
Roan
Version 9.0.19

This is documentation of Roan, version 9.0.19.

This documentation is copyright c© 2015-2020 Donald F Morrison.

Copying and distribution of this documentation, with or without modification, are permitted
in any medium without royalty provided the copyright notice and this notice are preserved.

i

Table of Contents

1 Introduction . 1
1.1 Obtaining and installing Roan . 1
1.2 Reporting bugs . 2
1.3 A note on examples . 2
1.4 The roan package . 3

2 Fundamental Types . 5
2.1 Bells . 5
2.2 Stages . 5
2.3 Rows . 6

2.3.1 Properties of rows . 10
2.3.2 Permuting rows . 12

2.4 Place notation . 14

3 Hash-sets . 20
3.1 Properties of hash-sets . 20
3.2 Modifying hash-sets . 21
3.3 Iterating over hash-sets . 23

4 Patterns . 25
4.1 Counting matches . 28

5 Methods . 31
5.1 Methods library . 34
5.2 Functions of the place notation of methods . 38
5.3 Drawing blue lines . 45

6 Internal Falseness . 48

7 Calls . 52

Appendix A License . 55

Appendix B Libraries Used by Roan 56

Appendix C History . 57
C.1 What’s with the name? . 57

ii

Appendix D Building and Modifying Roan 58
D.1 Building the documentation . 58
D.2 Running unit tests . 59

Index . 60

1

1 Introduction

Roan is a library of Common Lisp (http://en.wikipedia.org/wiki/Common_Lisp)
code for writing applications related to change ringing (http: / / www . ringing . org /
change-ringing). It is roughly comparable to the Ringing Class Library (http: / /
ringing-lib.sourceforge.net/), although that is for the C++ programming language,
and the two libraries differ in many other ways.

Roan provides

• facilities for representing rows and changes as Lisp objects, and permuting them, etc.

• functions for reading and writing place notation, extended to support jump changes as
well as conveniently representing palindromic sequences of changes

• a set data structure suitable for collecting and proving sets of rows, or sets of sets of
rows

• a pattern language for matching rows, for example, for identifying ones with properties
considered musically desirable; and that includes the ability to match pairs of rows,
which enables identifying wraps

• a data structure for describing methods, which can include jump changes,

• a searchable library of method definitions, together with a mechanism for updat-
ing that library from the CCCBR Methods Library (https://cccbr.github.io/
methods-library/)

• a function for drawing blue lines of methods as Scalable Vector Graphics (SVG) images

• a function for extracting false course heads from common kinds of methods

• a representation of calls, allowing replacing, deleting or adding one or more changes
to a plain lead of a method, at any point within that lead, and possibly spanning two
leads as is done in doubles variations.

While this manual describes Roan, it is neither a tutorial on Lisp nor one on change
ringing. If you don’t know Common Lisp or don’t know about change ringing, much of this
manual is likely to be confusing.

Roan is distributed under an MIT open source license. While you should read it for
complete details, it largely means that you can just use Roan for nearly anything you like.
See Appendix A [License], page 55. Roan also loads and uses a variety of other libraries.
See [dependencies], page 56.

1.1 Obtaining and installing Roan

While Quicklisp (http://quicklisp.org) is not required to run Roan, it is recommended.
With Quicklisp installed and configured, you can download and install Roan by simply
evaluating (ql:quickload :roan).

Quicklisp’s quickload function, above, will also pull in all the other libraries upon which
Roan depends; if you don’t use Quicklisp you will have to ensure that those libraries are
available and loaded. If you don’t want to use Quicklisp, and prefer to load Roan by hand,
the repository for Roan itself is at https://bitbucket.org/dfmorrison/roan, and both
current and previous versions can be downloaded from the tags pane of the Downloads page,
https://bitbucket.org/dfmorrison/roan/downloads/?tab=tags.

http://en.wikipedia.org/wiki/Common_Lisp
http://www.ringing.org/change-ringing
http://www.ringing.org/change-ringing
http://ringing-lib.sourceforge.net/
http://ringing-lib.sourceforge.net/
https://cccbr.github.io/methods-library/
https://cccbr.github.io/methods-library/
http://quicklisp.org
https://bitbucket.org/dfmorrison/roan
https://bitbucket.org/dfmorrison/roan/downloads/?tab=tags

Chapter 1: Introduction 2

Note that Quicklisp creates a new distribution about once a month, so there may be a
log of that duration between when a new version is available in the Bitbucket repository
and when that version is available in Quicklisp. If you need it sooner, you may need to
download it yourself from Bitbucket.

Roan has been tested with at least

• CCL (Clozure CL) (http:ccl.clozure.com) version 1.11.5 (64 bit), on Ubuntu Linux
18.04.3,

• and SBCL (Steel Bank Common Lisp) (http://sbcl.org) version 1.5.5 (64 bit) on
Ubuntu Linux 18.04.3.

but should also work in other, modern Common Lisp implementations that support the
libraries on which Roan depends. See [dependencies], page 56.

1.2 Reporting bugs

The best way to report bugs is to submit them with Roan’s Bitbucket issue tracker
(https://bitbucket.org/dfmorrison/roan/issues). If that doesn’t work for you you
can also send mail to Don Morrison <dfm@ringing.org>.

It would be helpful, and will be more likely to lead to successful resolution of the bug, if
a bug report includes

• a detailed prescription of how to generate the bug, preferably from as simple a start-
ing place as you can use to reproduce it; that is, send code, that when evaluated,
demonstrates the bug

• the version of Roan you are using; this can be found by evaluating
(asdf:component-version (asdf:find-system :roan))

• if the problem might involve the lookup of methods, then also the output from
(roan:method-library-details)

• the name and version number of the Lisp implementation you are using, as well as
whether it is 32-bit or 64-bit if both are available

• the name and version number of the operating system on which it is running

• the kind of processor on which it is running, especially if it’s something unusual

1.3 A note on examples

Examples in this manual are typically of the form

(caddr ’(1 2 3 4)) ⇒ 3

That is, an expression, followed by ‘⇒’ and a printed representation of the result of eval-
uating that expression. That right hand side is typically not exactly as the REPL (Read
Eval Print Loop) might print it: for example, symbols will usually be shown in lower case
while most Lisp implementation’s REPLs will use upper case; and things like hash-sets that
have indeterminate order may result in different orders of elements of lists.

Occasionally, though, examples will look like

http:ccl.clozure.com
http://sbcl.org
https://bitbucket.org/dfmorrison/roan/issues
https://bitbucket.org/dfmorrison/roan/issues
mailto:dfm@ringing.org

Chapter 1: Introduction 3

CL-USER> (+ 1 2 3)

6

CL-USER> (values (+ 1 2 3) (cons ’a ’b))

6

(A . B)

CL-USER>

In this case the example is a transcript of an interaction with a REPL. None of the examples
makes explicit note of which of these two styles is being used, it being assumed the reader
can easily deduce this from their appearances.

1.4 The roan package

All the symbols used by Roan to name functions, variables and so on are in the roan

package. When using them from another package, such as cl-user, they should be prefixed
with an explicit roan:.

CL-USER> *package*

#<Package "COMMON-LISP-USER">

CL-USER> roan:+maximum-stage+

24

Alternatively all the external symbols of the roan package can be imported into a pack-
age with use-package, or the :use option to defpackage. There is the slight complica-
tion, however, that the roan package shadows the symbols method, method-name, class
and class-name from the common-lisp package. This is done because methods and their
classes are important concepts in change ringing, albeit one unrelated to CLOS methods
and classes. Typically method, method-name, class and class-name should be shadowed
in other packages that use the roan package. This can be done with shadowing-import-

from, or the :shadowing-import option to defpackage. Note that the original Com-
mon Lisp symbols will still be available as cl:method, cl:method-name, cl:class and
cl:class-name. See [use-roan], page 4.

MY-PACKAGE> *package* #<Package "MY-PACKAGE"> MY-PACKAGE> (package-use-list *)

(#<Package "COMMON-LISP">)

MY-PACKAGE> (shadowing-import ’(roan:method roan:method-name))

T

MY-PACKAGE> (use-package :roan)

T

MY-PACKAGE> +maximum-stage+

24

[Package]roan
Contains the symbols used by Roan. The roan package shadows three symbols from
the common-lisp package: method, method-name, class and class-name. The func-
tions and so on attached to these symbols in the common-lisp package are usually only
needed when doing introspection, and the shadowing should rarely cause difficulties.

Chapter 1: Introduction 4

[Function]use-roan &key package syntax modify
A convenience function for using the roan package. Causes package, which defaults
to the current value of *package*, to inherit all the external symbols of the roan

package, shadowing method, method-name and class-name.

If the generalized boolean syntax is true, the default, it also enables use of Roan’s ‘!’
and ‘#!’ read macros, by calling [roan-syntax], page 7, with a true first argument; the
value of modify is passed as a second argument to [roan-syntax], page 7.

Signals a type-error if package is not a package designator. Signals a package-error
if package is the keyword package.

MY-PACKAGE> *package*

#<Package "MY-PACKAGE">

MY-PACKAGE> (package-use-list *)

(#<Package "COMMON-LISP">)

MY-PACKAGE> (rowp ’!13276548)

NIL

MY-PACKAGE> (roan:use-roan)

T

MY-PACKAGE> +maximum-stage+

24

MY-PACKAGE> (rowp ’!13276548)

T

5

2 Fundamental Types

Central to change ringing is permuting sequences of a fixed collection of bells, where the
cardinality of that collection is the stage. For modeling such things Roan provides the types
bell, stage and row, and various operations on them. It is also provides tools for reading
and writing place notation.

2.1 Bells

Roan supports ringing on as few as 2, or as many as 24, bells. Bells are represented as
small, non-negative integers less than this maximum stage. However, bells as the integers
used in Roan are zero-based: the treble is zero, the tenor on eight is 7, and so on. The bell
type corresponds to integers in this range. There are functions for mapping bells to and
from the characters corresponding to their usual textual representation in change ringing.

[Type]bell
A representation of a bell. These are zero-based, small integers, so the treble is 0, the
second is 1, up to the tenor is one less than the stage.

[Function]bell-name bell &optional upper-case
Returns a character denoting this bell, or nil if bell is not a bell. If the character
is alphabetic, an upper case letter is return if the generalized boolean upper-case is
true, and otherwise a lower case letter. If upper-case is not supplied it defaults to the
current value of *print-bells-upper-case*.

(bell-name 0) ⇒ #\1

(map ’string #’bell-name

(loop for i from 0 below +maximum-stage+

collect i))

⇒ "1234567890ETABCDFGHJKLMN"

(bell-name -1) ⇒ nil

(bell-name +maximum-stage+) ⇒ nil

[Function]bell-from-name char
Returns the bell denoted by the character designator char, or nil if it is not a
character designator denoting a bell. The determination is case-insensitive.

(bell-from-name "8") ⇒ 7

(bell-from-name "E") ⇒ 10

(map ’list #’bell-from-name "135246") ⇒ (0 2 4 1 3 5)

(bell-from-name "%") ⇒ nil

[Variable]*print-bells-upper-case*
When printing bell names that are letters, whether or not to use upper case letters
by default. It is a generalized boolean, with an initial default value of t.

2.2 Stages

The stage type represents the subset of small, positive integers corresponding to the num-
bers of bells Roan supports. While Roan represents stages as small, positive integers, it is

Chapter 2: Fundamental Types 6

conventional in ringing to refer to them by names, such as “Minor” or “Caters”. There are
functions for mapping stages, the integers used by Roan, to and from their conventional
names as strings.

[Type]stage
A supported number of bells, an integer between +minimum-stage+ and
+maximum-stage+, inclusive.

[Constant]+minimum-stage+
The smallest number of bells supported, 2.

[Constant]+maximum-stage+
The largest number of bells supported, 24.

[Function]stage-name stage
Returns a string, the conventional name for this stage, capitalized, or nil if stage is
not an integer corresponding to a supported stage.

(stage-name 8) ⇒ "Major"

(stage-name 22) ⇒ "Twenty-two"

(stage-name (1+ +maximum-stage+)) ⇒ nil

[Function]stage-from-name name
Returns a stage, a small, positive integer, with its name the same as the string
designator name, or, if there is no stage with such a name, nil. The determination
is made case-insensitively.

(stage-from-name "cinques") ⇒ 11

(stage-from-name "no-such-stage") ⇒ nil

[Variable]*default-stage*
An integer, the default value for optional or keyword arguments to many functions
that must have a stage specified. See [write-row], page 8, [row-string], page 8,
[write-place-notation], page 17, and [place-notation-string], page 18.

2.3 Rows

The fundamental units of change ringing are rows and changes, permutations of a fixed
set of bells. A distinction between them is often made, where a row is a permutation of
bells and a change is a permutation taking one row to the next. In Roan they are both
represented by the same data type, row; rows should be treated as immutable.

The Lisp reader can be augmented by Roan to read rows printed in the notation usually
used by change ringers by using the ‘!’ reader macro. For example, queens on twelve can be
entered in Lisp as !13579E24680T. When read with the ‘!’ reader macro bells represented
by alphabetic characters can be either upper or lower case; so queens on twelve can also be
entered as !13579e24680t or !13579e24680T.

To support the common case of writing lead heads of treble dominated methods if
the treble is leading it can be omitted. Thus, queens on twelve can also be entered as
!3579E24680T. Apart from a leading treble, however, if any bell is omitted from a row
written with a leading ‘!’ character an error will be signaled.

http://www.lispworks.com/documentation/HyperSpec/Body/23_.htm

Chapter 2: Fundamental Types 7

Note that rows are Lisp atoms, and thus literal values can be written using ‘!’ nota-
tion without quoting, though quoting rows read that way will do no harm when they are
evaluated.

This ‘!’ syntax can be turned on and off by using [roan-syntax], page 7. By default it is
off when Roan is loaded. It is also possible to control this syntax by using Named Readta-
bles (https://github.com/melisgl/named-readtables/); see [roan-syntax], page 7, for
further details.

Similarly, rows are printed using this same notation, *print-escape* controlling
whether or not they are preceded by ‘!’ characters. Note that the characters used to
represent bells in this printed representation differ from the small integer bells used
to represent them internally, since the latter are zero based. For example, the treble
is represented internally by the integer 0, but in this printed representation by the
digit character ‘1’. When printing rows in this way a leading treble is not elided. And
print-bells-upper-case can be used to control the case of bells in the printed
representation of rows that are representated by letters, in cinques and above.

CL-USER> !12753468

!12753468

CL-USER> ’!2753468

!12753468

CL-USER> (format t "with: ~S~%without: ~:*~A~%" !TE0987654123)

with: !TE0987654123

without: TE0987654123

NIL

CL-USER> (let ((roan:*print-bells-upper-case* nil))

(format nil "~A" !TE0987654123))

"te0987654123"

CL-USER>

Rows can be compared for equality using equalp (but not equal). That is, two different
row objects that correspond to the same ordering of the same number of bells will be equalp.
Hash tables with a :test of equalp are often useful with rows. See [hash-set], page 20.

(equalp !13572468 !13572468) ⇒ t

(equalp !13572468 !12753468) ⇒ nil

(equalp !13572468 !1357246) ⇒ nil

(equalp !13572468 !3572468) ⇒ t

[Type]row
A permutation of bells at a particular stage. The type row is used to represent both
change ringing rows and changes; that is, rows may be permuted by other rows.
Instances of row should normally be treated as immutable.

[Macro]roan-syntax &optional on-o↑ modify
Turns on or off the read macros for ‘!’ and ‘#!’, for reading rows and place notation.

If the generalized boolean on-o↑ is true, the default, it turns on these read macros.
Unless the generalized boolean modify is false, the default, it first pushes the current
read table onto a stack, modifying a copy of it and making that copy the current read
table. If modify is true it makes no copy and instead modifies the current readtable
in place.

https://github.com/melisgl/named-readtables/
https://github.com/melisgl/named-readtables/
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_esc.htm#STprint-escapeST

Chapter 2: Fundamental Types 8

If on-o↑ is false it restores the previous readtable by popping the stack. If the stack
is empty it sets the readtable to a new, standard one. When on-o↑ is false modify is
ignored.

This is performed in an eval-when context to ensure it happens at compile time as
well as load and execute time.

An alternative to using roan-syntax is to use Named Readtables (https://github.
com/melisgl/named-readtables/). Roan defines two such readtables with names
:roan and :roan+interpol. The former augments the initial Common Lisp read ta-
ble with Roan’s read macros, and the latter also adds the syntax from CL-INTERPOL
(http://edicl.github.io/cl-interpol/).

