionary, and copies the
variable names specified in the args list.

1.5.

Building pipelines 15

BioLite Documentation, Release 0.3.5

classbiolite.pipeline.Pipeline (name, desc="")
Bases: biolite.pipeline.BasePipeline

Extends BasePipeline to make use of the BioLite diagnostics and catalog databases.

set_outdir ()
Setup the output directory.

get_file()
Returns the absolute path to the file that this pipeline was created in.

get_all files()
Returns a flat list of all the files this pipeline and subpipelines are created in.

run ()

finish (*args)
log_state (*names)
add_stage (func)

classbiolite.pipeline.IlluminaPipeline (name, desc="")
Bases: biolite.pipeline.Pipeline

An extension of Pipeline that assumes that the input model is a forward and reverse FASTQ pair, such as a
paired-end Illumina data set.

import_stages (pipe, start=1)

1.6 Generating reports

1.6.1 report Module

Provides a framework for generating HTML reports from BioLite diagnostics. The typical usage is to extend the
BaseReport class for each pipeline, and override the init method to specify lookups and generators.

Lookups are called with self.lookup and specify entities or attributes that should be loaded from the diagnotics into
the self.data AttributeDict. For example:

self.lookup(’args’, diagnostics.INIT)

will load the initialization entity, which includes all of the command-line arguments passed to the pipeline for a given
run.

Generators are functions that return lists of HTML lines, which are concatenated together to form the final HTML
report, in the order that the generators are attached. A generator function will typically start by checking if a diagnostics
value was successfully loaded into self.data, e.g.:

def report_arguments (self) :
if "args’ in self.data:
html = [self.header (’'Arguments’)]
html += [’<p>%s</[>" % a for a in self.data.args]
return html

The generator is attached to the report in the init method with the line:

self.generator (self.report_arguments)

16 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

classbiolite.report.Field
Bases: tuple

Field(key, title, type, format)

format
Alias for field number 3

key
Alias for field number O

title
Alias for field number 1

type
Alias for field number 2

biolite.report.profile_aggregate (profiles)
Applies aggregators (sum or max) to fields in the input profiles list.

Returns a dict of aggregated values.

biolite.report.copy_css (outdir)
Copy CSS files and images needed for report templates.

biolite.report.copy_js (outdir)
Copy Javascript files used for some report features.

classbiolite.report .BaseReport (id, run_id, outdir=None, verbose=False, hlevel=1)
A base class that provides basic infrastructure for reporting diagnostics via HTML for a given run.

This is intended to be sub-classed within an BioLite pipeline script, to define how the diagnostics for that
pipeline should be summarized and plotted.

init ()
Override this function with a series of lookup() and generator() calls that specify the diagnostics lookups
needed by your report, and the sub-class functions that generate the HTML output.

lookup (name, entity, attribute=None, func=<function lookup at 0x2c27ed8>)
Lookup data from the diagnotics table for the given entity and store it in the self.data dictoinary.

query (name, sql, args, database=<module ‘biolite.database’ from
‘/users/mhowison/code/biolite/doc/biolite/database.pyc’>)

extract_arg (entity, arg)
Parse the ‘command’ attrbute of ‘entity’ to find the value for the argument ‘arg’.

add_ js (name)
Copy a Javascript file from the BioLite share directory, and include a reference to it in the HTML output.
Current options are:

*d3.min.js

*jsphylosvg-min.js

eraphael-min.js
get_Jjs ()

generator (func)
Add functions in your sub-class to the ‘generators’ list, and their list-of-strings output will be appended in
order to the output of the object’s __repr__ function.

check (*args)
Check if multiple keys are in the report’s data dictionary. Return true if all exists, otherwise false.

1.6. Generating reports 17

BioLite Documentation, Release 0.3.5

zip (*args)
Zip together multiple items from the report’s data dictionary.

header (html, level=0)
percent (data_name, field_name, num, div)

str2list (name)
Converts a diagnostics string with key name in self.data into a list, by parsing it as a typical Python list
representation [iteml, item2, ...].

summarize (schema, name, attr=None)
Returns a 2-column summary table of a pipeline’s key statistics.

table (rows, headers=None, style=None)
Returns an HTML table with a row for each tuple in rows, and an option header row for the tuple headers.
The style string indicates justification for a column as either 1 (Ieft) or r (right). For example, ‘It’ prints a
table with the first column left-justified and the second column right-justified.

histogram (imgname, data, bins=100, props={})
Plots a histogram in dict data with the given number of bins to the file imgname. The keys of the dict
should correspond to bins with width 1, and the values to frequencies.

histogram categorical (imgname, data, props={})
Plots a histogram in dict data to the file imgname, using the keys as categories and values as frequencies.

histogram overlay (imgname, hists, labels=None, bins=100, props={})
Plots up to 3 histograms over each other. Histograms are plotted in the order of the hists list, so that the
last histogram is the topmost. The histograms are plotted with alpha=0.5 and colors red, blue, green.

barplot (imgname, data, props={})
Plots bars for a dict data to the file imgname, using the keys as categories and values as heights.

scatterplot (imgname, plot, props={})
Plots the (X,Y) points given in plot to the file imgname.

plot should be a tuple of the form (x, y, ...) where x and y are list or nparray objects and any additional
fields are parameters to the matplotlib plot function (such as color or label).

multiscatterplot (imgname, plots, props={})
Plots multiple sets of (X,Y) points given in plots to the file imgname.

plots should be a list of tuples of the form (x, y, color, label) where x and y are list or nparray objects, color
is a matplotlib color specification (for instance, ‘r’ for red) and label is a string.

lineplot (imgname, data, props={})
Plots a single line for the values in data to the file imgname.

multilineplot (imgname, plots, props={})
Plots multiple lines, one for each (x, y, label) tuple in the plots list, to the file imgname.

imageplot (imgname, matrix, props={}, vmin=0.0, vmax=1.0)
Plots a 2D matrix as an image to the filename imgname.

profile_table ()

18 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

1.7 Calling external tools

1.7.1 wrappers Module

A series of wrappers for external calls to various bioinformatics tools.

classbiolite.wrappers.BaseWrapper (name)
A base class that handles generic wrapper functionality.

Wrappers for specific programs should inherit this class, call self.init to specify their name (which is a key into
the executable entries in the BioLite configuration file), and append their arguments to the self.args list.

