
 Data Documentation Initiative

1

Data Documentation Initiative (DDI)
Technical Specification

Part II:

User Guide

Version 3.0

April 2008

 Data Documentation Initiative

2
3

Copyright © 2008 DDI Alliance, DDI 3.0 Part II User Guide, 2008-04-28
http://www.ddialliance.org/ 4

5
6
7
8
9

Content of this document is licensed under a Creative Commons License:
Attribution-Noncommercial-Share Alike 3.0 United States

This is a human-readable summary of the Legal Code (the full license).
http://creativecommons.org/licenses/by-nc-sa/3.0/us/ 10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

You are free:

• to Share - to copy, distribute, display, and perform the work
• to Remix - to make derivative works

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

• Noncommercial. You may not use this work for commercial purposes.
• Share Alike. If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

• Any of the above conditions can be waived if you get permission from the
copyright holder.

• Apart from the remix rights granted under this license, nothing in this
license impairs or restricts the author's moral rights.

Disclaimer

The Commons Deed is not a license. It is simply a handy reference for understanding the Legal
Code (the full license) — it is a human-readable expression of some of its key terms. Think of it
as the user-friendly interface to the Legal Code beneath. This Deed itself has no legal value, and
its contents do not appear in the actual license.

Creative Commons is not a law firm and does not provide legal services. Distributing of,
displaying of, or linking to this Commons Deed does not create an attorney-client relationship.

Your fair use and other rights are in no way affected by the above.

Legal Code:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode 46

47

http://www.ddialliance.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

 Data Documentation Initiative

48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

User Guide for DDI Version 3.0

Version 2:
Date: April 28, 2008
Wendy Thomas, Arofan Gregory, J Gager

Table of Contents
Table of Contents .. 3
1.0 Overall Structure ... 5

1.1 Inline Content vs. Referenced Content .. 5
1.2 Top-Level Declarations .. 5
1.3 Standard Model Contents .. 9

1.3.1 Coverage ... 9
2.0 Technical Structures ... 15

2.1 Identifiable Objects .. 15
2.2 Versionable Objects ... 16
2.3 Maintainable Objects ... 17
2.4 Constructing an Identification ... 18
2.5 URN Structure ... 20
Examples .. 21

URN of a maintained object ... 21
URN of an versionable object .. 21
URN of an identifiable object ... 21
URN of an object that nests within its own object type 21

2.6 Referencing ... 22
2.7 Date ... 25

2.7.1 Simple Date ... 25
2.7.2 Date Range ... 25
2.7.3 Historical Dates (expressed in formats other than ISO 8601) 26

2.8 String Types ... 26
2.9 DDI Profiles .. 27

3.0 Capturing the Background Information .. 28
3.1 Study Unit .. 28
3.2 Concepts .. 30
3.3 Universe ... 31
3.4 Methodology .. 32
3.5 Collection Event ... 32

4.0 Archives, Organizations, and Life Cycle Events .. 33
4.1 Archive Specific Information .. 33
4.2 Organization .. 35
4.3 Life Cycle Information .. 37

5.0 Building and Documenting a Questionnaire .. 37
5.1 Question Construction ... 40
5.2 Control Constructs and Instrument .. 42

 Data Documentation Initiative

92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

6.0 Data Processing .. 45
6.1 Coding ... 46

7.0 Creating a Basic Data Dictionary .. 46
7.1 Category Schemes .. 47
7.2 Code Schemes .. 47
7.3 Describing Variables .. 48

7.3.1 Text ... 50
7.4 Data Relationships ... 53
7.5 NCubes .. 55

8.0 Physical Data Product ... 58
8.1 Physical Structure Scheme .. 59
8.2 Record Layout Scheme ... 61

8.2.1 RecordLayout .. 61
8.2.2 DataSet ... 63
8.2.3 NCube Record Layout (Normal) .. 64
8.2.4 Tabular NCube Record Layout .. 68
8.2.5 Inline NCube Record Layout ... 69
8.2.6 Proprietary Record Layout (BETA) .. 69

7.7 Physical Instance ... 70
7.7.1 Top Level Elements... 70
7.7.2 Gross File Structure .. 71
7.7.3 Statistics .. 71

8.0 Group, Resource Package, and Comparison .. 72
9.0 Step-by-Step Sequence to Create a DDI File for a Simple Instance 76

 Data Documentation Initiative

118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159

1.0 Overall Structure

1.1 Inline Content vs. Referenced Content
The flexibility of a set of schemas means that you have a number of choices in
how to organize your DDI XML instance. Schema contents may be held
separately as maintained objects and then included by reference in a parent
document or included inline as a single document. Inclusion inline means that a
section is incorporated into the parent object in a hierarchical manner, with the
elements of each part listed in the main document. Inclusion by reference allows
you to create, say, a DDIInstance that references other DDIInstances which
contain its studyunit module(s), datacollection module(s), logicalproduct
module(s) etc. It is, in essence, a short file of external references, that when
resolved, result in the full document. Keep in mind that any decision you make
now does not preclude later disassembly of an inline document or assembly of a
document containing external references into a single inline document.

Either approach or even combinations of the two are all permissible. The
approach taken depends on the anticipated use of the document and the needs
of the organization creating it. Issues that one should consider include:

Will any of the parts be used in multiple DDI XML instances?

For example, the data collection module of a census might be used in over
50 different logical products from public use micro-samples to aggregate
data tables. You may or may not want all of these logical products
expressed as a single document. If not, having the common parts
maintained as discrete objects allows you to use them in multiple
documents and still retain the relationships among the documents by their
mutual use of a common object.

Is it a simple study that is not anticipated to experience major changes, revisions,
or extensions?

Many of the studies found in archives are simple studies that are the result
of academic research. Such studies do not undergo extensive changes as
they are created, deposited, distributed, and analyzed. In such cases, a
single inline document may be the easiest for the researcher to create.

In the final analysis, it is what is most expedient for the creator, publisher, or
archive.

1.2 Top-Level Declarations
All XML documents, whether using DTDs or Schemas, must declare their
structures at the head of the file. Because schema structures tend to use multiple

 Data Documentation Initiative

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

sources (multiple schemas), their declaration is both more complex and provides
for more options. In essence, the header provides the following information:

Declaration that this is an xml file:
 <?xml version="1.0"?>

The primary schema’s primary element tag:
 Left angle bracket

abbreviation for the schema if used
colon
primary element tag

 EXAMPLE:
 <s:StudyUnit

The location of the primary schema including its URN filename and path (note
that the path can be to an internal copy of the schemas or an http path to a
remote copy):
 xsi:schemaLocation
 equal sign
 open quote
 schema URN
 space
 name of schema file including internal path or http path
 close quote
 EXAMPLE:

 xsi:schemaLocation="ddi:studyunit:3_0 C:\\ddi\schemas\studyunit.xsd"

A namespace is the full URI of a schema or element. In the declaration, an
abbreviation or prefix is assigned to the XML schema namespace so that
elements from that schema can be uniquely identified with a [prefix]:[element
name] (see http://en.wikipedia.org/wiki/XML_Namespaces for additional
information and tutorial). All of the schemas required by the document must be
identified by namespace and assigned an abbreviation to be used by any
element found outside of the parent schema. Abbreviations are assigned to a
namespace by the “xmlns:” statement, which declares first the abbreviation and
then the namespace of the schema as ddi:<schema name>:version number. For
example, xmlns:r="ddi:reusable:3_0"
 xmlns
 colon
 schema abbreviation

equal sign
open quote
schema URN or remote site
close quote
EXAMPLES:

 xmlns:r="ddi:reusable:3_0"

 Data Documentation Initiative

206
207
208
209
210
211
212
213
214
215
216

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

All schemas except the top level instance.xsd have been assigned abbreviations
as a means of referencing them from within the schema definitions. Using these
abbreviations is a convenient convention if you want your documents to be more
easily recognizable by other human readers. You may alternately assign your
own and some XML editors assign default abbreviations. Systems will follow the
abbreviation pattern identified in the header. The following table provides the
abbreviation and URN used in the xmlns declarations, and the schema file name
used in the declaration of the primary schema.

Abbr URN ddi:schema:version Schema name (ddi schemas)
 ddi:instance:3_0 instance.xsd
s ddi:studyunit:3_0 studyunit.xsd
d ddi:datacollection:3_0 datacollection.xsd
l ddi:logicalproduct:3_0 logicalproduct.xsd
c ddi:conceptualcomponent:3_0 conceptualcomponent.xsd
cm ddi:comparative:3_0 comparative.xsd
g ddi:group:3_0 group.xsd
pr ddi:ddiprofile:3_0 ddiprofile.xsd
a ddi:archive:3_0 archive.xsd
o ddi:organizations:3_0 organizations.xsd
p ddi:physicaldataproduct:3_0 physicaldataproduct.xsd
pi ddi:physicalinstance:3_0 physicalinstance.xsd
ds ddi:dataset:3_0 dataset.xsd
r ddi:reusable:3_0 reusable.xsd
dc ddi:dcelements:3_0 dcelements.xsd
xhtml http://www.w3.org/1999/xhtml [reference to standard]
xs http://www.w3.org/XML/1998/namespace xml.xsd
m1 ddi:physicaldataproduct_ncube_normal:3_0 physicaldataproduct_ncube_normal.xsd
m2 ddi:physicaldataproduct_ncube_tabular:3_0 physicaldataproduct_ncube_tabular.xsd
m3 ddi:physicaldataproduct_ncube_inline:3_0 physicaldataproduct_ncube_inline.xsd
m4 ddi:physicaldataproduct_proprietary:3_0_Beta physicaldataproduct_proprietary.xsd
 217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

The first example below shows a document using the instance.xsd as the primary
schema. The primary element of instance.xsd is DDIInstance (parent of all other
elements in instance.xsd). In this example, the user has declared all the schemas
when in fact many are never used in the document. Note that the user has
provided the abbreviation “ns1” to the instance schema. This is common when
using XML editing software as they tend to assign prefixes for everything. With
the exception of this abbreviation, others were taken from the schema
declarations themselves. Both examples lack path information for the primary
schema, and so the xml document needs to reside in the same directory as the
schema. Once DDI 3.0 is officially published, we would normally use the official
maintained version of the schema or an agreed upon locally held copy,
accessible to the system processing the xml document.

<?xml version="1.0"?>
<ns1:DDIInstance

 Data Documentation Initiative

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="ddi:instance:3_0 instance.xsd"
xmlns:ns1="ddi:instance:3_0"
xmlns:r="ddi:reusable:3_0"
xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:dc="ddi:dcelements:3_0"
xmlns:a="ddi:archive:3_0"
xmlns:g="ddi:group:3_0"
xmlns:cm="ddi:comparative:3_0"
xmlns:c="ddi:conceptualcomponent:3_0"
xmlns:d="ddi:datacollection:3_0"
xmlns:l="ddi:logicalproduct:3_0"
xmlns:p="ddi:physicaldataproduct:3_0"
xmlns:ds="ddi:dataset:3_0"
xmlns:pi="ddi:physicalinstance:3_0"
xmlns:m1="ddi:physicaldataproduct_ncube_normal:3_0"
xmlns:m2="ddi:physicaldataproduct_ncube_tabular:3_0"
xmlns:m3="ddi:physicaldataproduct_ncube_inline:3_0"
xmlns:m4="ddi:physicaldataproduct_proprietary:3_0_Beta"
xmlns:s="ddi:studyunit:3_0"
xmlns:pr="ddi:ddiprofile:3_0">

In the second example the user has declared the studyunit.xsd to be the
primary schema and used its abbreviation “s”. The primary element in
studyunit.xsd is StudyUnit.

<?xml version="1.0"?>
<s:StudyUnit xmlns:s="ddi:studyunit:3_0"
xmlns:c="ddi:concept:3_0"
xmlns:l="ddi:logicalproduct:3_0"
xmlns:r="ddi:reusable:3_0"
xmlns:d="ddi:datacollection:3_0"
xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="ddi:studyunit:3_0 studyunit.xsd">

Note that the use of anything but the DDIInstance module (instance.xsd) as a
top-level element is reserved for non-public use of the DDI standard (e.g., within
a single organization during processing). Any publication of DDI for general use
should always use DDIInstance as the top-level element. This convention insures
that all external systems of a single standardized top level structure for all DDI
documents.

 Data Documentation Initiative

277 1.3 Standard Model Contents
Complex Reusable
Element

Description of Purpose and Usage

Identification is provided
through use of
MaintainableType as an
extension base

This is the identification of the maintainable
module. It must include an attribute id, as well as
agency, version and versionDate. All elements
within the module can inherit the Agency and
Version from this complex element so it must be
declared at the highest level.

Coverage Coverage provides detail for Topical, Temporal,
and Spatial Coverage. This should always be
stated in the studyunit, and all sub-modules inherit
this coverage unless they use this same element to
constrain one or more of the coverage areas. A
group should reflect the coverage of all studyunits
included in the group.

OtherMaterial OtherMaterial allows you to provide a citation,
identifier, and type for any form of material (digital
or otherwise) related to the study. This can be
linked to any identifiable element in the document.
This is available in all major modules so that
OtherMaterial specific to a module can be placed at
the most appropriate level. All OtherMaterial
content is placed together near the top of a
module. Storing OtherMaterial in the most relevant
module facilitates keeping this information with the
related identified objects if the instance is later
broken down into its component parts.

Note Note is a repeatable complex element located near
the top of each module. Think of it in the same way
you would a set of footnotes at the end of an
article. The major features of Note are the ability to
type the note and to attach it to any identifiable
element in the module. A note can be created once
and attached to as many elements as needed.
Note was designed to be used during the
production process to note questions, cleanups
and verifications. Its single location and multiple
linkages make it easy to edit or remove.

 278

279
280
281
282
283

1.3.1 Coverage
1.3.1.1 Topical Coverage
Topical coverage provides for both subject and keywords. It is an identifiable
object. Subject is intended to be a structured subject from a controlled
vocabulary such as MESH, LC, etc. Keywords are simple terms, but DDI allows

 Data Documentation Initiative

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

for the creation of a controlled vocabulary to further identify and relate keywords
between instances or with large collections.

1.3.1.2 Temporal Coverage
Temporal coverage provides information on the dates covered by the data within
the study unit or group. Each date is of the date structure described in section
2.7. At the top level (Study Unit or Group) Temporal coverage should provide
inclusive coverage. When used at a lower level, for example a single data file,
Temporal coverage can be used to constrain the coverage to a specific time or
time period within the defined top level coverage.

1.3.1.3 Spatial (Geographic) Coverage
Geographic coverage provides the following sections:

• A human-readable description of the geographic coverage which maps to
the Dublin Core geographic coverage element

• A bounding box (north, south latitudes and east, west longitudes) to
support geographic coordinate point search systems

• The lowest form of geographic description (point, line, polygon, or linear
ring)

• Spatial object
• Top Level and Lowest Level
• Summary Data Reference
• The relational structure of geographies
• Specific geographic locations

The human readable description should provide as much information on
geographic coverage as you would wish to see in a standard bibliographic
record. A bounding box consists of a North Latitude, South Latitude, West
Longitude, and East Longitude. Longitude has a value in the range of -180
degrees to 180 degrees expressed as a decimal. Latitude has a value of -90
degrees to 90 degrees expressed as a decimal. Bounding boxes provide a first
pass identification for coordinate value searches. While the area may seem quite
larger than the geography being covered (for example a bounding box of the
current United States includes most of Canada), in terms of the entire surface of
the earth, it is relatively specific. Internal bounding polygons can provide further
coordinate point detail. Geographic search system will also be able to make use
of Geographic Structure and Geographic Location details if they make use of
known gazetteer names and structure definitions.

The spatial object indicates whether the data is reported for points (a specific
address), a line (street, boarder), ring (area within X distance of a point in all
directions), or polygon (State, tract, place, block). This is not the level that the
data is collected at, but the level it is available in the dataset. This information
tells the geographer what he is able to do with the data in terms of aggregation.
Points can be aggregated to lines and polygons, but polygon level data cannot

 Data Documentation Initiative

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

be disaggregated to point data. Top level and Lowest level are the equivalents of
extent of coverage (for example Europe) and the smallest identifiable area (for
example Country). Both may be expressed as Names and as references to
specific levels in a GeographicStructure definition.

The last two are new features introduced in DDI 3.0 that allow for specific
identification of geographic structures (types of geographic areas like Countries,
States, Cities, etc.) and specific geographic locations (for example Germany,
France, Ghana, Japan, Canada, etc.). In addition a geographic polygon or
reference to shape files can be made at this level. These schemes can be large
and complex and the ability to create these once and reuse them via reference
was intended to both increase access to this level of geographic information, and
to provide a level of comparability by having multiple studies pointing to the same
geographic schemes. If this information is provided inline within the DDI Instance,
the information is held with GeographicStructureScheme and
GeographicLocationScheme found in conceptualcomponent.xsd. The appropriate
contents are then referenced by SpatialCoverage.

The purpose of the various geographic coverage descriptions is two-fold. First, it
provides information in a format that is more readily understood by geographers
and GIS systems. Second it provides access to geographic structure information
that was frequently only available by querying the data or by referring to outside
documents. Charts and tables providing coding information and relationships
generally required human interpretation in order to use them for accessing data.
DDI 3.0 attempts to provide this information in a form that can be processed for
both data discovery and data exploration. The major components and their
functions are listed below. It is important to have a sense of how this information
is used by others in order to understand the implications of excluding it from your
document.

Element Usage
Bounding Box The bounding box is the north/south

latitudes and east/west longitudes that
bound the fullest extent of the geography
being covered by the study. While this
frequently encompasses more than the
intended area (for instance the bounding
box for the United States ends up including
most of Canada), it is used as a first pass
locator, by systems that search the world in
terms of a coordinate point. Even a large,
overextended box is only a small percentage
of the earth’s surface and therefore
effectively limits the search area for this type
of system.

 Data Documentation Initiative

Description This is the human-readable description of

the geographic coverage that maps to the
Dublin Core “spatial coverage.” It should be
as informative as you wish, noting at
minimum the extent of the coverage (top
level or what the bounding box is bounding)
and the smallest level of identifiable
geography available (lowest level). Note that
while DDI allows structure in this field
through the use of xhtml tags, these tags will
be lost if the information is transferred to
Dublin Core. Make sure content is
understandable without the structure
elements if you anticipate using this field to
populate a Dublin Core record.