[Function]row-p object
Non-nil if and only if object is a row.

[Function]stage row
The number of bells of which the row row is a permutation.

[Function]write-row row &key stream escape upper-case
Writes row, which should be a row, to the indicated stream. The case of any bells
represented by letters is controlled by upper-case, a generalized boolean defaulting
to the current value of *print-bells-upper-case*. escape, a generalized Boolean
defaulting to the current value of *print-escape*, determines whether or not to
write it in a form that read can understand. Signals a type-error if row is not a
row, and the usual errors if stream is not open for writing, etc.

[Function]row-string row &optional upper-case
Returns a string representing the row row. The case of any bells represented by letters
is controlled by upper-case, a generalized boolean defaulting to the current value of
print-bells-upper-case. Signals a type-error if row is not a row.

[Function]read-row &optional stream eof-error-p eof-value recursive-p
Constructs and returns a row from the conventional symbols for bells read from the
stream. The stage of the row read is determined by the bells present, that is by the
largest bell for which a symbol is read. The treble can be elided, in which case it is
assumed to be leading; a parse-error is signaled if any other bell is omitted. Bells
represented by letters can be either upper or lower case.

[Function]parse-row string &key start end junk-allowed
Contructs a row from the conventional symbols for bells in the section of string string
delimited by start and end, possibly preceded or followed by whitespace. The treble
can be elided, in which case it is assumed to be leading; a parse-error is signaled
if any other bell is omitted. Bells represented by letters can be either upper or lower
case. If string is not a string a type-error is signaled. If the generalized boolean
junk-allowed is false, the default, an error will be signaled if additional non-whitespace
characters follow the representation of a row. Returns two values: the row read and
a non-negative integer, the index into the string of the next character following all
those that were parsed, including any trailing whitespace; if parsing consumed the
whole of string, the second value will be length of string.

https://github.com/melisgl/named-readtables/
https://github.com/melisgl/named-readtables/
http://edicl.github.io/cl-interpol/
http://edicl.github.io/cl-interpol/

Chapter 2: Fundamental Types 9

[Function]row &rest bells
Constructs and returns a row containing the bells, in the order they appear in the
argument list. If the treble is not present, it defaults to being the first bell in the
row. Duplicate bells or bells other than the treble missing result in an error being
signaled.

(row 2 1 3 4 7 6 5) ⇒ !13245876

[Function]rounds &optional stage
Returns a row representing rounds at the given stage, which defaults to
default-stage Signals a type-error if stage is not a stage, that is an integer
between +minimum-stage+ and +maximum-stage+, inclusive.

[Function]bell-at-position row position
[Function]position-of-bell bell row

The bell-at-position function returns the bell (that is, a small integer) at the
given position in the row. The position-of-bell function returns position of bell
in row, or nil if bell does not appear in row. The indexing into row is zero-based;
so, for example, the leading bell is at position 0, not 1. Signals an error if row is not
a row, or if position is not a non-negative integer or is too large for the stage of row

(bell-at-position !13572468 3) ⇒ 6

(bell-name (bell-at-position !13572468 3)

⇒ #\7

(position-of-bell 6 !13572468) ⇒ 3

(position-of-bell (bell-from-name #7) !13572468)

⇒ 3

[Function]bells-list row
[Function]bells-vector row &optional vector

The bells-list function returns a fresh list of bells (small, non-negative inte-
gers, zero-based), the bells of row, in the same order that they appear in row. The
bells-vector function returns a vector of bells (small, non-negative integers, zero-
based), the bells of row, in the same order that they appear in row. If vector is not
supplied or is nil a freshly created, simple general vector is returned.

(bells-list !13572468) ⇒ (0 2 4 6 1 3 5 7)

(bells-vector !142536) ⇒ #(0 3 1 4 2 5)

If a non-nil vector is supplied the bells are copied into it and it is returned. If vector
is longer than the stage of row only the first elements of vector, as many as the stage
of row, are over-written; the rest are unchanged. If vector is shorter than the stage of
row, then, if it is adjustable, it is adjusted to be exactly as long as the stage of row,
and otherwise an error is signaled without any modifications made to the contents
of vector or its fill-pointer, if any. If vector has a fill-pointer and is long enough to
hold all the bells of row, possibly after adjustment, its fill-pointer is set to the stage
of row.

A type-error is signaled if row is not a row. An error is signled if vector is neither
nil nor a vector with an element type that is a supertype of bell, and of sufficient
length or adjustable.

Chapter 2: Fundamental Types 10

[Function]reversed-row row
Returns a row of the same stage as row with its bells in the reverse order. A
type-error is signaled if row is not a row.

(reversed-row !32148765) ⇒ !56784123

2.3.1 Properties of rows

[Function]roundsp row
True if and only if row is a row representing rounds at its stage.

(roundsp !23456) ⇒ t

(roundsp !123546) ⇒ nil

(roundsp 123456) ⇒ nil

[Function]changep row
True if and only if row is a row representing a permutation with no bell moving more
than one place.

(changep !214365) ⇒ t

(changep !143265) ⇒ nil

(changep |214365|) ⇒ nil

[Function]placesp row &rest places
Returns true if and only if row is a (non-jump) change, with exactly the specified
places being made, and no others. To match a cross at even stages supply no places.

Signals a type-error if row is not a row or any of places are not bells. Signals an
error if any of places are not less than the stage of row, or are duplicated.

(placesp !21354768 2 7) ⇒ t

(placesp !21346587 2 7) ⇒ nil

(placesp !21354768 2) ⇒ nil

(placesp !2135476 2) ⇒ t

(placesp !21436587) ⇒ t

[Function]in-course-p row
True if and only if row is a row representing an even permutation.

(in-course-p !132546) ⇒ t

(in-course-p !214365) ⇒ nil

(in-course-p "132546") ⇒ nil

[Function]involutionp row
True if and only if row is a row that is its own inverse.

(involutionp !13248765) ⇒ t

(involutionp !13425678) ⇒ nil

(involutionp nil) ⇒ nil

[Function]order row
Returns a positive integer, the order of row : the minimum number of times it must
be permuted by itself to produce rounds. A type-error is signaled if row is not a
row.

Chapter 2: Fundamental Types 11

(order !13527486) ⇒ 7

(order !31256784) ⇒ 15

(order !12345678) ⇒ 1

[Function]cycles row
Returns a list of lists of bells. Each of the sublists is the orbit of all of its elements in
row. One cycles are included. Thus, if row is a lead head, all the sublists of length
one are hunt bells, all the rest being working bells; if there are two or more sublists
of length greater than one the corresponding method is differential. The resulting
sublists are each ordered such that the first bell is the lowest numbered bell in that
cycle, and the remaining bells occur in the order in which a bell traverses the cycle.
Within the top level list, the sublists are ordered such that the first bell of each sublist
appear in ascending numerical order.

(cycles !13572468) ⇒ ((0) (1 4 2) (3 5 6) (7))

(format nil "~{(~{~C~^,~})~^, ~}"

(mapcar #’(lambda (x) (mapcar #’bell-name x))

(cycles !13572468)))

⇒ "(1), (2,5,3), (4,6,7), (8)"

[Function]tenors-fixed-p row &optional starting-at
Returns true if and only if all the bells of row at positions starting-at or higher are
in their rounds positions. In the degenerate case of starting-at being equal to or
greater than the stage of row it returns true. Note that it is equivalent to (not (null

(alter-stage row starting-at))). If not supplied starting-at defaults to 6, that is
the position of the bell conventionally called the seven, though represented in Roan
by the small integer 6. Signals a type-error if row is not a row or starting-at is not
a non-negative integer.

(tenors-fixed-p !13254678) ⇒ t

(tenors-fixed-p !13254678 5) ⇒ t

(tenors-fixed-p !13254678 4) ⇒ nil

(tenors-fixed-p !54321) ⇒ t

(tenors-fixed-p !54321 4) ⇒ nil

[Function]which-plain-bob-lead-head row
If row is a lead head of a plain course of Plain Bob at its stage returns a positive
integer identifying which lead head it is; returns nil if row is not a Plain Bob lead
head. If row is the first lead head of a plain course of Plain Bob 1 is returned, if the
second 2, etc. For the purposes of this function rounds is not a Plain Bob lead head,
nor is any row below minimus. Signals a type-error if row is not a row.

(which-plain-bob-lead-head !13527486) ⇒ 1

(which-plain-bob-lead-head !42638507T9E) ⇒ 10

(which-plain-bob-lead-head !129785634) ⇒ nil

(which-plain-bob-lead-head !12345) ⇒ nil

(which-plain-bob-lead-head !132) ⇒ nil

[Function]which-grandsire-lead-head row
If row is a lead head of a plain course of Grandsire at its stage returns a positive
integer identifying which lead head it is; returns nil if row is not a Grandsire lead

Chapter 2: Fundamental Types 12

head. If row is the first lead head of a plain course of Grandsire 1 is returned, if the
second 2, etc. For the purposes of this function rounds is not a Grandsire lead head,
nor is any row below minimus. Signals a type-error if row is not a row.

(which-plain-bob-lead-head !1253746) ⇒ 1

(which-plain-bob-lead-head !28967453) ⇒ 4

(which-plain-bob-lead-head !135264) ⇒ nil

(which-plain-bob-lead-head !1243) ⇒ 1

(which-plain-bob-lead-head !12345) ⇒ nil

2.3.2 Permuting rows

[Function]permute row &rest changes
Permutes row by the changes in turn. That is, row is first permuted by the first
of the changes, then the resuling row is permuted by second of the changes, and so
on. Returns the row resulting from applying all the changes. So long as one or more
changes are supplied the returned row is always a freshly created one: row and none
of the changes are modified (as you’d expect, since they are intended to be viewed as
immutable). The row and all the changes should be rows.

At each step of permuting a row by a change, if the row is of higher stage than the
change, only the first stage bells of the row are permuted, where stage is the stage of
the change, all the remaining bells of the row being unmoved. If the row is of lower
stage than the change, it is as if the row were extended with bells in their rounds’
positions for all the bells stage and above. Thus the result of each permuation step
is a row whose stage is the larger of those of the row and the change.

If no changes are supplied row is returned. Signals a type-error if row or any of the
changes are not rows.

(permute !34256 !35264) ⇒ !145362

(permute !34125 !4321 !1342) ⇒ !24315

(permute !4321 !654321) ⇒ !651234

(let ((r !13572468))

(list (eq (permute r) r)

(equalp (permute r (rounds 8)) r)

(eq (permute r (rounds 8)) r)))

⇒ (t t nil)

[Function]permute-collection collection change
[Function]permute-by-collection row collection
[Function]npermute-collection collection change
[Function]npermute-by-collection row collection

Permutes each of the elements of a sequence or hash-set and an individual row,
collecting the results into a similar collection. The permute-collection version
permutes each the elements of collection by change; permute-by-collection per-
mutes row by each of the elements of collection by change. The return value is a
list, vector or hash-set if collection is a list, vector or hash-set, respectively. The
permute-collection and permute-by-collection versions always return a fresh
collection; the npermute-collection and npermute-by-collection versions mod-
ify collection, replacing its contents by the permuted rows. If collection is a sequence

Chapter 2: Fundamental Types 13

the contents of the result are in the same order: that is, the Nth element of the result
is the Nth element supplied in collection permuted by or permuting change or row.
If collection is a vector, permute-collection and permute-by-collection always
return a simple, general vector.

If the result is a sequence, or if all the elements of collection were of the same stage
as one another, it is guaranteed that the result will be the same length or cardinality
as collection. However, if collection is a hash-set containing rows of different stages
the result may be of lower cardinality than then the supplied hash-set, if collection
contained two or more elements that were not equalp because they were of different
stages, but after being permuted by, or permuting, a higher stage row the results are
equalp.

Signals a type-error if change, row or any of the elements of collection are not rowss,
or if collection is not a sequence or hash-set.

[Function]generate-rows changes &optional initial-row
[Function]ngenerate-rows changes &optional initial-row

Generates a sequence of rows by permuting a starting row successively by each element
of the sequence changes. The elements of changes should be rows. If initial-row is
supplied it should be a row. If it is not supplied, rounds at the same stage as the
first element of changes is used; if changes is empty, rounds at *default-stage*

is used. Two values are returned. The first is a sequence of the same length as
changes, and the second is a row. So long as changes is not empty, the first element
of the first return value is initial-row, or the default rounds. The next value is that
row permuted by the first element of changes; then that row permuted by the next
element of changes, and so on, until all but the last element of changes has been used.
The second return value is the last element of the first return value permuted by the
last element of changes. If changes is empty, then the first return value is also empty,
and initial-row, or the default rounds, is the second return value. Thus, for most
methods, if changes are the changes of a lead, the first return value will be the rows
of a lead starting with initial-row, and the second return value the lead head of the
following lead.

If changes is a list, the first return value is a list; if changes is a vector, the first return
value is a vector. The generate-rows function always returns a fresh sequence as
its first return value, while ngenerate-rows resuses changes, replacing its elements
by the permuted rows and returning it. The fresh vector created and returned by
generate-rows is always a simple, general vector.

Signals an error if initial-row is neither a row nor nil, if changes isn’t a sequence, or
if any elements of changes are not rows.

(multiple-value-list

(generate-rows ’(!2143 !1324 !2143 !1324) !4321))

⇒ ((!4321 !3412 !3142 !1324) !1234)

[Function]permutation-closure &rest rows
Returns a list of distinct rows that can be generated by permuting, repeatedly if
necessary, any of the rows by themselves or any others of the rows. If the rows are
not all of the same stage, the lower stage ones are converted to the highest stage

Chapter 2: Fundamental Types 14

present before the closure operation is performed. The order of the returned rows is
undefined. Signals a type-error if any of the rows is not a row.

(permutation-closure !13425 !1324 !123465)

⇒ (!143265 !142365 !124365 !142356 !143256 !124356

!134265 !132465 !123456 !123465 !132456 !134256)

[Function]inverse row
Returns the inverse of the row row. That is, the row, r, such that when row is
permuted by r, the result is rounds. A theorem of group theory implies also that
when r is permuted by row the result will also be rounds. Signals a type-error if
row is not a row.

(inverse !13427586) ⇒ !14236857

(inverse !14236857) ⇒ !13427586

(inverse !12436587) ⇒ !12436587

(inverse !12345678) ⇒ !12345678

[Function]permute-by-inverse row change
Equivalent to (permute row (inverse change)). Signals a type-error if either row
or change is not a row.

(permute-by-inverse !13456287 !45678123) ⇒ !28713456

(permute-by-inverse !54312 !2438756) ⇒ !54137862

(permute-by-inverse !762345 !4312) ⇒ !6271345

[Function]alter-stage row &optional new-stage
If there is a row, r, of stage new-stage such that (equalp (permute (rounds new-

stage) r) row) then returns r, and otherwise nil. That is, it returns a row of
the new-stage such that the first bells are as in row, and any new or omitted bells
are in rounds order. If not supplied new-stage defaults to the current value of
default-stage. Signals a type-err if row is not a row or new-stage is not a
stage.

(alter-stage !54321 10) ⇒ !5432167890

(alter-stage !5432167890 6) ⇒ !543216

(alter-stage !54321 4) ⇒ nil

(alter-stage !5432167890 4) ⇒ nil

2.4 Place notation

Place notation is a succinct notation for writing sequences of changes, and is widely used in
change ringing. Roan provides functions for reading and writing place notation, producing
lists of rows, representing changes.

Place notation manipulated by Roan is extended to support jump changes and comma
as an unfolding operator for easy notation of palindromic sequences of changes.

Jump changes may be included in the place notation in two ways. Within changes may
appear parenthesized pairs of places, indicating that the bell in the first place jumps to the
second place. Thus the change (13)6 corresponds to the jump change 231546. As usual
implied leading or lying places may be omitted, so that could also be written simply (13).
However, just as with ordinary place notation, all internal places must be noted explicitly;

Chapter 2: Fundamental Types 15

for example, the change (13)(31) is illegal, and must be written (13)2(31). Using this nota-
tion the first half-lead of London Treble Jump Minor can be written 3x3.(24)x2x(35).4x4.3.

Jump changes may also be written by writing the full row between square brackets.
So that same half-lead of London Treble Jump Minor could instead be notated
3x3[134265]x2x[214536]4x4.3. Or they can be mixed 3x3[134265]x2x(35).4x4.3.