By convention, a wrapper should call self.run() as the final line in its __init__ function. This allows for clean
syntax and use of the wrapper directly, without assigning it to a variable name, e.g.

wrappers.MyWrapper(argl, arg2, ...)
When your wrapper runs, BaseWrapper will do the following:
elog the complete command line to diagnostics;

eoptionally call the program with a version flag (invoked with version) to obtain a version string, then log
this to the programs Table along with a hash of the binary executable file;

eappend the command’s stderr to a file called name.log in the CWD;

ealso append the command’s stdout to the same log file, unless you set self.stdout, in which case stdout is
redirected to a file of that name;

eon Linux, add a memory profiling library to the LD_PRELOAD environment variable;

ecall the command and check its return code (which should be 0 on success, unless you specify a different
code with self.return_ok), optionally using the CWD specified in self.cwd or the environment specified in
self.env.

eparse the stderr of the command to find [biolite.profile] markers and use the rusage values from
utils.safe_call to populate a profile entity in the diagnostics with walltime, usertime, systime, mem, and
vmem attributes.

init (name)
A shortcut for calling the BaseWrapper __init__ from a subclass.

check_arg (flag, value)
If value evaluates to True, append flag and value to the argument list.

add_threading (flag)
Indicates that this wrapper should use threading by appending an argument with the specified flag followed
by the number of threads specified in the BioLite configuration file.

add_openmp ()
Indicates that this wrapper should use OpenMP by setting the $OMP_NUM_THREADS environment
variable equal to the number of threads specified in the BioLite configuration file.

version (flag=None, cmd=None, path=None)
Generates and logs a hash to distinguish this particular installation of the program (on a certain host, with
a certain compiler, program version, etc.)

Specify the optional ‘binary’ argument if the wrapper name is not actually the program, e.g. if your
program has a Perl wrapper script. Set ‘binary’ to the binary program that is likely to change between
versions.

1.7. Calling external tools 19

BioLite Documentation, Release 0.3.5

Specify the optional ‘cmd’ argument if the command to run for version information is different than what
will be invoked by run (e.g. if the program has a perl wrapper script, but you want to version an underlying
binary executable).

version_jar ()
Special case of version() when the executable is a JAR file.

run (cmd=None)
Call this function at the end of your class’s __init__ function.

run_jar (mem=None)
Special case of run() when the executable is a JAR file.

biolite.wrappers.estimate_insert_size()

For tools that need insert sizes, use available estimates from the diagnostics database, or resort to the default
values in the BioLite configuration file.

Returns an AttributeDict with the fields mean, stddev and max.

classbiolite.wrappers.CountLines (*inputs)

Bases: biolite.wrappers.BaselWrapper
usage: count_lines [-t THREADS] [INPUT ...]

Count the number of lines in the INPUT files using multiple threads to increase throughput.

classbiolite.wrappers.Coverage (sam, stats)

Bases: biolite.wrappers.BaselWrapper
usage: coverage [-i SAM] [-o STATS]

Parses a SAM alignment file and writes a coverage table to STATS with columns for the reference name, the
length of the referene, and the number of reads covering it in the alignment.

classbiolite.wrappers.Exclude (exclude._files, input_files, output_files, keep="False)

Bases: biolite.wrappers.BaseWrapper
usage: exclude -x EXCLUDE_FILE [-Kk] [...] [-i INPUT ...] [-o OUTPUT ...]

Filters all the reads in the input files (FASTA or FASTQ is automatically detected) and excludes those with ids
found in any of the EXCLUDE_FILEs.

If multiple input files are specified, these are treated as paired files. So if a sequence in one input is excluded, its
pair is also excluded from the same position in all other input files.

If the -k flag is specified, invert the selection to keep instead of exclude.

classbiolite.wrappers.Fastq2Fasta (fastq_path, fasta_path=None, qual_path=None, suf-

fix=None)
Bases: biolite.wrappers.BaseWrapper

usage: fastq2fasta -i FASTQ [...] [-o FASTA ...] [-q QUAL ...] [-a] [-t OFFSET] [-s SUFFIX]

Converts each FASTQ input file to a FASTA file and quality score file with the names <basename>.fasta and
<basename>.fasta.qual, where <basename> is the name of INPUT up to the last period (or with the names
FASTA and QUAL if specified).

FASTA and QUAL are appended to (not truncated).

classbiolite.wrappers.Fasta2Fastq (fasta_path, qual_path, fastq_path=None)

Bases: biolite.wrappers.BaseWrapper
usage: fasta2fastq -i FASTA [...] -q QUAL [...] [-o FASTQ] [-a] [-t OFFSET]

Merges each FASTA file and its corresponding QUAL file into a FASTQ file with the name <basename>.fastq,
where <basename> in the FASTA name up to the last period (or with name FASTQ if specified).

20

Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

FASTQ is appended to (not truncated).

classbiolite.wrappers.FilterIllumina (inputs, outputs, unpaired_output=None, offset=None,
quality=None, nreads=None, adapters=True,

bases=True, sep=None)
Bases: biolite.wrappers.BaseWrapper

usage: filter_illumina [-i INPUT ...] [-o OUTPUT ...] [-u UNPAIRED-OUTPUT] [-t OFFSET] [-q QUAL-
ITY] [-n NREADS] [-a] [-b] [-s SEP]

Filters out low-quality and adapter-contaminated reads from Illumina data.

If multiple input files are specified, these are treated as paired files. So if a sequence in one input is filtered, its
pair is also filtered from the same position in all other input files.

classbiolite.wrappers.Interleave (inputs, output, sep=None)
Bases: biolite.wrappers.BaseWrapper

usage: interleave -i INPUT [...] [-o OUTPUT] [-s SEP]

Interleaves the records in the input files (FASTA or FASTQ is automatically detected) and writes them to OUT-
PUT, or to stdout if no OUTPUT is specified.

classbiolite.wrappers.Randomize (input, output, order_mode=None, order_file="order.txt’)
Bases: biolite.wrappers.BaseWrapper

usage: randomize [-i INPUT] [-o OUTPUT] [-r READ-ORDER] [-w WRITE-ORDER]

Randomizes the order of sequences in each INPUT file and writes these to a corresponding OUTPUT file.
By default, a new random write order is generated and saved to WRITE-ORDER, if specified. Alternatively,
specifying a READ-ORDER file uses that order instead of a random one.

classbiolite.wrappers.InsertStats (input, histogram=None, histogram_max=None)
Bases: biolite.wrappers.BaselWrapper

usage: insert_stats -i SAM -o HIST -m MAX_INSERT

Reads a SAM alignment file and uses it to estimate the mean and std. dev. of the insert size of the mapped
paired-end reads. A histogram of all insert sizes encountered is written to the HIST file.

classbiolite.wrappers.PileupStats (input, histogram=None, overlap=None)
Bases: biolite.wrappers.BaselWrapper

usage: pileup_stats -i PILEUP -o HIST -m OVERLAP

Reads a SAMtools pileup file and uses it to find potential sequence disconnects. A histogram of all disconnect
events encountered is written to the HIST file.

classbiolite.wrappers.FastQC (input, outdir)
Bases: biolite.wrappers.BaseWrapper

A wrapper for FastQC. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

classbiolite.wrappers.Dustmasker (input, output, window=None, level=None, linker=None,

infmt="fasta’, outfmt="fasta’)
Bases: biolite.wrappers.BaseWrapper

A wrapper for dustmasker from NCBI Blast+. http://nebc.nerc.ac.uk/bioinformatics/docs/blast+.html

classbiolite.wrappers.Segmasker (input, output, window=None, locut=None, hicut=None,
infmt="fasta’, outfmt="fasta’)
Bases: biolite.wrappers.BaseWrapper

