
University	of	Dayton

Department	of	Computer	Science

CPS	491	-	Spring	2019

Dr.	Phu	Phung

Capstone	II	Project
HTML5-based	Property	Sketch	Web	Application

Team	8	members

1.	 Caroline	Gallo,	galloc3@udayton.edu
2.	 Daniel	Illg,	illgd1@udayton.edu
3.	 Michael	Carlotti,	carlottim1@udayton.edu

Company	Mentors

Dwayne	Nickels,	Architect

Chris	Drake,	Project	Manager

Michael	Lange,	VP	of	Development

Tyler	Technologies

1	Tyler	Way

Moraine	OH	45439

Project	Management	Information

Management	board	(private	access)	https://trello.com/b/L9bTqRTW/cps491-scrumteam3

Source	code	repository	(private	access)	https://bitbucket.org/cps491s19-team8/cps491s19-
team8/src/master/

Project	homepage	(public)	https://cps491s19-team8.bitbucket.io

Revision	History

Date Version Description
1/28/19 0.0 Initial	draft
2/5/19 0.1 Added	hours	and	revision	history
2/12/19 1.0 Added	Sprint	1
3/5/19 2.0 Added	Sprint	2
4/2/19 3.0 Added	Sprint	3
4/26/19 4.0 Added	Sprint	4

Implementation



Sprint0	-	Design	Stage

The	overall	architecture	of	our	project:



The	Use	Case	Diagram	for	the	Sketching	Application:



Use	Case	Descriptions:









Sprint	1:
Sequence	Diagrams:
Draw	on	Canvas



Draw	with	Character	String



Activity	Diagrams:
Draw	on	Canvas



Draw	with	Character	String

Important	Algorithms	and	functions:

drawCanvas:
-	This	function	is	used	to	draw	everything	on	the	canvas.	It	does	this	by	calling	several	other
functions	that	handle	the	individual	components	of	what	needs	to	be	drawn.

drawGrid:
-	This	function	is	called	by	drawCanvas.	It	draws	horizontal	and	vertical	lines	on	the	canvas	in	a
gray	color	help	the	user	draw	their	own	lines.	The	drawn	grid	lines	are	scaled	to	the	zoom
amount.

drawPolygons:
-	This	function	is	called	by	drawCanvas.	It	iterates	through	the	array	of	polygons	and	draws	the
lines	within	them.	These	lines	are	stored	as	a	set	of	points.	A	polygon	will	always	have	at	least
two	points	as	the	user	is	required	to	draw	a	line	when	the	polygon	is	created.

drawCurrentLine:
-	This	function	is	called	by	drawCanvas	if	the	user	is	currently	drawing	a	line.	The	polygon	the
user	is	interacting	with	is	stored	in	a	variable.	This	function	takes	the	last	point	of	that	polygon
and	the	users	mouse	position	and	calculates	where	the	end	of	the	line	should	be.	Currently,	all
lines	are	90	degree	angles	so	the	function	calculates	the	revised	mouse	coordinates.	If	the	end
of	the	line	is	close	enough	to	the	beginning	of	the	current	polygon,	it	will	connect.	This	function
is	also	used	for	drawing	curved	lines.



displayLineLengths:
-	This	function	is	called	by	drawCanvas.	It	goes	through	a	seperate	array	of	line	lengths	and
displays	them	next	to	the	corresponding	lines.	In	future	iterations	of	this	product,	these	lengths
will	be	editable	and	more	readable.

clickWithinPolygon:
-	This	function	asks	the	question	if	the	coordinates	of	a	mouse	click	are	within	a	polygon.
The	function	iterates	through	every	polygon	in	the	array	polygons.
If	the	polygon	isn't	finished,	the	function	will	auto-finish	it	temporarily.
The	function	then	iterates	through	the	points	and	determines	if	the	mouse	coordinates	have
lines	on	all	four	sides.
If	in	all	four	directions	there	is	a	line	in	the	polygon,	the	function	determines	that	this	is	the
polygon	that	needs	to	be	moved.
It	then	returns	1	to	the	calling	function	and	sets	currentpolygon	to	the	id	of	that	polygon.

movePolygon:
-	For	a	given	polygon,	movePolygon	will	update	the	points	in	each	polygon	by	change	in	the	x
and	y	directions	of	the	mouse.
The	function	will	stop	the	polygon	from	being	moved	off	screen.