Palindromes may be conveniently notated using a comma operator, which means the
changes preceding the comma are rung backwads, following the last of the changes before
the comma, which is not repeated; followed by the changes following the comma, similarly
unfolded. Thus x3x4,2x3 is equivalent to x3x4x3x2x3x2. A piece of place notation may
include at most one comma. Neither the changes before the comma nor after it may be
empty. Any piece of place notation including a comma is necessarily of even length.

If jump changes appear in place notation that is being unfolded then when rung in
reverse the jump changes are inverted; this makes no difference to ordinary changes, which
are always involutions, but is important for jump changes that are not involutions. If the
central change about which the unfolding operation takes place, that is the last change in a
sequence of changes being unfolded, is not an involution an error is signaled. As an example,
a plain lead of London Treble Jump Minor can be notated as 3x3.(24)x2x(35).4x4.3,2 which
is equivalent to 3x3.(24)x2x(35).4x4.3.4x4.(53)x2x(42).3x3.2.

While place notation is normally written using dots (full stops) only between non-cross
changes, parse-place-notation will accept, and ignore, them between any changes, ad-
jacent to other dots, and before and after place notation to be parsed. This may simplify
operation with other software that emits place notation with extraneous dots.

Just as Roan can augment the Lisp reader with ‘!’ to read rows, it can augment it with
the ‘#!’ reader macro to read place notatation. The stage at which the place notation is to
be interpreted can be written as an integer between the ‘#’ and the ‘!’. If no explict stage
is provided the current value (at read time) of *default-stage* is used. The sequence
of place notation must be followed by a character that cannot appear in place notation,
such as whitespace, or by end of file. There is an exception that an unbalanced close
parenthesis will also end the reading; this allows using this to read place notation in lists
and vectors without requiring whitespace following the place notation. The place notation
may be extended with the comma unfolding operator, and with jump changes. The stage at
which the place notation is being iterpreted is not considered in deciding which characters
to consume; all that might apply as place notation at any stage will be consumed. If some
are not appropriate an error will only be signaled after all the continguous, place notation
characters have been read.

Note that, unlike rows, which are Lisp atoms, the result of reading place notation is
a list, so ‘#!’ quotes it. This is appropriate in the usual case where the result of ‘#!’ is
evaluated, but if used in a context where it is not evaluated care must be exercised.

This ‘#!’ syntax can be turned on and off by using [roan-syntax], page 7. By default it is
off when Roan is loaded. It is also possible to control this syntax by using Named Readta-
bles (https://github.com/melisgl/named-readtables/); see [roan-syntax], page 7, for
further details.

https://github.com/melisgl/named-readtables/
https://github.com/melisgl/named-readtables/

Chapter 2: Fundamental Types 16

ROAN> #6!x2,1

(!214365 !124365 !214365 !132546)

ROAN> ’(symbol #6!x2,1 x #6!x2x1)

(SYMBOL ’(!214365 !124365 !214365 !132546) X

’(!214365 !124365 !214365 !132546))

ROAN> ‘(symbol ,#6!x2,1 x ,#6!x2x1)

(SYMBOL (!214365 !124365 !214365 !132546) X

(!214365 !124365 !214365 !132546))

ROAN> #6!x2

(!214365 !124365)

ROAN> (equalp #10!x1x4,2 #10!x1x4x1x2)

T

ROAN> #6!x3.(13)(64)

(!214365 !213546 !231645)

ROAN> #6!x3.(13).(64)

(!214365 !213546 !231546 !132645)

ROAN> #6!x3[231546](64)

(!214365 !213546 !231546 !132645)

[Function]parse-place-notation string &key stage start end junk-allowed
Parses place notation from string, returning a list of rows, representing changes, of
stage stage. The place notation is parsed as applying to stage stage, which, if not
supplied, defaults to current value of *default-stage*. Only that portion of string
between start and end is parsed; start should be a non-negative integer, and end either
an integer larger than start or nil, which latter is equivalent to the length of string.
If junk-allowed, a generalized Boolean, is nil, the default, string must consist of the
place notation parsed and nothing else; otherwise non-place notation characters may
follow the place notation. For purposes of parsing stage is not initially considered: if
the place notation is only appropriate for higher stages it will not terminate the parse
even if junk-allowed is true, it will instead signal an error. Two values are returned.
The first is a list of rows, the changes parsed. The second is the index of the next
character in string following the place notation that was parsed.

If the section of string delimited by start and end does not contain place notation
suitable for stage a parse-error is signaled. If string is not a string, stage is not a
stage or start or end are not suitable bounding index designators a type-error is
signaled.

(multiple-value-list (parse-place-notation "x2.3" :stage 6))

⇒ ((!214365 !124365 !213546) 4)

[Function]read-place-notation &optional stream stage eof-error-p eof-value
recursive-p

Reads place notation from a stream, resulting in a list of rows representing changes.
Reads all the consecutive characters that can appear in (extended) place notation,
and then tries to parse them as place notation. It accumulates characters that could
appear as place notation at any stage, even stages above stage. The sequence of
place notation must be followed by a character that cannot appear in place notation,
such as whitespace, or by end of file. There is an exception, in that an unbalanced

Chapter 2: Fundamental Types 17

close parenthesis will also end the read; this allows using this to read place notation
in lists and vectors without requiring whitespace following the place notation. The
place notation may be extended with the comma unfolding operator, and with jump
changes, as in parse-place-notation. The argument stream is a character stream
open for reading, and defaults to the current value of *standard-input*; stage is a
stage, an integer, and defaults to the current value of *default-stage*; and eof-
error-p, eof-value and recursive-p are as for the standard read function, defaulting
to t, nil and nil, respectively. Returns a non-empty list of rows, all of stage stage.
Signals an error if no place notation constituents are available, if the characters read
cannot be parsed as (extended) place noation at stage, or if one of the usual errorneous
conditions while reading occurs.

[Function]write-place-notation changes &key stream escape comma elide
cross upper-case jump-changes

Writes to stream characters representing place notation for changes, a list of rows.

The list changes should be a non-empty list of rows, all of the same stage. The
stream should a character stream open for writing. It defaults to the current value of
standard-output. If the generalized boolean escape, which defaults to the current
value of *print-escape*, is true the place notation will be written using the ‘#!’ read
macro to allow the Lisp read function to read it; in this case the stage will always be
explicitly noted between the ‘#’ and the ‘!’. If the generalized boolean upper-case,
which defaults to the current value of *print-bells-upper-case*, is true positions
notated using letters will be written in upper case, and otherwise in lower case.

The argument cross controls which character is used to denote a cross change at even
stages. It must be a character designator for #\x, #\X or #\-, and defaults to the
current value of *cross-character*.

The argument jump-changes should be one of nil, :jumps or :full. It determines
how jump changes will be notated. If it is nil and changes contains any jump
changes an error will be signaled. If it is :jumps any jump changes will be no-
tated using pairs of places between parentheses. While parse-place-notation and
read-place-notation can interpret ordinary conjunct motion or even place making
notated in parentheses, write-place-notation will only use parentheses for bells
actually moving more than one place. If jump-changes is :full jump changes will be
notated as a row between square brackets. Again, while ordinary changes notated this
way can be parsed or read, write-place-notation will only use bracket notation for
jump changes.

The argument elide determines whether, and how, to omit leading and/or lying places.
If the stage of the changes in changes is odd, or if elide is nil, no such elision takes
place. Otherwise elide should be one of :interior, :leading, :lying or :lead-end,
which last is its default value. For any of these non-nil values leading or lying places
will always be elided if there are interior places. They differ only for hunts (that is,
changes with both a leading and lying place, and no interior places). If :interior,
no elision takes place if there are no interior places. If :leading, the ’1’ is elided as
implicitly available. If :lying, the lying place is elided, so that the result is always
’1’. The value :lead-end specifies the same behavior as :lying for all the elements

Chapter 2: Fundamental Types 18

of changes except the last, for which it behaves as :leading; this is often convenient
for notating leads of treble dominated methods at even stages.

If the generalized boolean comma is true an attempt is made to write changes using
a comma operator separating it into palindromes. In general there can be multiple
ways of splitting an arbitrary piece of place notation into palindromes. If this is the
case the choice is made to favor first a division that has the palindrome after the
comma of length one, and if that is not possible the division that has the shortest
palindrome before the comma. Any sequence of changes of length two can be trivially
divided into palindromes, but notating them with a comma is unhelpful, so comma
applies only to even length lists of changes of length greater than two. Whether or
not a partitioning into palindromes was possible can be determined by examining
the second value returned by this function, which will be true only if a comma was
written.

Returns two values, changes, and a generalized Boolean indicating whether or not the
result was written with a comma.

Signals an error if changes is empty, or contains rows of different stages, if stream is
not a character stream open for writing, or if any of the usual IO errors occurs.

[Function]place-notation-string changes &key comma elide cross upper-case
allow-jump-changes

Returns a string of the place notation representing the list changes. The arguments
are the same as the like named arguments to write-place-notation. A leading ’#!’
is never included in the result.

Signals a type-error if any elements of changes are not rows. Signals an error if
changes is empty or contains rows of different stages.

(multiple-value-list

(place-notation-string #8!x1x4,1 :elide nil))

⇒ ("x18x14x18x18" nil)

(multiple-value-list

(place-notation-string #8!x1x4,1 :comma t))

⇒ ("x1x4,8" t)

(multiple-value-list

(place-notation-string #8!x1x4,2 :elide :interior))

⇒ ("x18x4x18x18" nil)

[Function]canonicalize-place-notation string-or-changes &key stage
comma elide cross upper-case allow-jump-changes

Returns a string representing the place notation in a canonical form. If string-or-
changes is a string it should be parseable as place notation at stage, which defaults to
the current value of *default-stage*, and otherwise it should be a list of rows, all of
the same stage. Unless overridden by the other keyword arguments, which have the
same effects as for write-place-notation, the canonical form is a compact one using
lower case ‘x’ for cross, upper case letters for high place names, lead-end style elision
of external places, a comma for unfolding if possible, and notating jump changes as
jumps within parentheses.

Signals a type-error if string-or-changes is neither a string nor a list, or if it is a
list containing anything other than rows. Signals a parse-error if string-or-changes

Chapter 2: Fundamental Types 19

is a string and is not parseable at stage, or if stage is not a stage. Signals an error
if cross is not a suitable character designator, if allow-jump-changes is not one of its
allowed values, or if string-or-changes is a list containing rows of different stages. See
[write-place-notation], page 17.

(multiple-value-list

(canonicalize-place-notation "-16.X.14-6X1" :stage 6))

⇒ ("x1x4,6" t)

(multiple-value-list

(canonicalize-place-notation "-3-[134265]-1T-" :stage 12))

⇒ ("x3x(24)x1x" nil)

[Variable]*cross-character*
The character used by default as “cross” when writing place notation. Must be a
character designator for one of #\x, #\X or #\-. Its initial default value is a lower
case ‘x’, #\x.

20

3 Hash-sets

For change ringing applications it is often useful to manipulate sets of rows. That is,
unordered collections of rows without duplicates. To support this and similar uses Roan
supplies hash-sets, which use equalp as the comparison for whether or not two candidate
elements are “the same”. In addition, equalp can be used to compare two hash-sets
themselves for equality: they are equalp if they contain the same number of elements, and
each of the elements of one is equalp to an element of the other.

(equalp (hash-set !12345678 !13572468 !12753468 !13572468)

(hash-set-union (hash-set !12753468 !12345678)

(hash-set !13572468 !12753468 !13572468)))

⇒ t

[Type]hash-set
A set data structure, with element equality determined by equalp. That is, no two
elements of such a set will ever be equalp, only one of those added remaining present
in the set. Set membership testing, adding new elements to the set, and deletion of
elements from the set is, on average, constant time. Two hash-sets can be compared
with equalp: they are considered equalp if and only if they contain the same number
of elements, and each of the elements of one is equalp to an element of the other.

[Function]make-hash-set &key size rehash-size rehash-threshold
initial-elements

Returns a new hash-set. If initial-elements is supplied and non-nil, it must be a list
of elements that the return value will contain; otherwise an empty set is returned. If
any of size, rehash-size or rehash-threshold are supplied they have meanings analagous
to the eponymous arguments to make-hash-table.

[Function]hash-set &rest initial-elements
Returns a new hash-set containing the elements of initial-elements. If no initial-
elements are supplied, the returned hash-set is empty.

(hash-set 1 :foo 2 :foo 1) ⇒ #<HASH-SET 3>

(hash-set-elements (hash-set 1 :foo 2 :foo 1))

⇒ (1 2 :foo)

(hash-set-elements (hash-set)) ⇒ nil

[Function]hash-set-copy set &key size rehash-size rehash-threshold
Returns a new hash-set containing the same elements as the hash-set set. If any
of size, rehash-size or rehash-threshold are supplied they have the same meanings as
the eponymous arguments to copy-hash-table. A type-error is signaled if set is
not a hash-set.

3.1 Properties of hash-sets

[Function]hash-set-count set
Returns a non-negative integer, the number of elements the hash-set set contains.
Signals a type-error if set is not a hash-set.

(hash-set-count (hash-set !1234 !1342 !1234)) ⇒ 2

(hash-set-count (hash-set)) ⇒ 0

Chapter 3: Hash-sets 21

[Function]hash-set-empty-p set
True if and only if the hash-set set contains no elements. Signals a type-error if
set is not a hash-set.

[Function]hash-set-elements set
Returns a list of all the elements of the hash-set set. The order of the elements in
the list is undefined, and may vary between two invocations of hash-set-elements.
Signals a type-error if set is not a hash-set.

(hash-set-elements (hash-set 1 2 1 3 1)) ⇒ (3 2 1)

[Function]hash-set-member item set
True if and only if item is an element of the hash-set set. Signals a type-error if
set is not a hash-set.

(hash-set-member !1342 (hash-set !1243 !1342)) ⇒ t

(hash-set-member !1342 (hash-set !12435 !12425)) ⇒ nil

[Function]hash-set-subset-p subset superset
[Function]hash-set-proper-subset-p subset superset

The hash-set-subset-p predicate is true if and only if all elements of subset oc-
cur in superset. The hash-set-proper-subset-p predicate is true if and only that
is the case and further that subset does not contain all the elements of superset.
type-error is signaled if either argument is not a hash-set.

(hash-set-subset-p (hash-set 1) (hash-set 2 1) ⇒ t

(hash-set-proper-subset-p (hash-set 1) (hash-set 2 1) ⇒ t

(hash-set-subset-p (hash-set 1 2) (hash-set 2 1) ⇒ t

(hash-set-proper-subset-p (hash-set 1 2) (hash-set 2 1) ⇒ nil

(hash-set-subset-p (hash-set 1 3) (hash-set 2 1) ⇒ nil

(hash-set-proper-subset-p (hash-set 1 3) (hash-set 2 1) ⇒ nil

3.2 Modifying hash-sets

[Function]hash-set-clear set
Removes all elements from set, and then returns the now empty hash-set. Signals a
type-error if set is not a hash-set.

[Function]hash-set-adjoin set &rest elements
[Function]hash-set-nadjoin set &rest elements

Returns a hash-set contains all the elements of set to which have been added the
elements. As usual duplicate elements are not added, though exactly which of any
potential duplicates are retained is undefined. The hash-set-adjoin function re-
turns a freshly created hash-set and does not modify set, while hash-set-nadjoin

modifies and returns set. Signals a type-error if set is not a hash-set.

(hash-set-elements (hash-set-adjoin (hash-set 1 2 3) 4 3 2))

⇒ (3 4 1 2)

[Macro]hash-set-nadjoinf set &rest elements
Adds elements to set, which should be a location suitable as a first argument to setf

containing a hash-set, which is modified. As usual duplicate elements are not added,

Chapter 3: Hash-sets 22

though exactly which of any potential duplicates are retained is undefined. Returns
set Signals a type-error if set does not contain a hash-set.

(let ((s (hash-set !1324 !3412 !4321)))

(adjoinf s !1234 !3412 !4231)

(hash-set-elements s))

⇒ (!3412 !4231 !1234 !3412 !4321 !1324)

[Function]hash-set-remove set &rest elements
Returns a new hash-set that contains all the elements of set that are not equalp to
any of the elements. Signals a type-error if set is not a hash-set.

[Function]hash-set-delete set &rest elements
Deletes from the hash-set set all elements equalp to elements of elements, and
returns the modified set. Signals a type-error if set is not a hash-set.

[Macro]hash-set-deletef set &rest elements
Deletes from set, which should be a location suitable as a first argument to setf

contains a hash-set, all its elements equalp to any of the elements. Returns set.
Signals a type-error if the set does not contain a hash-set.

