1. Barry Schwartz
  2. caml2geom

Source

caml2geom / caml2geom.ml

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
(*
  Copyright (c) 2011 Barry Schwartz

  Permission is hereby granted, free of charge, to any person
  obtaining a copy of this software and associated documentation
  files (the "Software"), to deal in the Software without
  restriction, including without limitation the rights to use,
  copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the
  Software is furnished to do so, subject to the following
  conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
  OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
  HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  OTHER DEALINGS IN THE SOFTWARE.
*)

module type Fragment =
sig
  type t
  type output_type
  val default : unit -> t
  val is_zero : t -> bool
  val is_constant : t -> bool
  val is_finite : t -> bool
  val at0 : t -> output_type
  val at1 : t -> output_type
  val value_at : t -> float -> output_type
end

module D2 =
struct
  module type S =
  sig
    type elt
    type t
    val make : elt -> elt -> t
    val coord : t -> int -> elt
    val fst : t -> elt
    val snd : t -> elt
    val is_zero : t -> bool
    val is_constant : t -> bool
    val is_finite : t -> bool
  end

  module Make(Elt : Fragment) =
  struct
    type elt = Elt.t
    type t = elt * elt
    let make a b = (a,b)
    let fst (a,_) = a
    let snd (_,b) = b
    let is_zero (a,b) = Elt.is_zero a && Elt.is_zero b
    let is_constant (a,b) = Elt.is_constant a && Elt.is_constant b
    let is_finite (a,b) = Elt.is_finite a && Elt.is_finite b

    let coord (a,b) i =
      match i with
        | 0 -> a
        | 1 -> b
        | _ -> invalid_arg "Make(Elt).coord: index out of range"
  end
end

module Coord =
struct
  type t = float
  type dim2 = X | Y
  external _get_epsilon : unit -> t = "epsilon_wrapper"
  let _eps_value = _get_epsilon ()
  let epsilon = _eps_value
  external infinity : unit -> t = "infinity_wrapper"
  external are_near : t -> t -> bool = "are_near_wrapper"
  external are_near_eps : t -> t -> t -> bool = "are_near_eps_wrapper"
  external rel_error_bound : t -> t -> bool = "rel_error_bound_wrapper"
  external rel_error_bound_eps : t -> t -> t -> bool = "rel_error_bound_eps_wrapper"
end

module Int_coord =
struct
  type t = int
end

module Point =
struct
  type t
  external default : unit -> t = "new_default_point_wrapper"
  external make : Coord.t -> Coord.t -> t = "new_point_wrapper"
  external copy : t -> t = "copy_point_wrapper"
  external coord : t -> int -> Coord.t = "point_coord_wrapper"
  external set_coord : t -> int -> Coord.t -> unit = "set_point_coord_wrapper"
  external length : t -> Coord.t = "point_length_wrapper"
  external normalize : t -> unit = "point_normalize_wrapper"
  external ccw : t -> t = "point_ccw_wrapper"
  external cw : t -> t = "point_cw_wrapper"
  external neg : t -> t = "point_neg_wrapper"
  external set : t -> t -> unit = "point_set_wrapper"
  external add_to : t -> t -> unit = "point_add_to_wrapper"
  external sub_from : t -> t -> unit = "point_sub_from_wrapper"
  external mul_by : t -> Coord.t -> unit = "point_mul_by_wrapper"
  external div_by : t -> Coord.t -> unit = "point_div_by_wrapper"

  let of_tuple (x,y) = make x y
  let to_tuple p = (coord p 0, coord p 1)
  let of_complex c = make c.Complex.re c.Complex.im
  let to_complex p = { Complex.re = coord p 0; Complex.im = coord p 1 }
end

module Interval =
struct
  type t
  external default : unit -> t = "new_default_interval_wrapper"
end

module Rect =
struct
  type t
  external default : unit -> t = "new_default_rect_wrapper"
  external min : t -> Point.t = "rect_min_wrapper"
  external max : t -> Point.t = "rect_max_wrapper"
  external corner : t -> int -> Point.t = "rect_corner_wrapper"
end