translateVectorToDrawing:
-	This	function	takes	a	character	vector(string)	as	input	and	draws	it	on	the	canvas.
The	vector	must	be	in	proper	format	in	order	to	be	accepted.
The	vector	must	start	with	'm',	which	is	the	command	for	move.
This	command	signals	that	the	next	commands	given	will	be	for	moving	the	starting	point	of
the	polygon	to	a	desired	location.
Later,	we	might	also	add	a	feature	to	just	specifically	give	coordinates.
Now,	read	the	next	few	commands.	The	commands	are:	'l',	'r',	'u',	and	'd'	followed	by	a	number
indicate	moving	the	distance	indicated	by	the	number	left,	right,	up,	or	down.
The	command	'a'	is	used	to	signal	that	the	next	two	move	commands	to	be	given	are	a	pair
and	should	be	drawn	as	such	so	that	the	line	is	not	at	a	90	degree	angle.
The	command	's'	signals	to	the	system	that	the	starting	point	has	been	reached	and	every
point	from	now	on	should	be	drawn.
If	the	function	reaches	the	end	of	the	vector	without	any	errors,	it	will	add	this	polygon	to	the
collection	of	polygons	and	draw	it.

translateDrawingToVector:
-	This	function	iterates	through	all	polygons	being	displayed	on	screen	and	turns	them	into
character	vectors.
To	start,	it	creates	a	new	string	with	the	value	'm'	at	the	front	for	move.
It	then	adds	'r'	with	the	distance	from	0	to	the	x	value	of	the	polygon's	starting	place	signaling
how	far	to	move	right	before	drawing.
It	then	adds	'l'	with	the	distance	from	0	to	the	y	value	of	the	polygon's	starting	place	signaling
how	far	down	to	move	before	drawing.
The	starting	point	will	now	be	placed	at	this	location.	Add	the	letter	's'	to	signal	that	the	next
points	are	to	be	drawn.
Now	the	function	iterates	through	all	the	points	and	checks	the	direction	of	the	next	point.
If	the	next	point	moves	left	or	right	without	moving	up	or	down,	then	add	'l'	or	'r'	with	the
corresponding	change	in	the	x	axis.
If	the	next	point	moves	up	or	down	without	moving	left	or	right,	then	add	'u'	or	'p'	with	the
corresponding	change	in	the	y	axis.
If	the	next	point	changes	in	both	the	x	and	y	axis,	then	put	the	letter	'a'	in	for	angled	line.



Now	compute	the	change	in	the	x	and	y	axis	seperately	and	add	both	of	them	after	the	'a'	with
their	corresponding	letters.
The	polygon	has	now	been	translated	into	a	character	vector.

undo:
-	The	undo	feature	uses	a	global	stack	in	which	ever	new	line	that	is	drawn	is	pushed	onto	it.
The	stack	holds	the	polygon	for	which	the	event	happened	and	the	event	itself.
When	a	line	is	drawn,	the	event	is	set	to	0	and	the	id	of	the	polygon	for	which	the	line	was
drawn	onto	is	recorded.
When	a	user	presses	the	'u'	key,	the	undo	action	checks	the	event.
If	the	event	is	a	drawing	action,	the	function	will	pop	the	event	off	the	stack	and	pop	a	value	off
the	recorded	polygon.
If	the	polygon	only	had	two	points	left	before	the	action,	the	polygon	is	completely	deleted.

auto-complete:
-	When	a	user	presses	the	'a'	key,	this	code	checks	the	undo	stack	to	see	what	the	last
recorded	polygon	was.
The	code	then	checks	to	see	if	the	ending	point	of	this	polygon	is	also	the	starting	point.
If	it	isn't,	the	code	copies	the	starting	point	onto	the	end	of	the	stack	and	the	polygon	is	now
completed.

loadFile:
-	This	function	takes	the	file	the	user	has	selected,	reads	in	the	text	using	a	FileReader.
Then	it	sets	a	timeout	function	to	translate	the	results	after	half	a	second	since	the	readAsText
function	runs	asynchronously.

editLine:
-	If	a	user	clicks	on	a	line	in	edit	mode,	then	two	boxes	appear	on	the	right	side	of	the	screen
with	the	x	and	y	lengths	of	the	line.
The	user	can	update	these	lengths	and	press	the	"edit"	button	to	then	change	the	line	lengths
manually.