Geography Structure Variable Many data files that use geography as case
identification will have a variable that will
define the type of geographic level for a
specific record (such as Country, county,
city, etc.). This is a reference to that
variable, which should provide a listing of
each geographic type available and its type
identification. Even without a full geographic
structure description, this single variable can
provide a great deal of information about the
available geographies within the data file.

Spatial Object Data are gathered and reported at a variety
of object levels. This is one of the basic
pieces of information geographers need to
know in order to map data. Point data can
be assigned or aggregated to lines, linear
rings, and polygons, but polygons cannot be
separated into their contained points.

Geographic Structure Geographic structure provides detailed
information on the types of geography
available and how the various types relate to
each other. Single hierarchies, layered
hierarchies, and restricted coverage
information are provided here.

Geographic Locations When a file contains a small set of locations
or in particular when it contains selected
locations of a single type, it is often useful to
have that information in the metadata. For
example, does a file containing data on
cities of 25,000 or more include the city of
Black Duck, Minnesota? Geographic

 Data Documentation Initiative

locations may contain a more detailed
bounding polygon description and/or
pointers to external geographic shape or
boundary files.

Summary Data Reference If the geographic structure is defined, this
element can be used to identify all levels
that have summary data attached to them.
For example, a file with the geographic
structure of State/County/Tract may have
data records for all levels or only for the
lowest level (higher levels are created
through aggregation).

Top Level Reference This identifies the broadest area of coverage
by text name and also optionally as a
reference to the geographic level that
describes it.

Lowest Level Reference This identifies the smallest area of coverage
by text name and also optionally as a
reference to the geographic level that
describes it. This is similar to the geographic
unit as described in earlier versions of DDI.

 361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

The Geographic Structure describes the levels of geography and their
relationships by defining a level and its parent or parents. Note that coverage
limitation information can be included at specific levels to further define the
coverage structure. This information will help external systems identify when only
a subset of locations are available in the data (such as only Counties with 100 or
more farms of $1,000 or more in yearly income) and the type and location of
geographic codes in the data.

GEO_0”>

r:Geography i

r:Leve
< sIdentifiable=”true” id=”
 < l>
 <r:Code
 eference=”true” isExternal=”false”>

>010</r:Code>
<r:AurhorityOrganziationReference isR

ference>
<r:ID>USCB</r:ID>

rityOrganziationRe
ountry</r:Name>

</r: Aurho
e>C<r:Nam

 </r:Level>

GEO_1”>
<r:Geography>
r:Geography i

r:Leve
< sIdentifiable=”false” id=”
 < l>
 <r:Code
 eference=”true” isExternal=”false”>

>040</r:Code>
<r:AurhorityOrganziationReference isR

Reference>

<r:ID>USCB</r:ID>
rityOrganziation
tate</r:Name>

</r: Aurho
<r:Name>S

 </r:Level>

 Data Documentation Initiative

nce=”true” isExhaustiveCoverage=”true”>

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

efere
:ID>

 <r:ParentGeography isR
r:ID>GEO_0</r <

 </r:ParentGeography>

GEO_2”>
<r:Geography>
r:Geography i

r:Leve
< sIdentifiable=”false” id=”
 < l>
 <r:Code
 eference=”true” isExternal=”false”>

>050</r:Code>
<r:AurhorityOrganziationReference isR

<r:ID>USCB</r:ID>
</r:AurhorityOrganziationReference>
<r:Name>County</r:Name>

eLimitation>Counties with at least 100 farms with $1,000 or in <r:Coverag
more yearlyincome</r:CoverageLimitation>

/r:Lev
nce=”true isExhaustiveCoverage=”true”>

 < el>
efere
:ID>

 <r:ParentGeography isR
r:ID>GEO_1</r
ntGeography>

 <
</r:Pare

r:Geography>

<

The complementary piece to this is Geographic Locations where explicit
locations can be listed. This is useful for files with limited geography or where
shape files will be attached to specific geographic locations. The description
starts with information on a specific type of geography which indicates if there is
any coverage limitation, and then identifies the variable containing the
geographic code for that area type and the authority reference for the coding
system. This is followed by a list of specific location codes. Note that specific
codes do not need to be included, so that you can provide all of the information
noted above without going into further detail.

Individual location listings provide a specific geographic code, a name, and the
geographic time (valid time period for the geography being used as this does not
always match that of the data), as well as the option of including a bounding
polygon (and excluding polygon) and/or reference to a shape file to describe the
area in as detailed a manner as desired.

<r:GeographicLocation isVersionable=”true” id=”GL_1”>
 <r:Au nce=”true” isExternal=”false”> rhorityOrganziationReference isRefere

 <r:ID>USCB</r:ID>
nziationReference>

 isReference=”true”>
</r: AurhorityOrga

 <r:GeographicLevelRefereence
O_2</r:ID>

nce>
 <r:ID>GE
 <r:GeographicLevelReferee
 <r: Values>

TCNTY</r:ID></ r:Reference>
 <r:VariableReference>

>S

 <r:Reference><r:ID
 </r:VariableReference>
 <r:GeographyValue>
 <r:GeographyCode>
 <r:Value>2700010</r:Value>

 Data Documentation Initiative

r:GeographyName>
 </r:GeographyCode> 436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469

470
471
472
473
474
475
476
477
478
479
480

 <r:GeographyName>Aitkin [MN]</

>
 <r:GeographicTime>

artDate
Date>

 <r:StartDate>1860</r:St
 <r:EndDate>9999</r:End
 </r:GeographicTime>

ternalURI>
 <r:BoundingPolygon>

//data.nhgis.org/MNcty1860.prj</r:Ex
PolygonLinkCode>

 <r:ExternalURI>http:
 <r:PolygonLinkCode>2700010_1860</r:

/r:SimpleDate>
 <r:GeographicTime>

60<
>

 <r:SimpleDate>18
Time
gon>

 </r:Geographic
y </r:BoundingPol

 </r:GeographyValue>
 <r:GeographyValue>
 <r:GeographyCode>
 <r:Value>2700310</r:Value>

eographyName>

 </r:GeographyCode>
 <r:GeographyName>Cook [MN]</r:G

>
 <r:GeographicTime>

/r:StartDate
r:EndDate>

 <r:StartDate>1880<
</
>

 <r:EndDate>9999
graphicTime

e>
 </r:Geo
 </r:GeographyValu
 </r:Values>
</r:GegraphicLocation>

2.0 Technical Structures
DDI 3.0 is dependent upon creating relationships by reference. While a hierarchy
may seem more intuitive to a user, a strict hierarchical approach limits the
availability of materials for reuse. Reuse facilitates the development of
documentation throughout the life cycle of the study, reduces the possibility for
human entry error, and provides a basic level of implicit comparability. In order to
provide interoperability for reference systems (allowing for exchange and reuse
of existing metadata) a consistent form of identification must be employed.

2.1 Identifiable Objects
Not all elements are identifiable, but identification, when applicable, is required. If
we want DDI metadata to be shared and act as a transport structure to run
programs and processes, consistent use of identifiers is essential. Non-identified
elements generally require context and “live” within complex elements that are
identifiable and provide context for the non-identified element.

Elements that have identification only, that are not versionable, inherit their
version from their versionable parent, and their agency from their maintainable
parent agency. In other words, if the version or agency of the parent element
changes the identifiable element is considered to be part of this new version.

 Data Documentation Initiative

481
482
483
484
485
486
487
488
489
490
491
492

Elements that are identifiable only use the complex element r:IdentifiableType as
an extension base. This provides it with a consistent set of attributes that are
used to identify the element and to note any local changes for inherited contents.
The element may also be assigned a Name which can be repeated for language
and/or geographic alternatives. All identifiable elements must have an ID entered
in the attribute id. The full identification can also be expressed as a URL which
includes the complete path name. See Part I Appendix 1 for the full URL paths
for all identified objects in DDI 3.0. All identifiable elements within a DDI instance
can be located by the required fixed attribute isIdentifiable=”true” and contain the
following element and attributes (attributes are identified with the prefix @ and all
start with lower case letters):

Element / attribute Description of use
@id

Required identifier for the element. This MUST be unique
within the parent maintainable.

@urn

An optional urn for the element. Note that if there is conflict
between the id and urn content, the urn takes precedence.

Name

An optional repeatable element which allows for a human-
readable name to be attached to the parent element. It can
be repeated for language and/or geographic alternatives.

@action

Action has a controlled vocabulary of “Add”, “Update”, or
“Delete”. It is used to identify local overrides to inherited
content.

• Add – the element has a unique id and should be
used in addition to the inherited elements

• Update – the element has the id of the inherited
element which it updates (for example a local Name
or label change)

• Delete – the element has the id of the inherited
element which is NOT used in the local instance
(for example a ProcessingEvent was not used).
Note that if the identified element is complex, the
entire contents of the complex element will be
considered as deleted.

 493
494
495
496
497
498

499
500
501
502
503

Note that the attribute action is used only with inherited materials. Inheritance
occurs with grouping. These action statements provide local overrides for the
current inheritance, they themselves cannot be inherited. Note that if the element
that contains the change is not identifiable, its parent identifiable should be
entered in full including the changed information.

2.2 Versionable Objects
A subset of identifiable elements is also versionable. These are elements for
which changes in content are important to note. They use the extension base of
VersionableType and include all of the elements and attributes of
IdentifiableType. They are identified in a DDI instance by the fixed attribute

 Data Documentation Initiative

504
505
506
507
508
509
510
511

isVersionable=“true”. In addition Versionable elements allow one to indicate a
major and minor version, the date of the version, who changed it, and why it was
changed. If a change occurs at a lower level, it requires a version change of its
parent. Users need to understand if the change that was made will affect their
analysis of the data. To do this, they need to know why a change was made and
who made it. Versionable elements include the following elements and attributes
in addition to those listed under Identifiable.

Element / attribute Description of use
@version

If this is missing the default is assumed to be version 1.0.
This attribute can contain only numbers and the
separator “.” But can extend to as many levels of
specificity as needed by the maintenance agency. The
first number to the left of the separator is the major
version number. All subsequent numbers are considered
minor versions.

@versionDate

This is the date that the specific version becomes active.
It is a simple date containing a dateTime, date,
YearMonth, or YearMonth. It should be as specific as
possible.

VersionResponsibility

Do not use this to indicate the name of the Maintenance
Agency as this is the only agency which can make
changes in the content of the instance.
VersionResponsibility was provided to allow for the
identification of the person or suborganization within the
maintenance agency that made the change. This may be
important to internal management.

VersionRationale

This provides the reason for the change. The correction
of a typographical error may have different ramifications
for the end user than the replacement of erroneous
content.

 512
513
514
515
516

517
518
519
520
521
522
523
524
525

Note that versioning is only required for published materials. Maintaining version
identification during the production process will depend on the needs of the
organization producing the document.

2.3 Maintainable Objects
There are a number of complex elements that represent major blocks of objects
that can be maintained outside of a DDI Instance (published as separate
entities). All maintainables are published within a DDIInstance under one of the
following packaging structures: StudyUnit, Group, or ResoursePackage. Note
that a PhysicalInstance can only be published within a StudyUnit or Group. Major
modules can be maintained as can all complex elements whose name ends in
“Scheme”, plus occasional additional complex elements. Note that
ResourcePackage and Group are the two possible top level elements of the

 Data Documentation Initiative

526
527
528
529
530

module scheme Group. Most module schemes contain a single top level
containing element which carries the name of the module. Version changes can
only be made by the maintaining agency (or at their specific request) so that if a
non-maintaining agency makes a change.

Modules Scheme Additional
DDIInstance QuestionScheme Instrument
Archive CategoryScheme ResourcePackage
StudyUnit CodingScheme Group
DataCollection VariableScheme
LogicalProduct ConceptScheme
PhysicalDataProduct UniverseScheme
PhysicalInstance OrganizationScheme
Comparative GeographicStructureScheme
ConceptualComponent GeographicLocationScheme
DDIProfile NCubeScheme
 PhysicalStructureScheme
 RecordLayoutScheme
 ControlConstructScheme
 InterviewerInstructionScheme
 531

532
533
534
535
536
537
538
539
540

541
542
543
544
545
546
547
548
549
550
551
552
553
554

Maintainable objects can be used to assemble an instance by reference or to
share commonly used sets of information. Elements that are maintainable are
extensions of the complex element r:MaintainablType. They include all the
elements and attributes of VersionableType and add the attribute agency. The
content of Agency is the Name token of maintenance agency. This unique token
must be declared in the document as a full organization or individual description
or as a reference to an external registry of organizations. Note that the id of all
maintainable objects MUST be unique within the maintaining agency.

2.4 Constructing an Identification
The complex elements IdentifiableType, VersionableType, and MantainableID
are used to identify described objects for the purposes of internal and/or external
referencing. All identification allows for two ways of expressing an entity’s
identification. The first is through the use of a URN. The URN provides the
element type, the maintaining agency, version, and element ID. While URN is
recommended, the alternative is using a series of elements that provide the
same information as found in the URN. If both URN and a combination of
elements are used, the URN takes precedence. The DDI uses a specifically
structured URN [see URN part 2.5]. Note that VersionableTypes inherit their
IdentifyingAgency from their parent Maintainable object, while the
IdentifiableType inherits both its versioning information and IdentifyingAgency
from its parent Versionable object. Any object that is published (a Group,
StudyUnit, or any Maintainable Object published for inclusion by reference, must

 Data Documentation Initiative

555
556
557
558
559
560
561
562
563

be published within a DDIInstance. The ID of this instance MUST be unique
within the maintaining agency.

Identification contains a URN and/or the sequence of elements shown below. In
addition Identification has an optional repeatable element Name. This is a
human-readable name given the entity being identified. This may be a mnemonic
that is commonly related to the element. It may be repeated to provide language
and/or geographic alternatives.

ELEMENT/ATTRIBUTE TYPE Description
@id NCName ID assigned by an agency. This must

be a unique identifier within the
maintained object. It must start with a
character and can contain any
character or number plus any of the
following non-alphanumeric characters:
“*”, “@”, “_”, “$”, or “-“

@agency
(MaintainableType only)

NCName The agency maintaining the
identification. This is optional if
inherited from a parent object. The
published instance must contain an
entry in an OrganizationScheme either
inline or by reference. The content
should be the ID of the
organization/individual.

@version
(VersionableType and
MaintainableType only)

string Version number, expressed as a two-
part numeric string composed of two
positive integers separated by a period.
The first number indicates a major
version, the second a minor one: 1.0.
Optionally, a third integer may indicate
sub-version: 1.0.2.

@versionDate
(VersionableType and
MaintainableType only)

BaseDate Date the version took effect expressed
as dateTime, date, YearMonth, or Year

VersionResponsibility
(VersionableType and
MaintainableType only)

string Reference to the person and/or
organization responsible for the version
change. This is primarily intended for
internal use and can be as detailed as
the organization requires.

VersionRationale
(VersionableType and
MaintainableType only)

string Textual description of the
rationale/purpose for a version change.
This should be informative to users so
that they can determine if the change
has potential impact on their analysis.

 564

 Data Documentation Initiative

565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

2.5 URN Structure
A DDI URN has a specific structure that must be followed for uses of the URN in
identification and reference to DDI objects.
urn=“urn:ddi:3_0:<Maintainable Object Class.Object Class>=<Agency ID>:<ID
of maintained object>[<Major Version>.<Minor Version>].<ID of contained
object>”

An example of the URN structure for a versionable object is broken down below:

urn:ddi:3_0:VariableScheme.Variable=ICPSR:VScheme_4[1.0]AGE_3[1.0]

• The delimiters are as follows
o Top level field separator :
o Hierarchical separator .
o Object class to identification separator =
o Version separator []

• All sections are required.
• All published elements are either maintainable or contained within a

maintainable object. The maintainable object must be identified first, as
the ID is unique within the maintainable. The object type identification will
always contain a maintainable object plus the optional specific object if it is
either Versionable or Identifiable

• The full path of ids with version where applicable should be provided (Part
I Appendix 1 contains an alphabetical listing of identifiable and versionable
elements in alphabetical order with their complete nesting string up to
parent maintainable)

Breakdown of the example URN:

Identify that this is a URN urn

Top level field separator :
It is a DDI URN ddi

Top level field separator :
It is DDI version 3_0

Top level field separator :
The maintainable object type VariableScheme

Hierarchical separator .
The object Variable

Object class to identification separator =
The maintenance agency is the DDI Alliance ICPSR

The name of the VariableScheme is VScheme_4

 Data Documentation Initiative

The version number of this element is
encased in version separator

[1.0]

Hierarchical separator .
With the ID of object AGE_3
The version number of this element is
encased in version separator

[1.0]

 595
596
597
598
599
600

601

602
603
604

605
606
607
608
609

610
611
612
613
614
615
616
617
618
619
620
621
622

623
624
625
626
627
628
629

Note that the Variable must have the same maintenance agency as the
maintainable it resides in, and therefore this is not repeated.

If the element being referenced was a maintainable itself, then the URN would
end after the first version element.

Examples

URN of a maintained object
To identify of a variable scheme in DDI 3.0 via a URN would be as follows:
urn=“urn:ddi:3_0:VariableScheme=ICPSR:V_GENDER_SCHEME[1.0]”.

URN of an versionable object
All versionable objects are contained within maintainable objects. To identify of a
variable in DDI 3.0 via a URN would be as follows:
urn=“urn:ddi:3_0:VariableScheme.Variable=ICPSR:V_GENDER_SCHEME[1.0].Male
[1.0]”

URN of an identifiable object
An identifiable object may be a direct child of a maintainable object or be
contained by a versionable object within a maintainable object. The full path
should be provided to facilitate locating the item when referenced.

 <DataCollection isMaintainable=”true” id=”DC_5698” version=”2.4”>
 <Methodology isVersionable=”true” id=”Meth_Type_1” version=”1.0”>
 <TimeMethod isIdentifiable=”true” id=”TM_1”>

To identify the identifiable object in the above hierarchy in DDI 3.0 via a URN
would be as follows:
urn=“urn:ddi:3_0:DataCollection.TimeMethod=ICPSR:DC_5698[2.4].Meth_Type_1[
1.0].TM_1”

URN of an object that nests within its own object type
An example of this is an Individual who belongs to an Organization that is nested
in another Organization. In this case each object type would be listed in order
and the IDs of the full path would be provided in the URN.