A wrapper for segmasker from NCBI Blast+. http://nebc.nerc.ac.uk/bioinformatics/docs/blast+.html

1.7. Calling external tools 21

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://nebc.nerc.ac.uk/bioinformatics/docs/blast+.html
http://nebc.nerc.ac.uk/bioinformatics/docs/blast+.html

BioLite Documentation, Release 0.3.5

classbiolite.wrappers.Blastn (query, db, out, outfmt=5, evalue=0.0001, targets=20)
Bases: biolite.wrappers.BaseWrapper

A wrapper for blastn from NCBI Blast. http://blast.ncbi.nlm.nih.gov/

class biolite.wrappers.Blastp (query, db, out, outfmt=5, evalue=0.0001, targets=20)
Bases: biolite.wrappers.BaselWrapper

A wrapper for blastn from NCBI Blast. http://blast.ncbi.nlm.nih.gov/

classbiolite.wrappers.Blastx (query, db, out, outfmt=5, evalue=0.0001, targets=20)
Bases: biolite.wrappers.BaseWrapper

A wrapper for blastx from NCBI Blast. http://blast.ncbi.nlm.nih.gov/

classbiolite.wrappers.Rpsblast (query, db, out, outfimt=>5, evalue=0.0001)
Bases: biolite.wrappers.BaseWrapper

A wrapper for blastn from NCBI Blast. http://blast.ncbi.nlm.nih.gov/

classbiolite.wrappers.MultiBlast (blast, threads, qlist, db, out, evalue=0.0001, targets=20)
Bases: biolite.wrappers.BaselWrapper

usage: multiblast BLAST THREADS QUERY_LIST OUT [ARGS]

Runs a Blast PROGRAM (e.g. blastx, blastn, blastp) in parallel on a list of queries (in QUERY_LIST). Addi-
tional arguments to PROGRAM can be appended as ARGS.

The PROGRAM is called on each query with threading equal to THREADS. Recommendation: set THREADS
to the number of cores divided by the number of query files.

The individual XML outputs for each query file are concatenated into a single output file OUT.
Example usage: multiblast blastn 4 “queryl.fa query2.fa” all-queries.xml -e le-6

classbiolite.wrappers.MakeBlastDB (dbtype, in_name, db_name)
Bases: biolite.wrappers.BaseWrapper

A wrapper for makeblastdb from NCBI Blast. http://blast.ncbi.nlm.nih.gov/

classbiolite.wrappers.Bowtie2 (inputs, mapping_file, output_path, local=True, sensitive=True,

all=True, max_insert=None)
Bases: biolite.wrappers.BaseWrapper

A wrapper for the bowtie2 short-read aligner. http://bowtie-bio.sourceforge.net/

classbiolite.wrappers.Bowtie2Build (input_path, outdir_path)
Bases: biolite.wrappers.BaseWrapper

A wrapper for bowtie2-build component of Bowtie2. http://bowtie-bio.sourceforge.net/

classbiolite.wrappers.SamToBam (input_path, output_path)
Bases: biolite.wrappers.BaselWrapper

classbiolite.wrappers.SamView (input_path, regions, output_path)
Bases: biolite.wrappers.BaselWrapper

classbiolite.wrappers.SamSort (input_path, output_path)
Bases: biolite.wrappers.BaseWrapper

class biolite.wrappers.SamIndex (input_path)
Bases: biolite.wrappers.BaseWrapper

classbiolite.wrappers.SamPileup (reference_path, bam_path, output_path)
Bases: biolite.wrappers.BaselWrapper

22 Chapter 1. Contents

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/

BiolLite Documentation, Release 0.3.5

classbiolite.wrappers.Trinity (inputs, outdir, max_insert=None, min_length=None,

o seq_type='1q’)
Bases: biolite.wrappers.BaseWrapper

classbiolite.wrappers.ParallelButterfly (commands, *args, **kwargs)
Bases: biolite.wrappers.BaseWrapper

classbiolite.wrappers.Oases (outdir, ins_length=None, ins_length_sd=None, min_length=None,

merge=False)
Bases: biolite.wrappers.BaseWrapper

A wrapper for Oases, a de novo transcriptome assembler. http://www.ebi.ac.uk/~zerbino/oases/

classbiolite.wrappers.VelvetH (inputs, outdir, kmer=61, merge=False)
Bases: biolite.wrappers.BaseWrapper

A wrapper for the velveth component of the Velvet de novo assember. http://www.ebi.ac.uk/~zerbino/velvet/

If merge is True, input_path must be a list of transcript FASTA files. Otherwise, input_path should a single
FASTQ filename containing shuffled short reads or a list of FASTQ files where the first two form a paired file
and the third is unpaired short reads.

classbiolite.wrappers.VelvetG (outdir, ins_length=None, ins_length_sd=None, min_length=None,

merge=False, exp_cov="auto’)
Bases: biolite.wrappers.BaselWrapper

A wrapper for the velvetg component of the Velvet de novo assember. http://www.ebi.ac.uk/~zerbino/velvet/

classbiolite.wrappers.Macse (input, output, frameshift=-40, stopcodon=-150)
Bases: biolite.wrappers.BaselWrapper

Multiple alignment of coding sequences.

classbiolite.wrappers.ParallelMacse (inputs, outputs, frameshift=-40, stopcodon=-150, com-

mands="macse.commands.ixt’)
Bases: biolite.wrappers.BaselWrapper

Multiple alignment of coding sequences, run in parallel.

classbiolite.wrappers.Raxml (input, output, model, output_dir, pars_rseed=None, ex-

tra_flags=None)
Bases: biolite.wrappers.BaselWrapper

Maximum Likelihood based inference of phylogenetic trees.

classbiolite.wrappers.Gblocks (input, t="p’, bl=None, b2=None, b3=10, b4=5, b5="a’)
Bases: biolite.wrappers.BaseWrapper

Selection of conserved block from multiple sequence alignments for phylogenetics.

class biolite.wrappers.Mcl (input, output, inflation=2.1)
Bases: biolite.wrappers.BaseWrapper

Analysis of networks.

classbiolite.wrappers.Parallel (commands, *args, **kwargs)
Bases: biolite.wrappers.BaselWrapper

GNU parallel utility http://www.gnu.org/software/parallel/

classbiolite.wrappers.Sga (command, *args, **kwargs)
Bases: biolite.wrappers.BaselWrapper

String Graph Assembler

1.7. Calling external tools 23

http://www.ebi.ac.uk/~zerbino/oases/
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.gnu.org/software/parallel/