findClick:
-	This	function	iterates	through	all	the	polygons	to	see	if	the	user	clicked	on	any	point	or	line.
First,	the	function	checks	if	the	mosue	coordinates	are	near	any	vertices.	If	they	are,	the	vertex
turns	blue	and	the
user	can	move	it	around	the	canvas.	If	not,	it	checks	if	the	mouse	is	on	a	line.	The	way	it	does
this	is	by
checking	to	see	if	the	mouse	is	between	the	x	coordinates	of	the	points	on	either	ends	of	line.	If
the	x	coordinates	of
these	two	points	are	close	enough	together,	it	checks	to	see	if	the	y	coordinate	of	the	mouse	is
between	the	y	coordinates	of	the	two	points
and	also	if	the	x	coordinate	of	the	mouse	is	the	same	as	the	x	coordinates	of	the	two	points	on
the	line.
If	the	x	coordinates	are	not	equal,	then	the	function	essential	calculates	the	slope	of	the	line
and	determines
if	the	mouse	coordinates	are	on	this	line.	An	extra	variable	called	buffer	is	introduced	to	help
make	sure	a	click	near/on	the	line
is	counted.	The	buffer	is	calculated	by	dividing	1000	by	the	total	distance	of	the	line,	as	shorter
lines	will	have	less	precise	calculations	for
the	approximate	location	the	mouse	y	coordinate	should	be	to	correspond	with	the	line	slope.	If



the	click	is	on	either	a	line	or	a	point,
the	function	will	return	a	struct	containing	the	polygon	number,	the	starting	point,	and	whether
it	is	a	line	or	point	to	be	edited.

calculatePerimeter:
-	This	function	is	a	function	used	to	calculate	the	perimeters	of	the	polygons	drawn	on	the
canvas.
The	function	works	in	paralell	with	the	displayLineLengths	function.	The	function
displayLineLengths	calculates	the	length	of	each	line	of	all	the	polygons
and	as	it	does	this	these	values	are	stored	in	an	array	called	side_lengths.	After	the	function
displayLineLength	finishes	displaying	a	line,	the	function
calculatePerimeter	is	called	with	the	array	side_length	as	it's	arguement.	In	the	function	itself
the	line	lengths	are	added	up	and	then	returned	the	function	amount.
This	amount	is	stored	in	an	array	called	perimeter.	Then	we	clear	the	values	in	side_length	so
that	it	can	be	called	to	store	the	values	of	the	next	polygon.
All	polygons	who	are	drawn	on	the	canvas	have	their	perimeters	stored	in	this	array.	This
function	doesn't	have	undo	functionality	built	into	it,	but	in	the	undo
we	have	call	to	remove	the	top	value	in	the	stack	for	the	side_length	array	and	when	the
side_length	hits	zero	then	the	top	value	on	the	perimeter	array	is	removed	from	the	stack.

zoomIn:
-	This	function	iterates	through	all	the	points	adjusts	them	according	to	the	new	scalar	value.
Scalar	is	a	global	variable	that	all	point	coordinates	are	divided	by.
When	zooming	in,	the	scalar	value	is	increased.	When	zooming	out,	the	scalar	value	is
decreased.

Pan	around	canvas:
-	When	a	user	clicks	and	drags	on	any	part	of	the	canvas	or	a	part	that	is	not	within	a	polygon
when	in	edit	mode,	the	values	of	a	struct	called	offset	will	be	modified.
When	a	point	is	place	on	the	canvas,	its	coordinates	will	be	its	position	on	the	canvas	minus	the
offset	values.
When	a	point	is	drawn,	it	will	be	drawn	at	its	value	plus	the	current	offset.
By	adding	the	offset	anytime	the	system	needs	to	interact	with	a	point,	the	user	can	move
around	the	canvas	and	still	be	able	to	interact	with	polygons.
CalculatePerimterNew:
-	This	is	new	version	of	the	calculate	perimeter	function	that	removes	some	the	bug	and
problems	that	the	old	calculate	perimeter	had,	and	makes	the	operation	of	calculating
perimeter	a
much	more	efficient	process.	The	calculatePerimeterNew	function	takes	two	inputs,	the	2d
array	called	polygons	and	the	perimetter	array.	It	is	called	in	the	building	of	polygon	datatable.
The	function	runs	through	a	2d	array	that	has	all	the	points	that	make	up	the	polygon.	In	the
function	there	is	a	double	for	loop	that	first	runs	through	the	polygons	in	the	2d	array.
The	next	for	loop	then	runs	through	the	actual	points	on	the	loop.	It	takes	the	first	point	and
the	last,	and	calculates	the	distnace	between	those	two	points	using	our	scalar	value
to	make	sure	the	points	show	in	units	not	pixels.	Then	it	increments	doing	the	distance
between	the	first	and	second	point,	and	does	the	same	thing	again	until	it	has	run	through	all
the	points	stored	in	the	second	part	of	polygons	2d	array.	This	value	is	then	returned	and
stored	in	a	local	variable	called	temp_perimeter.	Temp	perimeter	is	set	equal	the	corresponding
polygon	number.	After	all	the	polygon's	have	had	their	perimeters	calculated	the	function
returns	the	filled	our	perimeter	array.
CalculateArea:
-	This	function	takes	two	inputs	the	polygons	2d	array	and	the	second	is	the	array	for	storing