 <OrganizationScheme isMaintainable=”true” id=”OS_1” verson=”1.0”>
 <Organization isVersionable=”true” id=”UMICH”>

 Data Documentation Initiative

630
631
632
633
634
635

636
637
638

 <Organization isVersionable=”true” id=”ICPSR”>
<Individual isVersionable=”true” id=”J_Doe”>

urn=“urn:ddi:3_0:OrganizationScheme.Individual=ICPSR:OS_1[1.0].UMICH[1.0].IC
PSR[1.0].J_Doe[1.0]”

2.6 Referencing
DDI 3.0 contains four types of references:

Reference The basic structure used to reference

DDI objects
SchemeReference A special extension to Reference for

referencing DDI schemes
OtherMaterial The basic structure for referencing

external non-DDI objects
Image Reference to an external image file

currently used only in the
OrganizationScheme

 639
640
641
642
643
644
645
646
647
648
649
650
651
652

References to DDI objects are all based on the ReferenceType as described in
reusable. Elements within a DDI instance which reference DDI objects will all be
identified with the fixed attribute isRefrence=”true”. Note that when referencing an
object internal to the DDI instance you may simply provide the ID as long as it is
unique within the instance. However, if this instance is later parsed into its
constituent parts, the parser will need to supply the missing components to
uniquely resolve the reference. If the ID of an object is only unique within its
maintainable parent (module or scheme), the identification of that maintainable
parent must be included to provide a unique identification. Once again, if both a
URN and ID are provided, the URN takes precedence if they have conflicting
content. Reference includes the following structure.

Element/Attribute Description
Module This is a complete reference structure for the parent

module. This must be used in cases where there
have been local modifications. [optional]

Scheme This is a complete reference structure for the parent
scheme. [optional]

URN A DDI structured URN may be used in addition to or
instead of an ID sequence.

ID ID of the element being referenced. This is the
minimal required content for a reference in terms of
content and length.

IdentifyingAgency The NCName of the maintenance agency used as
part of the ID sequence [option]

 Data Documentation Initiative

Version The version number of a referenced versionable or

maintainable object used as part of the ID
sequence [optional]

@isExternal The default setting is “false”, indicating that the
element will be found inline within the DDI instance.
If this value is set to “true” (reference to an external
DDI object) the URI must be provided.

@URI This is the URI for the external location when
isExternal is set to “true”

@isReference Fixed Boolean value of “true”
@lateBound A Boolean attribute with the default setting of “false”

indicating that the reference is to a specific version
of the object. When changed to “true” the reference
will retrieve the most recent version available. Note
that while identifiable objects do not have a version
themselves, the object will be obtained from the
most recent version of its parent versionable or
maintainable object.

 653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

The use of late bound and early bound references provides flexibility in the
material obtained by the referernce. Early bound (@lateBound=”false” means
that you are referencing a specific version and that none other will do. This
allows you to replicate the metadata as it was used in a previous analysis. Late
bound allows you to request the most recent version of the referenced element.
For example, you may always wish to include the most recent version of an
Archive module to receive the most current updates of organizational information,
life-cycle events, related publications, and access information. Or you may want
to be sure you have the most current corrections and updates to the information
in a logical product.

SchemeReference extends Reference and provides an addition element set that
allows you to exclude one or more identifiable elements from the scheme being
included by reference. It allows a user to include say a VariableScheme but
exclude one or more variables within that scheme. Most schemes will already
allow for selective inclusion of component items from other schemes, but this
particular reference simplifies the process when the uses wishes to include the
majority of the scheme, excluding only a few items. The additional element
Exclude contains an ID and Version element pair where the version is optional.
Since the parent maintainable scheme has already been identified, this is all that
is needed to identify specific items for exclusion.

OtherMaterial as a reusable is available in all major modules. References to
related materials, physical objects, etc. are listed here and can be attached to
any identifiable object. This material is not intended to be processed by DDI but
is supplied to inform the end-user about non-DDI materials related to the

 Data Documentation Initiative

680
681
682

development, collection, analysis, or other materials related to the DDI Instance.
OtherMaterial contains the following:

Element/Attribute Description
Citation Full citation element for the external

object
ExternalURLReference Location of an external electronic

object via a URL (for example
http://icpsr.umich.edu/)

ExternalURNReference The namespace of the external object
expressed as a URN (for example
urn:isbn:0-395-36341-1 the unique
International Standard Book Number)

Relationship This contains both a reference to an
identified DDI object and
RelationshipDescription
(optional/repeatable). Relationship can
be repeated to link to multiple DDI
Objects.

MIMEType A standard internet MIME type for use
by processing applications

@type A required type code for type of
OtherMaterial.

 683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

External objects that are not DDI require the more complex structure of
OtherMaterial. The use of non-DDI references is quite limited outside of the
standard section for OtherMaterial listings within each of the major modules.
Currently use is restricted to ExternalInterviewerInstruction, ExternalAid, and
r:OtherMaterial in Generation. ExternalInterviewerInstruction provides the ability
to reference non-DDI structured interviewer instructions from with a
ControlConstruct for a questionnaire/instrument. It consists of OtherMaterial and
an attribute displayText which indicates whether the information should be
displayed or simply made accessible (via reference or specific request for
display). ExternalAid is available in QuestionItem, MultipleQuestionItem, and
ControlConstruct. Its purpose is to provide access to an image, sound, media, or
physical object used in the question. For example “Watch the 30 second ad and
indicate if you …..” where ExternalAid would be the link to the advertisement.
ExternalAid is type=”r:OtherMaterial”. Generation is a structure to describe how a
specific Category within a CategoryScheme was generated and includes a child
element r:OtherMaterial. An example of how this might be used is a reference to
a printed table of Poverty breakpoints for the United States definition of poverty.
The Generation would describe how the breakpoints were generated and then
provide a link to the resultant table.

http://icpsr.umich.edu/

 Data Documentation Initiative

703
704
705
706
707
708
709
710
711
712

713
714
715
716
717
718
719
720

2.7 Date
The DDI provides a structure for a Date element which allows a choice between
single, simple dates or date ranges. If a date element contains a range, Cycle
may be used to indicate occurrence of this range within a series of ranges. An
integer is used to identify the cycle. Dates are required to be expressed as ISO
860-formatted dates for all fields. The optional attribute calendar on any parent
date item, such as PublicationDate, allows you to designate a non-standard
calendar type. Historically-formatted dates may be included in addition for
archival or other purposes.

2.7.1 Simple Date
<r:PublicationDate calendar=”Georgian”>
<r:SimpleDate>2007</r:SimpleDate>
</r:PublicationDate>

This is a single point in time and conforms to any of the following ISO 8601
standard structures.

dateTime YYYY-MM-DDThh:mm:ss 1982-01-05T23:05:15
date YYYY-MM-DD 1982-01-05
gYearMonth YYYY-MM 1982-01
gYear YYYY 1982
duration PnYnMnDTnHnMnS P26Y2M22DT11H5M20S
 721

722
723
724
725
726
727
728
729
730
731
732

733
734
735
736
737
738
739
740
741

Note that the “T” in dateTime is literal, denoting the beginning of the Time
section, and that “ss” can contain decimals. Optionally, dateTime can be
extended by a timezone offset of “Z” to represent Zulu time or GMT. For
example, Eastern Standard Time is Z-4.

Note that the “P” in duration is literal and indicates that this is a Period of
duration. The other upper case letters are also required with the preceding
number providing the number of years (nY), months (nM), etc. A period may be
of negative duration, for example a period of minus 10 days (-P10D), by
preceding the “P” with a negative sign.

2.7.2 Date Range
A range is expressed as a StartDate and EndDate each expressed in the same
format as a simple date. The dates are assumed to be inclusive. The position of
this range within a series of ranges is expressed as an integer in Cycle. For non-
standard calendars an attribute calendar allows specification of the calendar
used.

<r:Date>
<r:StartDate>2006‐04‐01</r:StartDate>

 Data

>2007‐03‐31</r:EndDate>

 Documentation Initiative
742
743

744
745
746
747
748
749
750
751
752
753
754

755
756
757
758
759

<r:EndDate
</r:Date>

2.7.3 Historical Dates (expressed in formats other than ISO 8601)
All dates can optionally be expressed in other historical structures with an
attribute to describe the structure being used. This is simply a string containing
the historical date and an attribute historicalDateFormat used to specify the non-
ISO date format. For example:

<HistoricalDate historicalDateFormat=”Month DD, YYYY”>January 5, 1982</HistoricalDate>

Historical date information parallels the simple date, start date and end date
structures of the standard DateType.

2.8 String Types
String or text entries have a number of formats to support language differences,
the need for structured text, and constraints on content.

Sting Type Features
NCName Must start with a letter and can contain alphanumeric

| “_” | “:”
String Any character string (will be read as the literal string)
InternationalString A string with an xml:lang attribute to denote language

and boolean attributes translated (default false) and
translatable (default true)

StructuredString In addition to features of InternationalString allows for
XHTML structure tags in the content

IdentifiedStructuredString Combines features of IdentifableType and
StructuredString

DynamicText Structures the behavior of dynamic or static text
within a question by allowing a text line to be broken
into segments describing both static (literal text) and
dynamic (conditional text) . (See section 5.1 for
details of use)

 760
761
762
763
764

The following grid shows which features are available for each type other than
NCName. Many of the forms without ID are parts of complex elements that are
identifiable.

 string ID xml:lang translated translatable XHTML
String X
InternationalString X X X X
StructuredString X X X X X
IdentifiedStructuredString X X X X X X

 Data Documentation Initiative

765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

2.9 DDI Profiles
Many DDI users first determine which elements they will use, or not use, and
determine any constraints on how they are used for their specific local needs.
This is particularly common in organizations who wish to make sure elements are
used in a consistent manner, or need information expressed in a specific way to
support their systems. Common examples of this are the DDI Core Elements, the
CESSDA list of required elements for inclusion in their search system, or NHGIS
rules for special use elements. Each of these examples imposes additional
required elements, informs the user what items are expected in submitted
documents, restricts what is handled by a system, or specifies accepted usage of
an element within a system.

DDI profiles allow this type of specification to be defined in a consistent way that
can be published and used for validation. This profile describes which DDI
elements and attributes are used in a particular use profile or supported by a
DDI-conformant application. It uses XPath expressions to identify the used or
unused fields in terms of the full possible DDI instance. Its construction is quite
simple, but it allows an organization to require certain elements for a DDI
instance to be included in a collection (example, CESSDA), to inform contributors
of system limitations (example, does not handle NCubes), or to inform an
organization on the proper use of elements for internal compliance.

Object Purpose
Identification Identifies the DDI Profile.
XPathVersion Provides the version of XPath used. Currently values are

either 1.0 or 2.0.
DDINamespace This is the DDI version, currently 3.0
Used A repeatable complex element that describes a DDI element

used by the profile. This complex element contains an XPath,
which points to the element or attribute that is being used. All
sub-elements of a used element are assumed to be
supported unless explicitly addressed by the profile. The
number of supported repetitions may be included in the
XPath. An attribute “required” with a default value of “false”
allows for requiring elements that are optional in the DDI
schema. Note that if a field is required by the DDI Schema, it
cannot be made optional.

NotUsed A repeatable complex element that describes a DDI element
NOT used by the profile by providing its XPath. A required
DDI Element cannot be disallowed.

 788
789
790
791

Used allows the identification of an AlternateName for the object, a Description
and Instructions for use. The attributes include required for changing an optional
object to a required object, path, defaultValue to designate a default value if the

 Data Documentation Initiative

792
793

794

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

object is missing, and a fixedValue indicating that the defaultValue noted in the
earlier attribute is actually a fixed value.

3.0 Capturing the Background Information

3.1 Study Unit
The first stage in capturing information for a study is always within the study unit.
The study unit captures information related to the idea behind the study, the early
stages of proposal or project development, and provides it with an identification
and basic information on scope and coverage. Remember that this is preliminary
content and can be altered as the study progresses through the life cycle. DDI
3.0 was designed to be used for capturing information across the life cycle
process of the study (as well as after the fact) and can be used to hold drafts,
ideas, and notes that will be formally incorporated at a later date. Remember that
once “published,” any changes must be versioned.

Start a DDI xml instance using studyunit.xsd. In essence this section captures
content from the inception of the study, from the idea. Include references to all
other schemas you may be using, but at minimum include the following xmls
identifiers:

.xsd file Reason for inclusion
studyunit This is the base source xsd.
reusable All schemas use elements from reusable.xsd.
conceptualcomponent Concept, Universe, and Geography definitions are some

of the earliest sets of information created.
archive Captures information on your organization and process

and identifies the maintaining agency.
datacollection Allows you to capture information on planned

methodology such as sample design.
 811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

Complete the Identification and use all the fields (id, agency, and version) as
these can be inherited by elements lower in the structure.

Under Citation provide at least a working Title and Creator.

Use Abstract to capture an outline of the study. Remember that this can be
edited later to relate further refinements. The null hypothesis or other description
of why the study is being conducted (intended use) should be placed in Purpose.

Complete the upper level or levels of Universe in conceptualcomponents and
provide a link from the study unit to the uppermost level of the universe (see
Universe, Part 3.5). This is also a good point to begin collecting and structuring
your concepts (see Concepts, Part 3.6). These two sections are needed by later
modules for reference purposes. While they can be edited and expanded at any
point, completing them at this point assists you in clarifying both the population

 Data Documentation Initiative

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

being studied and the concepts covered by the study. The
GeographicStructureScheme and GeographicLocationScheme can be started
now if known. If external ResourcePackages are available which contain a
standard geographic structure and location coding system, it is worthwhile to
note it now by referencing those schemes. This information will inform how
questions will need to capture geographic information for the study. Include your
unit of analysis in AnalysisUnit.

Coverage at this level is the overall coverage of the study. You must define the
coverage at this level, as it is inherited or constrained by all lower levels. Lower
levels can constrain the coverage by limiting the topical, temporal, or spatial
coverage of a specific module, but they cannot expand the coverage. Coverage
is made up of the following sections and at least the minimal level information
should be provided.

COVERAGE PRIMARY TAGS PURPOSE OF INFORMATION
Topical Subject, Keyword Provides structured subject

headings and unstructured
keywords

Temporal ReferenceDate Reference dates provide
information on dates covered by
the data that are outside of the
collection period, such as
residence 5 years ago.

Spatial Description,
SpatialObject,
TopLevelReference,
LowestLevelReference

While this may be expanded
later in the life-cycle of the
study, these are the minimal
level recommended tags.
Description is the equivalent of
the Dublin Core geographic
coverage. Spatial Object at this
point is the most discrete level at
which data will be captured
(point, line, polygon, or linear
ring). Top Level and Lowest
Level are the broadest area of
spatial coverage (for example,
Europe) of the study, and the
most discrete identifiable level
(for example, a NUTS 3 or a
housing unit). These three
pieces of information are used
by geographers to determine the
usability of the contents for
various GIS uses as well as
providing basic geographic

 Data Documentation Initiative

structural information to the data
user.

 842
843
844
845
846
847
848
849
850
851
852
853
854

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Begin building the OtherMaterial section of the studyunit at this point. Use it to
capture citations on materials used as references in developing the study
proposal. Provide a citation for any proposals submitted to funding agencies and
any other related material. Some of this may be incorporated inline at some
point, but you will still want to retain the citation to the separate document.

“Note” can be used to capture information you may want to include in other areas
at a later date, but want to hold in a temporary area of your instance. Select an
appropriate type attribute so that at a later date these will be easy to locate,
attach to appropriate elements, or transfer information to another location and
delete.

3.2 Concepts
Concepts for variables and questions are described in a concept scheme and
referenced by the variable or question. A question can reference multiple
concepts; however, a variable must be linked to a single concept. Variables that
capture a number of concepts require the creation of a composite concept that
captures both concepts under a single concept description. This tends to occur
only in some legacy aggregate data files which nest a number of concepts in a
non-regular hierarchy. For example “Household Type by Presence and Age of
Related Children” would require a concept that includes both a concept for the
household type and one or more to capture presence and age of related children.
Alternatively, the variable can be split into its component parts (separate
concepts) and reassembled within an NCube that defines those sections without
data (see NCubes Section 7.5 for details).

In terms of a complete variable description, the concept provides the property of
the object in a complete ISO/IEC 11179 description. DDI uses the variable to link
the object (universe) with the property (concept) and the representation. A
ConceptScheme with just a collection of concepts requires the use of the variable
to tie these pieces together. Concept scheme can also contain data element
concepts which provide these links internally so that a complete ISO/IEC 11179
description can be held as a resource package outside of the context of a dataset
and its variables. A concept is versionable and contains a label, description, and
information on similar concepts (reference to the similar concept and a
declaration of the difference between the two). A concept may be identified as a
“characteristic” through the use of a Boolean attribute. This attribute must be set
to “true” if it is referenced by a data element concept.

A data element concept is a concept in the ISO/IEC 11179 sense. It contains a
label and description and can identify similar concepts like a general concept.
However, it references another concept which has its “isCharacteristic” attribute

 Data Documentation Initiative

885
886
887

888
889
890
891
892
893
894

895
896
897
898
899
900
901
902
903
904
905
906
907
908

set to “true” as well as referencing a universe. In this manner it is stating that the
data element concept defines a concept that is characteristic of a specific
universe.

3.3 Universe
A universe scheme contains a structured listing of all the universes within a
study. The top level should reflect the complete universe of the study, for
example, “All persons and housing units in Canada”. Lower level subsets of this
universe should be organized hierarchically. Siblings are not assumed to be
mutually exclusive, but a child must be a subset of its parent. For example,

Males Female Civilian Labor Force 16 years
of age or older

Employed Unemployed

All Persons in Canada

The universe as described in the scheme is referenced by the question construct
(use of a question within an instrument), variables, and NCubes. Describing
these in a single location provides information on hierarchical relationships, and
clear comparability of the universe of two questions or variables that reference
the same universe. In addition, a universe can be described in both human-
readable and machine-readable formats that provide explicit information on the
definition of the universe. Note that variables allow for multiple universe links.
When more than one universe is referenced, the universe is defined as the
common area. For example a Variable that references both the universe
“Female” and the universe “Employed” would be defined as Females in Canada
who have a status of Employed in the Civilian Labor Force (16 years of age or
older).

 Data Documentation Initiative

909
910
911
912
913
914
915
916
917
918
919
920
921

922
923
924
925
926
927
928
929
930
931
932
933
934
935

3.4 Methodology
If known at this point, include information on Methodology found in the
datacollection schema. Methodology has an extension base of VersionableType.
Given the breadth of the content, careful use of VersionRationale can help the
user to quickly identify material sections that were changed or added in the new
version. Methodology includes DataCollectionMethodology, TimeMethod,
SamplingProcedure, and DeviationFromSampleDesign. In addition, you can note
any datacollection software you plan to use in Software. Note that all of these
sections are repeatable and that you should note separate methods in separate
repetitions. You may need to reference a specific method later in the study and
you can only do this if you have listed and identified each as a separate
description. With the exception of Software, these are all
IdentifiedStructuredStrings to allow for clear presentation of the material.

