grap: write pattern (and test) graphs

Abstract

We describe the syntax used for pattern and test graphs and how to write them. For quick
reference on patterns and conditions you can use Figures 1, 2, 3, 4, 5, 6 and 7 or jump to section 2.3
for examples.

1 Graph files

In order to represent graphs, grap uses the DOT format! with specific keywords (options) and restric-
tions. The DOT format allows easy visualization of the created graph with xdot?.

Restrictions. The format accepted by grap is a sub-language of DOT, thus all valid DOT files may
not be parsed. Such restrictions include:

e All nodes must be defined before the edges

o Graph options applying to the whole graph are not supported

e Subgraphs are not supported

e Only directed graphs (digraphs) are supported
Comments. Comments may be added with a line beginning by a double forward slash (//).

Quotes. Double quotes shall be used to isolate values when special characters such as spaces and
commas are used (for instance: label="xor eax, eax").

Multiple graphs in one file. grap can parse multiple graphs within a single file, this is especially
useful for defining multiple patterns. Note that this is not accepted by the DOT language so you won’t
be able to visualize those patterns with xdot.

2 Patterns

2.1 Graph grammar
2.1.1 Root node

Due to the matching algorithm the pattern needs to be traversable. A root node, from which all other
nodes can be reached, must be chosen by the user for the given pattern.

There shall only be one root node, which is either specified with the root option, or is the first defined
node in the pattern file.

2.1.2 Node options

Figure 1 gives the accepted options for nodes. We previously described the root option. The condition
field is a boolean expression depending on the instruction’s properties, it is extensively described in
section 2.2. We recommend you at least fill the condition option. The value true specifies that the
node could match any instruction.

!The DOT Language (Graphviz): http://www.graphviz.org/content/dot-language
2xdot is a part of Graphviz that you can typically install with your packet manager

http://www.graphviz.org/content/dot-language

Match multiple instructions. The matching algorithm allows pattern nodes to represent multiple
instructions. All the instructions must match the condition field and you can control the number of
matched instructions. By default exactly one instruction is allowed (no repetition) and some options
(minrepeat, maxrepeat and repeat) modify this behavior.

Only instructions within a basic block can be repeated: the first matched instruction shall have exactly
one child instruction, the last matched instruction shall have exactly one father, and the intermediate
instructions have exactly one father and one child.

The lazyrepeat option controls whether the algorithm will attempt to fit a minimum or a maximum
number of instructions into the node. By default (false), the matching will fit the most instructions
(within the maxrepeat limit) it can into the node. When set to true, the matching will stop once the
condition of the node’s child is fulfilled.

Number of fathers and children. You can specify the number of fathers and children of the in-
struction you're seeking with four options (minfathers, maxfathers, minchildren, maxchildren).

Note that if your are matching repeated instructions the constraint on the number of fathers is checked
against the first instruction while the constraint on the number of children is checked against the last
instruction. Thus for repeated instructions it is recommended to use these options for such constraints
and avoid the similar fields of the condition option.

Node extraction. By default grap will count the number of matches but not output information on
the matched instructions. The getid option marks the node for extraction with a given identifier that
will be printed when a match is found.

Field name Possible values Default | Description

root true None | Specifies which node is the pattern’s root
condition (or cond) | String None | Condition to match against

minrepeat Number 1 | Minimum repeat number

maxrepeat Number 1 | Maximum repeat number

repeat Number, *, 4+ or 7 1 | Repeat number (* is minimum 0 with no maximum,

4+ is minimum 1 with no maximum and ? is mini-
mum 0 with maximum 1)

lazyrepeat true or false false | Aims to repeat a minimum (true) or a maximum
(false) number of times

minfathers Number 0 | Minimum number of incoming edges

maxfathers Number None | Maximum number of incoming edges

minchildren Number 0 | Minimum number of outgoing edges

maxchildren Number None | Maximum number of outgoing edges

getid String None | Marks the instruction(s) for extraction with a speci-

fied identifier

Figure 1: Node options for pattern graphs

2.1.3 Edge options

Figure 2 shows the specific grap options that can apply to an edge. They only consist of the child number
of the specified edge. For instance "A -> B [childnumber=2]" means that B should be the child of A
numbered 2.