areas.	This	function	is	called	when	adding	the	values	to	the	datatable	so	that	information	is
up	to	date	when	the	user	wants	to	see	the	polygon	data	assigned	so	far.	The	function	uses	a
double	for	loop	to	calculate	the	area	of	each	polygon.	The	first	for	loop	runs	through	the
different	polygons	stored	in	the	polygons	2d	array.	The	next	for	loop	runs	through	the	points
stored	that	make	up	each	polygon.	There	is	an	algortihm	used	for	calculating	the	area	of
irregular	polygons	that	we	used	in	order	to	calculate	the	values	of	what	are	sometimes	very
complicated	polygons.	The	value	is	calculated	by	going	either	clockwise	or	counter-clockwise
through	the	points	of	each	polygon	and	scaling	their	values	so	that	the	number	used	are	in
units	rather	than	pixels.	After	each	point	another	value	is	added	to	a	local	variable	to	store
the	temp	area	number	that	is	being	calculated.	After	all	the	points	have	been	put	through	the
equation	then	the	number	we	have	is	halfed	and	stored	into	the	area	array.	The	temp	area
variable	is	cleared	and	the	function	goes	onto	the	next	polygon	stored	in	the	2d	polygons	array
until	we	have	run	through	all	the	current	polygons.	The	newly	filled	out	array	of	areas
is	returned	and	set	equal	to	our	areas	array.

Deployment

Software	Process	Management

Trello	Board:



Gantt	Chart:

Scrum	Process

Sprint	0

Duration:	1/15/2019-1/28/2019

Completed	Tasks

-	Contacted	Tyler	Technologies	to	get	necessary	information
-	Updated	our	Trello	board	in	preperation	of	Sprint	1
-	Completed	multiple	Use	Case	Descriptions
-	Complete	a	Use	Case	Diagram
-	Set	up	a	project	website	through	bitbucket

Contributions

Daniel	Illg,	5	hours,	contributed:
-	Use	Case	Descriptions	(Create	Polygon,	Move	Around	Canvas)
-	Use	Case	Diagram
-	Edited	report	online
-	Contacted	Tyler	Technologies

Caroline	Gallo,	5	hours,	contributed:
-	Use	Case	Descriptions	(Edit	Polygon,	Add	Code)
-	Updated	gantt	chart
-	Changed	due	dates	using	Elegantt	extension

Michael	Carlotti,	4	hours,	contributed:
-	Use	Case	Descriptions	(Draw	a	Line,	Zoom	In/Out

Sprint	Retrospection



This	sprint	was	mainly	used	as	a	planning	sprint	in	order	to	figure	out	how	we	want	to	approach
the	other	sprints.	We	assigned	our	due	dates	to	our	sprints,	and	what	we	plan	on	accomplishing
in	each	sprint.	We	created	use	case	descriptions	to	have	a	clear	understanding	of	the
processes.	We	accomplished	what	we	wanted	to	do	for	this	sprint	and	did	not	run	into	any
issues.

Sprint	1

Duration:	1/29/2019-2/13/2019

Completed	Tasks

-	Basic	sketching
-	Ability	to	create	new	polygons
-	Lines	are	straight	with	90	degree	angles
-	Basic	UI
-	Sequence/Activity	Diagrams

Contributions

Daniel	Illg,	10	hours,	contributed:
-	Basic	sketching
-	Create	polygon
-	Drawing	features	for	line	lengths,	polygons,	and	a	basic	grid
-	Started	working	on	manually	changing	line	lengths

Caroline	Gallo,	8	hours,	contributed:
-	Basic	UI	including	toolbar	and	buttons
-	Created	record	table	(still	needs	more	testing)
-	Researched	ways	to	do	file	input/output	(ended	up	pushing	this	to	later	sprint)
-	Edited	report
-	Updated	gantt	chart