module Crossing =
struct
  type t = {
    dir : bool;                (* True: along a, a becomes outside. *)
    ta : float;                (* Time of crossing on a. *)
    tb : float;                (* Time of crossing on b. *)
    a : int;                   (* Storage of indices. *)
    b : int;                   (* Storage of indices. *)
  }
  let get_other xing cur = if xing.a = cur then xing.b else xing.a
  let get_time xing cur = if xing.a = cur then xing.ta else xing.tb
  let get_other_time xing cur = if xing.a = cur then xing.tb else xing.ta
  let on_ix xing ix = xing.a = ix || xing.b = ix
end

module Bezier =
struct
  type t
  type output_type = Coord.t
  external default : unit -> t = "new_default_bezier_wrapper"
  external make_order0 : Coord.t -> t = "new_bezier_order0_wrapper"
  external make_order1 : Coord.t -> Coord.t -> t = "new_bezier_order1_wrapper"
  external make_order2 : Coord.t -> Coord.t -> Coord.t -> t = "new_bezier_order2_wrapper"
  external make_order3 : Coord.t -> Coord.t -> Coord.t -> Coord.t -> t = "new_bezier_order3_wrapper"
  external is_zero : t -> bool = "bezier_is_zero_wrapper"
  external is_constant : t -> bool = "bezier_is_constant_wrapper"
  external is_finite : t -> bool = "bezier_is_finite_wrapper"
  external at0 : t -> Coord.t = "bezier_at0_wrapper"
  external at1 : t -> Coord.t = "bezier_at1_wrapper"
  external value_at : t -> float -> Coord.t = "bezier_value_at_wrapper"

  let of_2tuple (a,b) = make_order1 a b
  let of_3tuple (a,b,c) = make_order2 a b c
  let of_4tuple (a,b,c,d) = make_order3 a b c d
end

module Bezier_as_fragment : Fragment = Bezier

module Curve =
struct
  type t
  external initial_point : t -> Point.t = "curve_initial_point_wrapper"
  external final_point : t -> Point.t = "curve_final_point_wrapper"
  external is_degenerate : t -> bool = "curve_is_degenerate_wrapper"
  external point_at : t -> Coord.t -> Point.t = "curve_point_at_wrapper"
  external value_at : t -> Coord.t -> Coord.dim2 -> Coord.t = "curve_value_at_wrapper"
  external point_and_derivatives : t -> Coord.t -> int -> Point.t array = "curve_point_and_derivatives_wrapper"
  external set_initial : t -> Point.t -> unit = "curve_set_initial_wrapper"
  external set_final : t -> Point.t -> unit = "curve_set_final_wrapper"
  external bounds_fast : t -> Rect.t = "curve_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t = "curve_bounds_exact_wrapper"
  external portion : t -> Coord.t -> Coord.t -> t = "curve_portion_wrapper"
  external reverse : t -> t = "curve_reverse_wrapper"
  external derivative : t -> t = "curve_derivative_wrapper"
  external length : t -> Coord.t -> Coord.t = "curve_length_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "curve_roots_wrapper"
  external winding : t -> Point.t -> int = "curve_winding_wrapper"
  external unit_tangent_at : ?num_derivs:int -> t -> Coord.t -> Point.t = "curve_unit_tangent_at_wrapper"
  external degrees_of_freedom : t -> int = "curve_degrees_of_freedom_wrapper"
  external crossings : t -> t -> Crossing.t array = "curve_crossings_wrapper"
end