Note that children can only be numbered 1 or 2 and it is possible to have a child numbered 2 and
no child numbered 1. Usually number 1 is used for the following instruction (their addresses follow each
other) and number 2 for a distant instruction.

Depending on the instruction type you will thus find 0, 1 or 2 children:

o Sequential instructions (mov, xor, add...): the following instruction numbered 1

o Unconditional jumps (jmp B): the target instruction (B) numbered 2

o Conditional jumps (jne B): the following instruction numbered 1 and the target instruction (B)
numbered 2

o Calls (call B): the following instruction numbered 1 and the target instruction (B) numbered 2
o Returns (ret): no child

When the option is not specified, it is inferred depending on the number of existing children.

Field name Possible values | Description
childnumber 1or2 Sets child number

Figure 2: Edge options for pattern graphs

2.1.4 Implicit declarations

As stated previously you may want to always declare the condition field, but if it is missing:

o If a field instruction (or inst) with a value v is filled, the condition is equivalent to "instruction
beginswith v",

e otherwise, if the field label is filled, the condition is the same as previously with the value given
to this field,

o otherwise, the name of the node is taken for the condition.

2.2 Condition grammar

A valid condition is either
« a single property (for instance "basicblockend", see list on Figure 3), or
o a single test with an immediate value: field operator value (for instance "nargs >= 2"), or
« a single test with a self-reference: field! operator _field2 (for instance "arg! is _arg2"), or

« a boolean operation on one or multiple conditions (see Figure 4).

Property Description
basicblockend | True when the instruction is the end of a basic block:

e it is an unconditional jump, or

« it does not have exactly one child (e.g. ret, or
jne for instance), or

e its child has two or more parents.

Figure 3: Supported properties within conditions

Quotes. Single quotes may be used to isolate values when special characters are used (for instance:
instruction regex 'xor e(alb)x ,.*').

Operator | Description
true Always true
not ... Negation
. and ... | Conjunction
. or ... Disjunction
(...) Separation: not (a and b)

Figure 4: Supported boolean operators

2.2.1 Fields and operators

Figure 5 shows the fields on which you can create your conditions, their type and whether they are
available for self-reference (such as in "instruction contains _argl"). Each field has a type (String or
Number) and the operators available are not the same for each type (Figures 6 and 7).

Number of fathers and children. nfathers and nchildren can be used to control the number of
incoming and outgoing edges but, when applied with a repetition option, all the matched instructions
must fulfill the condition and you might run into problems. Thus, as stated in section 2.1.2, when one
of the repeat option is used, the node options should be prefered to the condition fields.

Field name Value type | Description Self-reference
instruction (or inst) | String Full disassembled instruction (text) No
opcode String Mnemonics of the disassembled opcode No
nargs Number Number of arguments No
argl String First argument (if any) Yes (_argl)
arg?2 String Second argument (if any) Yes (__arg2)
arg3 String Third argument (if any) Yes (__arg3)
address (or addr) Number Address (VA) of the instruction No
nfathers Number Number of incoming edges No
nchildren Number Number of outgoing edges No

Figure 5: Condition fields

The following table shows a few examples of x86 instructions and the values of each field. Note that
this describes how grap behaves by default but it depends on how the test binary is disassembled (see
section 3).

Instruction ‘ opcode ‘ nargs ‘ argl ‘ arg2 ‘ arg3
XOr eax, ebx XOr 2 eax | ebx

mov eax, dword ptr [0x41bcOc] | mov 2 eax | dword ptr [0x41bcOc]

ret ret 0

Text-based fields. The current version of grap treats most instruction related fields (such as opcode
and arguments) as text. Thus it is only possible to discriminate on the type of instruction (for instance: is
it a conditional jump ?) or on the type of the argument (register or immediate value ?) with string-based

rules (for instance: "opcode beginswith j', "argl regex 'e(a|blc)x'").