BioLite Documentation, Release 0.3.5

classbiolite.wrappers. Transdecoder (input)
Bases: biolite.wrappers.BaseWrapper

Identification of candidate coding sequences http://transdecoder.sourceforge.net

classbiolite.wrappers.Oma (workdir)
Bases: biolite.wrappers.BaselWrapper

1.8 Automating workflows

1.8.1 workflows Module

Provides a collection of helper functions that coordinate multiple wrappers from the wrappers Module to accomplish

a unified goal or automate a common analysis task.
Workflows are available for the following groups of tasks:
* Assembly statistics and sweeps
* Contig parsing
* Blast result parsing
* SamTools automation
* Transcript cleaning

classbiolite.workflows.BlastHit
Bases: tuple

BlastHit(query, title, definition, id, evalue, rank, orient, mask, score, bitscore, length, percent)

bitscore
Alias for field number 9

definition
Alias for field number 2

evalue

Alias for field number 4
id

Alias for field number 3

length
Alias for field number 10

mask
Alias for field number 7

orient
Alias for field number 6

percent
Alias for field number 11

query
Alias for field number O

rank
Alias for field number 5

24

Chapter 1. Contents

http://transdecoder.sourceforge.net

BiolLite Documentation, Release 0.3.5

score
Alias for field number 8

title
Alias for field number 1

classbiolite.workflows.ContigHeader
Bases: tuple

ContigHeader(locus, transcript, confidence, length)

confidence
Alias for field number 2

length
Alias for field number 3

locus
Alias for field number O

transcript
Alias for field number 1

biolite.workflows.assemble_oases_merge (inputs, merge_path, merge_kmer, kmers,
min_length=None, workdir="./", ins_length=None)
Implements the Oases-M protocol for merging several Oases assemblies, as described in:

Schulz, M. H., Zerbino, D. R., Vingron, M., & Birney, E. (2012). Oases: Robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics (Oxford, England), 1-7.
doi:10.1093/bioinformatics/bts094

Performs Oases assemblies sweeping over the provided kmers list, then performs a Oases merge assembly with
merge_kmer.

biolite.workflows.assembly length (fasta)
Sum up the length of all contigs in the given fasta file.

biolite.workflows.blast_annotate_seqs (hits, fasta_in, hits_out, misses_out, all_out=False, rp-

kms={})
Iterates through the records in fasta_in and looks for a hit in a dict of BlastHit object, hits.

For each record with a hit, the RPKM (if provided), hit title, and evalue are added to the ID and the record is
written to hits_out.

If there is no hit, the record is written to misses_out.
If all_out is True, then hits are also written to misses_out.

biolite.workflows.blast_hits (xml_path, nlimit=None)
Reads an XML formatted BLAST report, and yields one named tuple per alignment, i.e. per hit between a query
and a subject. Each named tuple has the following elements:

query title definition id evalue rank orient mask score bitscore length percent
where:

eorient is 1 if query and subject are in the same direction, 2 if they are in the opposite direction, and O if
direction is inconsistent across hsp’s

eevalue is the minimum evalue across hsp’s
escore, bitcore and length are maximal across hsp’s

biolite.workflows.blast_top_hits (xmi_path)
Similar to blast_hits, but returns an OrderedDict keyed by query name with only one hit (the top hit) per query.

1.8. Automating workflows 25

BioLite Documentation, Release 0.3.5

biolite.workflows.clean_rrna (fasta_in, clean_out, rrna_out)
Blastn against rRNA, transferring sequences with or without a hit to their own files. Even when rRNA reads are
removed prior to assembly, some may make it through and be assembled from the full dataset (including low
frequency contaminant rRNAS).

biolite.workflows.clean_swissprot (fasta_in, clean_out, annotated_out, blast_out, rp-

kms=None)
Blastn against SwissProt, transferring sequences with or without a hit to their own files, used in comparing

assemblies.

biolite.workflows.clean_univec (fasta_in, clean_out, vector_out)
Blastn against univec, transferring sequences with or without a hit to their own files This removes sequences
that still have adapters, or that are contaminated with plasmids (including the protein expression plasmids used
to manufacture sample prep enzymes).

biolite.workflows.contig_stats (fasta_path, hist_path=None, keyword=None)
Parses the assembled contigs in fasta_path and writes a histogram of contig length to hist_path.

Writes the total contig count, mean length, and N50 length to the diagnostics.
biolite.workflows.dustmasker (fasta_in, clean_out, dirty_out, max_lowc=0.8, min_region=0.1)

biolite.workflows.extract_oases_exemplars (input_path, output_path, min_length=0)
Extracts a single exemplar transcript for each locus in an Oases assembly at input_path and writes it to out-
put_path. Only transcripts longer than min_length are considered.

The exemplar is chosen as the transcript with the highest confidence score.

biolite.workflows.max_contig (fasta)
Parse the fasta file and return a SeqRecord for the contig with the longest length.

biolite.workflows.multiblast (blast, query, db, out, evalue=0.0001, cores=4, targets=20)
Prepares a single query file for the multiblast by dividing the queries into nodes = threads/cores many
chunks, where threads is from the BioLite configuration file.

Executes the Blast operation blast (e.g. ‘blastx’) in parallel on each node, then concatenates the XML output
into a single XML file out.

biolite.workflows.oases_assemblies (inputs, kmers=[61], workdir="./", min_length=None,
ins_length=None)
Automates Oases assemblies that sweep multiple kmers.

If inputs is a list of FASTQ files, they are automatically shuffled together. Or, provide a singleton list with the
path to a pre-shuffled FASTQ file.

biolite.workflows.oases_clean (workdir="/")
Cleans up a work directory that was used for an Oases assembly.

biolite.workflows.oases_concat_assembly (inputs, concat_path, kmers, workdir="./",
ins_length=None)
Performs Oases assemblies sweeping over the provided kmers list, and concatenates all contigs to concat_path.

If inputs is a list of FASTQ files, they are automatically shuffled together. Or, provide a singleton list with the
path to a pre-shuffled FASTQ file.

classbiolite.workflows.rRNAhit
Bases: tuple

rRNAhit(locus, gene, confidence, orient, query)

confidence
Alias for field number 2

26 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

gene
Alias for field number 1

locus
Alias for field number O

orient
Alias for field number 3

query
Alias for field number 4

biolite.workflows.rrna_blast_hits (xml_path, unpack_header_func)
Reads an XML formatted BLAST report, and saves one top hit per locus, using the transcript with the highest
confidence for the locus.

The locus name and confidence are extracted from the query name with the supplied ‘unpack_header_func’
function.

Returns both a set of all the queries in the XML report, and a dictionary keyed by locus and storing the rRNA
hits:

set(queries), dict(hits)
The rRNA hits are tuple with the following fields: (locus gene confidence orient query)
biolite.workflows.sort_and_index_sam (sam_path)
Uses SamTools to convert a SAM file at sam_path to BAM, then sort and index the BAM.

Returns the filename of the final output, which is ‘_sorted.bam’ appended to sam_path.

biolite.workflows.unpack_oases_header (header)
Unpacks an Oases contig header into a ContigHeader object.