module Bezier_curve =
struct
  type t
  external to_curve : t -> Curve.t = "%identity"
  external of_two_beziers : Bezier.t -> Bezier.t -> t = "bezier_curve_of_two_beziers_wrapper"
  external of_two_points : Point.t -> Point.t -> t = "bezier_curve_of_two_points_wrapper"
  external of_three_points : Point.t -> Point.t -> Point.t -> t = "bezier_curve_of_three_points_wrapper"
  external of_four_points : Point.t -> Point.t -> Point.t -> Point.t -> t = "bezier_curve_of_four_points_wrapper"
  external order : t -> int = "bezier_curve_order_wrapper"
  external subdivide : t -> float -> t * t = "bezier_curve_subdivide_wrapper"
  external initial_point : t -> Point.t = "bezier_curve_initial_point_wrapper"
  external final_point : t -> Point.t = "bezier_curve_final_point_wrapper"
  external is_degenerate : t -> bool = "bezier_curve_is_degenerate_wrapper"
  external point_at : t -> Coord.t -> Point.t = "bezier_curve_point_at_wrapper"
  external value_at : t -> Coord.t -> Coord.dim2 -> Coord.t = "bezier_curve_value_at_wrapper"
  external point_and_derivatives : t -> Coord.t -> int -> Point.t array = "bezier_curve_point_and_derivatives_wrapper"
  external set_initial : t -> Point.t -> unit = "bezier_curve_set_initial_wrapper"
  external set_final : t -> Point.t -> unit = "bezier_curve_set_final_wrapper"
  external bounds_fast : t -> Rect.t = "bezier_curve_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t = "bezier_curve_bounds_exact_wrapper"
  external portion : t -> Coord.t -> Coord.t -> t = "bezier_curve_portion_wrapper"
  external reverse : t -> t = "bezier_curve_reverse_wrapper"
  external derivative : t -> t = "bezier_curve_derivative_wrapper"
  external length : t -> Coord.t -> Coord.t = "bezier_curve_length_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "bezier_curve_roots_wrapper"
  external winding : t -> Point.t -> int = "bezier_curve_winding_wrapper"
  external unit_tangent_at : ?num_derivs:int -> t -> Coord.t -> Point.t = "bezier_curve_unit_tangent_at_wrapper"
  external degrees_of_freedom : t -> int = "bezier_curve_degrees_of_freedom_wrapper"
  external crossings : t -> t -> Crossing.t array = "bezier_curve_crossings_wrapper"

  let of_array points = 
    match points with
      | [| p0; p1 |] -> of_two_points p0 p1
      | [| p0; p1; p2 |] -> of_three_points p0 p1 p2
      | [| p0; p1; p2; p3 |] -> of_four_points p0 p1 p2 p3
      | _ -> invalid_arg "array length must be 2, 3, or 4"
  external to_array : t -> Point.t array = "bezier_curve_points_wrapper"
  let of_tuple_array tuples = of_array (Array.map Point.of_tuple tuples)
  let to_tuple_array bc = Array.map Point.to_tuple (to_array bc)
  let of_complex_array complexes = of_array (Array.map Point.of_complex complexes)
  let to_complex_array bc = Array.map Point.to_complex (to_array bc)
end

module Line_segment =
struct
  type t
  external to_curve : t -> Curve.t = "%identity"
  external to_bezier_curve : t -> Bezier_curve.t = "%identity"
  external of_two_points : Point.t -> Point.t -> t = "line_segment_of_two_points_wrapper"
  external order : t -> int = "line_segment_order_wrapper"
  external subdivide : t -> float -> Bezier_curve.t * Bezier_curve.t = "line_segment_subdivide_wrapper"
  external initial_point : t -> Point.t = "line_segment_initial_point_wrapper"
  external final_point : t -> Point.t = "line_segment_final_point_wrapper"
  external is_degenerate : t -> bool = "line_segment_is_degenerate_wrapper"
  external point_at : t -> Coord.t -> Point.t = "line_segment_point_at_wrapper"
  external value_at : t -> Coord.t -> Coord.dim2 -> Coord.t = "line_segment_value_at_wrapper"
  external point_and_derivatives : t -> Coord.t -> int -> Point.t array = "line_segment_point_and_derivatives_wrapper"
  external set_initial : t -> Point.t -> unit = "line_segment_set_initial_wrapper"
  external set_final : t -> Point.t -> unit = "line_segment_set_final_wrapper"
  external bounds_fast : t -> Rect.t = "line_segment_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t = "line_segment_bounds_exact_wrapper"
  external portion : t -> Coord.t -> Coord.t -> t = "line_segment_portion_wrapper"
  external reverse : t -> t = "line_segment_reverse_wrapper"
  external derivative : t -> t = "line_segment_derivative_wrapper"
  external length : t -> Coord.t -> Coord.t = "line_segment_length_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "line_segment_roots_wrapper"
  external winding : t -> Point.t -> int = "line_segment_winding_wrapper"
  external unit_tangent_at : ?num_derivs:int -> t -> Coord.t -> Point.t = "line_segment_unit_tangent_at_wrapper"
  external degrees_of_freedom : t -> int = "line_segment_degrees_of_freedom_wrapper"
  external crossings : t -> t -> Crossing.t array = "line_segment_crossings_wrapper"