3.5 Collection Event
Each collection event should have its own entry. A collection event is normally
described as the event (covering one or more days) that results in a raw data set
which may or may not be linked to other raw datasets over time (through
repetition) or from other sources for example a Parent survey linked to a Child
survey. Each CollectionEvent provides a reference to who collected the data
(DataCollectorOrganizationReference), a description of the DataSource,
DataCollectionDate, DataCollectionFrequency, ModeOfCollection,
CollectionSituation, and ActionToMinimizeLosses. While all of these except
DataCollectionDate are repeatable within CollectionEvent, if the details of
multiple CollectionEvents are listed within a single CollectionEvent section, the
relationships between specific elements of information such as DataSource and
ModeOfCollection can be lost.

Element Description of content
DataCollectorOrganizationReference References to the organizations or

individuals responsible for collecting
data. References are to the
descriptions contained in an
Organization Scheme.

DataSource Provides a SourceDescription
(structured strin), a SourceType (may
be from a controlled vocabulary), the
Origin which is a citation or URI to an
external non-DDI description of the
data, and Characteristic such as the
level of documentation available for the
source data or other factors like water
damage that could affect the quality of
the data source.

DataCollectionDate Standard date type allowing a single
date, range, or duration.

 Data Documentation Initiative

DataCollectionFrequency This is the intended frequency of data

collection, where the current collection
event lies, or is meant to lie within a
series. It consists of both a standard
date type and the ability to add a code
or string such as monthly, yearly etc.

ModeOfCollection IdentifiedStructuredString
CollectionSituation IdentifiedStructuredString
ActionToMinimizeLosses IdentifiedStructuredString
 936

937
938
939
940
941
942
943
944
945
946
947
948

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

4.0 Archives, Organizations, and Life Cycle Events
The Archive in the context of DDI 3.0 is the individual or organization responsible
for the DDI instance at a given point in time. At the onset of a study this may be
the principal investigator or their organization. The Archive module contains
information that is both persistent (travels with the metadata throughout its
lifetime) or is specific to the archive itself (information that has no relevance once
it is distributed to another archive). At the onset of a study, the primary pieces of
information entered in the Archive module include the identification of
organizations, a reference to the current archives as listed in organization, and
the addition of specific life cycle events as they occur. The contents of the major
sections are provided below for context.

4.1 Archive Specific Information
The first item is a reference to the current archive as listed in Organization.
Following this is a listing of the individual items that make up the instance as
viewed by the archive. This can include associated data files, referenced
schemes, etc. Each item in the list can have the following individual distinct
pieces of information. Alternatively, multiple items can be treated as a Collection
of Items or subordinate Collections. Flexibility was provided to support the
common uses by different archives at different stages of the life cycle.
DefaultAccess and FundingInformation for the specific Archive can be listed here
and will apply to the contents of the items or collections listed in this section. For
example this could include access being restricted to Faculty, Staff, and Students
of an academic institution. The contents of both Item and Collection are listed
below. Items that are unique to each are in italics to help the user determine the
most appropriate usage for their particular archive.

Item content Use
LocationInArchive The location of an item within an archive, for

example, if the archive needed to differentiate
between multiple systems or different physical
location options within the archive. For example a
publicly accessible site or an off-line storage site.

 Data Documentation Initiative

Call Number The specific identifier within this archive.
URI The URN or URI of the item.
Format The format of the data or metadata holding.
Media The current media of the holding.
Study Class Allows for an archive specific designation of a study

class.
Access Access information specific to this item
Original Archive
Organization Reference

A reference to the source archive of the
documented material. This is repeatable so that a
chain of ownership can be recorded.

Availability Status A human-readable description of availability.
Data File Quantity Number of data files in the documented holding.
Collection Completion A statement regarding the completeness of the

documented holding.
Item A subordinate Item
 964
Collection content Use
LocationInArchive The location of an item within an archive, for

example, if the archive needed to differentiate
between multiple systems or different physical
location options within the archive. For example a
publicly accessible site or an off-line storage site.

Call Number The specific identifier within this archive.
URI The URN or URI of the item.
ItemQuantity The number of items in the collection.
Study Class Allows for an archive specific designation of a study

class.
DefaultAccess Access information specific to the contents of this

collection.
Original Archive
Organization Reference

A reference to the source archive of the
documented material. This is repeatable so that a
chain of ownership can be recorded.

Availability Status A human-readable description of availability.
Data File Quantity Number of data files in the documented holding.
Collection Completion A statement regarding the completeness of the

documented holding.
Item A subordinate Item
Collection A subordinate Collection
 965

966
967
968
969
970
971

Note that access and access restrictions are provided at a variety of levels. This
includes general access restrictions for the archive as well as specific access
restrictions to all or parts of the data. Conditions for use, disclaimers, citation and
deposit requirements and all related access forms are located here.
DefaultAccess under ArchiveSpecific would apply to the contents of the specified

 Data Documentation Initiative

972
973
974

archive. DefaultAccess at the Collection level applies to all the items within the
collection whereas item specific information is found in Item/Access.

Element Use
Confidentiality Statement A structured statement
Access Permission A form type including a statement of the access

permission required, the form number and location,
and an indication that the form is or is not required.

Restrictions A structured statement
Citation Requirement A structured statement
Deposit Requirement A structured statement
Access Conditions A structured statement
Disclaimer A structured statement
Access Restriction Date A standard date type allowing for a specified date or

range.
Contact Organization
Reference

A reference to and individual or office within an
organization or to the organization itself.

 975
976
977
978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002

Finally, there is funding information. In this location it is limited to information on
funding sources specific to the archive, for example, if an archive received
funding to collect, process, and provide access to a specific set of studies.

4.2 Organization
The OrganizationScheme is comprised of two basic structures: organization and
individual. Each basic structure is made up of a description of the organization or
individual and its components, the role of the organization/individual as related to
the life cycle of the data, and relationship to other organizations or individuals.

The organization description provides each organization with an ID that can be
referenced by other locations in the DDI instance. The name and abbreviation (or
nickname) of the organization, along with contact information and member
individuals should be provided here. An organization can belong to a group of
Organizations directly as a child of the group or through inclusion by reference.
Organizations can be related to other organizations in any way that can be
described by the user of the DDI. Individuals can belong to organizations (as well
as have organizations attached to the individual’s record internally). They carry
their own contact information as well as information on language capabilities.

Designed to provide a flexible structure to describe organizations and individuals
and their relationships to each other, the organization module captures
information on organizations and individuals related to the study in a uniform way
and allows the DDI document to reference these entries in relation to their
specific roles within the life cycle of the study. The advantage, in addition to
reducing redundancy, is the ability to capture the relationships between and
within organizations, thereby clarifying the relationships of individuals and
organizations related to the study.

 Data Documentation Initiative

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

Minimal entry for beginning a study would be the identification of the organization
proposing to do the study:

a:Org rn=” < nizationScheme isMaintainable=”true” id=”MAINORG”

rn
a u
u :ddi:3_0:OrganizationScheme=MPC.MAINORG[1.0]”>
a:Orga
urn:dd

 < nization isVersionable=”true” id=”MPC” urn=”
ation=MPC:MAINORG[1.0].MPC[1.0] >
opulation Center</a:OrganizationName>

i:3_0:OrganizationScheme.Organiz
a P
e>

 <a:OrganizationName>Minnesot
e>MPC</a:Nicknam
.umn.edu</a:URL>

 <a:Nicknam
 <a:URL>pop
 </a:Organization>
</a:OrganizationScheme>

Any organization that is producing or managing a number of DDI documents
should consider maintaining a separate OrganizationScheme within a published
ResourcePackage. This makes tracking and updating organization changes
easier and provides a clear historical trail. Note that Organization and Individual
have to places to enter a number of specific Location information items including
Telephone, URL, Email, InstantMessaging, and RegionalCoverage. Two
approaches are possible. First, use the items directly under Organization to
provide the current information and place Address, Country, and
GeographicLocation in a Location element with a type of “current”. Move all of
the current information (from both Location and elements under Organization to a
Location element with a type “superceded” when location information changes.
This could also include a note providing its valid coverage dates. The
organization entry would have a version update and the VersionRational would
state that there were changes in the contact information.

Organization name changes can be handled in two ways. First if the organization
is essentially the same simply with a new name and you wish to retain the ID. To
retain the original ID, version the Organization entry, moving the old
OrganizationName to Nickname and entering the new organization name along
with a VersionRationale comment. If the organization has changed, for example
merged or changed mission, you may wish to provide a new entry with a new ID.
You can then use Relation to link it to the old ID and note the effective dates of
the old and new organizations as well as descriptive and/or keyword
classifications of the relationship.

Careful consideration of both the information you wish to retain and how it will be
maintained will help you determine how you may want to control the use of
options within OrganizationScheme. If this involves disallowing specific elements,
making an element required, or providing it with a default value, the archive is
advised to create a DDIProfile detailing this specialized usage. In addition, the
archive may wish to develop controlled vocabularies to use in managing the
information held in this scheme.

 Data Documentation Initiative

1050
1051
1052
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

Entries for Individual are structured in much the same way as Organization.
Individuals and Organizations can be nested as desired. Users may wish to
decide to focus on either nesting or relation references as a primary structure for
internal relationship definitions.

4.3 Life Cycle Information
Life cycle Information is a simple listing of important events in the life cycle of the
study or group of studies. Each event uses an IdentifiableType as an extension
base and includes an EventType, a Date (this can be a simple date or a range),
a reference to the organization or individual responsible for the event, and a
description of the event. EventType is a CodeValueType which allows an
organization to define specific codes relevant to their organization. DDI may
publish a basic list of lifecycle events to provide a common list for DDI users. Life

 entered as they occur. cycle events should be

<r:LifecycleInformation>

le=”true” id=”LC_1”>
istID=”DDI_Events_List” codeListAgency=”DDI Alliance” >

<r:LifecycleEvent isIdentfiab
eL <r:EventType cod

 StudyDesign

1</r:SimpleDate></r:Date>
 </r:EventType>
 pleDate>2007‐04‐0
 nizationReference>

<r:Date><r:Sim
rga<r:AgencyO

 <r:Reference>

anizationScheme.Organization=MPC:MAINORG[1.0].MPC[1.0]
 <r:URN>
 urn:ddi:3_0:Org
 </r:URN>

 </r:Reference>
</r:AgencyOrganizationReference>

sal outlined and documentation started.
 <r:Description>

ropo Initial study p
 </r:Description>

</r:LifecycleEvent>
</r:LifecycleInformation>

5.0 Building and Documenting a Questionnaire
Data collection contains the major components of the questionnaire’s content
and structure. In essence, a questionnaire contains questions and response
options in an organized arrangement generally with instructions for the person
answering either directly or through the interpretation of an interviewer. DDI 3.0
distinguishes all of these parts primarily to support reuse through category
schemes, coding schemes, and question banks. Separating these component
parts allows for a generic description of instrument flow that can be captured
from computer-aided survey systems or used to instruct such a system.

To enter information into this section of Data Collection, you need to think about
a survey as a collection of its component parts. Some parts are persistent in
relationship to the content of the question and others are related to the use of a

 Data Documentation Initiative

1095
1096
1097
1098
1099
1100

question in an instrument. The following chart differentiates these major
divisions. These are entered and assembled in life cycle order, selecting the
questions needed to measure the desired concepts, determining the allowable
responses, setting up question order, and adding related text to guide the
respondent through the questionnaire and inform capture of the raw data.

Persistent Content of the Question Use of the Question in an Instrument
Question text

• Simple text
• Dynamic text

Order and Routing
• Sequence
• Loops
• Skip patterns

Multiple part question [a question
whose comparability is based on a
particular question sub-series]

Universe

Response Domain
• Open
• Set categories
• Special types (date, time, etc.)

Analysis Unit

Definitional text [specific to the
question as opposed to its use in a
particular instrument]

Instructions
• Enumerator
• Respondent
• Coding (capturing raw data)

 1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

This type of deconstruction is needed to allow for support of question banks that
both reuse question text and associate multiple response domains with the same
question.

Questions are structured to support capabilities for dynamic text, multi-language
comparability, and alternative response domains. The response to the same
question can often be captured in multiple ways, for example:

Question: How old are you?
Response Domain 1:
 Numeric, maximum 3 characters
Response Domain 2:
 Under 18 years
 18 to 64 years
 65 Years and older
Response Domain 3:
 Under 5 years
 5 to 9 years
 10 to 14 years
 …continuing in 5 year cohorts

In addition, separating the flow logic, interviewer instructions, and identification of
external materials used in the questioning process, allows DDI 3.0 to support a

 Data Documentation Initiative

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

wide number of instrument types by providing generic instructions that can be
interpreted by the individual instruments for presentation in multiple media
formats.

Identifying these parts when looking at questionnaire can be more difficult.

IF LongIll=Yes THEN
 FOR i=1 to 6 DO
 IF (i=1) OR (More[i-1]=Yes) THEN
 Records up to six long-standing illnesses
 (IllsM[i])
 What (else) is the matter with you?

INTERVIEWER: RECORD FULLY. PROBE FOR DETAIL. IF
MORE THAN ONE MENTIONED, ENTER ONE HERE
ONLY.

Text: Maximum 60 characters

This question starts with question routing information that is specific to the
instrument. It would use the IfThenElse construct as its initial organizing
structure. This is followed by a Loop construct (or possibly a repeat while) that
repeats the question up to 6 times. The question itself is found in another
IfThenElse which prompts the inclusion of the dynamic text (else) in the question
text. The text “Records up to six long-standing illnesses” appears to be the
purpose of the question, but is actually the reason for looping the question within
this questionnaire. As such it should be included in control construct as an
InteviewerInstructionRefereence. The text “INTERVIEWER: RECORD FULLY…”
would also be an InterviewerInstruction although it may be considered part of the
question or question construct rather than as part of the IfThenElse or Loop

uestion text is dynamic; construct. The q

 <QuestionText>
 <LiteralText>What</LiteralText>
 <ConditionalText>
 <Expression>IF i>1 THEN: else</Expression>

ionalText>
xt>is the matter with you?</LiteralText>

 </Condidt
<LiteralTe

/QuestionText>

<

“Text: Maximum 60 characters” provides information on the type of
ResponseDomain (text) and the maximumLength (60) of the response.

Another common occurrence in printed questionnaires is the inclusion of routing
information next to response categories.

H10a TOILET FACILITIES: What type of toilet is used by the household?

 Data Documentation Initiative

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

1. W.C.
2. Pit Latrine
3. KVIP
4. Bucket/Pan
5. Toilet in another house (different house) (Go to H11)
6. Public Toilet (WC, KVIP, Pit, Pan etc.) (Go to H11)
7. No facilities (bush/beach/field) (Go to H11)
8. Other (specify) _______________________________

In the above question there is both routing directions IF H10a > 4 AND H10a < 8
THEN H11 ELSE H10b. Also category 8 requires a write in response. In coded
responses this would involve the use of another IfThenElse requesting a text
response to specify the Other category using a separate question.

Occasionally complex responses are used including a check box, fill-in number,
and categories. For example:

48b how much is your regular monthly payment on all second or junior
mortgages and all home equity loans on THIS property?
 Monthly amount—Dollars
 $_ _ , _ _ _ .00

 OR
 _ No regular payment required

This is an example of a StructuredMixedResponse that contains:

ext></ResponseText>

<ResponseText><LiteralText>Monthly amount—Dollars</LiteralT

Text></ResponseText>
<NumericDomain>…</NumericDomain>
<ResponseText><LiteralText>OR</Literal
<CategoryDomain>…</CategoryDomain>

5.1 Question Construction
A basic question is an extention of VersionableType and contains a question text,
question intent, response domain, concept references, and related visual aids.
The presence of question intent allows you to use this structure for question
development by capturing the intent of the question. This is also helpful when
collecting information used as an indicator or when dynamic text changes or
language differences result in varied wording of the question itself. The question
text contains a Text element that serves as a container for a variety of text types
and provides for a description and content. Note that questions do not contain
display information for the content as this is specific to its use in an instrument.

Text types can currently be:

 Data Documentation Initiative

Text Type Usage
Literal Text The value is a static text string.
Conditional Text Provides a condition on which the associated text

varies (for example, gender).
 1217

1218
1219
1220
1221

All questions have a designated response domain. This may be a reference to
previously defined category schemes or coding schemes using the Response
Domain Reference, or by defining the response domain within the question.

Response Domain Type Usage
Text Text content is used for open ended, non-numeric, or

mixed response. They may be constrained by
acceptable content range and/or by length.

Date Time Structures a specified data and/or time content
Numeric Provides a numeric type code, scale, decimal

positions, start and end value of accepted range, and
the allowed interval.

Code References a defined CodeSheme. CodeSchemes
are used by both questions and variables although
the same scheme may not be used by a question
and its resulting variable due to recoding.

Category References a defined CategoryScheme. A category
scheme is a list of valid responses that do not have
code representations assigned to them.

Geographic A structure for capturing required information from
GPS systems and other means of geographic
location definition used in a data collection
instrument.

StructuredMixed Allows for use of multiple response domain types
plus DynamicText in order to structure complex
response domains that contain multiple response
types.

 1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

CodeSchemes and CategorySchemes are defined in the logicalproduct and are
used to describe the response domains of both questions and variables. In
general, a category scheme is organized and assigned representational codes by
a code scheme prior to its use in a variable such as code 0 equals Male and
code 1 equals Female. A question may or may not use a coded category to
capture a response. Coding is assigned when transferring a response to the raw
data file.

Category schemes are used when no code is provided in the instrument for the
selected answer and coding instructions provide information on how the selected
response is captured in the raw data. This is most common in paper-based
questionnaires, for example:

 Data Documentation Initiative

1236
1237
1238

1239

1240

1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

1271
1272
1273
1274
1275
1276
1277

Question:
 What is your marital status?
Response Domain:

o Married

o Single, never married

o Widowed

o Divorced

Question Schemes define a set of questions used in a study. They may include
inline descriptions and/or references to external questions from question banks.

MultipleQuestions are those that require explicit responses to a set of
subquestions. For example:

Q10. Read through the following list of candidates and for each candidate
indicate how familiar you are with his position on free trade.
 1 2 3 4
 Bill Clinton O O O O
 Bob Dole O O O O
 Ross Perot O O O O

 Where 1 = Very familiar
 2 = Somewhat familiar
 3 = Not familiar
 4 = Do not know of this candidate

The sub-questions consist of each candidate’s name as the question text and the
CodeDomain.