Regular expressions. The boost library provides the regular expression matching with the Perl syn-
tax3. The regex operator requires that the given field matches the whole expression, so you may need
to add wildcard repetition (such as: .*).

Shttp://www.boost.org/doc/libs/release/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

http://www.boost.org/doc/libs/release/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Operator Applies to | Description

is String Exact string

contains String Substring

beginswith | String Matching with beginning of string
regex String Regular expression

Figure 6: Strings operators

Operator | Applies to
== Number
>= Number
> Number
<= Number
< Number

Figure 7: Numbers operators

2.3 Examples

We describe a few pattern examples with the DOT file along with their xdot representation. Note that
colored (purple) fields are specific to grap while the black ones (label, shape) are only used for the
graphical representation.

Call and incoming edges. The following example look for functions that are called at least 8 times
in the binary and have at least two arguments passed with push instructions preceding the call.

digraph function_ call{ @

push [label="pushes", cond="opcode is push', repeat=2, getid=push]
call [label="call", cond="opcode is call’]
function [label="nfathers >=8", cond="nfathers >=8", getid=f] @

1

push —> call [label=1]
call —> function [label=2, childnumber=2] b

| Crame =4
Specific function. The next example detects the decryption function used in a Backspace sample
(with MD5=4ee00c46dal143ba70{7¢6270960823be). It focuses on the algorithm consisting of a xor 0x11

followed by a sub 0x25 to help find very similar samples. It specifically looks for a loop consisting of
any 3 instructions then the xor, then the sub then any 3 instructions and a conditional jump to loop.

digraph decrypt_sample_ 4ee00c46dal43ba70f7e6270960823be { @
A [cond=true, repeat=3]

B [cond="opcode is xor and arg2 is 0x11"]

C [cond="opcode is sub and arg2 is 0x25"] @
D [cond=true, repeat=3]

E [cond="opcode beginswith j and nchildren == 2"]

B->C

C->D

D->E @
E —> A [childnumber=2]

}

™~

Multiple patterns. After examining many Backspace samples, we found different version of simple
decryption algorithms and created small patterns to discriminate against them. This example shows
three of them, including the previous xor then sub. Note that you can put multiple patterns in a single
file and they will be parsed by grap, but you won’t be able to view it with xdot (it is not a valid DOT
file).

digraph decrypt_xor_sub {
A [cond="opcode is xor and arg2 is 0x11"]
B [cond="opcode is sub and arg2 is 0x25"]

A—>B
}

digraph decrypt_sub_ xor_sub {

A [cond="opcode is sub"]

B [cond="opcode is xor and arg2 is 0xb'"]
C [cond="opcode is sub and arg2 is 0x12"]

A->B
B-—>C
}

digraph decrypt_xor_sub_sub {

A [cond="opcode is xor and arg2 is 0x17"]
B [cond="opcode is sub"]

C [cond="opcode is add and arg2 is 0x13"]

A->B
B-—>C
}

Successive calls. The following example looks for a specific pattern found in Backspace samples and
consisting of a pop or push instruction followed by two calls, each with two pushed arguments, to the
same function. This function consists of 0 to 4 instructions (prolog), then a loop with 3 to 12 instructions,
then 0 to 2 instructions followed by a ret.

digraph push_calls{

0 [label="pop or push', shape=box, cond="inst regex '“p(op|ush).x""]
A [label="pushl (x2)", cond="opcode is push", repeat=2]

B [label="calll", cond="opcode is call"]

C [label="push2 (x2)", condition="opcode is push', repeat=2]

D [label="call2", cond="instruction beginswith call']

Pre [label="Pre", cond=true, maxrepeat=4]