(let ((s (hash-set !3524 !5432 !4253 !2345)))

(hash-set-deletef s !2345 !5432)

(hash-set-elements s))

⇒ (!4253 !3524)

[Function]hash-set-difference set &rest more-sets
[Function]hash-set-ndifference set &rest more-sets

Returns a hash-set containing all the elements of set that not contained in any of
more-sets. The hash-set-difference version returns a fresh hash-set, and does
not modify set or any of the more-sets. The hash-set-ndifference version modifies
and returns set, but does not modify any of more-sets. Signals a type-error if set
or any of more-sets are not hash-sets.

(hash-set-elements

(hash-set-difference

(hash-set !12345 !23451 !34512 !45123)

(hash-set !23451 !54321 !12345)))

⇒ (!34512 !45123)

[Function]hash-set-union &rest sets
[Function]hash-set-nunion &rest sets

Returns a hash-set containing all the elements that appear in one or more of the
sets. The hash-set-union version returns a fresh hash-set, and does not modify
any of the sets. The hash-set-nunion may modify or destroy one or more of the sets,
and the return value may or may not be eq to one of them. Signals a type-error if
any of the sets are not hash-sets.

Chapter 3: Hash-sets 23

(coerce

(hash-set-elements

(hash-set-union

(apply #’hash-set (coerce "abcdef" ’list))

(apply #’hash-set (coerce "ACEG" ’list))))

’string)

⇒ "FaeGbcd"

(hash-set-empty-p (hash-set-union)) ⇒ t

[Function]hash-set-intersection set &rest more-sets
[Function]hash-set-nintersection set &rest more-sets

Retuns a hash-set such at all of its elements are also elements of set and of all the
more-sets. The hash-set-intersection version returns a fresh hash-set, and does
not modify set or any of the more-sets. The hash-set-nintersection version may
modify or destroy set and one or more of the more-sets, and the return value may or
may not be eq to one of them. Signals a type-error if set or any of more-sets are
not hash-sets.

(coerce

(hash-set-elements

(hash-set-intersection

(apply #’hash-set (coerce "abcdef" ’list))

(apply #’hash-set (coerce "ACEG" ’list))))

’string)

⇒ "EaC"

3.3 Iterating over hash-sets

[Function]map-hash-set function set
Calls function on each element of the hash-set set, and returns nil. The order
in which the elements of set have function applied to them is undefined. With one
exception, the behavior is undefined if function attempts to modify the contents of
set: function may call hash-set-delete to delete the current element, but no other.
A type-error is signaled if set is not a hash-set.

(let ((r nil))

(map-hash-set #’(lambda (e)

(push (list e (in-course-p e)) r))

(hash-set !135246 !123456 !531246))

r)

⇒ ((!135246 nil) (!531246 nil) (!123456 t))

[Macro]do-hash-set (var set &optional result-form) &body body
Evaluates the body, an implicit progn, repeatedly with the symbol var bound to the
elements of the hash-set set. Returns the result of evaluating result-form, which
defaults to nil, after the last iteration. A value may be returned by using return

or return-from nil, in which case result-form is not evaluated. The order in which
the elements of set are bound to var for evaluating body is undefined. With one
exception the behavior is undefined if body attempts to modify the contents of set:

Chapter 3: Hash-sets 24

function may call hash-set-delete to delete the current element, but no other. A
type-error is signaled if set is not a hash-set.

(let ((r nil))

(do-hash-set (e (hash-set !135246 !123456 !531246) r)

(push (list e (in-course-p e) r))))

⇒ ((!531246 nil) (!123456 t) (!135246 nil))

In addition, it is possible to iterate over a hash-set using the iterate (https://
common-lisp.net/project/iterate/) macro, by using the for...:in-hash-set... con-
struct.

(iter (for element :in-hash-set (hash-set !135246 !123456 !531246))

(collect (list element (in-course-p element))))

⇒ ((!531246 nil) (!135246 nil) (!123456 t))

https://common-lisp.net/project/iterate/
https://common-lisp.net/project/iterate/

25

4 Patterns

Roan provides a simple pattern language for matching rows. This is useful, among other
things, for counting rows considered particularly musical or unmusical.

A pattern string describes the bells in a row, with several kinds of wildcards and
other constructs matching multiple bells. Bells’ names match themselves, so, for exam-
ple, "13572468" matches queens on eight. A question mark matches any bell, and an
asterisk matches runs of zero or more bells. Thus "*7468", at major, matches all twenty-
four 7468s, and "?5?6?7?8" matches all twenty-four major rows that have the 5-6-7-8 in
the positions they are in in tittums. Alternatives can be separated by the pipe character,
‘|’. Thus "13572468|12753468" matches either queens or Whittingtons. Concatentation
of characters binds more tightly than alternation, but parentheses can be used to group
subexpressions. Thus "*(4|5|6)(4|5|6)78" at major matches all 144 combination rollups.
When matched against two major rows "?*12345678*?" matches wraps of rounds, but not
either row being rounds.

Two further notations are possible. In each case it does not extend what can be ex-
pressed, it merely makes more compact something that can be expressed with the symbols
already described. The first is a bell class, which consits of one or more bell names within
square brackets, and indicates any one of those bells. Thus an alternative way to match
the 144 combination rollups at major is "*[456][456]78".

A more compact notation is also available for describing runs of consecutive bells. Two
bell symbols separated by a hyphen represent the run of bells from one to the other.
Thus "*5-T" matches all rows ending 567890ET. If such a run description is followed
by a solidus, ‘/’, and a one or two digit integer, it matches all runs of the length of
that integer that are subsequences of the given run. Thus "*2-8/4" is equivalent to
"*(2345|3456|4567|5678)". If instead of a solidus a percent sign, ’%’, is used it matches
subsequences of both the run and its reverse. Thus "1-6%4*" matches all little bell runs
off the front of length four selected from the bells 1 through 6, and is equivalent to the
pattern "(1234|4321|2345|5432|3456|6543)*". There is some possible ambiguity with this
notation, in that the second digit of an integer following a solidus or percent sign could be
interpreted as a digit or a bell symbol. In these cases it is always interpreted as a digit, but
the other use can be specified by using parentheses or a space.

Spaces, but no other whitespace, can be included in patterns. However no spaces may
be included within bell classes or run descriptions. Thus " 123 [456] 7-T/3 * " is equivalent
to "123[456]7-T/3*", but both "123[4 5 6]7-T/3*" and "123[456]7-T / 3*" are illegal, and
will cause an error to be signaled.

In addition to strings, patterns may be represented by parse trees, which are simple list
structures made up of keywords and bells (that is, small, non-negative integers). Strings are
generally more convenient for reading and writing patterns by humans, but parse trees can
be more convenient for programmatically generated patterns. The function pattern-parse

converts the string representation of a pattern to such a tree structure. Sequences of ele-
ments are represented by lists starting with :sequence; alternatives by lists starting with
:or; bell classes by lists of the included bells preceded by :class; runs by a list of the
form (:run start end length bi), where start is the starting bell, end the ending bell,
length the length of the run, and bi is a generalized boolean saying whether or not the runs
are bidirectional; bells are represented by themselves; and ‘?’ and ‘*’ by :one and :any,

Chapter 4: Patterns 26

respectively. The elements of the :sequence and :or lists may also be lists themselves, rep-
resentating subexpressions. For example, the string "(?[234]*|*4-9%4?)*T" is equivalent
to the tree

(:sequence (:or (:sequence :one (:class 1 2 3) :any)

(:sequence :any (:run 3 8 4 t) :one))

:any

11)

[Function]row-match-p pattern row &optional following-row
Determines whether row, or pair of consecutive rows, row and following-row, match
a pattern. If following-row is supplied it should be of the same stage as row. The
pattern may be a string or a tree, and should be constructed to be appropriate for
the stage of row ; an error is signaled if it contains explicit matches for bells of higher
stage than row. Returns a generalized boolean indicating whether or not pattern
matches.

(row-match-p "*[456][456]78" !32516478) ⇒ t

(row-match-p "*[456][456]78" !12453678) ⇒ nil

(row-match-p "*[456][456]78" !9012345678) ⇒ t

(row-match-p "?*123456*?" !651234 !562143) ⇒ t

(row-match-p "?*123456*?" !651234 !652143) ⇒ nil

(row-match-p "?*123456*?" !123456) ⇒ nil

(row-match-p ’(:sequence :any 6 7) !65432178) ⇒ t

(row-match-p ’(:sequence :any 6 7) !23456781) ⇒ nil

Signals an error if pattern cannot be parsed as a pattern, if row is not a row, if
following-row is neither a row nor nil, if pattern contains bells above the stage of
row, or if following-row is a row of a different stage than row.

Care should be used when matching against two rows. In the usual use case when
searching for things like wraps every row typically will be passed twice to this method,
first as row and then as following-row. A naive pattern might end up matching twice,
and thus double counting. For example, if at major "*12345678*" were used to search
for wraps of rounds it would match whenever row or following-row were themselves
rounds, possibly leading to double counting. Instead a search for wraps of rounds
might be better done against something like "?*12345678*?".

[Function]parse-pattern pattern &optional stage
Converts a string representation of a pattern to its parse tree, and returns it. The
stage is the stage for which pattern is parsed, and defaults to *default-stage*. If
pattern is a non-empty list it is presumed to be a pattern parse tree and is returned
unchanged. Signals a type-error if pattern is neither a string nor a non-empty list,
or if stage is not a stage. Signals a parse-error if pattern is a string but cannot be
parsed as a pattern, or contains bells above those appropriate for stage.

(parse-pattern "(?[234]*|*4-9%4?)*T" 12)

⇒
(:sequence (:or (:sequence :one (:class 1 2 3) :any)

(:sequence :any (:run 3 8 4 t) :one))

:any

11)

Chapter 4: Patterns 27

[Function]format-pattern tree &optional upper-case
Returns a string that if parsed with parse-pattern, would return the parse tree
tree. Note that the generation of a suitable string from tree is not unique, and this
function simply returns one of potentially many equivalent possibilities. The case
of any bells represented by letters is controlled by upper-case, which defaults to the
current value of *print-bells-upper-case*. Signals an error if tree is not a parse
tree for a pattern.

(format-pattern ’(:sequence 0 1 2 :any 7) t) ⇒ "123*8"

[Function]named-row-pattern name &optional stage covered
Returns a pattern, as a parse tree, that matches a named row at stage. The name is
one of those listed below. If stage is not supplied it defaults to the current value of
default-stage. If covered, a generalized boolean, is non-nil the row(’s) that will
be matched will assume an implicit tenor. If covered is not supplied it defaults to
nil for even stages and t for odd stages. If there is no such named row known that
corresponds to the values of stage and covered nil is returned. Signals an error if
name is not a keyword or is not a known named row name as enumerated below, or
if stage is not a stage.

The supported values for name, and the stages at which they are defined, are:

:backrounds

any stage

:queens uncovered singles and above, or covered two and above.

:kings uncovered minimus and above, or covered singles and above; note that
kings at uncovered minor or covered doubles is the same row as Whit-
tingtons at those stages

:whittingtons

uncovered minor and above, or covered doubles and above; note that
Whittingtons at uncovered minor or covered doubles is the same row as
kings at those stages

:double-whittingtons

covered cinques or uncovered maximus, only

:roller-coaster

covered caters or uncovered royal, only

:near-miss

any stage

(format-pattern (named-row-pattern :whittingtons 10 nil))

⇒ "1234975680"

(format-pattern (named-row-pattern :whittingtons 9 t)

⇒ "123497568"

(format-pattern (named-row-pattern :whittingtons 9 nil))

⇒ "123864579"

(named-row-pattern :whittingtons 4)

⇒ nil

Chapter 4: Patterns 28

[Type]pattern-parse-error
An error signaled when attempting to parse a malformed row pattern. Contains
three potenitally useful slots accessible with pattern-parse-error-message,
pattern-parse-error-pattern and pattern-parse-error-index.

4.1 Counting matches

Often one would like to count how many times a variety of patterns match many different
rows. To support this use Roan provides match-counters. After creating a match-counter
with make-match-counter you add a variety of patterns to it, with add-pattern or
add-patterns, each with a label, which will typically be a symbol or string, but can be
any Lisp object. You then apply the match-counter to rows with record-matches, and
query how many matches have occurred with match-counter-counts.

The order in which patterns are added to a match-counter is preserved, and is reflected
in the return values of match-counter-labels, and match-counter-counts called without
a second argument. Replacing an existing pattern by adding a different one with a label
that is equalp to an existing one does not change the order, but deleting a pattern with
remove-pattern and then re-adding it does move it to the end of the order. When a pattern
has been replaced by one with an equalp label that is not eq to the original label which
label is retained is undefined.

A match-counter also distinguishes matches that occur at handstroke from those that
occur at backstroke. Typically you tell the match-counter which stroke the next row it is
asked to match is on, and it then automatically alternates handstrokes and backstrokes for
subsequent rows. For patterns that span two rows, such as wraps, the stroke is considered
to be that between the rows; for example a wrap of rounds that spans a backstroke lead
would be considered to be “at” backstroke.

(let ((m (make-match-counter 8)))

(add-patterns m ’((cru "*[456][456]78")

(wrap "?*12345678*?" t)

(lb4 "1-7%4*|*1-7%4")))

(loop for (row following)

on (generate-rows #8!36.6.5.3x5.56.5,2)

do (record-matches m row following))

(values (match-counter-counts m)))

⇒ ((cru . 3) (wrap . 1) (lb4 . 5))

[Type]match-counter
Used to collect statistics on how many rows match a variety of patterns.

[Function]make-match-counter &optional stage
Returns a fresh match-counter, initially containing no patterns, that is configured to
attempt to match patterns against rows of stage bells. If not supplied, stage defaults
to the current value of *default-stage*. Attempts to add patterns only appropriate
for a different stage or match rows of a different stage with record-matches will signal
an error.

Chapter 4: Patterns 29

[Function]add-pattern counter label pattern &optional double-row-p
[Function]add-patterns counter lists

Adds one or more patterns to those matched by the match-counter count. A single
pattern, pattern, is added, with label label, by add-pattern. If the generalized
boolean double-row-p is true two rows (which typically should be consecutive) will
be matched against pattern, and others one row; if not supplied double-row-p is nil.
Multiple patterns may be added together with add-patterns: lists should be a list of
lists, where the sublists are of the form (label pattern &optional double-row-p),
and the patterns are added in the order given. In either case the patternmay be either
a string or list structure that is a parsed pattern, such as returned by parse-pattern.
If label is equalp to the label of a pattern already added to counter that pattern will
be replaced, and its corresponding counts reset to zero. Either function reeturns
counter. Either signals a type-error if counter is not a match-counter. Signals an
error if any of the patterns are not an appropriate pattern for the stage of counter.

[Function]remove-pattern counter label
Removes any pattern in method-counter count with its label equalp to label. Re-
turns t if such a pattern was found and removed, and nil otherwise. Signals a
type-error if count is not a method-counter.

[Function]remove-all-patterns counter
Removes all the patterns in the method-counter counter, and returns a positive
integer, the number of patterns so removed, if any, or nil if counter had no patterns.
Signals a type-error if counter is not a match-counter.

[Function]match-counter-pattern counter label &optional as-string
upper-case

Returns two values: the first is the pattern whose label in count is equalp to label,
if any, and otherwise nil; the second is a generalized boolean if and only if the first
value is non-nil and the pattern is to be matched against two rows rather than just
one. If the generalized boolean as-string is true the pattern is returned as a string, as
by format-pattern, with the case of any bells represented by letters controled by the
generalized boolean upper-case; and otherwise as a parse tree, as by parse-pattern.
A string return value may not be string-equal to that added to counter, but will
match the same rows. If as-string is not supplied it defaults to true; if upper-case is
not supplied it defaults to the current value of *print-bells-upper-case*. Signals
a type-error if counter is not a match-counter.

[Function]match-counter-labels counter
Returns two lists, the labels of those patterns in count that are matched against a
single row, and those that are matched against two rows. Both lists are in the order in
which the corresponding patterns were first added to counter. Signals a type-error

if counter is not a match-counter.

[Function]match-counter-counts counter &optional label
Returns three values, the number of times the pattern with label equalp to label in
counter has matched rows presented to it with record-matches since counter was
reset or the relevent pattern was added to it. The first return value is the total
number of matches, the second the number of matches at handstroke, and the third

30

the number of matches at backstroke. If no label is supplied it instead returns three
a-lists mapping the labels of the patterns in counter to the number of matches, again
total, handstroke and backstroke. The elements of these a-lists are in the order in
which the corresponding patterns were first added to counter. Returns nil if there is
no pattern labeled label. Signals a type-error if counter is not a match-counter.