Sequencing of response categories, subquestions of a multiple question, and
questions within a series can be defined using an element provided in
QuestionConstruct (ResponseSequence), MultipleQuestion
(SubQuestionSequence), and Seqence (ConstructSequence). The user can
designate the default of InOrderOfAppearance, Random, Rotate (rotates through
a sequence), Other (defined in AlternateSequence).

5.2 Control Constructs and Instrument
The purpose of the DDI instrument element is to record the flow of a
questionnaire, its use of questions, and additional component parts. Instrument is
a maintainable object and has a MaintainableType. The documenter can define
instrument types and provide a type code for the instrument as a whole. Software
used to collect data is identified here along with a reference to other objects
associated with the instrument such as a physical or image copy of the

 Data Documentation Initiative

1278
1279
1280
1281
1282
1283

questionnaire. Other than this general instrument classification information,
Instrument is composed of a series of Control Constructs nested inside a single
master Control Construct. Generally the top level Control Construct would be
Sequence, implying a start and end of the instrument as the Sequence tag is
opened and closed.

Control Construct Use
IfThenElse Provides a condition to trigger the Then clause and

alternative Else action. Then and Else are both
Nested Constructs.

RepeatUntil Provides an Until Condition and a construct that
continues until the condition is met.

RepeatWhile Provides an While Condition and a construct that
continues while the condition is true.

Loop Identifies the Loop Variable, sets its initial value, the
condition that must be met to end the loop, and step
(increment) value for the loop variable and the
control construct that is to continue until the end of
the loop is met.

Sequence Defines a sequence of control constructs reflecting
the flow of the instrument or a subsection of an
instrument.

ComputationItem Used to assign a code to a variable.
StatementItem Statement type provides for the inclusion of

additional text such as pretext or posttext.
QuestionConstruct Provides for the insertion of a question into the

instrument. In addition to the question content, the
sequence includes ability to designate a response
unit, analysis unit, and to reference a universe.

 1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

A ControlConstructScheme lists all the constructs found within the instrument as
individual items. Constructs that define the organization of other constructs such
as Sequence or IfThenElse, Loop, etc. do not include their subordinate
constructs inline but by reference. The easiest approach is to make a list of all
Questionconstructs, StatementItems, and ComputationItems so that they are
ready to include by reference. Then review your flow logic, identifying routing
patterns, sequences of QuestionConstructs and/or StatementItems and begin
defining these from the lowest level of the nesting out until you have a construct
(generally a sequence) that provides the start and end point for the full
instrument. This is the ControlConstruct that the Instrument will point to.

For example if you had a questionnaire with a single skip pattern, 6 questions,
and 2 statements you might have the following contents in your
ControlConstructScheme:

Question 1

 Data Documentation Initiative

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

Question 2 if 4 GO TO Statement 2, Question 4
 Else GO TO Statement 1, Question 3, Question 4
Question 5
Question 6

Contr

< olConstructScheme isMaintainable=”true” id=”CC1”>
 <QuestionConstruct isVersionable=”true” id=”QC1”>…</>
 <QuestionConstruct isVersionable=”true” id=”QC2”>…</>
 <QuestionConstruct isVersionable=”true” id=”QC3”>…</>
 <QuestionConstruct isVersionable=”true” id=”QC4”>…</>

</>
</>

 <QuestionConstruct isVersionable=”true” id=”QC5”>…
 <QuestionConstruct isVersionable=”true” id=”QC6”>…

I1”>…</> <StatementItem isVersionable=”true” id=”S
Statem < entItem isVersionable=”true” id=”SI2”>…</>

”SQ3”>
eference=”true”>

 <Sequence isVersionable=”true” id=
 <ControlConstructReference isR
 <ID>SI2</ID>

>
eference=”true”>

 </ControlConstructReference
 <ControlConstructReference isR

C4</ID> <ID>Q
 </ControlConstructReference>

/Sequ
IfThen

 < ence>

tion>
 < Else isVersionable =”true” id=”IF1”>

</Code></IfCondi
ce=”true”>

 <IfCondition><Code>QC2 = 4
 <ThenConstructReference isReferen
 <ID>SQ3</ID>

ference=”true”>
 </ThenConstructReference>

e <ElseConstructReference isR
2</ID> <ID>SQ

 </ElseConstructReference>
/IfThe < nElse>

”SQ2”>
eference=”true”>

 <Sequence isVersionable=”true” id=
 <ControlConstructReference isR
 <ID>SI1</ID>

>
eference=”true”>

 </ControlConstructReference
 <ControlConstructReference isR
 <ID>QC3</ID>

>
eference=”true”>

 </ControlConstructReference
 <ControlConstructReference isR

C4</ID> <ID>Q
 </ControlConstructReference>

/Sequ < ence>
SQ1”>
eference=”true”>

 <Sequence isVersionable=”true” id=”
 <ControlConstructReference isR
 <ID>QC1</ID>
 </ControlConstructReference>

 Data Documentation Initiative
eference=”true”>

 <ControlConstructReference isR1347

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390

 <ID>QC2</ID>
e>

eference=”true”>
 </ControlConstructReferenc
 <ControlConstructReference isR
 <ID>IF1</ID>

>
eference=”true”>

 </ControlConstructReference
 <ControlConstructReference isR
 <ID>QC5</ID>

>
eference=”true”>

 </ControlConstructReference
 <ControlConstructReference isR

C6</ID>
ructReference>

 <ID>Q
 </ControlConst

</Sequence>
/ControlConstructScheme>

<

6.0 Data Processing
Data processing takes place at various points in the life cycle. The first such point
concerns instructions for translating the response to the question into the raw
data file. This is normally a direct capture. However, in the case of paper
questionnaires this may include attaching codes to response categories or
incorporating information not collected from the questionnaire. This could be
geographic information, identifiers, recoded, or derived items. In addition, general
instructions may address the handling of non-response, illegal multiple
responses, or other common coding and processing issues.

The specific areas of information captured in DataProcessing include control
operations, cleaning operations, weighting factors, data appraisal, and coding.
Both ControlOperation and CleaningOperation contain a repeatable description
field and an AgencyOrganizationReference to an organization or individual
described in Organization. When entering this information separate out different
operations or different steps. ControlOperation and CleaningOperations as well
as the Description elements within them are unbounded. While these currently
are not identifiable elements, keeping discrete activities separate is in line with
the general philosophy of DDI 3.0.

Weighting factors are identified structured strings allowing for specific weight
factors to be listed discretely and referenced. Although this allows for structured
statements, consider separating descriptions of weighting factors (which may be
structured) from any standard weights that are used as factors in category or
variable statistics. You will want to refer to this as a number that was used in
calculation.

Data Appraisal Information provides response rate (string), sampling error
(structured string), and OtherAppraisalProcess (structured string). Once again, all

 Data Documentation Initiative

1391
1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

1426
1427
1428
1429
1430
1431
1432

of these are repeatable, and maintaining clear and discrete information on
processes is important.

6.1 Coding
 There are two different types of Coding describing general processes that are
applied to a wide range of variables and specific generation instructions. All
Coding elements are an extension of IdentifiableType so they can be referenced
by ControlConstructs and Variables. Coding contains either GeneralInstruction or
GenerationInstruction.

A general instruction pertains to coding operations such as the uniform handling
of non-response or general imputation instructions. It contains a required
repeatable Description and Command structure. The first is a structured string
and intended to be human-readable. Command provides for a human-readable
CommandText, an optional repeatable reference to a CommandFile, and an
optional StructuredCommand that allows for inserting extentions to provide
structured language for external namespaces such as MathML. When creating
GeneralInstructions make sure that the relationship between the Description and
Command is clear. Do not mix several Descriptions and/or Commands pertaining
to multiple instructions in a single GeneralInstruction. Create a separate
GeneralInstruction for each. GeneralInstruction also contains an element and
attribute pair IsOverride and @isOverride. When @isOverride is changed from its
default value of “false” to “true”, the element IsOverride must be completed. This
element provides the ID of the GeneralInstruction that is being overridden.

GenerationInstruction is more complex as it deals with specific recodes and
derivation instructions. An attribute, isDerived, indicates whether this is a simple
recode or a more complex derivation instruction. GenerationInstruction In
addition to the Description and Command structures found in GeneralInstruction
it provides identification of Questions, Variables, and ControlConstructs used in
the generation command. You are able to assign a mnemonic to the Question or
Variable for use in the command equation. It also contains a special Aggregation
description which provides the aggregation method and identifies the
Independent and Dependent variables required for the computation. This
structure is also available in CodeMap for use in defining recodes from the
Source to the Target structure.

7.0 Creating a Basic Data Dictionary
A basic data dictionary in its simplest form consists of a description of variable
contents, information on the universe, the concept represented by the variable,
the measurement unit, analysis unit, the number of respondents, and the location
of the data field in the physical data store. DDI 3.0 separates these parts into
separate category schemes, code schemes, variable descriptions, and physical
location.

 Data Documentation Initiative

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477

7.1 Category Schemes
Category schemes should be started early in the process. Category schemes are
used by questions as response domains and by code schemes in preparation for
use in variables. A category scheme can include a set of related categories or
include all the categories used in the study. Note that category schemes are
maintainable and you should consider creating separate category schemes for
subsets of categories that may be reused in other studies. This is especially true
if your questionnaire uses un-coded categories. One group of categories you
may wish to construct is one including non-response categories used in the
study. Any category used in the study should only be listed once. Reuse of a
category in multiple code schemes implies comparability.

As a maintainable object, Category Schemes are an extention of a
MaintainableType and contain descriptive information about the scheme (label
and description) to provide information on what the scheme contains. Its content
is made up of a set of category descriptions which may or may not be organized
into category groups. A category is an extension of VersionableType to allow for
updates and changes over time, such as changes in a label or description. The
label is repeatable to handle multiple languages. This is the actual category term
as used in the question response domain or variable representation. The
description is repeatable to handle multiple languages. When determining the
comparability of categories, base the comparison on the description not on the
label. For example, the category “Chemist” in British occupation codes has the
same description and is comparable to the American occupation “Pharmacist”..
In addition, the object Generation allows for description of the command used to
generate the contents of this category, for example “Other Income” equaling total
income minus wage/salary income.

7.2 Code Schemes
Code schemes organize categories from one or more CategorySchemes and
provide the code representation for the category as it is found in the question or
variable. A code scheme may be flat or hierarchical and the hierarchy can be
regular (each branch having the same number of levels) or irregular (the number
of levels varies by branch). A code within a code scheme is identified by its
unique code value. A level or specific code may or may not have data associated
with it. A code without associated data acts as a category group as found in
earlier DDI structures. Its sole purpose is to group a subset of categories/codes
and provide a grouping label through reference to a category.. A CodeScheme
contains only a single code scheme and should provide all legitimate categories.
If a standard codeScheme is used for non-response, a single CodeScheme can
describe that and be included in each relevant codeScheme by reference.

To build a CodeScheme you must have completed the relevant
CategorySchemes. A CodeScheme has a MaintainableType, Label, and
Description. It may reference one or more existing CodeSchemes. For example,
if there is an existing CodeScheme for Gender (0 = Male, 1 = Female) and

 Data Documentation Initiative

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1508
1509
1510
1511

another for Non-response (9 = No response), a single CodeScheme could be
created to include these three valid responses, 0 = Male, 1 = Female, and 9 = No
response. If all or a majority of the categories come from a single
CategoryScheme, it can be declared once, thereby creating a default value for
the maintainable object of category references allowing subsequent category
reference to list only the category’s ID and Version information. This can be
overridden by providing a complete URN at the category reference level. If the
CodeScheme is hierarchical, you must indicate if it is regular or irregular. Flat
CodeSchemes are the default and do not require this element. Hierarchical
CodeSchemes must have their levels described so that they can be referenced
by Variables using a limited number of levels and to understand the relationship
between the levels and their contents.

A level has a name, description, relationship type, and interval. The relationship
type describes the relationship of the categories contained by the level. They can
be nominal (no implied order), ordinal (ordered as presented in the description),
interval (both ordered and with a consistent interval between categories), ratio
(ordered and with a consistent interval ratio), or continuous (either interval or
ratio, use when unsure of the interval type) . If the categories have an interval
relationship, provide the anchor (base value for the first category) and increment
value of the interval. This information is provided for each level as this may vary
by level, for instance, a single hierarchy may have ordinal or interval relationships
at upper levels and nominal at the lowest level.

Codes are then listed containing a reference to the category being represented
and a code value, plus a nested code to allow for building hierarchies. A code
has two attributes, a level number (optional) to indicate the level of the coded
category, and isDiscrete. The field isDiscrete has a default value of “true”. Set
this attribute to “false” if it has a subordinate level.

7.3 Describing Variables
A variable is part of a variable scheme and is made up of the following
components:

Element Usage
VersionableType extension
base

This is how the variable is referenced by other
objects in the instance

Name Contains an optional Name for the variable
such as a mnemonic. This is available in all
identifiable elements but is most commonly
used in Variable. Note that it is repeatable for
language and geographic differences.

Label This is a short human-readable label description
of the variable.

Variable Definition Additional textual description of the variable

 Data Documentation Initiative

which may be used to provide extended detail
concerning the variable.

Universe Reference Universe is described in
ConceptualComponent. This allows the
universe of the variable to be seen in context of
the full universe structure and provides
comparability for two variables using the same
universe. A universe is assumed to be the
fullest universe of the study if it is not provided
but given the complexity of multiple data
products being produced from a single study, it
is recommended that a universe be explicitly
identified. Variables used as component parts
(attributes or dimensions) of NCubes do not
require a universe as this is defined in the
NCube.

Concept Reference Similar to Universe in terms of concepts being
described within the ConceptualComponent. All
variables must have one and only one concept
declared.

Question Reference References to all questions as expressed in an
instrument used to determine the value of this
variable.

Embargo Reference References access restrictions for this variable.
Response Unit Who provided the information for this variable.

This may be the same as the response unit of
the question as used in the instrument.

Analysis Unit Describes who or what this variable is an
attribute of (who or what is described).

isTemporal
isGeographic
isWeight

Three Boolean attributes all with the default
value of “false”. If true, reset the value of
appropriate attribute to “true”.

Representation:
With optional attributes of
measurementUnit,
aggregationMethod, additivity

Describes how the variable is represented in
the data file according to one of the following.
Attributes are optional as this information is
listed in the NCube when the variable is used
as a dimension or attribute of an NCube.

WeightVariableReference References the variable to be used with this
variable.

StandardWeightReference References the weight factor described in Data
Processing.

ConcatenatedValue Describes 2 or more variables, that when
concatenated provide the value of this variable.
Used primarily to create a virtual variable such
as a multipart link whose parts are described by
separate variables.

 Data Documentation Initiative

CodingInstructionReference References the specific coding instruction in

Coding used to create this variable. This may
be a recode or derivation instruction.

ValueRepresentation Provides the actual representation used by the
variable. This is an abstract object that acts as
head of a substitution group.

 1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Some of these elements may have been compiled at earlier stages of the study.
For example, the concept and universe structures, questions, a number of
category and possibly code schemes, and some of the recoding or derivation
process will already exist. The first step is to complete those component parts.

The Value Representations available are described below. Note that
CategorySchemes and CodeSchemes should be created first. CodeSchemes
should describe the full structure of the code. A variable can use all or parts of
the CodeScheme thereby retaining the relationships among the various parts or
levels of the structure. Each of these types extend the contents of
VariableRepresentation noted in the above table.

7.3.1 Text
TextRepresentationType allows you to specify the minimum and maximum length
of the text content and to provide a regular expression that can be used to restrict
the content of the text string. For example, a United States ZIP Code is a text
string because the leading zeros carry significance. As a text string a five digit
ZIP Code would have a minLength of 5, a maxLength of 5, and a regular
expression of [0-9]*. Please note that text letters that represent categories labels
are described with CodeScheme. The value of a code may contain any
character.

7.3.2 Date/Time
DateTimeRepresentation requires the use of one of the following types
corresponding to the W3C XML schema xs: datatype.

Code W3C XML schema xs datatype
DateTime [xs:dateTime] Contains both the date and time as

<date>T<time>
Date [xs:date] Contains the full date from the Gregorian calender

YYYY-MM-DD unless an alternative format is provided
Time [xs:time] Contains the full time on a 24-hour clock system

unless alternative format is provided. hh:mm:ss. Precision
can be dropped resulting in hh:mm or hh. A time zone can
be added <time>Z using the standard time zone
designation +-hh:mm or +-hh

Year [xs:gYear] Contains the 4 digit year YYYY

 Data Documentation Initiative

Month [xs:gMonth] Contains the 2 digit month MM
Day [xs:gDay] Contains the 2 digit day DD
MonthDay [xs:gMonthDay] Contains the 2 digit month followed by the

2 digit day as MM-DD unless an alternative format is
provided

YearMonth [xs:gYearMonth] Contains the 4 digit year followed by the 2
digit month as YYYY-MM unless an alternative format is
provided

Duration [xs:duration] Provides a duration of time represented by one
of the following formats (specific format must be declared)
PnnYnnMnnDTnnHnnMnnS where n is replaced with the
number of unit types for example "P3Y6M4DT12H30M0S"
defines "a period of three years, six months, four days,
twelve hours, thirty minutes, and zero seconds". Elements
may be omitted if their value is zero. T is used to separate
date and time elements so that P3M is 3 months and PT3M
is three minutes. Alternative format P<date>T<time>
"P0003-06-04T12:30:00".

Timespan This is not allowed as a date type when describing an
NCube dimension as it represents two dimensions.
Complex structure containing <start>/<end>,
<start>/<duration>, or <duration>/<end>. Start and end can
follow any of the designated datetime structures and should
be declared in format. <start>/<end> example: "2007-03-
01T13:00:00/2008-05-11T15:30:00" <start>/<duration>
example: "2007-03-01T13:00:00/P1Y2M10DT2H30M"
<duration>/<end> example "P1Y2M10DT2H30M/2008-05-
11T15:30:00" For <start>/<end> expressions, if any elment
are missing from the end valude, they are assumed to be
the same as for the start value including the time zone if
used. For example a 2 hour meeting "2007-12-
14T13:30/15:30".

 1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

An optional format element can define an alternative format for the data field
such as MM-DD-YY. The default is the W3C format.