  let of_array points = 
    match points with
      | [| p0; p1 |] -> of_two_points p0 p1
      | _ -> invalid_arg "array length must be 2"
  external to_array : t -> Point.t array = "line_segment_points_wrapper"
  let of_tuple_array tuples = of_array (Array.map Point.of_tuple tuples)
  let to_tuple_array bc = Array.map Point.to_tuple (to_array bc)
  let of_complex_array complexes = of_array (Array.map Point.of_complex complexes)
  let to_complex_array bc = Array.map Point.to_complex (to_array bc)
end

module Quadratic_bezier =
struct
  type t
  external to_curve : t -> Curve.t = "%identity"
  external to_bezier_curve : t -> Bezier_curve.t = "%identity"
  external of_three_points : Point.t -> Point.t -> Point.t -> t = "quadratic_bezier_of_three_points_wrapper"
  external order : t -> int = "quadratic_bezier_order_wrapper"
  external subdivide : t -> float -> Bezier_curve.t * Bezier_curve.t = "quadratic_bezier_subdivide_wrapper"
  external initial_point : t -> Point.t = "quadratic_bezier_initial_point_wrapper"
  external final_point : t -> Point.t = "quadratic_bezier_final_point_wrapper"
  external is_degenerate : t -> bool = "quadratic_bezier_is_degenerate_wrapper"
  external point_at : t -> Coord.t -> Point.t = "quadratic_bezier_point_at_wrapper"
  external value_at : t -> Coord.t -> Coord.dim2 -> Coord.t = "quadratic_bezier_value_at_wrapper"
  external point_and_derivatives : t -> Coord.t -> int -> Point.t array = "quadratic_bezier_point_and_derivatives_wrapper"
  external set_initial : t -> Point.t -> unit = "quadratic_bezier_set_initial_wrapper"
  external set_final : t -> Point.t -> unit = "quadratic_bezier_set_final_wrapper"
  external bounds_fast : t -> Rect.t = "quadratic_bezier_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t = "quadratic_bezier_bounds_exact_wrapper"
  external portion : t -> Coord.t -> Coord.t -> t = "quadratic_bezier_portion_wrapper"
  external reverse : t -> t = "quadratic_bezier_reverse_wrapper"
  external derivative : t -> t = "quadratic_bezier_derivative_wrapper"
  external length : t -> Coord.t -> Coord.t = "quadratic_bezier_length_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "quadratic_bezier_roots_wrapper"
  external winding : t -> Point.t -> int = "quadratic_bezier_winding_wrapper"
  external unit_tangent_at : ?num_derivs:int -> t -> Coord.t -> Point.t = "quadratic_bezier_unit_tangent_at_wrapper"
  external degrees_of_freedom : t -> int = "quadratic_bezier_degrees_of_freedom_wrapper"
  external crossings : t -> t -> Crossing.t array = "quadratic_bezier_crossings_wrapper"

  let of_array points = 
    match points with
      | [| p0; p1; p2 |] -> of_three_points p0 p1 p2
      | _ -> invalid_arg "array length must be 3"
  external to_array : t -> Point.t array = "quadratic_bezier_points_wrapper"
  let of_tuple_array tuples = of_array (Array.map Point.of_tuple tuples)
  let to_tuple_array bc = Array.map Point.to_tuple (to_array bc)
  let of_complex_array complexes = of_array (Array.map Point.of_complex complexes)
  let to_complex_array bc = Array.map Point.to_complex (to_array bc)
end