[Function]reset-match-counter counter
Resets all the counts associated with all the patterns in counter to zero. Signals a
type-error if counter is not a match-counter.

[Function]match-counter-handstroke-p counter
Returns a generalized boolean indicating that the next row presented to counter will
be a handstroke. Can be used with setf to tell counter whether or not it should
consider the next row a handstroke or a backstroke. If not explicitly set again, either
with (setf match-counter-handstroke-p), or with the handstroke-p argument to
record-matches, whether or not subsequent rows will be considered handstroke or
backstroke will alternate. Signals a type-error if counter is not a match-counter.

[Function]record-matches counter row &optional following-row handstroke-p
Causes all the single-row patterns of counter to be matched against row, and, if
a following-row is supplied and not nil, also all the double-row patterns to be
matched against both rows. If the generalized boolean handstroke-p is supplied it
indicates whether row is to be considered a handstroke or not, and, unless explicitly
set again, either with the handstroke-p argument to record-matches by with (setf

match-counter-handstroke-p), whether or not subsequent rows will be considered
handroke or backstroke will alternate. That is, supplying a handtroke-p argument
to record-matches is equivalent to calling (setf match-counter-handstoke-p) im-
mediately before it. Signals a type-error if counter is not a match-counter, row is
not a row, or following-row is neither a row nor nil.

31

5 Methods

Roan provides the method type to describe change ringing methods, not to be confused
with CLOS methods. A method can only describe what the Central Council of
Church Bell Ringers Framework for Method Ringing (https: / / cccbr . github . io /
method_ringing_framework/) (FMR) calls a static method, a method that can be viewed
as a fixed sequence of changes, including jump changes; while this includes nearly all
methods rung and named to date, it does exclude, for example, Dixonoids. A method has
a name, a stage, classifacation details, and an associated place-notation, though any or all
of these may be nil. In the case of the stage or place notation nil indicates that the
corresponding value is not known; the same is also true if the name is nil, except for the
case of Little Bob, which in the taxonomy of the FMR has no name. The stage, if known,
should be a stage, and the name and place notation, if known, should be strings.

The classification follows the taxonomy in the FMR and consists of a class and three
boolean attributes for jump methods, differential methods and little methods. The class

may be nil, for principles and pure differentials; one of the keywords :bob, :place,
:surprise, :delight, :treble-bob, :alliance, :treble-place or:hybrid, naming the
corresponding class; or :hunt indicating a method with one or more hunt bells that does not
fall into any of the named classes, which can only apply to jump methods. The classification
consists merely of details stored in the method object, and does not necessary correspond to
the actual classification of the method described by the place-notation, if supplied. The
classification can be set to match the place notation by calling classify-method.

Similarly the name does not necessarily correspond to the name by which the place
notation is known, unless the method has been looked up from a suitable library. See
Section 5.1 [Methods library], page 34.

Because ringing methods and their classes are unrelated to CLOS methods and classes,
the roan package shadows the symbols common-lisp:method, common-lisp:method-name,
common-lisp:class and common-lisp:class-name.

[Type]method
Describes a change ringing method, typically including its name, stage, classification
and place notation.

[Function]method &key name jump di↑erential little class stage place-notation
Creates a new method instance, with the specified name, stage, classi↓cation
and place-notation. If stage is not provided, it defaults to the current value of
default-stage; to create a method with no stage :stage nil must be explicitly
supplied.

A type-error is signaled if stage is supplied and is neither nil nor a stage; if
either of name or place-notation are supplied and are neither nil nor a string;
or if class is supplied and is neither nil nor one of the keywords :bob, :place,
:surprise, :delight, :treble-bob, :alliance, :treble-place or :hybrid. A
inconsistent-method-specification-error is signaled if the various classification
details cannot occur together, such as a little principle.

[Function]method-name method
[Function]method-jump-p method

https://cccbr.github.io/method_ringing_framework/
https://cccbr.github.io/method_ringing_framework/

Chapter 5: Methods 32

[Function]method-differential-p method
[Function]method-little-p method
[Function]method-class method
[Function]method-stage method
[Function]method-place-notation method

Return the name, classification details, stage and place notation of method, or
nil. A non-nil value returned by method-name or method-place-notation is
a string; by method-stage a stage (that is, an integer); and by method-class

one of the keywords :bob, :place, :surprise, :delight, :treble-bob,
:alliance, :treble-place, or :hybrid. The predicates method-jump-p,
method-differential-p and method-little-p return generalized booleans. These
functions all signal a type-error if method is not a method.

Note that method-jump-p reflects the classification stored in method, while
method-contains-jump-changes-p reflects the place notation of method, and they
may not agree.

All these functions may be used with setf to set the relevant attributes ofmethod. No
checking is done that the string supplied as the method-place-notation is, in fact,
valid place notation; however, a subsequent attempt to use invalid place notation, for
example by method-changes or method-lead-head, will signal an error. Attempting
to set the name or place notation to anything but a string or nil, the class to anything
but nil or one of the appropriate keywords, or the stage to anything but a stage or
nil signals a type-error. See [method-contains-jump-changes-p], page 39,

[Function]method-title method &optional show-unknown
Returns a string containing as much of the method’s title as is known. If show-
unknown, a generalized boolean defaulting to false, is not true then an unknown name
is described as "Unknown", and otherwise is simply omitted. Signals a type-error

if method is not a method.

The one argument case can be used with setf, in which case it potentially sets any
or all of the name, classification and stage of method. There is an ambiguity when
parsing method titles in that there being no explicit class named can indicate with
that the method has no class (principles and pure differentials) or that the class is
Hybrid. When parsing titles for setf an absence of a class name is taken to mean
that there is no class. Also, if there is no stage name specified when using setf with
method-title the stage is set to nil; *default-stage* is not consulted.

Chapter 5: Methods 33

(method-title (method "Advent" :class :surprise :stage 8))

⇒ "Advent Surprise Major"

(method-title (method :name "Grandsire" :class :bob :stage 9))

⇒ "Grandsire Caters"

(method-title (method :stage 8))

⇒ "Major"

(method-title (method :class :delight :stage 8) t)

⇒ "Unknown Delight Major

(method-title (method :name "Advent" :class :surprise :stage nil))

⇒ "Advent Surprise"

(method-title (method :name "Slinky" :stage 12 :class :place

:little t :differential t))

⇒ "Slinky Differential Little Place Maximimus"

(method-title (method :name "Stedman" :stage 11))

⇒ "Stedman Cinques"

(method-title (method :name "Meson" :class :hybrid

:little t :stage 12))

⇒ "Meson Maximus"

[Function]method-from-title title &optional place-notation
Creates a new method instance, with its name, classification and stage as specified by
title, and with the given place-notation. If the title does not include a stage name,
the stage of the result is the current value of *default-stage*.

Note that it is not possible to distinguish hybrid methods from non-jump principles,
nor jump methods with hunt bells from those without, from their titles. By conven-
tion, if no hunt bell class is specified in title a principle, that is a method without
hunt bells, is assumed. If in some specific use this is not correct it can be corrected
by setting method-class, and possibly method-little-p, of the resulting method as
desired.

A type-error is signaled if title is not a string, or if place-notation is neither a string
nor nil.

(let ((m (method-from-title "Advent Surprise Major")))

(list (method-title m) (method-class m) (method-stage m)))

⇒ ("Advent" :surprise 8)

[Function]comparable-method-name string
If string is a suitable name for a method, returns a version appropriate for comparison
with other comparable names, and otherwise returns nil.

The Central Council of Church Bell Ringers Framework for Method Ringing
(https://cccbr.github.io/method_ringing_framework/) (FMR), appendix B
describes a syntax for method names and their comparisons. This function both
determines whether or not they fit within the syntax described by the FMR, and,
if so, provides a canonical representation for them suitable for comparing whether
or not two apparently different names will be considered the same when describing
a method. This comparable representation is not intended for presentation to end
users, but rather just for comparing names for equivalence.

https://cccbr.github.io/method_ringing_framework/
https://cccbr.github.io/method_ringing_framework/

Chapter 5: Methods 34

Signals a type-error if string is not a string.

(comparable-method-name "New Cambridge")

⇒ "new cambridge"

(comparable-method-name "London No.3")

⇒ "london no 3"

(comparable-method-name "mäkčeň E=mc2")

⇒ "makcen e mc2"

(comparable-method-name "Two is Too Many Spaces")

⇒ nil

(comparable-method-name "Eλληνικά is Greek to me")

⇒ nil

[Type]inconsistent-method-specification-error
Signaled in circumstances when the various classification details provided cannot oc-
cur together, such as a little principle.

5.1 Methods library

Roan provides a library of method definitions, derived from the Central Council of Church
Bell Ringers Methods Library (https://cccbr.github.io/methods-library/index.
html). These are augmented with a handful of other methods not yet in the CCCBR Library,
jump methods and common alternative names for a few methods ([lookup-method-info],
page 36). As delivered with Roan this library is only up to date as of the date a version of
Roan was released. However, if a network connection is available, the library can be updated
to the most recent version made available by the Council by using update-method-library.
The Council typically updates their library weekly.

The library can be interrogated with the lookup-methods, lookup-method-by-title
and lookup-methods-by-notation functions. Additional information such as dates and
places of first peals containing the methods is available for some of the methods using
lookup-method-info.

[Function]lookup-methods &key name jump di↑erential little class stage
[Function]lookup-method-by-title title
[Function]lookup-methods-by-notation notation-or-changes &optional stage

The lookup-methods function returns a list of named methods whose name, classi-
fication and/or stage match those provided. If only a subset of these properties are
provided, the return list will contain all known methods that have the provided ones.

If name is provided, it should be a string or nil, and all the methods returned will have
that name. The Central Council of Church Bell Ringers Framework for Method Ring-
ing (https://cccbr.github.io/method_ringing_framework/) (FMR), appendix C
defines the form method names may take, and a mechanism for comparing them that
is more complex than simply comparing strings for equality. For example, "London
No.3" and "London no 3" are considered the same names. The lookup-methods

function uses this mechanism. See [comparable-method-name], page 33.

The name may also contain ‘*’ wildcard characters. Such a wildcard matches a series
of zero or more consecutive characters. Since the ‘*’ is not a character allowed in
method names by the FMR there is no ambiguity: occurrences of ‘*’ in name are

https://cccbr.github.io/methods-library/index.html
https://cccbr.github.io/methods-library/index.html
https://cccbr.github.io/methods-library/index.html
https://cccbr.github.io/method_ringing_framework/
https://cccbr.github.io/method_ringing_framework/

Chapter 5: Methods 35

always wildcard characters. Wildcards are applicable only to name, and not to any
of the other arguments to lookup-methods.

If stage is provided, it should be a stage, that is a small integer. All the methods that
are returned will have that stage. While a method object can have an indeterminate
stage, represented by nil, all the methods returned by lookup-methods will have a
definite stage, and nil is not an allowed value for the stage argument.

If class is provided, it should be nil or one of the keywords :bob, :place, :surprise,
:delight, :treble-bob, :treble-place, :alliance, :hybrid or :blank. With the
exception of :blank, all the methods returned will have the specified class. The value
:blank matches either nil, meaning no explicit class, or :hybrid; when writing a
method’s title according to the FMR the hybrid class and no class are indistinguish-
able, since “hybrid” is not included in the title.

If supplied, the generalized booleans little, di↑erential and jump indicate that the
returned methods should or should not have these properties. If these parameters are
not supplied all otherwise matching methods in the library will be returned without
regard to whether or not they have these properties.

If the title of a method is known, it can be found in the library by using
lookup-method-by-title. The title should be a string. If a method with that title
is in the library, it is returned; otherwise nil is returned. In general there should
never be two or more different methods in the library with the same title. Matching
on the title is done using the FMR’s mechanism for comparing names. Wildcards
cannot be used with lookup-method-by-title.

If the place notation of a method is known, and its name in the library is sought,
lookup-methods-by-notation is available. The notation-or-changes should be either
a string, in which case it viewed as place notation, or a list of rows, representing
changes all of the same stage. The stage should be a stage; if not provided or nil
the current value of *default-stage* is used. If notation-or-changes is a list of
changes, the value of stage is ignored, the stage of those changes being used instead.
Two lists are returned. The first is of methods that have the provided place notation
(or corresponding changes). The second is of methods that are rotations of methods
with the given place notation. Either or both lists may be empty if no suitable
methods are found in the library.

There is no guarantee of what order methods are in the lists returned by
lookup-methods or lookup-methods-by-notation. Instances of the “same”
method returned by different invocations of these functions will typically not be eq.

A type-error is signaled if stage is not a stage (or, in the case of lookup-methods-
by-notation, nil); name is not a string or nil; notation-or-changes is neither a
string nor a non-empty list of rows; changes is not a non-empty list of rows; or if class
is not one the allowed values. A parse-error is signaled if notation-or-changes is a
string and is not parseable as place notation at stage. An error is signaled if changes
is a list of rows, but they are not all of stage stage (or of *default-stage* if stage is
nil). A method-library-error is signaled if the method library file cannot be read
or is of the wrong format.

Chapter 5: Methods 36

(mapcar #’method-place-notation

(lookup-methods :name "Advent"

:class :surprise

:stage 8))

⇒ ("36x56.4.5x5.6x4x5x4x7,8")

(mapcar #’method-title

(lookup-methods :name "london no 3"

:class :surprise

:stage 10))

⇒ ("London No.3 Surprise Royal")

(method-place-notation

(lookup-method-by-title "Advent Surprise Major"))

⇒ "36x56.4.5x5.6x4x5x4x7,8"

(lookup-methods :name "No such method")

⇒ nil

(mapcar #’method-title

(lookup-methods :name "Cambridge*"

:class :surprise

:stage 8))

⇒ ("Cambridge Blue Surprise Major"

"Cambridge Surprise Major"

"Cambridgeshire Surprise Major")

(multiple-value-bind (n r)

(lookup-methods-by-notation "36x56.4.5x5.6x4x5x4x7,8" 8)

(list

(mapcar #’method-title n)

(mapcar #’method-title r)))

⇒ (("Advent Surprise Major") nil)

(multiple-value-bind (n r)

(lookup-methods-by-notation "1.3" 3)

(list

(mapcar #’method-title n)

(mapcar #’method-title r)))

⇒ (("Reverse Original Singles")

("Original Singles"))

(method-place-notation

(lookup-method-by-title "Original Singles"))

⇒ "3.1"

[Function]lookup-method-info title-or-method key
Roan’s method library also stores metadata about many of the methods it contains.
Each kind of such metadata is described by a keyword, which is passed to this function
as key. The title-or-method may be a string or a method. If a string, it is the title of
the method about which the metadata is sought. If the metadata indicated by key
is available for the method it is returned; the type of the return value depends upon
the kind of metadata sought. If no such metadata is available, including if key is a

Chapter 5: Methods 37

not yet supported type of metadata or if title-or-method does not correspond to
any method in the library, nil is returned.

Currently supported values for key are

:first-towerbell-peal

Returns a string describing the first performance of the method on tower
bells. No distinction if made between ringing the method on its own or
ringing it in spliced.

:first-handbell-peal

Returns a string describing the first performance of the method on hand
bells. No distinction if made between ringing the method on its own or
ringing it in spliced.

:complib-id

Returns an integer, which is used to index information about the method
on Composition Library (https://complib.org/). This can also be used
to distinguish those methods added to those from the Central Council,
as the added methods do not have a :complib-id, while all those from
the Council do.

Others may be added in future versions of Roan.

Signals a type-error if title-or-method is neither a string nor a method, or if key is
not a keyword.

(lookup-method-info "Advent Surprise Major"

:first-towerbell-peal)

⇒ "1988-07-31 Boston, MA (Advent)"

(lookup-method-info

(first (lookup-methods-by-notation "36x56.4.5x5.6x4x5x4x7,8"))

:complib-id)

⇒ 20042

(lookup-method-info "Advent Surprise Major"

:no-such-info)

⇒ nil

[Function]update-method-library &optional force
Queries the remote server containing the CCCBR’s Methods Library. If that remote
file has changed since the one Roan’s library was built from was downloaded, it fetches
the new one and uses it to build an updated Roan method library. If the generalized
boolean force is true it fetches the remote file and rebuilds Roan’s library without
regard to whether the remote one has changed. If the library is updated, returns
an integer, the number of methods the updated library contains; if the library is not
updated because the remote version hasn’t changed returns nil.