7.3.3 Numeric
Note that numeric should not be used for numbers that represent categories (1 =
Male, 2 = Female). The use of a numeric representation suggests a form of count
(6 years, 20000 Euros, 2 children). Numeric representation provides a start and
end value for the range, scale, the number of decimal positions, interval, and a
numeric type code. The type code is required and is represented by one of the
following.

Code W3C XML schema xs datatype
BigInteger [xs:integer]An integer of unlimited size. An integer datatype

 Data Documentation Initiative

corresponding to W3C XML Schema's xs:integer datatype.
Integer]xs:int] An integer number can hold a whole number, but no

fraction. Integers may be either signed (allowing negative
values) or unsigned (nonnegative values only). An integer
datatype corresponding to W3C XML Schema's xs:int
datatype.

Long]xs:long] An integer of up to 32 bits in size (corresponding
to an unsigned range of 0 to 4,294,967,295 or a signed
range of -2,147,483,648 to +2,147,483,647). A numeric
datatype corresponding to W3C XML Schema's xs:long
datatype.

Short]xs:short] An integer of up to 16 bits in size (corresponding
to an unsigned range of 0 to 65,535 or a signed range of -
32,768 to +32,767), A numeric datatype corresponding to
W3C XML Schema's xs:short datatype.

Decimal]xs:decimal] A real number (allows fractions expressed as
decimals). A numeric datatype corresponding to W3C XML
Schema's xs:decimal datatype.

Float]xs:float] Real numbers that may be stored in scientific
notation (example: 20.0005, 99.9, -5000.12, 6.02e23). A
numeric datatype corresponding to W3C XML Schema's
xs:float datatype.

Double]xs:double] Float of up to 32 bits. A numeric datatype
corresponding to W3C XML Schema's xs:double datatype.

Count Ordinal number of objects in a finite set, discrete. A simple
incrementing Integer type. The isSequence facet must be
set to true, and the interval facet must be set to "1".

Incremental A value that is continuous and infinite can be interval or
ratio. This value indicates that the value increments
according to the value provided in the interval facet, and
has a true value for the isSequence facet.

 1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

7.3.4 Code
The value representation for code allows a single CodeScheme to be applied in a
number of ways. You can define which portions of the CodeScheme are being
used in a particular variable. The default is to include all codes described in the
codeScheme. In the case of a hierarchical codeScheme, this means that the
response can include all levels of the hierarchy. Alternatively, the following
objects can be used to constrain what is included in the variable.

IncludeLevel Identify specific levels to be included in the variable
IncludedCode Reference to included codes
DataExistence Include the most discrete items only (this allows inclusion of

all codes designated as the most discrete which could be a
level or in the case of an irregular hierarchy, the rightmost

 Data Documentation Initiative

codes in each branch of the tree’s hierarchy
 1562

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

Example:

Irregular Hierarchy
1 Metals (level 1)
2 Iron (level 2)
3 Bar Iron (level 3, isDiscrete=”true”)
4 Caste Iron (level 3, isDiscrete=”true”)
5 Copper (level 2, isDiscrete=”true”)
6 Non-Metals (level 1, isDiscrete=”true”)

Variable 1 – using IncludeLevel
 Includes Level 1 and Level 2
 Valid responses are 1, 2, 5, 6

Variable 2 – using IncludedCode
 Includes valid responses 3, 4, 5

Variable 3 – using DataExistence
 Includes valid responses 3, 4, 5, 6

Variable 4 – no constraints noted
 Includes valid responses 1-6

7.4 Data Relationships
The Data Relationship portion of a logical product describes the logical records
described in terms of their coverage, unique identifiers, and interrelationships.
This section is meant to reflect the information often found in the “How to use this
file” type sections of a traditional codebook. All data sets have one or more
logical record types. Note that this is referring to the logical structure of the
records not their physical layout which may be hierarchical, rectangular, or held
in a relational data set. This section is focused on what variables are available to
link data together and to assist the user in identifying unique cases with a record
type. At a minimum, the human-readable description should be completed.
Ideally the detailed information should be completed to support machine-
actionable exploration of the data set.

The Data Relationship section contains three main parts. First is a human-
readable description of the logical record types contained in the data set and the
relationships among these record types. The second part describes each logical
record type. The record type descriptions are Identifiable so that they can be
referenced by the physical data structure.

The variable value reference provides the identification of the variable that
differentiates one record type from another and the value of this variable for the

 Data Documentation Initiative

1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

record type being described. In files with a single record type this would not be
used. However, most files with more than one record type have a variable such
as RecordType that provides a value such as “H” for household record and “P”
for person record. Older data files may have an identifier for the first record with
subsequent records (records of another type nested within them) simply being
those records that do not have this value. The attribute hasLocator must indicate
whether or not the record has such a variable.

Support for multiple parts allows for the identification of any variable that provides
information that can be use to identify which segment of a logical record you are
dealing with. This is a common practice for long logical records that are being
stored within the constraints of a particular storage structure (Excel files have a
record length, old SPSS and SAS packages had a maximum record length that
could be supported). Support for multiple records is often found in elements such
as LogicalRecordPartNumber, which appears in the 1990 and 2000 U.S. Census
Standard Summary Files. Other older files have record segments without support
for multiple parts, and identification is based solely on record order within the file.
This section provides both the variable used to identify a record part and the
values available.

Case specification provides for one or more means of identifying a unique case
within a record type. For example, a record within its original file structure may
have a unique record ID variable, often used to link it to other records. However,
there may also be other identifiers, either individual fields or combinations of
fields, that allow for case identification. A common example of this is the
geographic codes of aggregate data files. Case specification allows for
alternative identification for various case types. For example, in a geographic
case file, a County level record may require one set of variables (state and
county codes) to identify it while a Place requires another set (state and place).
Case specification allows for different sets of identifier variables to be declared
for different values of a parent identifier.

The last part of the record description is a listing of the variables belonging to the
logical record. This is a special type of Variable Group and should be declared
within the Data Relationship rather than as a standard Variable Group.

The third section of Data Relationship deals with record relationships. These are
declared in a pair-wise fashion to account for all supported relationships. This is
done by defining the variable and value of the linking variable in the source
record and its matching point in the target record. The relationship is defined
through the VariableValueRelationshipType attribute as “parent”, “child”, or
“sibling”. The value relationship by default is “equal”, but can be set to
“GreaterThan”, “LessThan”, “GreaterThanOrEqual”, LessthanOrEqual”, or
“NotEqual”. Multiple variable links should be handled by creating a variable with a
concatenated value and using it as the link variable. This relationship is

 Data Documentation Initiative

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

identifiable so that it can be referenced by the physical data product, reducing
repetition of the information.

Note that if you are creating links between multiple logical product sections, you
can put this information in a single logical product (defining all the relationships in
the collection of logical products), or create a logical product that contains just
the data relationship between all other logical products. This is useful when
describing links between files in a longitudinal series, where there is a link
between a person record occurring in one year and that person’s record in
another year or wave.

7.5 NCubes
NCubes are used to describe the data matrices created through crosstabulation
and aggregation of microdata. An NCube represents a matrix where each cell
intersects each dimension of the matrix in one and only one location. For
example, AGE by SEX by COUNTRY OF RESIDENCE. A cell has an “address”
which provides its intersect code for each dimension. In this case, “5,1,6” would
be the fifth value of AGE, the first value of SEX, and the sixth value of COUNTRY
OF RESIDENCE.

An NCube is an extention of a VersionableType, and contains Label,
Description, a Universe Reference, ImputationReference, ResponseUnit, and
AnalysisUnit. In this, it is very similar to a variable. An NCube must be
constructed of one or more dimensions which are described as variables. The
dimensions identify both a variable and a “rank” order so that the coordinate
address will be clear. In the above example AGE has a rank of “1”, SEX a rank of
“2”, and COUNTRY OF RESIDENCE a rank of “3”. Additional attributes can be
attached to all or part of the NCube. These could be cell level suppression flags
described by a variable, footnotes or source notes, or whatever is required. By
describing regions of the NCube with Coordinate Groups, one or more attributes
can be attached to a cell, a dimension or dimension value, or a specific sub
region of the NCube defined by the intersect values. A common use of the
attribute within the NCube description is to identify cells that contain no data by
definition. Many NCubes are created through the process of cross-tabulation and
then collapsed when published to save storage or printing space. For example,
the U.S. Census has a table of Number of persons per household by Household
type where Household type contains Non-Family and Family Households. The
number of person’s categories run from 1 to 9 or more. This table is usually
published as a one dimensional matrix Number of persons per household by
household type.

LABELS Cell coordinates
Nonfamily Household: [no data used a category group label]
 1 1
 2 2

 Data Documentation Initiative

 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 or more 9
Family Household: [no data used a category group label]
 2 10
 3 11
 4 12
 5 13
 6 14
 7 15
 8 16
 9 or more 17

 1692
1693
1694
1695
1696
1697
1698

Note that 1 person Family Household is missing. By definition a “Family” is two or
more persons so this cell would always be zero or have no data listed.

The layout of the NCube structure in DDI 3.0 allows for the following table
structure and attributes description.

LABELS Dimension 1:
Dimension 2: Nonfamily Household Family Household
 1 1,1 2,1
 2 1,2 2,2
 3 1,3 2,3
 4 1,4 2,4
 5 1,5 2,5
 6 1,6 2,6
 7 1,7 2,7
 8 1,8 2,8
 9 or more 1,9 2,9
 1699

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709

The attribute would reference a Variable that declares it’s sole value as blank
with the label “Definition as a Family Household requires a minimum of 2 people
in the household”. The the value is attached at the CoordinateGroup which
defines the CoordinateGroup as any cell with the dimension 1 value of 2 and
dimension 2 value of 1 (Family Household, 1 Person).

Attribute values can be declared within the metadata if they are consistent for all
instances of the NCube (such as footnotes or definitional values) or can be
stored in the data file and attached to the cell in the RecordLayout definition.

 Data Documentation Initiative

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

The Measure of an NCube must be described by a variable in order to capture its
universe and various aspects of the measure. For example, a measure of an
NCube Persons Per Housing Unit may have a dimension denoting the number of
persons per housing unit and the measure is a count of housing units falling into
each definition. Alternatively, it may be the percentage of housing units with the
designated number of people. In order to capture both the dimension and the
measure, you need to have two unique definitions and their associated concepts.
Some measures such as percentages require definition of the values that are
used for the independent and dependent variables used to calculate the cell
content. For example a percent could be the cell’s percent of the universe or the
cell percent of one of its dimensions. This can be handled one of two ways. First
a separate variable can be created for each percentage or other aggregation
using the specific variables to describe its calculation in GenerationInstruction. A
variable pointing to this GenerationInstruction would be used for the measure.
Alternatively a generic variable “Percentage of Housing Units” can be created
with a GenerationInstruction that states that the value is calculated by dividing
the dependent variable divided by the independent variable. The
AggregationDefinition within Measure then declares which dimension(s) are used
as the Independent variable and which are used for the Dependent variable. It
can also note that the universe of the NCube is the independent variable. For
example, when the NCube was Age by Sex and the Percent was provided for the
each cell count divided by the total population of the NCube. If the percentage
was the percent of 2 year olds who were female, Age would be the Dependent
Variable and Sex would be the Independent variable.

Note that an NCube and a table are not synonymous. A table may consist of a
number of NCubes that share a common dimension, such as AGE by COUNTY
OF RESIDENCE followed by SEX by COUNTRY OF RESIDENCE, where there
is no intercept between AGE and SEX (for example no “Males 5 to 9 years of
age”).

Table 1 Sex Age
 Male Female Under 18 18 to 64 65 or more
Region 1
Region 2
Region 3
Region 4
 1741

1742
1743
1744
1745
1746

In Table 1 there are two NCubes Sex by Region and Age by Region. By
definition the cells of an NCube must intersect each dimension of the NCube at
one and only one point. None of the cells in the above table intersect both the
Age dimension and the Sex dimension. They share a common dimension of
Region and will each point to the same Variable to describe this dimension.

 Data Documentation Initiative

1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777

8.0 Physical Data Product
Physical Data Product was designed to describe the physical storage structure of
data including the breakout of logical data records into multiple physical parts, a
link to the logical record being stored, and the specific structure of each record.
The general structure of this section is split into describing the Gross structure of
the physical records (what logical record is contained and how physical records
should be linked), and the details of the RecordLayout (this may include data
inline for some structures). Note that any logical product may have more than
one physical storage structure. Frequently, files are stored in multiple formats, for
example, a fixed format archive copy and a database copy that supports a
specific use of the data file. In turn, each physical record description can
represent multiple physical files of data. These files of data may represent
different record types (different RecordLayout structures) within the dataset or
different subsets of records within the full dataset (multiple PhysicalInstances)
such as a datafile containing just the records for the state of Arizona or just the
records for females in the study.

Data can be stored in a wide and growing range of physical data structures. The
common archival structures of fixed format and delimited files are described very
much as they were in earlier versions of DDI. DDI 3.0 has tried to facilitate the
management of the same data held in multiple storage structures and multiple
datafiles. A single logical record of data may be storage as a single record string,
broken into physical segments to accommodate line length limitations in some
software, stored with all segments in the same file or different files (like relational
data files), use a variety of proprietary and nonproprietary data structures, and be
divided in multiple files of record subsets to facilitate processing. Within this,
numerous pieces of information regarding each dataitem need to be recorded but
much of it is repetitious and could be provided as default values. In order to
handle this complexity, DDI 3.0 approaches the description of physical storage
as follows:

Major Component Use
Common Schema Components:

• MaintainableType
• OtherMaterial
• Note

Users may choose to maintain a
single PhysicalDataProduct which
describes their holding. Whether
representing a single StudyUnit or a
whole collection, OtherMaterial
related to physical processing,
analysis tools, systems information
or other related materials or notes
can be stored here.

PhysicalStructureScheme:
• MaintainableType
• Description
• Label

A separately maintainable scheme,
PhysicalStructureScheme is
basically a listing of individual
PhysicalStructure descriptions
included inline or through inclusion

 Data Documentation Initiative

• PhysicalStructureReference
• PhysicalStructure

by reference of another published
PhysicalStructureScheme

RecordLayoutScheme:
• MaintainableType
• Description
• Label
• RecordLayoutSchemeReference
• BaseRecordLayout

A separately maintainable scheme,
RecordLayoutScheme is basically a
listing of individual
BaseRecordLayout descriptions
included inline or through inclusion
by reference of another published
RecordLayout Scheme. Note that
BaseRecordLayout is an abstract
for a substitution group including:

• RecordLayout (ASCII fixed or
delimited)

• DataSet
• NCube record layout
• Tabular NCube record layout
• Inline NCube record layout
• Proprietary record layout

 1778

1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799

8.1 Physical Structure Scheme
PhysicalStructure is an extension of VersionableType and contains one or more
LogicalProductReferences. Note that a LogicalRecord can contain parts of more
than one LogicalProduct, this element allows a system to identify which
LogicalProduct contents will be referenced from the physical record descriptions.
It also contains one or more GrossRecordStructure descriptions. The remaining
objects within PhysicalStructure are optional and provide default values that
apply to all RecordLayouts referencing a PhysicalRecordSegement described
within this PhysicalStructure unless overridden at a lower level of description.
DDI 3.0 has provided default options a multiple levels and the user needs to
determine how they wish to organize and manage their collection to take
advantage of this feature. For example, if the Format (for example Fixed Format)
is declared at this level, the PhysicalRecordSegments described here cannot be
referenced by a ProprietaryRecordLayout or DataSet. However, it may be
entirely appropriate to define the DefaultDecimalSeparator or DefaultMissingData
here to avoid having to enter this information for each DataItem. Default
declarations are also available all NCube storage descriptions as they can vary
from NCube to NCube. These same elements are found in the PhysicalLocation
of the DataItem description and can be described there. If defaults are used, the
value in the PhysicalLocation will override the default value.

Element Usage
DefaultDataType Content is xs:string but preferred use is any W3C

datatype
DefaultDelimiter Allowed values are: Empty (default), Tab, Blank,

 Data Documentation Initiative

AnyString. If a delimiter is used, free field
(delimited data) is assumed; binary formats are not
allowed. This is the delimiter between data items in
a delimited file.

DefaultDecimalPositions This is the default value of implied decimal
positions (how many positions to the right of the
decimal are included). For example, if the
DecimalPosition is 2, then a DataItem value of 8
would be the equivalent of .08.

DefaultDecimalSeparator There is no default value for this as a “.” is common
in the US and “,” in Europe.

DefaultDigitGroupSeparator A grouping separator separates groups of digits
such as thousands from hundreds. Once again
there is no default as “,” is common in the US and
“.” Is common in Europe.

DefaultMissingData Standardized handling of missing data across the
dataset.

 1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

Gross Record Structure provides information on the gross or general physical
structural of a logical record as it appears in a dataset. First is the
LogicalRecordReference which links the physical description to the content
information provided for the LogicalRecord as described in DataRelationship. An
attribute, numberOfPhysicalSegments is set to a default value of one and should
reflect the number of PhysicalRecordSegments defined for the record. You must
describe at least one PhysicalRecordSegment (that is the full record) in order to
provide the link to the RecordLayout. The minimum description for a logical
record contained in one physical record is an ID (it is an extension of
IdentifiableType), the attribute segmentOrder at its default value of “1” and
attribute hasSegmentKey at the default value of “false”.

A logical record that supports multiple segments may be stored as a single
record, multiple segments in a hierarchical file, multiple segments in a data file
per record segment, or a combination of these. Legacy data often has no
structural support for multiple segments but is stored in segments in hierarchical
files where the record order alone defines the segment. If the logical record has
been separated into more than one physical segment the segmentOrder would
be incremented and two optional elements may be used. If there is a segment
Key (a variable that identifies the segement type, the attribute hasSegmentKey is
changed to “true” and the element KeyVariableReference is provided giving the
reference to the Key variable and a value of the variable for the specific segment.

Note that this is a reference is to a single variable so if this is a concatenated
key, a variable whose content is the concatenation of two or more other variables
must be described in the logical record and included in the LogicalRecord. In
addition, a FileNameIdentification string can be provided which indicates how a

 Data Documentation Initiative

1829
1830
1831
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

segment may be located by its file name structure. For example, in 2000 the U.S.
Census published Summary File 1 in 39 files for the US and for each state. The
file name convention was xxnnnnn_uf1.zip where xx was either us or the state
two letter postal abbreviation and nnnnn was the segment number.