Example header:

>Locus_9919_Transcript_1/1_Confidence_1.000_Length_160

1.9 Internals

1.9.1 config Module
Loads the entries in the biolite.cfg file into two member dictionaries, resources (default parameters and data paths) and
executables (paths to external executables called by wrappers Module).
By default, BioLite will look for the configuration file at the following paths, in order of preference:
¢ the value of the $BIOLITE_CONFIG environment variable
* $SHOME/.biolite/biolite.cfg
* $PWD/biolite.cfg

biolite.config.init (executables, resources)
Called at module load to parse the BioLite configuration file.

biolite.config.get_resource (key)
Lookup a resource from the configuration file for key and print an intelligble error message on KeyError.

biolite.config.get_resource_default (key, default)
Lookup a resource from the configuration file for key and return the default value if the key is not found.

1.9. Internals 27

BioLite Documentation, Release 0.3.5

biolite.config.get_command (key)
Lookup the full path to an executable key in the configuration file and print an intelligble error message if the
path can’t be found in the user’s PATH environment variable (similar to the Unix utility which).

The output is a list, starting with the full path to the executable, ready for input to subprocess.Popen. Any
trailing parameters in config entry for the executable are preserved in this list.

If there is no config entry for the key, or the entry is blank, the key is used as the name of the executable. Thus,
the config file only needs to override executable paths that won’t resolve correctly using PATH.

biolite.config.set_database (path)
Override the path to the BioLite database.

1.9.2 database Module

Provides an interface to the underlying SQLite database that stores the BioLite catalog, runs, diagnostics, and pro-
grams tables.

catalog Table

CREATE TABLE catalog (

id VARCHAR (256) PRIMARY KEY NOT NULL,

paths TEXT,

species VARCHAR(256),

ncbi_id INTEGER,

itis_id INTEGER,

extraction_id VARCHAR (256),

library_id VARCHAR (256),

library_type VARCHAR(256),

tissue VARCHAR (256),

sequencer VARCHAR(256),

seq_center VARCHAR(256),

note TEXT,

sample_prep TEXT,

timestamp DATETIME) ;
CREATE INDEX catalog_species ON catalog(species);
CREATE INDEX catalog_ncbi_id ON catalog(ncbi_id);
CREATE INDEX catalog_itis_id ON catalog(itis_id);
CREATE INDEX catalog_extraction_id ON catalog(extraction_id);
CREATE INDEX catalog_library_id ON catalog(library_id);
CREATE INDEX catalog_library_type ON catalog(library_type);
CREATE INDEX catalog_tissue ON catalog(tissue);
CREATE INDEX catalog_sequencer ON catalog(sequencer);
CREATE INDEX catalog_seqg_center ON catalog(seqg_center);
CREATE INDEX catalog_note ON catalog(note);
CREATE INDEX catalog_sample_prep ON catalog(sample_prep);
CREATE INDEX catalog_timestamp ON catalog(timestamp);

runs Table

CREATE TABLE runs (
done INTEGER DEFAULT '0',
run_id INTEGER PRIMARY KEY AUTOINCREMENT,
id VARCHAR (256),
name VARCHAR (32),

28 Chapter 1. Contents

BiolLite Documentation, Release 0.3.5

hostname VARCHAR (32),

username VARCHAR (32),

timestamp DATETIME,

hidden INTEGER DEFAULT ’0');
CREATE INDEX runs_id ON runs (id);
CREATE INDEX runs_name ON runs (name) ;
CREATE INDEX runs_done ON runs (done);
CREATE INDEX runs_hidden ON runs (hidden) ;

diagnostics Table

CREATE TABLE diagnostics (

id VARCHAR(256),

run_id INTEGER,

entity VARCHAR (128),

attribute VARCHAR (32),

value TEXT,

timestamp DATETIME) ;
CREATE INDEX diagnostics_id ON diagnostics (id);
CREATE INDEX diagnostics_run_id ON diagnostics (run_id);
CREATE INDEX diagnostics_entity ON diagnostics(entity);
CREATE INDEX diagnostics_attribute ON diagnostics (attribute);
CREATE INDEX diagnostics_timestamp ON diagnostics (timestamp); CREATE UNIQUE INDEX entry ON diagnostic:

programs Table

CREATE TABLE programs (
binary CHAR(32) PRIMARY KEY NOT NULL,
name VARCHAR (256),
version TEXT);
CREATE INDEX programs_name ON programs (name) ;

biolite.database.connect ()
Establish a gobal database connection.

biolite.database.disconnect ()
Close the global database connection, set it to None.

biolite.database.execute (*args, **kwargs)

1.9.3 utils Module

Utility functions used by other BioLite modules.

biolite.utils.die (*messages)
Prints the current BioLite module and an error message, then aborts.

biolite.utils.info (*messages)
Prints the current BioLite module and a message.

biolite.utils.table (rows, convert=True)
Outputs the given rows as tabulated strings, similar to the output of the column -t UNIX command.

The input rows variable is a list of lists, where the sublists all have the same length and contain the cells of the
table. The output is a tabulated string for each sublist (row).

1.9. Internals 29

BioLite Documentation, Release 0.3.5

biolite.utils.safe_mkdir (path)
Creates the directory, including any missing parent directories, at the specified path.

Aborts if the path points to an existing regular file.
Returns the absolute path of the directory.

biolite.utils.safe_remove (path)
Removes a file at the given path only if it exists.

biolite.utils.truncate_ file (path)
Truncates a file (i.e. overwrites with O bytes) at the given path.

biolite.utils.rusage diff (r/,r2)
Returns an rusage object where each field is the difference of the corresponding fields in »/ and r2.

biolite.utils.failed_executable (executable, e)
Diagnose why a wrapped executable failed to execute, and print an intelligble error message for the user.

biolite.utils.safe_call (*args, **kwargs)
Calls an executable as a subprocess and checks the return value.

All args and kwargs are passed to a subprocess.Popen call, except for the special keywords return_ok, whose
value is used to check the return value of the subprocess. By default, this is zero and any non-zero return is
considered an error. To disable this check, set return_ok to None.

Returns a 3-tuple with the return code, the elapsed walltime, and an rusage structure with the elapsed usertime
and systime.

biolite.utils.safe_str(s)
Returns the string s with only alpha-numerical characters and the special characters () []1{} | : . —_ preserved.
All other characters are replaced by _.

biolite.utils.timestamp ()
Returns the current time in YYYY-MM-DD HH:MM:SS format.

biolite.utils.safe_ print (f, line)
Places an exclusive lock around the file object f and writes /ine to it as an atomic write operation.

A line return is appended after line.

biolite.utils.readlines_reverse (f)
Seeks to the end of the file object f and yields lines in reverse order.

biolite.utils.cat_to_£ile (input_path, output_path, mode="a’, start=0)
Uses the cat or awk command to copy the contents at input_path to output_path, starting at line O of input_path
and appending to output_path by default.

biolite.utils.head (path, n=1)
Returns a string with the first n lines of path.

biolite.utils.head_to_£file (input_path, output_path, n=1, mode="w’)
Uses the head to copy the first n lines of input_path to output_path, overwriting the contents of output_path by
default.

biolite.utils.tail (path,n=1)
Returns a string with the last n lines of path.

biolite.utils.tail_to_£file (input_path, output_path, n=1, mode="w’)
Uses the head to copy the last n lines of input_path to output_path, overwriting the contents of output_path by
default.

biolite.utils.count_1lines (filename)
Fast function to count lines in a file, from: http://stackoverflow.com/a/850962/781673

30 Chapter 1. Contents

http://stackoverflow.com/a/850962/781673

BiolLite Documentation, Release 0.3.5

biolite.utils.get_caller_info (depth=2, trace=False)
Uses the inspect module to determine the name of the calling function and its module.