module Cubic_bezier =
struct
  type t
  external to_curve : t -> Curve.t = "%identity"
  external to_bezier_curve : t -> Bezier_curve.t = "%identity"
  external of_four_points : Point.t -> Point.t -> Point.t -> Point.t -> t = "cubic_bezier_of_four_points_wrapper"
  external order : t -> int = "cubic_bezier_order_wrapper"
  external subdivide : t -> float -> Bezier_curve.t * Bezier_curve.t = "cubic_bezier_subdivide_wrapper"
  external initial_point : t -> Point.t = "cubic_bezier_initial_point_wrapper"
  external final_point : t -> Point.t = "cubic_bezier_final_point_wrapper"
  external is_degenerate : t -> bool = "cubic_bezier_is_degenerate_wrapper"
  external point_at : t -> Coord.t -> Point.t = "cubic_bezier_point_at_wrapper"
  external value_at : t -> Coord.t -> Coord.dim2 -> Coord.t = "cubic_bezier_value_at_wrapper"
  external point_and_derivatives : t -> Coord.t -> int -> Point.t array = "cubic_bezier_point_and_derivatives_wrapper"
  external set_initial : t -> Point.t -> unit = "cubic_bezier_set_initial_wrapper"
  external set_final : t -> Point.t -> unit = "cubic_bezier_set_final_wrapper"
  external bounds_fast : t -> Rect.t = "cubic_bezier_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t = "cubic_bezier_bounds_exact_wrapper"
  external portion : t -> Coord.t -> Coord.t -> t = "cubic_bezier_portion_wrapper"
  external reverse : t -> t = "cubic_bezier_reverse_wrapper"
  external derivative : t -> t = "cubic_bezier_derivative_wrapper"
  external length : t -> Coord.t -> Coord.t = "cubic_bezier_length_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "cubic_bezier_roots_wrapper"
  external winding : t -> Point.t -> int = "cubic_bezier_winding_wrapper"
  external unit_tangent_at : ?num_derivs:int -> t -> Coord.t -> Point.t = "cubic_bezier_unit_tangent_at_wrapper"
  external degrees_of_freedom : t -> int = "cubic_bezier_degrees_of_freedom_wrapper"
  external crossings : t -> t -> Crossing.t array = "cubic_bezier_crossings_wrapper"

  let of_array points = 
    match points with
      | [| p0; p1; p2; p3 |] -> of_four_points p0 p1 p2 p3
      | _ -> invalid_arg "array length must be 4"
  external to_array : t -> Point.t array = "cubic_bezier_points_wrapper"
  let of_tuple_array tuples = of_array (Array.map Point.of_tuple tuples)
  let to_tuple_array bc = Array.map Point.to_tuple (to_array bc)
  let of_complex_array complexes = of_array (Array.map Point.of_complex complexes)
  let to_complex_array bc = Array.map Point.to_complex (to_array bc)
end