8.2 Record Layout Scheme
RecordLayoutScheme is an extension of MaintainableType and contains a Label,
Description and means of including one or more record layout structures inline or
by referencing a publish RecordLayoutScheme. The element BaseRecordLayout
is the abstract type for a collection of substitution types to describe the details of
a record layout. This structure allows the development of RecordLayout
descriptions that are specific to the needs of current and future storage systems,
including proprietary systems like statistical software. BaseRecordLayout is an
extension of IdentifiableType and contains a PhysicalStructureReference,
CharacterSet (US ASCII, EBCDIC, UTF-8 etc.), and ArrayBase (1 or 0). If
CharacterSet is unknown, say for a proprietary structure, enter “unspecified”.
ArrayBase provides the assumed first position in any array used in describing
this dataset. For example, codebooks historically assume the first character in a
data record is “1”, that is, an array base of “1”. Unix systems and many
programming languages assume an array base of “0”. If the codebook
information uses an array base other than “0” the base level for any array
handled by the system must be declared. If not, all start positions would be offset
by one character. PhysicalStructureReference is a specially structured reference
to a single PhysicalRecordSegment. It contains a reference to the
PhysicalStructure and a separate element, PhysicalRecordSegmentUsed, that
provides the ID of the PhysicalRecordSegment. Note that a BaseRecordLayout
can only link to one PhysicalRecordSegment. If you have a logical record that is
stored in some files as a single record and other files as multiple records, you
must create two different PhysicalStructures to describe the physical stores of
the logical record.

8.2.1 RecordLayout
The traditional archive format description of fixed format and delimited files
(similar to earlier DDI versions) is described in RecordLayout as found in
PhysicalDataProduct. All other BaseRecordLayout substitutions will be found in
separate schemas. In addition to the elements inherited from BaseRecordLayout,
RecordLayout allows for a DefaultVariableSchemeReference to limit the need to
repeat this information for each DataItem’s VariableReference, an attribute
namesOnFirstRow with a default value of “false”, and a list of one or more
DataItem descriptions.

DataItem contains a VariableReference and PhysicalLocation. PhysicalLocation
is used or extended by a number of other BaseRecordLayout substitutions. Its
contents should be familiar to uses of earlier versions of DDI.

 Data Documentation Initiative

Element Use
StorageFormat Overrides DefaultFormat. Is a

CodeValueType which allows for a
controlled vocabulary

Delimiter Overrides DefaultDelimiter
StartPosition Used in fixed format files this is the

position of the first character of the
data item in the record

ArrayPosition Used in delimited files. This is the array
number of the data item. Note that the
first item in the array should have a
value corresponding to the ArrayBase
declared in the RecordLayout.

EndPosition The position of the last character of a
data item in a fixed format file

Width The actual width of a data item in a
fixed format file or the maximum width
in a delimited file.

DecimalPostions Number of decimal places with an
implied decimal separator. Another
expression of the decimal scalling
factor (SAS). Default value is “0”

DecimalSeparator Character used to separate the integer
from the faction portion of the number if
it is used in the data set. Allowed
values include: None (default), Dot,
Comma, Other. Overrides
DefaultDecimalSeparator

DigitGroupSeparator Character used to separate the
sections of an integer (between 100
and 1000 for example) if it is used in
the data set. Allowed values include:
None (default), Dot, Comma, Other.
Overrides Default DigitGroupSeparator

LanguageOfData Use two-character ISO Language Code
to indicate the language of the data
content. Applicable for text fields.

LocaleOfData Use two-character ISO country code as
a supplement to the
LanguageOfDataCode

 1873
1874
1875
1876
1877
1878

Note that when describing a fixed format file you must use either EndPosition or
Width in conjunction with StartPostion. You may use both if desired. As you can
see from the number of elements that override defaults that listing a default value
that applies to only half the data items in the records, would considerably reduce
the size and content of the metadata description. In general, it is best to provide

 Data Documentation Initiative

1879
1880
1881

1882
1883
1884
1885
1886

the most common structures at the default level (for example
DataType=”Integer”) and enter an override value for “String” or “Character” data
items.

8.2.2 DataSet
DataSet allows for inline inclusion of data in the metadata file. This is valuable for
small datasets and particularly for small statistical tables. This identifies the
following items:

Element Usage
IdentifyingVariable References the variable containing the primary

key or index value.
DefaultVariableScheme By identifying the variable scheme here, one

can enter just the ID for each individual item,
reducing repetition.

CHOICE:
RecordSet Storage structure for a traditional rectangular

data structure. Each array of data is for a single
record with multiple variables.

ItemSet Allows data items to be stored in a random
order.

VariableSet Storage structure that is transposed from the
traditional record structure. Each array of data
is for a single variable with a value for each
record in record order.

 1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

The choice between three layouts provides flexibility to store data in whichever
format is optimal for your particular use. A RecordSet requires a list of variables
in order using VariableOrder (a simple list of VariableReference elements listed
in order of appearance in the array. This is followed by Record (repeated for
each record in the dataset) which is the array of values for all variables in the
record. Note that for sparse arrays (arrays with missing values) a separator other
than “blank” must be used in order to express the correct position in the array.
For example:
 For Var1=1 Var2=8 Var3= Var4=10 Var5=
 With Blank as delimiter: 1 8 10
 With Comma as delimiter: 1,8,,10,

Clearly indicating the missing content for Variable 3 and 5.

ItemSet is a list of ItemValues, each with a VariableReference and a
RecordReference (string containing the value of the IdentifyingVariable), and the
value of the variable.

VariableSet contains a list of VariableItems each containing a VariableReference
and a Value. The assumption is that each record will occupy the same position in

 Data Documentation Initiative

1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

each array and can be identified by the value provided in the VariableItem
referencing IdentifyingVariable. As with RecordSet, datasets with sparse arrays
will need to use a separator other than “blank”.

8.2.3 NCube Record Layout (Normal)
The first thing to note about NCube physical record layouts is that the
RecordLayout can handle ONLY those dataitems found in NCubes. If your record
has identifying variables fields in addition to the NCube content, you will need to
describe a minimum of 2 PhysicalRecordSegments so that the appropriate
RecordLayout can be used to describe each part. These will later be recombined
in the PhysicalInstance which can contain multiple RecordLayout references
stored as concatenated strings or as hierarchical structures.

The basic NCube structure is for storage structures where one or more NCubes
are stored as records with the data items (cell data) strung out in sequence with
or without a string of non-NCube variables that define the case. Census
aggregate summary files are often structured in this way, where each record is a
geographic area with the data for 100 or more tables strung out in a single logical
record. This type of structure facilitates record subsets as it does not require a
case identification as a dimension of the NCube. This structure can also be used
for cases where all data items are described by the NCube. The NCube record
layout provides a reference to a specific NCube, identification of any attributes
provided for the NCube, and physical location of a data item in a record and
association to the cell coordinates, attribute type, and measure. To identify the
standard content of the NCube such as a count, provide the NCubeReference,
use the Coordinate element to identify the coordinate number as described in the
logical product, and the value of the coordinate or the variable where the value is
being held. In addition you can provide similar location information on attributes
associated with all or parts of the NCube through the use of attribute or
coordinate group. Use coordinate group when the attribute is not associated with
the full NCube.

In addition to the items inherited from BaseRecordLayout, the NCube
RecordLayout is a simple series of NCubeInstance descriptions. Note that an
NCube that is split between 2 or more physical records must be described in 2
separate RecordLayout descriptions. Any cell of an NCube for which there is no
DataItem is assumed to be missing from the PhysicalRecordSegment being
described. It may be missing because it has been declared as being “empty” by
definition or because it is stored elsewhere in another PhysicalRecordSegment.

Each NCubeInstance has a reference to a single NCube description in a
LogicalProduct. It may have an attribute attached at the NCube level for the
NCube as a whole or a specified region of the NCube (as defined in
LogicalRecord). The value of the Attribute may be declared in the metadata or,
using the standard PhysicalLocation structure, reference the location of the
attribute value in the dataset. For example, in many economic tables,

 Data Documentation Initiative

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998

suppression flags are attached to the full table or perhaps to a specific level of
detail for a variable. In these cases a single flag applies to multiple cells in a table
in a consistent fashion for each location. Some locations have suppressed data,
others do not. Attribute at the NCubeInstance level is used only for these
situations, when a single dataitem holds content that applies to multiple cells in
the NCube matrix.

The remainder of the NCubeInstance content is the DataItem along with the
ability to set the standard default values for the NCube as a whole. The DataItem
of an NCube is associated with the NCube by its cell coordinates, the point of
intersection on each of the dimensions of the NCube listed in rank order. The cell
coordinates are provided by the repletion of Dimension for each dimension of the
NCube. Dimension includes an attribute rank whose value corresponds to the
dimension rank of the variable as described in the NCube and either the attribute
value providing the variable value (intersect point) for this cell OR a reference to
a Variable which will contain the value for the intersect point.

Example:

Variable: Age
 1 = Under 18
 2 = 18 to 64 years
 3 = 65 years and older

Variable: Sex
 1 = Male
 2 = Female

Variable: PoliticalParty
001 = Democrat
002 = Democratic Farmer Labor
003 = Republican
004 = Independent
005 = Green Party
…
560 = Whig

LogicalProduct Description:
NCube1 Age by Sex
 Dimension rank=”1” VariableReference = “Age”
 Dimension rank=”2” VariableReference = “Sex”

NCube2 Age by Sex by Political Party Affiliation
 Dimension rank=”1” VariableReference = “Age”
 Dimension rank=”2” VariableReference = “Sex”
 Dimension rank=”3” VariableReference = “PoliticalParty”

 Data Documentation Initiative

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

For NCube 1 the DataItem for “65 years and older, Female” would be identified
as follow:

DataIt

< em>

<Dimension rank=”1” value=”3”/>
<Dimension rank=”2” value=”2”/>

For NCube 2 there are only as many records for a particular NCube as needed to
capture the Political Parties present for the geographic area in order to avoid a
predominately empty NCube content. For example, Democratic Farmer Labor is
found only in Minnesota. The DataItem for “18 to 64 years, Male, [Any

ty]” would be identified as follow: PoliticalPar

DataIt

< em>

ue=”2”/> <Dimension rank=”1” val
Dimen < sion rank=”2” value=”1”/>

 <Dimension rank=”2”>

eference=”true”>
rty</ID>

 <VariableReference isR
olticalPa
rence>

 </ID>P
 </VariableRefe
</Dimension>

If the value of the DataItem referencing the Variable PolitcalParty is “005” then
the count found in the DataItem described above will be the count of Males 18 to
64 years of age who identified as Green Party, if “002” those who identified with
Democratic Farmer Labor. This structure is used primarily for legacy storage
structures where space was major issue. It is also found in historical files
covering topics that change dramatically in the content of the variable values
over time.

Dimension provides the link between the DataItem being discussed and its
position in the NCube matrix. A DataItem as a cell of an NCube can contain one
or more measures as well as one or more attributes. The attributes described at
this level apply to the specific DataItem only. An example of this is cell level
suppression flags that are stored in the data file. It is identical in structure to that
found at the NCubeInstance level. It provides a reference to the Attribute as
described in the NCube logical product description, information on the physical
storage location using PhysicalLocation or the value of the attribute. In general
the point of having an attribute at this level is that it varies with each instance of
the cell, but the structure allows for declaring a set value in the metadata at this
point.

Measure is also repeatable to allow for multiple measures (count, percent,
cumulative percent, etc.) to be attached to the DataItem. Each Measure contains
a MeasureReference and PhysicalLocation. Note that MeasureReference
extends ReferenceType by providing an attribute arrayOrder (integer with a

 Data Documentation Initiative

2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093

default setting of “0” assuming an array base of ‘0”). Depending on the storage of
the data, multiple measures for a single DataItem can be stored separately or as
an array with a single PhysicalLocation. DDI allows for both storage structures.

If the measures have separate physical location information (different
StartPosition etc.) the element Measure in DataItem is repeated and a single
MearsureReference within Measure is provided. The arrayOrder on

ference remains at “0”. MeasureRe

DataIt m> < e

”>
 <Measure>

ayOrder=”0
ID>

 <MeasureReference arr
</
>

 </ID>COUNT
ce </MeasureReferen

 <PhysicalLocation>

cation>
 …..

o </PhysicalL
/Meas < ure>

 <Measure>

ayOrder=”0”>
</ID>

 <MeasureReference arr
NT
>

 </ID>PERCE
ce </MeasureReferen

 <PhysicalLocation>

cation>
 …..

</PhysicalLo
asure>

</Me

DataItem>

<

If the measures are stored as an array at a single physical location information
(single StartPosition etc.) the element Measure in DataItem is entered once using
multiple MearsureReferences within Measure and a single PhysicalLocation. The
arrayOrder on MeasureReference would be changed to reflect the position of the

measure in the array. referenced

DataIt m> < e

”>
 <Measure>

ayOrder=”0 <MeasureReference arr
 </ID>COUNT</ID>

 </MeasureReference>

ayOrder=”1”>
</ID>

 <MeasureReference arr
NT
>

 </ID>PERCE
ce </MeasureReferen

 <PhysicalLocation>

cation>
 …..

</PhysicalLo
asure>

</Me

DataItem>

<

 Data Documentation Initiative

2094
2095

2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

This is the basic structure of NCube storage structures. Tabular and Inline
descriptions will focus on the differences with this basic structure.

8.2.4 Tabular NCube Record Layout
A tabular layout is assumed to be a two dimensional layout on a spreadsheet or
print storage that is defined by columns and rows. A spreadsheet can contain
multiple tables on a single sheet and the table may be located anywhere on the
sheet. In addition a “Table” may contain more than a single NCube, either hinged
along a common dimension (see the example in section 7.5) or tightly interlaced
in a specialized layout. The RecordLayout found in
tabular_ncube_recordlayout.xsd can accommodate multiple NCubes found on a
single spreadsheet layout. In addition to the list of NCubeInstances, the tabular
description provides a TopLeftTableAnchor which gives the column and row of
the upper left corner of the table being described. These are expressed as
integers to provide a standard mappable structure for this content.

The NCubeInstance is identical to that of the basic NCube RecordLayout until
one gets to the level of the PhysicalLocation. Tabular does not use the standard
PhysicalLocation, but a specialized extension which adds the elements Column
and RowSequence. Column is the column in which the DataItem will be located.
RowSequence is the Row number within the repeating sequence which holds the
content of the DataItem. For the table Urban/Rural by Age by Nativity by Sex (cell
contents are DataItem coordinate values):

TABLE 1 Native Born Foreign Born
 Male Female Male Female
Minnesota Urban Under 18 1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2
 18 to 64 1,2,1,1 1,2,1,2 1,2,2,1 1,2,2,2
 65 and over 1,3,1,1 1,3,1,2 1,3,2,1 1,3,2,2
 Rural Under 18 2,1,1,1 2,1,1,2 2,1,2,1 2,1,2,2
 18 to 64 2,2,1,1 2,2,1,2 2,2,2,1 2,2,2,2
 65 and over 2,3,1,1 2,3,1,2 2,3,2,1 2,3,2,2
 2117

2118
2119
2120
2121
2122
2123
2124
2125

This shows a single record sequence so that the Column and RowSequence
values for Rural, 18 to 64, Foreign Born, Male would be Column = 3
RowSequence = 5. Note that the TopLeftTableAnchor would have been stated as
Column=3 and Row=3 (assuming the “TABLE 1” is located at Column=1 and
Row=1 with an array base of 1). If this table is repeated for all states as opposed
to including the states in the NCube structure, the location codes would not
change with the repetitions of each new case.

TABLE 1 Native Born Foreign Born
 Male Female Male Female
Minnesota Urban Under 18 1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2
 18 to 64 1,2,1,1 1,2,1,2 1,2,2,1 1,2,2,2
 65 and over 1,3,1,1 1,3,1,2 1,3,2,1 1,3,2,2

 Data Documentation Initiative

 Rural Under 18 2,1,1,1 2,1,1,2 2,1,2,1 2,1,2,2
 18 to 64 2,2,1,1 2,2,1,2 2,2,2,1 2,2,2,2
 65 and over 2,3,1,1 2,3,1,2 2,3,2,1 2,3,2,2
Mississippi Urban Under 18 1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2
 18 to 64 1,2,1,1 1,2,1,2 1,2,2,1 1,2,2,2
 65 and over 1,3,1,1 1,3,1,2 1,3,2,1 1,3,2,2
 Rural Under 18 2,1,1,1 2,1,1,2 2,1,2,1 2,1,2,2
 18 to 64 2,2,1,1 2,2,1,2 2,2,2,1 2,2,2,2
 65 and over 2,3,1,1 2,3,1,2 2,3,2,1 2,3,2,2
 2126

2127
2128

2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

2141
2142
2143
2144
2145
2146

8.2.5 Inline NCube Record Layout
Again, this layout is essentially similar to the basic NCube Record Layout, but in
this case rather than a location being specified for a DataItem’s attribute and/or
measure, the value is provided inline in the instance. This results in the Dataitem
gaining an optional attribute xs:lang to provide a language flag at the DataItem
level. There is no PhysicalLocation provided. Attribute retains its optional Value
element which becomes required, and Measure replaces PhysicalLocation with a
required Value element. Note that Value is of type xs:string to allow for
alphanumeric or symbol content. It becomes very important to be sure that all
DataItems either use the default data type and other structural defaults, or
declares them at the attribute level. Inline NCube RecordLayout is the functional
equivalent of DataSet for aggregate data.

8.2.6 Proprietary Record Layout (BETA)
This provides a generic structure for describing record layouts for proprietary
software, in particular statistical analysis software. In addition to the elements
inherited from BaseRecordLayout, ProprietaryRecordLayout includes the
following elements.

Element Use
Software Standard software identification structure for the

software used by this data structure
DataItemAddress Description of how data items are addressed

within the file, for example by Variable ID or by
Variable Name

DefaultNumericDataType Declares the most common data type used for
numeric data using a controlled vocabulary

DefaultTextDataType Declares the most common data type used for
text data using a controlled vocabulary

DefaultDateTimeDataType Declares the most common datetime type used
for text data using a controlled vocabulary

CHOICE:

 Data Documentation Initiative

 CodeDataAsNumeric Use indicates that variables using

CodeRepresentation should normally be treated
as numeric data and declares the most common
data type using a controlled vocabulary

 CodeDataAsText Use indicates that variables using
CodeRepresentation should normally be treated
as text data and declares the most common data
type using a controlled vocabulary

ENDCHOICE
ProprietaryInfo This is a name value pair providing information

proprietary to the software package.
DataItem Contains a VariableReference a

ProprietaryDataType to override the default, a
ProprietaryOutputFormat to designate the desired
display or other output format, and
ProprietaryInfo at the DataItem level

 2147

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174

7.7 Physical Instance
Physical Instance has a one-to-one relationship with an actual physical data file.
The single exception is duplicate copies of the same file. A PhiscalStructure may
have zero (as is the case when using dataset), one, or hundreds of data files
associated with it. Common reasons for this are cases where each record type or
record segment is stored in a separate file or when large datasets result in
subsets of records by spatial, temporal, or topical divisions. For example, the
2000 US Census Summary File 4 has a separate data file for each state by each
record segment by one or a range of characteristic iteration values. This results
in a collection of over one million separate files in order to cover the US. While
this is an extreme case, it is also not uncommon for an archive to acquire a
single dataset such as the Eurobarometer and immediately sort it into a file per
country to facilitate use by their researchers.