Returns a 2-tuple with the module name and the function name.

biolite.utils.get_caller_ locals (depth=2)
Uses the inspect module to return a dictionary of the local variables in the caller’s frame at the given depth. The
default depth of 2 corresponds to the frame that calls this function.

classbiolite.utils.AttributeDict (*args, **kwargs)
Bases: dict

A mutable alternative to namedtuple that supports accessing values as attributes or with the dict [] operator.

biolite.utils.sorted_alphanum (/)
Sorts a list of strings / and returns a list with the elements in alpha-numerical order (i.e. strings starting with
numbers are correctly ordered by numerical value).

biolite.utils.memusage ()
Reads the current memory usage for this process from /proc/self/status and returns two integer values mem and
vmem which correspond to the VmHWM (max physical memory) and VmPeak (max virtual memory) fields.

Note: only works on Linux.

biolite.utils.which (executable)
Returns the full path to executable by searching through all entries in the $PATH environment variable, and
looking for an executable file with that name.

Returns None if the executable is not found.

biolite.utils.basename (path)
Finds the base filename of the path, than the base of the filename (everything before the last .extension).

biolite.utils.zipdir (dirname)
Recursively zips all files in dirname into a zip archive with the name dirname.zip in the current working direc-
tory.

biolite.utils.number range (numbers)
Collapse a list of numbers into a list of range strings, following
http://stackoverflow.com/questions/947061 1/how-to-do-an-inverse-range-i-

biolite.utils.bytes_to_gb (b)
Returns a string representing the given number of bytes as GB.

biolite.utils.mem_to_mb (mem)
Convert a memory string, like 2G or 100mb, to an integer number of megabytes.

biolite.utils.md5sum (path)
Use hashlib.md5() to calculate the MDS5 hash of a file at path.

biolite.utils.human_readable_size (kb, prec)
Returns a integer number of kilobytes as a string with closest matching size of KB, MB, GB, or TB with prec
number of digits.

biolite.utils.multimap (funcs, values)
Apply each function in the list funcs to the corresponding argument in the list args. Both lists must have the
same length.

1.9. Internals 31

http://stackoverflow.com/questions/9470611/how-to-do-an-inverse-range-i

BioLite Documentation, Release 0.3.5

32

Chapter 1. Contents

CHAPTER
TWO

CITING

BioLite is still under development, and is an experimental tool that should be used with care. Please cite:

Howison M, Sinnott-Armstrong NA, Dunn CW. 2012. BioLite, a lightweight bioinformatics framework with au-
tomated tracking of diagnostics and provenance. In Proceedings of the 4th USENIX Workshop on the Theory and
Practice of Provenance (TaPP ‘12), 14-15 June 2012, Boston, MA, USA.

BioLite makes use of many other programs that do much of the heavy lifting of the analyses. Please be sure to credit
these essential components as well. Check the biolite.cfg file for web links to these programs, where you can find
more information on how to cite them.

33

https://www.usenix.org/conference/tapp12/biolite-lightweight-bioinformatics-framework-automated-tracking-diagnostics-and
https://www.usenix.org/conference/tapp12/biolite-lightweight-bioinformatics-framework-automated-tracking-diagnostics-and

BioLite Documentation, Release 0.3.5

34

Chapter 2. Citing

CHAPTER
THREE

FUNDING

This software has been developed with support from the following US National Science Foundation grants:

PSCIC Full Proposal: The iPlant Collaborative: A Cyberinfrastructure-Centered Community for a New Plant Biology
(Award Number 0735191)

Collaborative Research: Resolving old questions in Mollusc phylogenetics with new EST data and developing general
phylogenomic tools (Award Number 0844596)

Infrastructure to Advance Life Sciences in the Ocean State (Award Number 1004057)

The Brown University Center for Computation and Visualization has been instrumental to the development of BioLite.

35

http://www.ccv.brown.edu

BioLite Documentation, Release 0.3.5

36

Chapter 3. Funding

CHAPTER
FOUR

LICENSE

Copyright (c) 2012-2013 Brown University. All rights reserved.

BioLite is distributed under the GNU General Public License version 3. For more information, see LICENSE or visit:
http://www.gnu.org/licenses/gpl.html

BioLite includes source code from the following projects:

e gzstream C++ interface v1.5, which is distributed under the GNU Lesser General Public License in LI-
CENSE. gzstream

* Bootstrap v2.3.1 CSS style, which is distributed under the Apache License v2.0 in share/bootstrap.min.css

* jsphylosvg v1.55, which is distributed under the GPL in LICENSE.jsphylosvg, and which includes Raphael
1.4.3, which is distributed under the MIT license

e D3js v3.1.9, which is distributed under the BSD license in LICENSE.d3js

37

http://www.gnu.org/licenses/gpl.html

BioLite Documentation, Release 0.3.5

38

Chapter 4. License

CHAPTER
FIVE

* genindex
* modindex

INDICES AND TABLES

39

BioLite Documentation, Release 0.3.5

40

Chapter 5. Indices and tables

b

biolite.
biolite.
biolite.
biolite.
biolite.
biolite.
biolite.
biolite.
biolite.

catalog, 8
config, 27
database, 28
diagnostics, 9
pipeline, 13
report, 16
utils, 29
workflows, 24
wrappers, 19

PYTHON MODULE INDEX

41

BioLite Documentation, Release 0.3.5

42

Python Module Index

A

add_arg() (biolite.pipeline.BasePipeline method), 15

add_argument() (biolite.pipeline.BasePipeline method),
15

add_js() (biolite.report.BaseReport method), 17

add_openmp() (biolite.wrappers.BaseWrapper method),
19

add_stage() (biolite.pipeline.BasePipeline method), 15

add_stage() (biolite.pipeline.Pipeline method), 16

add_threading() (biolite.wrappers.BaseWrapper method),
19

assemble_oases_merge() (in module biolite.workflows),
25

assembly_length() (in module biolite.workflows), 25

attr (biolite.diagnostics.OutputPattern attribute), 10

AttributeDict (class in biolite.utils), 31

B

barplot() (biolite.report.BaseReport method), 18
basename() (in module biolite.utils), 31
BasePipeline (class in biolite.pipeline), 14
BaseReport (class in biolite.report), 17
BaseWrapper (class in biolite.wrappers), 19
biolite.catalog (module), 8

biolite.config (module), 27

biolite.database (module), 28

biolite.diagnostics (module), 9

biolite.pipeline (module), 13

biolite.report (module), 16

biolite.utils (module), 29

biolite.workflows (module), 24

biolite.wrappers (module), 19

bitscore (biolite.workflows.BlastHit attribute), 24
blast_annotate_seqs() (in module biolite.workflows), 25
blast_hits() (in module biolite.workflows), 25
blast_top_hits() (in module biolite.workflows), 25
BlastHit (class in biolite.workflows), 24