May signal any of a variety of file system or network errors if network access is not
available, or unreliable, or if there are other difficulties downloading and processing
the remote file.

[Function]method-library-details
Returns eight values describing the current Roan method libary. All are strings. They
are:

https://complib.org/

Chapter 5: Methods 38

1. A description of the CCCBR Method Library, extracted from the file from which
the Roan library was constructed

2. The date and time the file on the remote server was last modified, according to
that server.

3. The “entity tag” (ETag) of the remote file, as provided by the server. This is an
opaque identifier that changes for each version of the remote file. Querying the
current Etag is how update-method-library decides whether or not the Roan
method library needs updating.

4. The URL used to fetch the remote file from which the Roan library was built.

5. The source-id provided in the remote file, that is a CCCBR version stamp.

6. The date the CCCBR library was built, according to the contents of the file
downloaded from the remote server. This may or may not be the same as the
date the file on the remote server was last modified.

7. A unique identifier for the current version of the Roan library. This will change
whenever the Roan library is rebuilt, even if the resulting contents are unchanged.

8. The date and time the current version of the Roan library was built.

[Type]method-library-error
Signaled when a method library file cannot be read. Contains two potentially
useful slots accessible with file-error-pathname and method-library-error-

description.

5.2 Functions of the place notation of methods

[Function]canonicalize-method-place-notation method &key comma elide
cross upper-case allow-jump-changes

Replaces method’s place-notation by an equivalent string in canonical form, and re-
turns that canonical notation as a string. Unless overriden by keyword arguments this
is a compact version with leading and lying changes elided according to :lead-end

format as for write-place-notation, partitioned with a comma, if possible, with
upper case letters for high number bells and a lower case ‘x’ for cross. The behav-
ior can be changed by passing keyword arguments as for write-place-notation. If
method has no place-notation or no stage, this function does nothing, and returns
nil; in particular, if there is place-notation but no stage, the place-notation will be
unchanged.

Signals a type-error if method is not a method, and signals an error if any of the
keyword arguments do not have suitable values for passing to write-place-notation.
Signals a parse-error if the place notation string cannot be properly parsed as place
notation at method’s stage. See [canonicalize-place-notation], page 18, and [write-
place-notation], page 17.

(let ((m (method :stage 6

:place-notation "-16.X.14-6X16")))

(canonicalize-method-place-notation m)

(method-place-notation m))

⇒ "x1x4,6"

Chapter 5: Methods 39

[Function]method-changes method
If method’s stage and place-notation have been set returns a fresh list of rows, repre-
senting changes, that constitute a plain lead of method, and otherwise returns nil.
Signals a type-error if method is not a method. Signals a parse-error if the place
notation string cannot be properly parsed as place notation at method’s stage.

(method-changes (method :stage 6

:place-notation "x2,6"))

⇒ (!214365 !124365 !214365 !132546)

[Function]method-contains-jump-changes-p method
If method’s stage and place-notation have been set and method contains one or more
jump changes returns true, and otherwise returns nil. Note that even if the place
notation is set and implies jump changes, if the stage is not set method-contains-
jump-changes-p will still return nil.

Note that this function reflects the place notation of method while method-jump-p

reflects the classification stored in the method, and they may not agree.

Signals a type-error if method is not a method. Signals a parse-error if the place
notation string cannot be properly parsed as place notation at method’s stage.

(method-contains-jump-changes-p

(method :place-notation "x3x4x2x3x4x5,2"

:stage 6))

⇒ nil

(method-contains-jump-changes-p

(method :place-notation "x3x(24)x2x(35)x4x5,2"

:stage 6))

⇒ t

(method-contains-jump-changes-p

(method :stage 6))

⇒ nil

(method-contains-jump-changes-p

(method :place-notation "x3x(24)x2x(35)x4x5,2"

:stage nil))

⇒ nil

[Function]method-lead-head method
If method’s stage and place-notation have been set returns a row, the lead head
generated by one plain lead of method, and otherwise nil. If method has a one
lead plain course the result will be rounds. Signals a type-error if method is not a
method. Signals a parse-error if the place notation string cannot be properly parsed
as place notation at method’s stage.

(method-lead-head (method-from-title "Little Bob Major" "x1x4,2"))

⇒ !16482735

[Function]method-lead-count method
If method’s stage and place-notation have been set returns a positive integer, the
number of leads in a plain course ofmethod, and otherwise nil. Signals a type-error

Chapter 5: Methods 40

if method is not a method. Signals a parse-error if the place notation string cannot
be properly parsed as place notation at method’s stage.

(method-lead-count

(method-from-title "Cambridge Surprise Minor"

"x3x4x2x3x4x5,2"))

⇒ 5

(method-lead-count

(method-from-title "Cromwell Tower Block Surprise Minor"

"3x3.4x2x3x4x3,6"))

⇒ 1

(method-lead-count

(method-from-title "Bexx Differential Bob Minor"

"x1x1x23,2"))

⇒ 6

[Function]method-plain-lead method
Ifmethod’s stage and place-notation have been set returns a fresh list of rows, starting
with rounds, that constitute the first lead of the plain course ofmethod, and otherwise
returns nil. The lead head that starts the next lead is not included. Signals a
type-error if method is not a method. Signals a parse-error if the place notation
string cannot be properly parsed as place notation at method’s stage.

(method-plain-lead (method :stage 6

:place-notation "x2,6"))

⇒ (!123456 !214365 !213456 !124365)

[Function]method-lead-length method
If method’s stage and place-notation have been set returns a positive integer, the
length of one lead of method, and otherwise nil. Signals a type-error if method is
not a method. Signals a parse-error if the place notation string cannot be properly
parsed as place notation at method’s stage.

(method-lead-length

(method-from-title "Cambridge Surprise Minor" "x3x4x2x3x4x5,2"))

⇒ 24

[Function]method-course-length method
If method’s stage and place-notation have been set returns a positive integer, the
length of a plain course of method, and otherwise nil. Signals a type-error if
method is not a method. Signals a parse-error if the place notation string cannot
be properly parsed as place notation at method’s stage.

Chapter 5: Methods 41

(method-course-length

(method :title "Cambridge Surprise Minor"

:place-notation "x3x4x2x3x4x5,2"))

⇒ 120

(method-course-length

(method :title "Cromwell Tower Block Minor"

:place-notation "3x3.4x2x3x4x3,6"))

⇒ 24

(method-course-length

(method :title "Bexx Differential Bob Minor"

:place-notation "x1x1x23,2"))

⇒ 72

[Function]method-plain-course method
If method’s stage and place-notation have been set returns a fresh list of the rows that
constitute a plain course of method, and otherwise nil. The list returned will start
with rounds, and end with the row immediately preceding the final rounds. Signals a
type-error if method is not a method. Signals a parse-error if the place notation
string cannot be properly parsed as place notation at method’s stage.

[Function]method-true-plain-course-p method &optional
error-if-no-place-notation

If method has a non-nil stage and place notation set, returns true if method’s plain
course is true and nil otherwise. If method does not have a non-nil stage or place
notation a no-place-notation-error is signaled if the generalized boolean error-if-
no-place-notation is true, and otherwise nil is returned; if error-if-no-place-notation
is not supplied it defaults to true. Signals a type-error if method is not a method.
Signals a parse-error if the place notation string cannot be properly parsed as place
notation at method’s stage.

(method-true-plain-course-p

(method :title "Little Bob Minor"

:place-notation "x1x4,2"))

⇒ t

(method-true-plain-course-p

(method :title "Unnamed Little Treble Place Minor"

:place-notation "x5x4x2,2"))

⇒ nil

[Function]method-hunt-bells method
If method’s stage and place-notation have been set method-hunt-bells returns a
fresh list of bells (that is, small integers, with the treble represented by zero) that
are hunt bells of method (that is, that return to their starting place at each lead
head), and otherwise returns nil. The bells in the list are ordered in increasing
numeric order. Note that for a method with no hunt bells this function will also
return nil.

Signals a type-error if method is not a method, and signal a parse-error if the
place notation string cannot be properly parsed as place notation at method’s stage.

Chapter 5: Methods 42

(method-hunt-bells (method-from-title "Grandsire Doubles"

"3,1.5.1.5.1"))

⇒ (0 1)

[Function]method-working-bells method
If method’s stage and place-notation have been set returns a list of lists of bells (that
is, small integers, with the treble represented by zero) that are working bells ofmethod
(that is, that do not return to their starting place at each lead head), and otherwise
returns nil. The sublists each represent a cycle of working bells. For example, for a
major method with Plain Bob lead heads, there will be one sublist returned, of length
seven, containing the bells 1 through 7; while for a differential method there will be at
least two sublists returned. Each of the sublists is ordered starting with the smallest
bell in that sublist, and then in the order the place bells follow one another in the
method. Within the overall, top-level list the sublists are ordered such that the first
element of each sublist occur in increasing numeric order. Note that for a method
with no working bells (which will then have a one lead plain course) this function also
returns nil. Signals a type-error if method is not a method. Signals a parse-error
if the place notation string cannot be properly parsed as place notation at method’s
stage.

(method-working-bells (method :stage 7

:place-notation "7.1.7.47,27"))

⇒ ((1 4 5) (2 6 3))

[Function]method-lead-head-code method
Returns the lead head code for method, as a keyword, if its stage and place

notation are set and it has Plain Bob or Grandsire lead ends, and otherwise returns
nil. No methods below minimus are considered to have such lead ends, nor is rounds
considered such a lead end. When not nil the result is a keyword whose name consists
of a single letter, possibly followed by a digit.

The CCCBR’s various collections of methods have, for several decades, used succinct
codes, typically single letters or, more recently, single letters followed by digits, to
denote various lead ends for the methods they contain. While the choices made have
in the past varied by collection, in recent decades a consistent set of codes has been
used, which is now codified in the Central Council of Church Bell Ringers Framework
for Method Ringing (https://cccbr.github.io/method_ringing_framework/)
(FMR), appendix C. While these codes actually describe both a row and a change
adjacent to that row, and thus two different rows, the FMR calls them "lead head
codes", so that phrasing is also used here.

There is currently (as of July 2019) an issue with the definitions of these codes in
the FMR, where those for Grandsire-like methods do not correctly correspond to
common practice. For example, most ringers would consider Itchingfield Slow Bob
Doubles and Longford Bob Doubles to have the same lead ends. However, the current
FMR definition says that the former has ’c’ Grandsire lead ends, and the latter does
not. This is currently under discussion for correction in the next revision of the
FMR. The method-lead-head-code function is implemented assuming that this will
be corrected in the next revision of the FMR to match common practice. For example,

https://cccbr.github.io/method_ringing_framework/
https://cccbr.github.io/method_ringing_framework/

Chapter 5: Methods 43

it considers neither Itchingfield Slow Bob nor Longford Bob as having Grandsire lead
ends.

It is also worth noting that, for some of the less common cases, the lead end codes
defined in the FMR differ from those used in earlier CCCBR collections.

Signals a type-error if method is not a method, and a parse-error if method’s
place notation cannot be interpreted at its stage.

(method-lead-head-code

(lookup-method-by-title "Advent Surprise Major"))

⇒ :h

(method-lead-head-code

(lookup-method-by-title "Zanussi Surprise Maximus"))

⇒ :j2

(method-lead-head-code

(lookup-method-by-title "Sgurr Surprise Royal"))

⇒ :d

(method-lead-head-code

(lookup-method-by-title "Twerton Little Bob Caters"))

⇒ :q2

(method-lead-head-code

(lookup-method-by-title "Grandsire Royal"))

⇒ :p

(method-lead-head-code

(lookup-method-by-title "Double Glasgow Surprise Major"))

⇒ nil

[Function]method-rotations-p method-1 method-2
Returns true if and only if the changes constituting a lead of method-1 are the same
as those constituting a lead of method-2, possibly rotated. If the changes are the same
even without rotation that is considered a trivial rotation, and also returns true. Note
that if method-1 and method-2 are of different stages the result will always be false.

Signals a no-place-notation-error if either argument does not have its stage or
place notation set. Signals a type-error if either argument is not a method. Signals
a parse-error if the place notation of either argument cannot be parsed as place
notation at its stage.

Chapter 5: Methods 44

(method-rotations-p

(method :stage 5 :place-notation "3,1.5.1.5.1")

(method :stage 5 :place-notation "5.1.5.1,1.3"))

⇒ t

(method-rotations-p

(method :stage 5 :place-notation "3,1.5.1.5.1")

(method :stage 5 :place-notation "3,1.5.1.5.1"))

⇒ t

(method-rotations-p

(method :stage 5 :place-notation "3,1.5.1.5.1")

(method :stage 5 :place-notation "3,1.3.1.5.1")

⇒ nil

(method-rotations-p

(method :stage 5 :place-notation "3,1.5.1.5.1")

(method :stage 7 :place-notation "5.1.5.1,1.3"))

⇒ nil)

[Function]method-canonical-rotation-key method
If method has its stage and place notation set returns a string uniquely identifying,
using equal, the changes of a lead of this method, invariant under rotation. That is,
if, and only if, two methods are rotations, possibly trivially so, of one another their
method-canonical-rotation-keys will always be equal. While a string, the value
is essentially an opaque type and should generally not be displayed to an end user
or otherwise have its structure depended upon, though it can be printed and read
back in again. While, within one version of Roan, this key can be counted on to
be the same in different sessions and on different machines, it may change between
versions of Roan. If method does not have both its stage and place notation set
method-canonical-rotation-key returns nil.

Signals a type-error if method is not a method. Signals a parse-error if method’s
place notation cannot be properly parsed at its stage.

(method-canonical-rotation-key

(lookup-method "Cambridge Surprise" 8))

⇒ "bAvzluTjWO5P"

(method-canonical-rotation-key

(method :stage 8 :place-notation "5x6x7,x4x36x25x4x3x2"))

⇒ "bAvzluTjWO5P"

(method-canonical-rotation-key

(method :stage 8 :place-notation "x1x4,2"))

⇒ "bEvy3Zo"

(method-canonical-rotation-key

(method :stage 10 :place-notation "x1x4,2"))

⇒ "Oi3Jd2sC"

(method-canonical-rotation-key (method) ⇒ nil

Chapter 5: Methods 45

[Function]classify-method method
Assigns the classification fields of method to match the classification assigned by the
Central Council of Church Bell Ringers Framework for Method Ringing (https://
cccbr.github.io/method_ringing_framework/) (FMR) for the place notation
contained in that method, and returns the method. Signals a type-error if method
is not a method. Signals a no-place-notation-error if either the stage or place
notation of method are not set. Signals a parse-error if the value of the place
notation field cannot be interpreted as place notation at the stage of method.

(method-title (classify-method

(method :stage 8 :place-notation "x3x6x5x45,2"))

t)

⇒ "Unnamed Differential Little Surprise Major"

[Type]no-place-notation-error
Signaled in circumstances when the changes constituting a method are needed but
are not available because the method’s place notation or stage is empty. Contains
one potentially useful slot accessbile with no-place-notation-error-method. Note,
however, that many functions that make use of a method’s place notation and stage
will return nil rather than signaling this error if either is not present.

5.3 Drawing blue lines

[Function]blueline destination method &rest keys &key layout hunt-bell
working-bell ↓gures place-notation place-bells

Draws the blue line of method as a Scalable Vector Graphics (SVG) image. The
method should have its stage and place notation set. While Roan only writes SVG
format images, many other pieces of software, such as ImageMagick (https: / /
imagemagick.org/), are able to convert SVG images to other formats.

The destination can be

• A text stream, open for writing: the SVG will be written to this stream, and the
stream is returned as the value of the call to blueline.

• The symbol t: the SVG will be written to *standard-output*, and the value of
standard-output is returned as the value of the call to blueline.

• A pathname: an SVG file will be written to this pathname, which will be opened
with if-exists :supersede, and the truename of the resulting file is returned.

• A string with a fill pointer: the SVG will be appended to this string, as by
vector-push-extend, which is returned.

• The symbol nil: the SVG will be written to a new string, which is returned.