Loop [label="Loop", cond=true, minrepeat=3, maxrepeat=12, getid="loop']
End [label="End", cond=true, minrepeat=0, maxrepeat=2, lazyrepeat=true]
Ret[label="Ret", cond="opcode beginswith ret"]

0 —> A [label=1, childnumber=1]
A —> B [label=1, childnumber=1]
B —> C [label=1, childnumber=1]
C —> D [label=1, childnumber=1]

B —> Pre [label=2, childnumber=2]
D —> Pre [label=2, childnumber=2]

Pre —> Loop [label=1, childnumber=]]
Pre —> End [label=2, childnumber=2]
Loop —> End [label=1, childnumber=1]
Loop —> Loop [label=2, childnumber=2]
End —> Ret [label=1, childnumber=1]

}

2.3.1 Condition examples
A few condition examples are given below.

cond=true

cond="opcode is xor"

cond="nfathers >=5"

cond="inst contains eax and addr >= 0x401500 and addr <= 0x401505"
cond="inst regex '.x(x)?or.x|"j7c.x""

cond="nargs == 2"

Conditional jumps. The next example is useful for detecting conditional jumps.

cond="opcode beginswith j and nchildren == 2"

Zero assignment. The following example uses a self-reference (__arg2) to find assignment to zero: it
is either mov 77, 0 or xor argl, arg2 with argl = arg2.

cond="(opcode is mov and arg2 is 0) or (opcode is xor and argl is _arg2)"

Memory access. The next condition can be used to detect a xor overwriting a value in memory (such
as: xor [eax], Ox11).

cond="opcode is xor and argl contains ["

Xor ending a basic block. This example looks for a xor condition that would be the end of a basic
block.

cond="opcode is xor and basicblockend"

3 Test graphs

This section describes how to write test graphs from binaries. It may be useful if you wish to write test
graphs manually or write your own disassembler.

3.1 Node options

Figure 8 shows the fields that you can fill for them to be matched against pattern graphs. Some fields
will be implicitly filled by grap while parsing but you can explicitly define them. It is recommended to
fill at least the instruction and the address fields since they cannot be guessed.

Field name Value type | Default Implicit example
instruction (or inst) | String label value, or name

opcode String implicit mov
nargs Number implicit 2

argl String implicit eax

arg2 String implicit 0x3

arg3 String implicit

address (or addr) Number 0

Figure 8: Test fields, implicit values assume instruction="mov eax, 0x3"

3.2 [Edge options

As with pattern graphs, test graphs only have one edge option (Figure 9) which specifies the number of
the child. It will be implicitly inferred based on the number of children already declared for the given
node.

Field name Possible values | Default
childnumber 1or2 implicit

Figure 9: Edge options for test graphs

3.3 Example

Below is a small example of a test graph with the instruction and address fields always filled. The
other fields may be filled but otherwise they will be implicitly inferred.

digraph G {

401000 [inst="mov eax, 0x407f94", address="0x401000"]

401005 [inst="call 0x407D90", address="0x401005"]

407D90 [inst="push ebp", nargs=1, argl=ebp, address="0x401005"]
40100A [inst="mov ecx, 0", opcode=mov, nargs=2, argl=ecx, arg2=0, address="0x40100A"]
40100B [inst="push ebx", address="0x40100B"]

40100C [inst="push esi", address="0x40100C"]

40100D [inst="push edi", address="0x40100D"]

401000 —> "401005" [childnumber=1]

401005 —> "40100A" [childnumber=1]

401005 —> "407D90" [childnumber=2]

40100A —> "40100B" [childnumber=1]

40100B —> "40100C" [childnumber=1]

40100C —> "40100D" [childnumber=1]

}

10

	Graph files
	Patterns
	Graph grammar
	Root node
	Node options
	Edge options
	Implicit declarations

	Condition grammar
	Fields and operators

	Examples
	Condition examples

	Test graphs
	Node options
	Edge options
	Example