Blastn (class in biolite.wrappers), 21

Blastp (class in biolite.wrappers), 22

Blastx (class in biolite.wrappers), 22

Bowtie2 (class in biolite.wrappers), 22

INDEX

Bowtie2Build (class in biolite.wrappers), 22
bytes_to_gb() (in module biolite.utils), 31

C

cat_to_file() (in module biolite.utils), 30

CatalogRecord (class in biolite.catalog), 8

check() (biolite.report.BaseReport method), 17

check_arg() (biolite.wrappers.BaseWrapper method), 19

check_init() (in module biolite.diagnostics), 11

checkpoint() (biolite.pipeline.BasePipeline method), 15

clean_rrna() (in module biolite.workflows), 25

clean_swissprot() (in module biolite.workflows), 26

clean_univec() (in module biolite.workflows), 26

confidence (biolite.workflows.ContigHeader attribute),
25

confidence (biolite.workflows.rRNAMit attribute), 26

connect() (in module biolite.database), 29

contig_stats() (in module biolite.workflows), 26

ContigHeader (class in biolite.workflows), 25

copy_css() (in module biolite.report), 17

copy_js() (in module biolite.report), 17

count_lines() (in module biolite.utils), 30

CountLines (class in biolite.wrappers), 20

Coverage (class in biolite.wrappers), 20

D

definition (biolite.workflows.BlastHit attribute), 24
die() (in module biolite.utils), 29

disconnect() (in module biolite.database), 29

done (biolite.diagnostics.Run attribute), 10

dump() (in module biolite.diagnostics), 13
dump_all() (in module biolite.diagnostics), 13
dump_by_id() (in module biolite.diagnostics), 13
dump_commands() (in module biolite.diagnostics), 13
dump_programs() (in module biolite.diagnostics), 13
Dustmasker (class in biolite.wrappers), 21
dustmasker() (in module biolite.workflows), 26

E

entity (biolite.diagnostics.OutputPattern attribute), 10
estimate_insert_size() (in module biolite.wrappers), 20

43

BioLite Documentation, Release 0.3.5

evalue (biolite.workflows.BlastHit attribute), 24

Exclude (class in biolite.wrappers), 20

execute() (in module biolite.database), 29

exit_profiler() (in module biolite.diagnostics), 13

extract_arg() (biolite.report.BaseReport method), 17

extract_oases_exemplars() (in module biolite.workflows),
26

extraction_id (biolite.catalog.CatalogRecord attribute), 8

F

failed_executable() (in module biolite.utils), 30
Fasta2Fastq (class in biolite.wrappers), 20
Fastq2Fasta (class in biolite.wrappers), 20
FastQC (class in biolite.wrappers), 21

Field (class in biolite.report), 16

FilterIllumina (class in biolite.wrappers), 21
finish() (biolite.pipeline.Pipeline method), 16
format (biolite.report.Field attribute), 17

G

Gblocks (class in biolite.wrappers), 23

gene (biolite.workflows.rRNAhit attribute), 26
generator() (biolite.report.BaseReport method), 17
get() (biolite.pipeline.BasePipeline method), 15
get_all_files() (biolite.pipeline.Pipeline method), 16
get_caller_info() (in module biolite.utils), 30
get_caller_locals() (in module biolite.utils), 31
get_command() (in module biolite.config), 27
get_entity() (in module biolite.diagnostics), 11
get_file() (biolite.pipeline.Pipeline method), 16
get_js() (biolite.report.BaseReport method), 17
get_resource() (in module biolite.config), 27
get_resource_default() (in module biolite.config), 27
get_run_id() (in module biolite.diagnostics), 11

H

head() (in module biolite.utils), 30

head_to_file() (in module biolite.utils), 30

header() (biolite.report.BaseReport method), 18

hidden (biolite.diagnostics.Run attribute), 10

hide_run() (in module biolite.diagnostics), 13

histogram() (biolite.report.BaseReport method), 18

histogram_categorical() (biolite.report.BaseReport
method), 18

histogram_overlay() (biolite.report.BaseReport method),
18

hostname (biolite.diagnostics.Run attribute), 10

human_readable_size() (in module biolite.utils), 31

id (biolite.catalog.CatalogRecord attribute), 8
id (biolite.diagnostics.Run attribute), 10
id (biolite.workflows.BlastHit attribute), 24

[luminaPipeline (class in biolite.pipeline), 16
imageplot() (biolite.report.BaseReport method), 18
import_arguments() (biolite.pipeline.BasePipeline

method), 15

import_module() (biolite.pipeline.BasePipeline method),
15

import_pipeline() (biolite.pipeline.BasePipeline method),
15

import_stages() (biolite.pipeline.BasePipeline method),
14

import_stages()
method), 16

info() (in module biolite.utils), 29

ingest() (biolite.pipeline.BasePipeline method), 15

init() (biolite.report.BaseReport method), 17

init() (biolite.wrappers.BaseWrapper method), 19

init() (in module biolite.config), 27

init() (in module biolite.diagnostics), 11

insert() (in module biolite.catalog), 9

InsertStats (class in biolite.wrappers), 21

Interleave (class in biolite.wrappers), 21

itis_id (biolite.catalog.CatalogRecord attribute), 8

K

key (biolite.report.Field attribute), 17

L

length (biolite.workflows.BlastHit attribute), 24
length (biolite.workflows.ContigHeader attribute), 25
library_id (biolite.catalog.CatalogRecord attribute), 8
library_type (biolite.catalog.CatalogRecord attribute), 8
lineplot() (biolite.report.BaseReport method), 18
list_stages() (biolite.pipeline.BasePipeline method), 15
load_cache() (in module biolite.diagnostics), 11
local_lookup() (in module biolite.diagnostics), 12
locus (biolite.workflows.ContigHeader attribute), 25
locus (biolite.workflows.rRNAMhit attribute), 27
log() (in module biolite.diagnostics), 11
log_dict() (in module biolite.diagnostics), 11
log_entity() (in module biolite.diagnostics), 11
log_path() (in module biolite.diagnostics), 11
log_program_output() (in module biolite.diagnostics), 12
log_program_version() (in module biolite.diagnostics),
11
log_state() (biolite.pipeline.Pipeline method), 16
lookup() (biolite.report.BaseReport method), 17
lookup() (in module biolite.diagnostics), 12
lookup_attribute() (in module biolite.diagnostics), 12
lookup_by_id() (in module biolite.diagnostics), 12
lookup_entities() (in module biolite.diagnostics), 12
lookup_insert_size() (in module biolite.diagnostics), 13
lookup_last_run() (in module biolite.diagnostics), 12
lookup_like() (in module biolite.diagnostics), 12
lookup_pipelines() (in module biolite.diagnostics), 12