Several keyword parameters can be used to control details of the image produced

layout Controls the distribution of leads into columns. For differentials, or meth-
ods with multiple, equal length cycles of working bells, each cycle always
starts a new column. Within a cycle the value of layout controls the
number of leads in a column. If it is a non-negative integer, this is the
maximum number of rows in a column; though if the lead length exceeds
this value each column will contain one lead. If nil this is no limit to

https://cccbr.github.io/method_ringing_framework/
https://cccbr.github.io/method_ringing_framework/
https://imagemagick.org/
https://imagemagick.org/

Chapter 5: Methods 46

the number of leads in a column, each cycle of working bells then filling
a column.The special value :grid may also be supplied, in which case
only a single column is used for a single lead, with all the bells blue lines
combined into it as a grid. The default value for layout is 100.

hunt-bell Controls which hunt bells are displayed specially. Those not displayed
specially, are treated as working bells. If a bell, that is, a small, non-
negative integer less than the stage of method, this is the hunt bell dis-
played specially; a list of bells may also be supplied, for multiple hunt
bells. If a supplied bell is not actually a hunt bell ofmethod it is ignored.
The keyword first is equivalent to supplying whatever the smallest hunt
bell of method is. The keyword :all is equivalent to supplying a list of
all the hunt bells of method. The keyword :working treats all of the hunt
bells as working bells. If hunt-bell is nil no hunt bells are displayed. The
default value for hunt-bell is :first.

working-bell
Controls which working bell of each cycle is drawn first, the others fol-
lowing on in the order in which they are rung. This can be a bell, or a
list thereof, or one of the keywords :natural, :largest or :smallest.
If :natural for each cycle the largest bell that makes a place across the
lead end is chosen; if there is no such bell in a cycle the largest bell in that
cycle is used. For methods with Grandsire-like palindromic symmetry the
first row of the lead is used instead of the lead end. The default value for
working-bell is :natural.

↓gures If non-null figures will also be drawn, in addition to the blue line. If t
they will be drawn for all leads. If :lead only for the first lead of each
cycle. If :half and the method has the usual palindromic symmetry
around the half lead, with one additional change at the lead end, they
will only be drawn for the first half-lead; otherwise :half is equivalent
to :lead. If :head the figures will only be drawn for the first lead head
in each column. The default value for ↓gures is nil.

place-notation
if non-null the place notation will be drawn to the left of the blue lines. If
t it will be drawn for the first lead in each column. If :lead it will only
be drawn for the first columnn. If :half and the method has the usual
palindromic symmetry around the half lead, with one additional change
at the lead end, it will only be drawn for the first half lead, plus at the
lead end; otherwise :half is equivalent to :lead. The default value for
place-notation is nil.

place-bells May have a value of nil, :dot or :label. If non-null dots are drawn
where each place bell starts, and if :label a label is drawn to the right of
the blue line at each place bell’s start. The default value for place-bells
is :label.

For an example, execute something like the following, and open the resulting file in a
browser:

47

(blueline #P"/tmp/bastow.svg"

(lookup-method-by-title "Bastow Little Bob Minor")

:layout 12

:figures :lead

:place-notation :half)

Default values for the keyword arguments to this function can be set by assign-
ing a property list of keywords and values to the variable *blueline-default-

parameters*.

(equal

(blueline nil

(lookup-method-by-title "Advent Surprise Major")

:layout nil

:figures t

:place-notation :lead)

(let ((*blueline-default-parameters*

’(:layout nil :figures t :place-notation :lead)))

(blueline nil (lookup-method-by-title "Advent Surprise Major"))))

⇒ t

Signals a type-error if destination is not a stream, pathname, string with a fill
pointer or one of the symbols t or nil; if method is not a method; if layout is not
non-negative integer, nil or the keyword :grid; if hunt-bell is not a bell, list of bells,
nil or one one of the keywords :first, :all or :working. if working-bell is not a
bell, list of bells, or one of the symbols :natural, :largest or smallest; if ↓gures
is not one of the keywords :none, :head, :half, :lead or :always; if place-notation
is not one of the keywords :none, :half, :lead or :always; or if place-bells is not
nil or one of the keywords :dot or:label. Signals a no-place-notation-error if
method doesn’t have both its stage and place notation set. Can signal various errors
if an I/O error occurs trying to write to a stream or create a file.

48

6 Internal Falseness

Most methods that have been rung and named at stages major and above have been rung at
even stages, with Plain Bob lead ends and lead heads, without jump changes, and with the
usual palindromic symmetry. For major, and at higher stages if the tenors are kept together,
the false course heads of such methods are traditionally partitioned into named sets all of
whose elements must occur together in such methods. These are traditionally called “false
course head groups” (FCHs), although they are not what mathemeticians usually mean
by the word “group”. Further information is available from a variety of sources, including
Appendix B of Peter Niblett’s XML format documentation (http://www.methods.org.
uk/method-collections/xml-zip-files/method%20xml%201.0.pdf).

Roan provides a collection of fch-group objects that represent these FCH groups. Each
is intended to be an singleton object, and under normal circumstances new instances should
not be created. They can thus be compared using eq, if desired. The fch-groups for major
are distinct from those for higher stages, though their contents are closely related.

An fch-group can be retrieved using the fch-group function. The first argument to
this function can be either a row or a string. If a row the fch-group that contains that row
is returned. If a string the fch-group with that name is returned. In this latter case two
further, optional arguments can be used to state that the group for higher stages is desired,
and whether the one with just in course or just out of course false course heads is desired;
for major all the fch-groups contain both in and out of course elements.

The fch-group-name, fch-group-parity and fch-group-elements functions can be
used to retrieve the name, parity and elements of a fch-group. The method-falseness

function calculates the false course heads of non-differential, treble dominated methods at
even stages major and above, and for those with the usual palindromic symmetry and Plain
Bob lead heads and lead ends, also returns the relevant fch-groups. The fch-groups-

string function can be used to format a collection of fch-group names in a traditional,
compact manner.

It is possible to extend the usual FCH groups to methods with non-Plain Bob lead heads.
However, Roan currently provides no support for this.

[Type]fch-group
Describes a false course head group, including its name, parity if for even stages
above major, and a list of the course heads it contains. The parity is nil for major
fch-groups, and one of the keywords :in-course or :out-of-course for higher
stages. The elements of a major fch-group are major rows while those for a higher
stage fch-group are royal rows.

[Function]fch-group item &optional higher-stage out-of-course
Returns an fch-group described by the provided arguments. The item can be either
a row or a string designator.

If item is a row the fch-group that contains that row among its elements is returned.
If it is not at an even stage, major or above, or if it is at an even stage royal or above
but with any of the bells conventionally called the seven (and represented in Roan by
the integer 6) or higher out of their rounds positions, nil is returned. If item is a row

at an even stage maximus or above, with the back bells in their home positions, it is

http://www.methods.org.uk/method-collections/xml-zip-files/method%20xml%201.0.pdf
http://www.methods.org.uk/method-collections/xml-zip-files/method%20xml%201.0.pdf

Chapter 6: Internal Falseness 49

treated as if it were the equivalent royal row. When item is a row neither higher-stage
nor out-of-course may be supplied.

If item is a string designator the fch-group that has that name is returned. If the
generalized boolean higher-stage is true a higher stage fch-group is returned and
others a major one. In the case of higher stage groups if the generalized boolean out-
of-course is true the group with the given name containing only out of course elements
is returned, and otherwise the one with only in course elements. Both higher-stage
and out-of-course default to nil if not supplied. If there is no fch-group with name
item and the given properties nil is returned.

Signals a type-error if item is neither a row nor a string designator. Signals an error
if item is a row and higher-stage or out-of-course is supplied.

(let ((g (fch-group !2436578)))

(list (fch-group-name g)

(fch-group-parity g)

(stage (first (fch-group-elements g)))))

⇒ ("B" nil 8)

(fch-group "a1" t nil) ⇒ nil

(fch-group-elements (fch-group "a1" t t)) ⇒ (!1234657890)

[Function]fch-group-name group
[Function]fch-group-parity group
[Function]fch-group-elements group

Returns the name, parity or elements of the fch-group group.

The value returned by fch-group-name is a string of length one or two. For major
groups it is always of length one, and is a letter. For higher stages if of length one it
is again a letter, and if of length two it is a letter followed by the digit ‘1’ or the digit
‘2’. The case of letters in fch-group names is significant.

For major fch-groups fch-group-parity always returns nil. For higher stage
fch-groups it always returns either :in-course or :out-of-course.

The fch-group-elements function returns a list of rows, the elements of the group.
For major groups these are always major rows, and for higher stage groups royal rows.
The alter-stage fucntion (see [alter-stage], page 14) can be helpful for making such
rows conform to the needs of other stages above major.

All three functions signal a type-error if group is not a fch-group.

[Function]fch-groups-string collection &rest more-collections
Returns a string succinctly describing a set of fch-groups, in a conventional order.
The set of fch-groups is the union of all those contained in the arguments, each of
which should be a sequence or hash-set, all of whose elements are fch-groups. The
resulting string contains the names of the distinct fch-groups. If there are no groups
nil, rather than an empty string, is returned.

For higher stages there are two sequences of group names in the string, separated by
a solidus (‘/’); those before the solidus are in course and those after it out of course.
For example, "B/Da1" represents the higher course in course elements of group B and
out of course elements of groups D and a1.

Chapter 6: Internal Falseness 50

The group names are presented in the conventional order. For major the groups con-
taining in course, tenors together elements appear first, in alphabetical order; followed
by those all of whose tenors together elements are out of course, in alphabetical order;
finally followed by those all of whose elements are tenors parted. For higher stages
the capital letter groups in each half of the string come first, in alphabetical order,
followed by those with lower case names. Note that a lower case name can never
appear before the solidus.

Signals a type-error if any of the arguments are not sequences or hash-sets, or if any
of their elements is not an fch-group. Signals a mixed-stage-fch-groups-error if
some of the elements are major and some are higher stage fch-groups.

(fch-groups-string (list (fch-group "a") (fch-group "B")))

⇒ "Ba"

(fch-groups-string #((fch-group "D" t t)

(fch-group "a1" t t))

(hash-set (fch-group "B" t)))

⇒ "B/Da1"

(fch-groups-string (list (fch-group "T" t nil)))

⇒ "T/"

(fch-groups-string (list (fch-group "T" t t)))

⇒ "/T"

[Function]method-falseness method
Computes the most commonly considered kinds of internal falseness of the most com-
mon methods: those at even stages major or higher with a single hunt bell, the treble,
and all the working bells forming one cycle, that is, not differential. Falseness is only
considered with the treble fixed, as whole leads, and, for stages royal and above, with
the seventh (that is, the bell roan denotes by 6) and above fixed. Returns three
values: a summary of the courses that are false; for methods that have Plain Bob
lead ends and lead heads and the usual palindromic symmetry, the false course head
groups that are present; and a description of the incidence of falseness.

The first value is a list of course heads, rows that have the treble and tenors fixed,
such that the plain course is false against the courses starting with any of these course
heads. Rounds is included only if the falseness occurs between rows at two different
positions within the plain course. Course heads for major have just the tenor (that
is, the bell represented in Roan by the integer 7) fixed, while course heads for higher
stages have all of the seventh and above (that is, bells represented in Roan by the
integers 6 and larger) fixed in their rounds positions.

If method has Plain Bob lead ends and lead heads, and the usual palindromic sym-
metry, the second value returned is a list of fch-group objects, and otherwise the
second value is nil. Note also that for methods that are completely clean in the
context used by this function, for example plain royal methods, an empty list also
will be returned. These two cases can be disambiguated by examining the first value
returned.

There is some ambiguity in the interpretation of “A” falseness. In Roan a method is
only said to have “A” falseness if its plain course is false. That is, the trivial falseness
implied by a course being false against itself and against its reverse by virtue of

51

containing exactly the same rows is not reported as “A” falseness. “A” falseness
is only reported if there is some further, not-trivial falseness between rows at two
different positions within the plain course.

The third value returned is a two dimensional, square array, each of the elements of
that array being a possibly empty list of course heads. For element e, the list at m,n
of this array, lead m of the plain course of method is false against lead n of each of
the courses starting with an element of e. The leads are counted starting with zero.
That is, if s is the stage of method, then 0æm<s-1 and 0æn<s-1.

A type-error is signaled if method is not a method. Signals a parse-error if the
place notation string cannot be properly parsed as place notation at method’s stage.
If method does not have its stage or place-notation set a no-place-notation-error.
If method is not at an even stage major or above, does not have one hunt bell, the
treble, or is differential, an inappropriate-method-error is signaled.

(multiple-value-bind (ignore1 groups ignore2)

(method-falseness

(method :stage 8

:place-notation "x34x4.5x5.36x34x3.2x6.3,8"))

(declare (ignore ignore1 ignore2)

(fch-groups-string groups))

⇒ "BDacZ"

(fch-groups-string

(second

(multiple-value-list

(method-falseness

(lookup-method "Zorin Surprise" 10)))))

⇒ "T/BDa1c"

52

7 Calls

Roan provides an immutable call object that describes a change ringing call, such as a
bob or single, that modifies a lead of a method. A call usually has a fragment of place
notation representing changes that are added to the the sequence of changes constituting
the lead, typically replacing some existing changes in the lead.

A call has an offset, which specifies where in the lead the changes are added, replaced or
deleted; this offset can be indexed from the beginning or the end of a lead, which frequently
allows the same call to be used for similar methods with possibly different lead lengths. It
is also possible to index from a postion within the lead rather than the beginning or end
by supplying a fraction; again, this allows using, for example, half-lead calls with similar
methods with different lead lengths.

Typically a call replaces exactly as many changes as it supplies. However it is possible
to replace none, in which case the call adds to the lead length; to only replace changes with
a zero length set of changes, in which case the call shortens the lead by deleting changes;
or even to add more or fewer changes than it replaces.

Typically a call only affects the lead of a method to which is is applied. In exceptional
cases, most notably doubles variations, it may also affect the subsequent lead. To support
such use a call may have a following place notation fragment and a following replacement
length. Such use is always restricted to being positioned at the beginning of the subsequent
lead, and in the main lead the call must replace changes all the way to the end of the lead.
Note that by starting the call at the end of the lead this could be simply adding changes,
or even doing nothing.

A call is applied to a lead with the function call-apply. This can take multiple calls,
all of which are applied to the same lead. They must not, however, overlap. The call-apply
function returns two values. The first is a list of the changes of the lead, modified by the
call(s). The second, if not nil, is another call to be applied to the following lead, and is
only non-nil when a call does apply also to the subsequent lead.

Two calls may be compared with equalp.

Examples of calls:

• The usual bob for Cambridge Surprise is (call "4").

• The usual single for Grandsire is (call "3.123" :offset 2).

• The usual bob for Erin Triples is (call "7" :from-end nil).

• A 58 half-lead bob for Bristol Major is (call "5" :fraction 1/2).

• A bob in April Day Doubles is (call "3.123" :following "3").

• A call for surprise that shortens the lead by omitting the first two blows, so that ringing
of the lead commences at the backstroke snap is (call nil :from-end nil :replace

2).

[Type]call
An immutable object describing a change ringing call, such as a bob or single.

[Function]call place-notation &key from-end o↑set fraction replace following
following-replace

Creates and returns a call, which modifies the changes of a lead of a method. The
place-notation argument is a string of place, the changes corresponding to which will

Chapter 7: Calls 53

add or replace changes in a a lead of the method when applying the code. The place-
notation may be nil, in which case no changes are add or replace existing ones. The
o↑set, a non-negative integer, is the position at which to begin modifying the lead,
and is measured from the beginning of the lead if the generalized boolean from-end
is false, and from the end, otherwise. This can be further modifed by fraction which
is multiplied by the lead length; the offset is counted forward or backward from that
product. The fraction, if non-nill, must be a ratio greater than 0 and less than 1,
whose denominator evenly divides the lead length. The non-negative integer replace
is the number of changes in the lead to be deleted or replaced. It is typically equal
to the length of changes, which results in exact replacement of changes in the lead,
but may be greater or less than that length, in which case the resulting lead is of a
different length than a plain lead.

If either or both of following or following-replace are supplied the call is intended to
also apply to the subsequent lead. These operate just like place-notation and replace,
but on the subsequent lead, and always at the begining of that lead. This use also
depends upon the caller of call-apply making correct use of its second return value.

If replace is not supplied or is nil it defaults to the number of changes represented
by the place-notation. If o↑set is not supplied or is nil, it defaults to 0 if from-end is
false, and otherwise to the value of replace, which may itself have been defaulted from
the value of place-notation. The default value of from-end is t. The default value of
fraction is nil. If following is supplied but following-replace is not, following-replace
defaults to the number of changes represetned by following. If following-replace is
supplied but following is not, following defaults to nil.