Physical Instance is designed to capture these types of divisions as well as
contain the summary and category statistics related to the full dataset and/or
those specific to the particular subset of records.

7.7.1 Top Level Elements
The Physical Instance has the standard common reusable elements and is the
module that most frequently makes use of Coverage to impose coverage
constraints. The coverage of the Physical Instance will often be a subset of the
study coverage. In the past, coverage constraints of a data file were often only
noted by cryptographic file names. Physical Instance allows for clear evidence of
the subset included in the related data file. Additional elements identify the
Physical Data Product that describes the record(s) contained in the file as well as
the name of the data file itself, its location, and any additional copies. Attributes
let you indicate which is a master file (as opposed to a backup or other copy),

 Data Documentation Initiative

2175
2176
2177
2178
2179
2180
2181
2182

2183
2184
2185
2186

and note the URI if it is publicly available. In addition to the URI of the data file, a
location and path can be provided as a file may not be available directly due to
access restrictions. (It may, in fact be located on a DVD sitting in a safe, etc.).

In addition to these standard forms of identification, DDI has provided a generic
structure for capturing the “fingerprint” of the data file. This includes a Value for
the fingerprint, the AlgorithmSpecification, and the AlgorithmVersion. The
Fingerprint is repeatable to allow for use of multiple algorithm specifications.

7.7.2 Gross File Structure
This section contains information unique to the individual data file and how it was
created.

ELEMENT USEAGE
PlaceOfProduction Where the file was produced.
ProcessingCheck Description of any processing checks that were

done when the file was made [or subsequent
checks].

ProcessingStatus Many files go through stages in production and
the current stage should be noted here. Earlier
stages should have been noted in the set of
ProcessingCheck entries.

CreationSoftware The name of the software used to create the file
including the name, version, description, and
date of the software.

CaseQuantity Number of cases in the file.
OverallRecordCount Total number of records in the file (a case may

have more than one record).
 2187

2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203

7.7.3 Statistics
Summary and category statistics for a data file are entered in the physical
instance as the values change when full datasets are subset. Statistics may be
entered inline in the metadata or may exist as a separately described dataset
(common for large complex datasets expressing summary or category statistics
for filtered variables such as each variable by country). The StatisticalDataFile
reference may be to a physical instance that contains the statistics inline or that
represents the data file containing the statistics (noted by an attribute).

Statistics captured inline are organized by variable. The structure provides for
total responses, weight references, handling of missing category, additional
summary statistics, and category statistics. Category statistics can be weighted,
and can be presented as multiple forms of statistics (count, frequency,
cumulative frequency, etc.), and filters. A filter allows you to designate a single
layer cross-tabulation. For example:

 Data Documentation Initiative

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247

Variable: Sex COUNT
 Category:
 Male COUNT
 Female COUNT
 Filter Variable: Country
 Germany
 Male COUNT
 Female COUNT
 France
 Male COUNT
 Female COUNT

8.0 Group, Resource Package, and Comparison
The schema group.xsd encompasses a number of the features of DDI 3.0 that
allow it to capture the life cycle of data. Group provides an umbrella structure to
pull together two or more studies into a structured series or unstructured group. It
provides basic information on relationships among members of the group that
affect processing decisions based on a required attribute grid (see DDI 3.0
Technical Specification Part I: Overview, Appendix Two) as well as detailed
information on comparable relationships between and among the studies in the
group. In addition, Group contains a specialized structure called
ResourcePackage that allows for publishing maintainable objects (schemes and
schemas) outside of a StudyUnit or Group.

Studies can be grouped for a number of reasons but generally fall into the
category of grouping by design or ad hoc groups. Grouping by design takes
place when studies are either intended to be a series or when a repetition of the
study takes place. The key factor is that the second study in the series is
intended to inherit features of the first study (questions, variables, study design,
universe, etc.) for the purpose of comparability. Group allows you to define which
parts of the major components are shared, where overrides take place, and how
to relate or link data in one study to data in a subsequent survey.

When using inheritance within groups to show comparability – or even just to re-
use metadata – it is important to understand how local overrides work, as this
can impact the way the metadata is grouped. Within each group, all metadata is
inherited down the grouping structure. At any level, it is possible to override any
inherited metadata using the Add, Replace, or Delete attributes which are found
on the IdentifiableType, VersionableType, and MaintainableType structures. To
override an inherited structure, it should have the appropriate ID structure given
for it, and then have the Replace element specified. To delete inherited
metadata, use a similar technique but employ the Delete element. Once replaced
or deleted, it is the modified form of the metadata which is inherited down the
grouping structure.

 Data Documentation Initiative

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268

2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

Note that when referencing metadata that is subject to local overrides, it may be
necessary to specify the exact module being referenced – otherwise, local
deletions and overrides won’t be referenced.

Ad hoc groups are collections of studies that have been grouped to meet specific
needs of the archive, data service, or user. These groups do not support
comparison through inheritance as they were developed as separate studies and
grouped later to meet specific needs. Without the use of inheritance,
comparability must be described explicitly using the schema Comparative.
Currently, comparison is enabled for the following complex elements: Universe,
Concept, Question, Category, CodingScheme, and Variable. All comparisons are
pairwise, and with the exception of CodingScheme each comparison notes a
source and target item, the relationship (map) type, and a definition of any
differences when the map type is less than a full equality. CodingScheme
provides options for describing code relationships between two coding schemes.
Options include a human-readable description of the translation process (Source
code 1 through 3 equal Target code 1), a command line for a specified command
language, or the use of the GenerationInstruction from DataCollection. For
example a direct mapping of each source code value to its target value could be
declared.

SOURCE TARGET
Code 1 Never Married recode to Code 1 Single
Code 2 Divorced recode to Code 1 Single
Code 3 Widowed recode to Code 1 Single
Code 4 Married recode to Code 2 Married

Alternatiively, GenerationInstruction could be used to identify the Source Variable
and provide the command code If Source >= 1 and <= 3 Target = 1; If Source = 4
Target = 2.

Correspondence does not limit itself to equivalency but captures a text
description of Commonality and Difference as well as a CommonalityTypeCoded,
CommonalityWeight, and a UserDefinedCorrespondenceProperty. The following
table provides some guidance in classifying the level of comparison for Universe,
Concept, Question and Variable as well as the associated Category and Code
Schemes.

 Data Documentation Initiative

Structure of Comparisons

Similar: Denotes a close but not exact relationship; requires description of difference.
Different: Denotes non-equivalent coding scheme; requires coding instructions to create equivalency.

Questions and Variables are assumed to use the categories and coding scheme of the source item.

Comparison
Map

Textual Content of
main body Category Code Scheme ACTION

 Same Similar Same Similar Same Different
Universe X ---- ---- ---- ---- Enter and Flag as Identical

 X ---- ---- ---- ----

Flag as similar and note differences in human-
readable and optional repeatable machine-actionable
string.

Concept X ---- ---- ---- ---- Enter and Flag as Identical.

 X ---- ---- ---- ----

Flag as similar and note differences in human-
readable and optional repeatable machine-actionable
string.

Question X X X
Enter and Flag as Identical; include concepts and
coding schemes used.

 X X X

Source and target relationship for question and
category scheme must be the same. Reference
harmonized coding scheme.

 X X X

Flag as similar and note category differences in
human-readable and optional repeatable machine-
actionable string. Assume categories related to codes
are those of the source code value.

 X X X

Flag as similar and note category differences in
human-readable and optional repeatable machine-
actionable string. Source and target relationship for
question and code scheme must be the same.
Reference harmonized coding scheme.

 Data Documentation Initiative

 X X X

Flag as similar and note text differences in human-
readable and optional repeatable machine-actionable
string. Assume categories related to codes are those
of the source code value.

 X X X

Flag as similar and note text differences in human-
readable and optional repeatable machine-actionable
string. Source and target relationship for question and
code scheme must be the same. Reference
harmonized coding scheme.

 X X X

Flag as similar and note text and category differences
in human-readable and optional repeatable machine-
actionable string. Assume categories related to codes
are those of the source code value.

 X X X

Flag as similar and note text and category differences
in human-readable and optional repeatable machine-
actionable string. Source and target relationship for
question and code scheme must be the same.
Reference harmonized coding scheme.

Variable X X X
Enter and Flag as Identical; include concepts and
coding schemes used.

 X X X

Source and target relationship for variable and code
scheme must be the same. Reference harmonized
coding scheme.

 X X X

Flag as similar and note category differences in
human-readable and optional repeatable machine-
actionable string. Assume categories related to codes
are those of the source code value.

 X X X

Flag as similar and note category differences in
human-readable and optional repeatable machine-
actionable string. Source and target relationship for
variable and code scheme must be the same.
Reference harmonized coding scheme.

 X X X

Flag as similar and note text differences in human-
readable and optional repeatable machine-actionable
string. Assume categories related to codes are those
of the source code value.

 Data Documentation Initiative

 X X X

Flag as similar and note text differences in human-
readable and optional repeatable machine-actionable
string. Source and target relationship for variable and
code scheme must be the same. Reference
harmonized coding scheme.

 X X X

Flag as similar and note text and category differences
in human-readable and optional repeatable machine-
actionable string. Assume categories related to codes
are those of the source code value.

 X X X

Flag as similar and note text and category differences
in human-readable and optional repeatable machine-
actionable string. Source and target relationship for
variable and code scheme must be the same.
Reference harmonized coding scheme.

9.0 Step-by-Step Sequence to Create a DDI File for a Simple Instance

These sections should be completed in the following order to ensure that fields containing information that is required
(linked) from other elements is available when needed. Note that the list is ordered so that none of the entries requires a
section lower down in the list for its creation.

Sequence
No.

Section Content Elements/sections referencing
items

1 UniverseScheme
All universe items in a
structured hierarchy

Universe identification is done by
referencing a single universe
structure. This may be built up as
you go along, but the top level
universe should be entered as a
container for sub-universes and as
the content of the study unit
universe.

UniverseReference in studyunit,
ControlConstruct, Variable,
NCube, UniverseMap.
Preexistence of this element also
helps in defining coverage and
analysis units

 Data Documentation Initiative

2 ConceptScheme
A structured list of all concepts
of the study

Ideally this should be as detailed
as practicable to support ISO
11179. At a minimum there must
be at least a single comprehensive
concept as ConceptReference is a
required element in Question and
Variable.

ConceptReference in Question,
Variable, and ConceptMap

3 Organization and Individual
A listing of all organizations and
individuals involved in the life
cycle of the study to date

The organization module contains
information on organizations,
individuals and their structural roles
and relationships. This information
is housed separately and
referenced by a number of element
types.

Citation may reference producers,
publishers, distributors, etc.
Funding information found in
studyunit, datacollection, archive,
and group reference organizations
and individuals. At minimum you
will need a listing of the
organization or individual who
acts as the maintenance agency
and for the archive (may be the
same). This can be held in a
public registry of DDI
organizations.

4 StudyUnit Citation / Abstract /
Purpose
This is a required part of the
study unit and represents the
fact that a study unit must exist
in order to create the specified
section

A basic studyunit is the broad
description of a simple study.
Intellectually, the collection of data
and creation of a data file are done
within the construct of a study.

The following module cannot exist
without a studyunit. Archive must
have a study unit to attach to as it
describes an archive holding of
some study. Group, by definition
is two or more study units.

5 StudyUnit Coverage
A definition of the topical,
temporal, and geographic
coverage of the study

Coverage at this level is the top
level container describing aspects
of coverage. All other instances of
coverage are either subsets of this

DataCollection, LogicalProduct,
PhysicalDataProduct,
PhysicalInstance, Group, and the
majority of sub-schemas or sub-

 Data Documentation Initiative

definition, or in the case of Group,
the inclusive combination of the
coverage of the study units in the
group. Note that if
GeographicStructure and
GeograhicLocation are used, the
Schemes are located in
ConceptualComponnents. They
may also be published as an
external resource.

modules.

6 LogicalProduct
CategoryScheme
This contains all categories and
their definitions used in the
study

Categories are defined once and
referenced either directly or
through their representational
code.

Used to construct Question
ResponseDomains,
CodeSchemes, and Variables by
direct reference or via
CodeSchemes.

7 LogicalProduct CodeScheme
Connects codes to categories

Organizes categories into
structured or unstructured groups
and provides the representational
code (for example “0 = Male”). For
structured CodeSchemes,
information on subgroups and
relationships is provided.

Question ResponseDomain and
Variable Representation

8 DataCollection
QuestionScheme
Contains question text and
response domain information

If Instrument will be included in
your instance or if Variable will
need to reference the question, the
QuestionScheme must be
completed.

ControlConstruct,
CodingInstructions
(ProcessingEvent) (possibly), and
Variable (optional)

9 DataCollection
ProcessingEvent Coding
Explains the process of altering
the question response to obtain

This includes general coding
instructions, recodes, inclusion of
administrative or information from
outside of the questionnaire, or

Question (interviewer
instructions), ControlConstruct
(either), Variable (coding
instruction)

 Data Documentation Initiative

the content of the variable.
InterviewerInstructionScheme
contains all the interviewing
instructions including additional
descriptive information and
visible routing instructions used
when completing the
questionnaire.

other derived or generated content
for the variable. All descriptions are
housed in this location and referred
to by elements using the process
described. All interviewer
instructions are held in the scheme
and included by reference by the
question or the control construct.

10 VariableScheme
Defines the intellectual content
and structure of microdata
elements and dimensions for
aggregate data matrixes
(NCubes)

The variable scheme defines
individual variables. They are used
to construct NCubes and provide a
single source of intellectual content
regardless of the storage structure.
Variables can be grouped in
several ways including those
contained within a single type of
record.

NCube, VariableGroup,
DataRelationships, DataItem,
SummaryStatistic,
CategoryStatistic

11 LogicalProduct
DataRelationships
Defines the identification of
each record type, information
needed to identify a specific
case, and links between record
types

The structural information provided
here is a map to assist in record
identification, selection, and
linking. This is the intellectual map
of the types of structures and
linkages supported by the variable
content of the record. Actual
physical layout is described
separately, but use the information
provided here, simply adding the
specifics of how the physical file
dealt with the intellectual structure.

PhysicalStructure. Required link
to the LogicalRecord

12 NCubeScheme
Describes aggregate data

The NCube is defined by its
universe and dimensions. Each

DataItem

 Data Documentation Initiative

tables/matrices cell of the NCube is identified by its
matrix coordinate pattern.

13 PhysicalStructure/
PhysicalRecordSegment
Identifies each physical storage
record type and how it uses the
intellectual links between record
types as described in
DataRelationships

A data set is made up one or more
physical record types stored in one
or more physical data file
structures.

RecordLayout contains a required
link between the RecordLayout
and the PhysicalRecordSegment.

14 RecordLayout desctibes the
physical layout of data items
within a record OR provides the
data inline

The DataItems describe the
physical location of the variable or
NCube cell being described on a
specified physical record type. The
PhysicalInstance may contain one
or multiple physical record types
and must identify which of these
types described in PhysicalData
that it contains.

PhysicalInstance contains a
required link to one or more
RecordLayouts.

The following diagram identifies sections of DDI in the order they need to be completed. The gray boxes are major steps
and include one or more sections of DDI elements. The solid yellow boxes represent element sets that will be required for
references or other use later in creating the full instance. The boxes with yellow diagonal bars are required if you provide
references (such as a reference from a variable to a question) or have this feature (NCubes). Arrows indicate references
from one element set to another. Dotted line arrows indicate that the inclusion of this information is by choice. If you do
not have the element set you do not need the references. References from STEP 8 are dependent upon what features
you choose to include; however, at this point the required material is available for reference.

STEP 1

Universe
Scheme

Concept
Scheme

Organization
Scheme

StudyUnit
Citation/
Abstract/
Purpose

StudyUnit

Category
Scheme

Coding
Scheme

Question
Scheme

Variable
Scheme

Coding and
Interviewer
Instruction
Scheme

Data
Relationships

NCube

Physical
Structure

Record
Layout

Physical
Instance

Archive / Group
/ etc.

STEP 2

STEP 3 optional

Remaining
Logical Product
items

STEP 4 STEP 5

STEP 7

STEP 8

Control
Construct
Scheme Coverage

 Data Documentation Initiative

	1.1 Inline Content vs. Referenced Content
	1.2 Top-Level Declarations
	1.3 Standard Model Contents
	1.3.1 Coverage

	2.1 Identifiable Objects
	2.2 Versionable Objects
	2.3 Maintainable Objects
	2.4 Constructing an Identification
	2.5 URN Structure
	Examples
	URN of a maintained object
	URN of an versionable object
	URN of an identifiable object
	URN of an object that nests within its own object type

	2.6 Referencing
	2.7 Date
	2.7.1 Simple Date
	2.7.2 Date Range
	2.7.3 Historical Dates (expressed in formats other than ISO 8601)

	2.8 String Types
	2.9 DDI Profiles
	3.1 Study Unit
	3.2 Concepts
	3.3 Universe
	3.4 Methodology
	3.5 Collection Event
	4.1 Archive Specific Information
	4.2 Organization
	4.3 Life Cycle Information
	5.1 Question Construction
	5.2 Control Constructs and Instrument
	6.1 Coding
	7.1 Category Schemes
	7.2 Code Schemes
	7.3 Describing Variables
	7.3.1 Text

	7.4 Data Relationships
	7.5 NCubes
	8.1 Physical Structure Scheme
	8.2 Record Layout Scheme
	8.2.1 RecordLayout
	8.2.2 DataSet
	8.2.3 NCube Record Layout (Normal)
	8.2.4 Tabular NCube Record Layout
	8.2.5 Inline NCube Record Layout
	8.2.6 Proprietary Record Layout (BETA)

	7.7 Physical Instance
	7.7.1 Top Level Elements
	7.7.2 Gross File Structure
	7.7.3 Statistics