module type Path_type =
sig
  type t
  type stitching = NO_STITCHING | STITCH_DISCONTINUOUS
  external default : unit -> t = "new_default_path_wrapper"
  external make : Point.t -> t = "new_path_wrapper"
  external point_at : t -> float -> Point.t = "path_point_at_wrapper"
  external value_at : t -> float -> Coord.dim2 -> float = "path_value_at_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "path_roots_wrapper"
  external portion : t -> float -> float -> t = "path_portion_wrapper"
  external reverse : t -> t = "path_reverse_wrapper"
  external append_curve : ?stitch:stitching -> t -> Curve.t -> unit = "path_append_curve_wrapper"
  external append : ?stitch:stitching -> t -> t -> unit = "path_append_wrapper"
  external nearest_point : ?from_t:float -> ?to_t:float -> t -> Point.t -> float * float = "path_nearest_point_wrapper"
  external size_open : t -> int = "path_size_open_wrapper"
  external size_closed : t -> int = "path_size_closed_wrapper"
  external size_default : t -> int = "path_size_default_wrapper"
  external size : t -> int = "path_size_wrapper"
  external max_size : t -> int = "path_max_size_wrapper"
  external empty : t -> bool = "path_empty_wrapper"
  external closed : t -> bool = "path_closed_wrapper"
  external close : t -> bool -> unit = "path_close_wrapper"
  external bounds_fast : t -> Rect.t option = "path_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t option = "path_bounds_exact_wrapper"
  external to_cubic_beziers_open : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_open_wrapper"
  external to_cubic_beziers_closed : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_closed_wrapper"
  external to_cubic_beziers_default : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_default_wrapper"
  external winding : t -> Point.t -> int = "path_winding_wrapper"
  external direction : t -> bool = "path_direction_wrapper"
  external contains : ?evenodd:bool -> t -> Point.t -> bool = "path_contains_wrapper"
  external mono_splits : t -> float array = "path_mono_splits_wrapper"
  external crossings_among : t array -> Crossing.t array array = "path_crossings_among_wrapper"
  external self_crossings : t -> Crossing.t array = "path_self_crossings_wrapper"
  external crossings : t -> t -> Crossing.t array = "path_crossings_wrapper"
  external crossings_between : t array -> t array -> Crossing.t array array = "path_crossings_between_wrapper"
end

module Path : Path_type =
struct
  type t
  type stitching = NO_STITCHING | STITCH_DISCONTINUOUS
  external default : unit -> t = "new_default_path_wrapper"
  external make : Point.t -> t = "new_path_wrapper"
  external point_at : t -> float -> Point.t = "path_point_at_wrapper"
  external value_at : t -> float -> Coord.dim2 -> float = "path_value_at_wrapper"
  external roots : t -> Coord.t -> Coord.dim2 -> Coord.t array = "path_roots_wrapper"
  external portion : t -> float -> float -> t = "path_portion_wrapper"
  external reverse : t -> t = "path_reverse_wrapper"
  external append_curve : ?stitch:stitching -> t -> Curve.t -> unit = "path_append_curve_wrapper"
  external append : ?stitch:stitching -> t -> t -> unit = "path_append_wrapper"
  external nearest_point : ?from_t:float -> ?to_t:float -> t -> Point.t -> float * float = "path_nearest_point_wrapper"
  external size_open : t -> int = "path_size_open_wrapper"
  external size_closed : t -> int = "path_size_closed_wrapper"
  external size_default : t -> int = "path_size_default_wrapper"
  external size : t -> int = "path_size_wrapper"
  external max_size : t -> int = "path_max_size_wrapper"
  external empty : t -> bool = "path_empty_wrapper"
  external closed : t -> bool = "path_closed_wrapper"
  external close : t -> bool -> unit = "path_close_wrapper"
  external bounds_fast : t -> Rect.t option = "path_bounds_fast_wrapper"
  external bounds_exact : t -> Rect.t option = "path_bounds_exact_wrapper"
  external to_cubic_beziers_open : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_open_wrapper"
  external to_cubic_beziers_closed : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_closed_wrapper"
  external to_cubic_beziers_default : t -> float -> Bezier_curve.t list = "path_to_cubic_bezier_curves_default_wrapper"
  external winding : t -> Point.t -> int = "path_winding_wrapper"
  external direction : t -> bool = "path_direction_wrapper"
  external contains : ?evenodd:bool -> t -> Point.t -> bool = "path_contains_wrapper"
  external mono_splits : t -> float array = "path_mono_splits_wrapper"
  external crossings_among : t array -> Crossing.t array array = "path_crossings_among_wrapper"
  external self_crossings : t -> Crossing.t array = "path_self_crossings_wrapper"
  external crossings : t -> t -> Crossing.t array = "path_crossings_wrapper"
  external crossings_between : t array -> t array -> Crossing.t array array = "path_crossings_between_wrapper"
end