Michael	Carlotti,	7	hours,	contributed:
-	Sequence	Diagrams	(Draw	on	Canvas,	Draw	with	strings)
-	Actvity	Diagrams	(Draw	on	Canvas,	Draw	with	strings)
-	Work	on	functions	to	turn	a	string	into	a	vector(still	incomplete)
-	Worked	on	ways	to	convert	strings	into	vector(still	incomplete	should	be	finished	early	sprint
2)
-	Researched	ways	to	turn	strings	into	vectors,	JSOn	file	parser	for	file	I/O,	possible	table
implementation	of	vectors	on	screen

Sprint	Retrospection

Sprint	1
-	Could	have	finished	more	of	the	implementation	if	we	had	spent	more	time	working	during
the	first	half	of	the	sprint.	This	is	because	we	would	have	had	more	time	to	test	different
functionalities.
-	Communication	issues	in	the	first	half	of	the	sprint.
-	Could	be	better	about	pushing	our	code	regularly

Sprint	2



Duration:	2/14/2019-3/6/2019

Completed	Tasks

-	Character	vector	to	drawing
-	Drawing	to	character	vector
-	Simple	undo	feature	to	undo	lines	drawn
-	Ability	to	draw	angled	lines
-	Ability	to	click	and	drag	polygons	around	the	screen
-	Auto-complete	feature

Contributions

Daniel	Illg,	11	hours,	contributed:
-	Implemented	character	vector	to	drawing
-	Implemented	drawing	to	character	vector
-	Implemented	a	simple	undo	feature	to	undo	lines	drawn
-	Implemented	the	ability	to	draw	angled	lines
-	Implemented	the	ability	to	click	and	drag	polygons	around	the	screen
-	Implemented	the	auto-complete	feature

Caroline	Gallo,	9	hours,	contributed:
-	Research	for	writing	to	a	JSON	file
-	Research	on	using	XML	files	and	JSON	files
-	Implemented	the	ability	to	save	the	canvas	as	an	image	to	the	user's	computer
-	Implemented	the	ability	to	upload	a	file	from	the	user's	computer
-	Implemented	the	ability	to	draw	a	curved	line/bow

Michael	Carlotti,	12	hours,	contributed:
-	Research	for	JSON	parsing
-	Implementation	for	JSONParsing
-	Research	for	XML	parsing/File	storage/File	Input
-	Creating	JSON	and	Test	Data
-	File	Input	Using	JSON

Sprint	Retrospection

Sprint	2
-In	terms	of	reading	a	file	using	JSON	it	appears	that	it	isn't	possible	without	using	an	external
api.	Also	in	order	to	read	from	a	JSON	file	without	using	a	server	the	only	way	to	access	the	file
is
through	a	js	file	with	the	json	data	hardcoded	into	it.	This	isn't	quite	what	we're	looking	for	in
this	project	need	to	be	more	dynamic	wth	the	file,	i.e	input	and	out.	We	should	be	able	to
update	the	vector
after	accessing	the	file.	Next	sprint	we're	gonna	need	to	to	look	into	options	of	file	using	xml	or
the	local	storage	in	a	web	browser	using	ztringify()	to	store	vector	information,	access	said
information,
and	then	update/save	when	necesary.
-	Update	code	more	frequently.
-	Research	ahead	of	time	so	when	implementing	concepts	there	isn't	as	many	errors.
-	Be	more	clear	ahead	of	time	on	which	task	each	person	is	working	on	so	multiple	people
aren't	working	on	the	same	task.



Sprint	3

Duration:	3/7/2019-4/3/2019

Completed	Tasks

-	Ability	to	change	existing	polygons
-	File	input	and	output	for	sketch	application
-	Users	can	assign	one	code	to	a	polygon,	but	don't	have	to
-	Calculate	the	perimeter	of	a	polygon
-	Option	to	draw	curved	lines

Contributions

Daniel	Illg,	10	hours,	contributed:
-	Edit	vertices	by	dragging	them	around	the	screen
-	Edit	lines	by	dragging	them	around	the	screen
-	Edit	lines	by	clicking	on	them	and	then	updating	their	x	and	y	dimensions
-	Edited	lines/vertices	turn	blue
-	Click	on	polygon	to	assign	a	code	to	it
-	Upload	and	read	files	from	a	computer
-	Redid	the	character	vector	to	drawing	function	to	work	with	specified	commands
-	Reworked	the	drawing	to	vector	function	to	use	the	new	format
-	Added	in	the	F	command	to	vectors	to	auto-finish	drawings
-	Added	in	the	Pn	commands,	where	n	is	an	integer	between	0	and	9
-	Added	in	the	An	commands,	where	n	is	an	integer
-	Added	in	the	X	command,	which	makes	a	rectangle	by	given	dimensions