(biolite.pipeline.IlluminaPipeline

44

Index

BiolLite Documentation, Release 0.3.5

lookup_prev_run() (in module biolite.diagnostics), 12
lookup_prev_val() (in module biolite.diagnostics), 12
lookup_run() (in module biolite.diagnostics), 12
lookup_runs() (in module biolite.diagnostics), 12

M

Macse (class in biolite.wrappers), 23

make_record() (in module biolite.catalog), 9
make_state() (biolite.pipeline.BasePipeline method), 15
MakeBlastDB (class in biolite.wrappers), 22

mask (biolite.workflows.BlastHit attribute), 24
max_contig() (in module biolite.workflows), 26

Mcl (class in biolite.wrappers), 23

md5Ssum() (in module biolite.utils), 31

mem_to_mb() (in module biolite.utils), 31

memusage() (in module biolite.utils), 31

merge() (in module biolite.diagnostics), 11
merge_cwd() (in module biolite.diagnostics), 11
MultiBlast (class in biolite.wrappers), 22

multiblast() (in module biolite.workflows), 26
multilineplot() (biolite.report.BaseReport method), 18
multimap() (in module biolite.utils), 31
multiscatterplot() (biolite.report.BaseReport method), 18

N

name (biolite.diagnostics.Run attribute), 10
ncbi_id (biolite.catalog.CatalogRecord attribute), 8
note (biolite.catalog.CatalogRecord attribute), 8
number_range() (in module biolite.utils), 31

O

Oases (class in biolite.wrappers), 23

oases_assemblies() (in module biolite.workflows), 26

oases_clean() (in module biolite.workflows), 26

oases_concat_assembly() (in module biolite.workflows),
26

Oma (class in biolite.wrappers), 24

orient (biolite.workflows.BlastHit attribute), 24

orient (biolite.workflows.rRNAMit attribute), 27

OutputPattern (class in biolite.diagnostics), 10

P

Parallel (class in biolite.wrappers), 23
ParallelButterfly (class in biolite.wrappers), 23
Paralle]lMacse (class in biolite.wrappers), 23
parse_args() (biolite.pipeline.BasePipeline method), 15
paths (biolite.catalog.CatalogRecord attribute), 8
percent (biolite.workflows.BlastHit attribute), 24
percent() (biolite.report.BaseReport method), 18
PileupStats (class in biolite.wrappers), 21
Pipeline (class in biolite.pipeline), 15
print_record() (in module biolite.catalog), 9
profile_aggregate() (in module biolite.report), 17

profile_table() (biolite.report.BaseReport method), 18

Q

query (biolite.workflows.BlastHit attribute), 24
query (biolite.workflows.rRNAhit attribute), 27
query() (biolite.report.BaseReport method), 17

R

Randomize (class in biolite.wrappers), 21

rank (biolite.workflows.BlastHit attribute), 24

Raxml (class in biolite.wrappers), 23

re (biolite.diagnostics.OutputPattern attribute), 10
readlines_reverse() (in module biolite.utils), 30
register_exit_profiler() (in module biolite.diagnostics), 13
rerun() (biolite.pipeline.BasePipeline method), 15
restart() (biolite.pipeline.BasePipeline method), 15
Rpsblast (class in biolite.wrappers), 22
rrna_blast_hits() (in module biolite.workflows), 27
rRNAMit (class in biolite.workflows), 26

Run (class in biolite.diagnostics), 10

run() (biolite.pipeline.BasePipeline method), 15

run() (biolite.pipeline.Pipeline method), 16

run() (biolite.wrappers.BaseWrapper method), 20
run_id (biolite.diagnostics.Run attribute), 10

run_jar() (biolite.wrappers.BaseWrapper method), 20
run_stage() (biolite.pipeline.BasePipeline method), 15
rusage_diff() (in module biolite.utils), 30

S

safe_call() (in module biolite.utils), 30

safe_mkdir() (in module biolite.utils), 29

safe_print() (in module biolite.utils), 30
safe_remove() (in module biolite.utils), 30

safe_str() (in module biolite.utils), 30

SamlIndex (class in biolite.wrappers), 22

SamPileup (class in biolite.wrappers), 22
sample_prep (biolite.catalog.CatalogRecord attribute), 8
SamSort (class in biolite.wrappers), 22

SamToBam (class in biolite.wrappers), 22

SamView (class in biolite.wrappers), 22

scatterplot() (biolite.report.BaseReport method), 18
score (biolite.workflows.BlastHit attribute), 24
search() (in module biolite.catalog), 9

Segmasker (class in biolite.wrappers), 21

select() (in module biolite.catalog), 9

select_all() (in module biolite.catalog), 9

seq_center (biolite.catalog.CatalogRecord attribute), 8
sequencer (biolite.catalog.CatalogRecord attribute), 8
set_database() (in module biolite.config), 28
set_outdir() (biolite.pipeline.Pipeline method), 16
Sga (class in biolite.wrappers), 23

size() (biolite.pipeline.BasePipeline method), 15
sort_and_index_sam() (in module biolite.workflows), 27

Index

45

BioLite Documentation, Release 0.3.5

sorted_alphanum() (in module biolite.utils), 31
species (biolite.catalog.CatalogRecord attribute), 8
split_paths() (in module biolite.catalog), 9

stage() (biolite.pipeline.BasePipeline method), 15
str2list() (biolite.report.BaseReport method), 18
str2list() (in module biolite.diagnostics), 11
summarize() (biolite.report.BaseReport method), 18

T

table() (biolite.report.BaseReport method), 18

table() (in module biolite.utils), 29

tail() (in module biolite.utils), 30

tail_to_file() (in module biolite.utils), 30

timestamp (biolite.catalog.CatalogRecord attribute), 8
timestamp (biolite.diagnostics.Run attribute), 10
timestamp() (in module biolite.diagnostics), 11
timestamp() (in module biolite.utils), 30

tissue (biolite.catalog.CatalogRecord attribute), 8

title (biolite.report.Field attribute), 17

title (biolite.workflows.BlastHit attribute), 25
transcript (biolite.workflows.ContigHeader attribute), 25
Transdecoder (class in biolite.wrappers), 23

Trinity (class in biolite.wrappers), 22

truncate_file() (in module biolite.utils), 30

type (biolite.report.Field attribute), 17

U

unhide_run() (in module biolite.diagnostics), 13
unpack_oases_header() (in module biolite.workflows), 27
username (biolite.diagnostics.Run attribute), 10

Vv

VelvetG (class in biolite.wrappers), 23

VelvetH (class in biolite.wrappers), 23

version() (biolite.wrappers.BaseWrapper method), 19
version_jar() (biolite.wrappers.BaseWrapper method), 20

W

which() (in module biolite.utils), 31

Z

zip() (biolite.report.BaseReport method), 17
zipdir() (in module biolite.utils), 31

46

Index

	Contents
	Installation
	Configuration
	Cataloging data
	Diagnostics
	Building pipelines
	Generating reports
	Calling external tools
	Automating workflows
	Internals

	Citing
	Funding
	License
	Indices and tables
	Python Module Index
	Index