Caroline	Gallo,	8	hours,	contributed:
-	Implemented	curves	being	saved	in	an	array	so	they	display	correctly
-	Implemented	option	to	do	horizontal	or	vertical	curves
-	Implemented	equation	for	perimeter	of	curves
-	Report
-	Updated	homepage	to	include	project	information	and	link	to	file	with	code
-	PowerPoint	slides

Michael	Carlotti,	10	hours,	contributed:
-	Implemented	calculatePerimeter	function
-	Started	to	work	on	the	calculateArea	function
-	Researched	into	calculating	the	area	of	irregular	function
-	Made	skeleton	code	for	calculating	area	of	an	irregular	polygon

Sprint	Retrospection

Sprint	3
-	Found	out	what	we	already	had	implemented	was	what	the	company	wanted	for	file
input/output	with	the	alert	and	input	text	box	for	the	vector	strings.	Next	sprint,	we	will	work	on
implementing	it	into	the	record	table.
-	Need	to	continue	updating	UI	and	could	spruce	up	homepage	if	time	allows

Sprint	4

Duration:	4/3/2019-4/26/2019



Completed	Tasks

-	Calculate	area	of	a	polygon
-	Pan	around	canvas
-	Zoom	in/out
-	Drawing	bows	with	character	vectors
-	Auto-zoom/pan	to	fit	all	points	on	the	canvas
-	UI	updates
-	Record	table	to	keep	track	of	polygon	codes,	areas,	etc.
-	Bug	fixes

Contributions

Daniel	Illg,	10	hours,	contributed:
-	Pan	around	canvas
-	Zoom	in/out
-	Auto-zoom/pan	to	fit	all	points	on	the	canvas
-	Put	description	and	demo	on	website
-	Bug	fixes

Caroline	Gallo,	10	hours,	contributed:
-	Implemented	table	functionality
-	Implemented	bootstrap	to	homepage
-	Implemented	bootstrap	to	demo	page
-	Updated	UI
-	Organized	code	so	that's	uniform	throughout

Michael	Carlotti,	8	hours,	contributed:
-	Rsearched	area	functions
-	Made	a	area	function
-	Redid	Perimeter	function
-	Bug	Fixes

Sprint	Retrospection

Sprint	4
-	We	didn't	have	much	left	for	this	sprint	so	we	were	able	to	accomplish	everything	we
originally	set	out	to	do.
-	We	were	also	able	to	implement	a	few	of	the	optional	features.

User	guide/Demo



Multiple	shapes	can	be	drawn	and	displayed	on	the	canvas.	The	user	can	begin	to	draw	a
polygon	by	pressing	any	non-special	key,	and	the	line	lengths	are	displayed.

The	user	can	receive	the	file	output	by	pressing	's'	and	the	vector	string	will	be	alerted.

The	user	can	use	the	vector	string	to	render	the	drawing.	Another	polygon	can	also	be	drawn
on	the	canvas.



The	user	can	draw	curve	lines	by	pressing	'b'	to	display	the	options	of	horizontal	and	vertical
curves.	The	user	must	also	turn	on	freedraw	by	pressing	'f'	before	the	curve	can	be	drawn.

The	user	can	edit	a	polygon	by	pressing	'e'.	They	may	edit	the	polygon	by	either	dragging	the
line	or	the	dot	at	the	end	of	the	line.



A	code	can	be	added	to	a	polygon	while	edit	mode	is	on.

The	code	is	displayed	within	the	polygon.	Only	one	code	can	be	assigned	to	each	polygon,	but
the	polygon	does	not	need	a	code	to	be	assigned	to	it.



A	file	can	be	uploaded	from	the	user's	computer	files.

The	file	contains	the	vector	strings	which	are	then	displayed	on	the	canvas	as	shown.



After	Polygons	are	drawn,	enter	as	stringed,	or	uploaded	if	you	click	on	the	"show	record"
button	the	polygon's	perimeter	and	area	will	be	displayed	in	a	table

Acknowledgments

We	would	like	to	thank	Tyler	Technologies,	Dwayne	Nickels,	Chris	Drake,	and	Michael	Lange	for
giving	us	this	project	and	working	with	us	throughout.	We	would	also	like	to	thank	Dr.	Phung	for
his	guidance	throughout	the	semester.