A parse-error is signaled if either place-notation or following is non-nil but not
interpretable as place notation at the stage of method. A type-error is signaled if
o↑set is supplied and is neither nil nor a non-negative integer; if replace is supplied
and is neither nil nor a non-negative integer; fraction is supplied and is neither nil
nor a ratio between 0 and 1, exclusive; or if following-replace is supplied and is neither
nil nor a non-negative integer.

[Function]call-apply method &rest calls
Applies zero or more calls to a lead of method. Returns two values, the first a list
of rows constituting the changes of the modified lead and the second nil or a call,
such that the call should be applied to the succeeding lead. This second value is
only non-nil for complex calls that affect two consecutive leads, as are encountered
in doubles variations. One or more of the calls may be nil, in which case they are
ignored, just as if they had not been supplied. If no non-nil calls are supplied returns
a list of the changes constituting a plain lead of method.

When multiple calls are supplied the indices of all are computed relative to the length
and position within the plain lead, before the application of any others of the calls.
For example, a half-lead call that replaces the 7th’s in Cambridge Major continues to
replace that change even if an earlier call removes or adds several changes.

Signals a type-error ifmethod is not a method or if any of the calls are neither a call
nor nil. Signals a parse-error if method does not have its stage or place-notation
defined. Signals a call-application-error in any of the following circumstances: if
the stage of method is such that the place notation or following place notation of one

54

or more of the calls is inapplicable; if an attempt is made to apply a fractional lead
call where the denominator of the fraction does not evenly divide the lead length; if
the call would be positioned, or replace changes, that lie outside the lead; if a call

with following changes does not replace changes up to the end of the first lead, or
an attempt is made to applly two or more calls with following place notation to the
same lead.

[Type]call-application-error
Signaled when an anaomalous condition is detected while trying to apply
a call to a method. Contains three potentially useful slots accessible with
call-application-error-call, call-application-error-method and
call-application-error-details.

55

Appendix A License

Roan is covered by an MIT open source license (https://en.wikipedia.org/wiki/
MIT_License), a well-known, permissive license with few compatibility problems with other
licenses. The license is quoted below. Loading Roan also loads several third party libraries,
each of which is made available under its own terms, distinct from Roan’s. To the best
of my understanding all the libraries Roan loads are either in the public domain, or have
suitably permissive licenses; however, you should read their actual licenses to be sure. See
[dependencies], page 56.

Roan’s license is:

Copyright (c) 1975-2019 Donald F Morrison

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License

56

Appendix B Libraries Used by Roan

Roan loads the following libraries. Note that it does not include them as part of itself, it
merely loads them, typically over the network from Quicklisp’s library server.

While most are in the public domain or offered under a permissive, open source license,
some are offered with a copyleft license. This should make no difference for using Roan in
the usual way, with the libraries loaded from Quicklisp. But if you distribute something
built with Roan and include the libraries in it you will have to pay attention to these licenses
and be sure to adhere to them.

• Alexandria (https://common-lisp.net/project/alexandria/draft/alexandria.
html) [public domain]

• Iterate (https://common-lisp.net/project/iterate) [MIT]

• CL-INTERPOL (https://edicl.github.io/cl-interpol/) [BSD]

• ASDF (https://common-lisp.net/project/asdf/) [MIT]

• CL-FAD (http://weitz.de/cl-fad/) [BSD]

• local-time (https://common-lisp.net/project/local-time/) [MIT]

• uuid (https://github.com/dardoria/uuid/blob/master/uuid.lisp) [LLGPL]

• CL-PPCRE (http://weitz.de/cl-ppcre) [BSD]

• Drakma (http://weitz.de/drakma/) [BSD]

• Plump (https://shinmera.github.io/plump/) [Artistic]

• binascii (https://github.com/froydnj/binascii) [BSD]

• ZIP (https://common-lisp.net/project/zip/) [BSD+LGPL]

Note that several of these libraries in turn load others, if embedding them in something
you ship you may need to pay attention to the licenses of things transitively included.

Several further libraries are used in the construction of Roan, but their license terms
should not affect those who use or ship Roan itself, except possibly in so far as they need
to use them to develop modifications to Roan.

While not loaded during normal use of Roan, when running Roan’s unit tests (see
[testing], page 59) the following library is also loaded and used.

• lisp-unit2 (https://github.com/AccelerationNet/lisp-unit2) [MIT]

Also while not loaded during normal use of Roan, when building Roan’s documentation
(see [building], page 58) the following libraries are also loaded and used. One of these, too,
trivial-documentation, is offered under a copyleft license. To the best of my understand-
ing this should not affect those simply copying or distributing Roan, so long as they do not
include a copy of trivial-documentation with it.

• CL-FAD (http://weitz.de/cl-fad/) [BSD]

• trivial-documentation (https://github.com/eugeneia/trivial-documentation)
[Affero GPL]

https://en.wikipedia.org/wiki/Copyleft
https://common-lisp.net/project/alexandria/draft/alexandria.html
https://common-lisp.net/project/alexandria/draft/alexandria.html
https://common-lisp.net/project/iterate
https://edicl.github.io/cl-interpol/
https://common-lisp.net/project/asdf/
http://weitz.de/cl-fad/
https://common-lisp.net/project/local-time/
https://github.com/dardoria/uuid/blob/master/uuid.lisp
http://weitz.de/cl-ppcre
http://weitz.de/drakma/
https://shinmera.github.io/plump/
https://github.com/froydnj/binascii
https://common-lisp.net/project/zip/
https://github.com/AccelerationNet/lisp-unit2
http://weitz.de/cl-fad/
https://github.com/eugeneia/trivial-documentation

57

Appendix C History

Roan started out in the mid-1970s as code to support searching for compositions using
Portable Standard Lisp on a Digital Equipment Corporation DEC-10 machine. A few years
later a bunch of utilities for UNIX, written in C, were added. By the mid-1980s it had
expanded significantly into collections of Apollo Domain Lisp and Lisp Machine Lisp code.
From there to a highly portability-challenged version for Digitool Macintosh Common Lisp,
followed by a more portable version that I used for several years, predominately with CLISP.
Over the years I’ve even “ported” it (if you can call a complete rewrite in a different language
a “port”) to a few other programming languages where I used it for various lengths of time.
Eventually I tried to make a more tidy, fairly portable Common Lisp version, and have
been happily using this for my compositional activities in recent years. It also underpins
the method presentation stuff on the ringing.org (http://www.ringing.org/) web site.

Over the years several folks received copies of it, and in some cases used it, at least for
a little while. I think it was used for a time on a Lisp Machine to drive a set of electronic
Christmas tree ornamental bells ringing touches! But despite such use, it was never well
organized or documented.

In a fit of good-neighorliness I’ve finally tried to make it sufficiently tidy for more general
distribution and added this documentation, in the hopes that others may find it useful, too.

As you can easily deduce from its history, lots of things have come and gone over the
years, and there are lots of parts that have fallen into disrepair or don’t play well with other
parts. In tidying it up for distribution I’m trying to fix that. Public releases of Roan will
contain only portions that have been reasonably well tested and that do play well together,
but there’s still a lot of work to do resurrecting, tidying and documenting other features of
varied antiquity and robustness. I’m hopeful that in coming months and years I’ll be able
to offer more releases with more good stuff added to them.

C.1 What’s with the name?

Robert Roan was an important seventeenth century ringer and composer. He is widely
believed to have invented Grandsire Doubles and Plain Bob Minor, and by implication, the
“standard extent” of minor.

Sadly, his name is less well known among most ringers than some other early composers,
probably because he’s had the misfortune of never having had a method named after him.
So several decades ago it seemed fitting to name a library of software intended for use in
composition after him. In keeping with Robert Roan’s relative obscurity, it’s taken several
decades for the eponymous software to become publicly available.

http://www.ringing.org/

58

Appendix D Building and Modifying Roan

Since Roan is written in Lisp there really is no build process: your Lisp implementation,
under the direction of Quicklisp and ASDF, will happily just compile and load it.

However, the documentation does have a slightly complex build process. And if you are
modifying Roan you really should make friends with the unit tests.

D.1 Building the documentation

This manual is written using Texinfo (https://www.gnu.org/software/texinfo/).
Depending upon how your environment is already configured you may have to download
and install Texinfo software, TeX and/or LaTeX.

There is a file included in the source tree, though not a part of Roan per se,
extract-documentation.lisp, that is used to extract the documentation strings
associated with symbols exported from the roan package. This is done using the
roan/doc:extract-documentation function. For each exported symbol it writes a small
.texi file in the doc/inc directory with its documentation string, augmented with some
further Texinfo commands. The documentation strings in the Roan sources are themselves
infested with appropriate Texinfo commands. Most of these small files are then @included
into the main Texinfo file, roan.texi, to document the various functions, macros and
types. In addition to roan.texi, there is also a small collection of style information used
by the HTML versions of the documentation in roan.css.

After the documentation strings have been extracted makeinfo needs to be called for
each of the four versions of the documentation that are produced:

• an Info file

• a PDF file

• a single HTML file

• a collection of HTML files, one per chapter

So long as CCL (Clozure Common Lisp) is installed, the Makefile in the source hierarchy
should do all this for you. If preferred, it should be straightforward to modify the Makefile
to use a different Lisp implementation to run extract-documentation.

If a public function is added to Roan, it should include a suitable documentation string,
and roan.texi should be revised to give it an appropriate home, where the corresponding
inc/*-function.texi file is @included. So long as you export its name from the roan

package it should be picked up by when building the documentation. Then, run make

documentation and if all goes well1, all four kinds of documentation will be nicely produced
a few seconds later.

Of course, most of the time, all won’t go well. Besides looking carefully at the rather
noisy output from makeinfo, here are a few other things to bear in mind:

• Even though a problem looks like it’s in roan.texi, it might be in a documentation
string in a source file; Texinfo is pretty good about identifying the include file that’s
causing the problem, unless the problem is just too subtle for it.

1 “If all goes well” is reputed to have been a favorite expression of the sea captain Edward Smith.

https://www.gnu.org/software/texinfo/

Appendix D: Building and Modifying Roan 59

• Any occurrences of braces, ‘{}’, or an at-sign, ‘@’, in a documentation string will be
interpreted magically by Texinfo, and need to be quoted with an ‘@’.

• When writing examples in documentation strings, if the examples use Lisp strings, the
double quotes need to be escaped with back slashes, or Lisp will become confused.

• Even if you are not one yourself, be nice to Emacs users. In Lisp mode Emacs treats
an open parenthesis, ‘(’, at the beginning of a line specially, and will become badly
confused if you have such in a documentation string. When writing examples, indent
such Lisp code by one space to keep Emacs happy. Similarly be sure to format doc-
umentation strings so that parenthetical comments do not start at the beginning of a
line; Emacs’s own fill-paragraph command is careful about that on your behalf.

• Texinfo is a complex system. If you’re going to use it, you’re going to have to learn a
bit about it. Until you become facile with it its usually easiest to make changes slowly
and incrementally.

• Writing good documentation is often harder than writing the corresponding code.

D.2 Running unit tests

The Roan source tree contains a collection unit tests. If you are making changes to Roan
it is highly recommended that you make friends with them and use them early and often.
Unless run on an unusally slow machine or Lisp implementation it takes less than a minute
to run the full collection, and in the long run they will save you a lot of time.

The unit tests live in their own package, roan/test, and make use of a further library not
included in Roan itself, lisp-unit2 (https://github.com/AccelerationNet/lisp-unit2).
After running (ql:quickload :roan) once, run (ql:quickload :roan/test) once as well.
Once that has been done, assuming Roan has been installed where ASDF can find it, it should
be possible to run all the unit tests by simply evaluating (asdf:test-system :roan). If the
unit tests all succeed it will report the success of about 13,000 assertions with no failures.
Otherwise, you’ll have some debugging to do.

One caveat: a few of the tests, related to upgrading the methods library, require access
to the internet. If it is not available, there will be a failures reported.

If you make changes to Roan I suggest you run the unit tests frequently. If you care
about portability, run them at least occasionally on as many different Lisp implementations
as you have access to. And if you add functions to Roan, add unit tests for them, too.

Writing decent, reusable tests is often harder and more time consuming than writing
code; but it’s a lot easier and less time consuming than debugging things days, weeks,
months or years after they were first written. This is especially true for a relatively low-
level library such as Roan.

https://github.com/AccelerationNet/lisp-unit2

60

Index

!
! reader macro . 6

"
‘"’ . 59

#
#! reader macro . 14

(
‘(’ in place notation . 14

)
‘)’ following place notation . 14

*
cross-character . 19
default-stage . 6
print-bells-upper-case . 5

+
+maximum-stage+ . 6
+minimum-stage+ . 6

,
‘,’ in place notation . 14, 17

–
‘-’ in place notation . 14

.
‘.’ in place notation . 14

@
‘@’-sign . 59

[
‘[’ in place notation . 14

A
add-pattern . 29
add-patterns . 29
alter-stage . 14
Apollo . 56
ASDF . 1, 57
at-sign . 59

B
Baldwin, Roger . 47
bang . 6
bell . 5
bell-at-position . 9
bell-from-name . 5
bell-name . 5
bells-list . 9
bells-vector . 9
Bitbucket . 1
blue line . 45
blueline . 45
bluelines . 56
bob . 51
braces . 59
brackets . 14
building . 58

C
call . 52
call-application-error . 54
call-apply . 53
calls . 51, 56
canonicalize-method-place-notation 38
canonicalize-place-notation 18
CCCBR . 34, 41, 45
CCL . 58
Central Council . 34, 41, 45
change ringing . 1, 5
changep . 10
classification . 41, 45
classify-method . 45
CLISP . 56
Clozure Common Lisp . 58
comma . 14, 17
C . 56
Common Lisp . 1
comparable-method-name . 33
comparing rows . 7
cycles . 11

Index 61

D
dependencies . 56
do-hash-set . 23
documentation . 58
Domain Lisp . 56
dot . 14
doubles variations . 51
downloading . 1
drawing . 56

E
Edward Smith . 58
Emacs . 59
equal . 7
equality . 7
equalp . 7, 20
extract-documentation . 58

F
Fabian Stedman . 57
false course head groups . 47
falseness . 47
fch-group . 48
fch-groups-string . 49
features . 1
fill-paragraph . 59
FMR . 34, 45
format-pattern . 27
formatting place notation . 17
Framework . 34, 45

G
generate-rows . 13
Grandsire Doubles . 57
graphic . 45

H
hash-set . 20
hash-set-adjoin . 21
hash-set-clear . 21
hash-set-copy . 20
hash-set-count . 20
hash-set-delete . 22
hash-set-deletef . 22
hash-set-difference . 22
hash-set-elements . 21
hash-set-empty-p . 21
hash-set-intersection . 23
hash-set-member . 21
hash-set-nadjoin . 21
hash-set-nadjoinf . 21
hash-set-ndifference . 22
hash-set-nintersection . 23

hash-set-nunion . 22

hash-set-proper-subset-p . 21

hash-set-remove . 22

hash-set-subset-p . 21

hash-set-union . 22

Hodgson, Maurice . 47

HTML . 58

I
immutable . 6, 51

in-course-p . 10

incidence of falseness . 47

inconsistent-method-specification-error . . . 34

Info . 58

installation . 1

introduction . 1

inverse . 14

involutionp . 10

involutions . 14

iterate . 24

J
jump changes . 14, 17

L
Leary, John . 47

library . 1, 34, 56

license . 1, 55, 56

line . 45

Lisp implementations . 2

Lisp Machine . 56

Lisp reader . 6, 14

lisp-unit2 . 59

London Treble Jump Minor . 14

lookup . 34

lookup-method-by-title . 34

lookup-method-info . 36

lookup-methods . 34

lookup-methods-by-notation 34

Index 62

M
Macintosh Common Lisp . 56
make-hash-set . 20
make-match-counter . 28
Makefile . 58
manual . 58
map-hash-set . 23
match-counter . 28
match-counter-counts . 29
match-counter-handstroke-p 30
match-counter-labels . 29
match-counter-pattern . 29
method . 31
method-canonical-rotation-key 44
method-changes . 39
method-contains-jump-changes-p 39
method-course-length . 40
method-falseness . 50
method-from-title . 33
method-hunt-bells . 41
method-lead-count . 39
method-lead-head . 39
method-lead-head-code . 42
method-lead-length . 40
method-library-details . 37
method-library-error . 38
method-plain-course . 41
method-plain-lead . 40
method-rotations-p . 43
method-title . 32
method-true-plain-course-p 41
method-working-bells . 42
methods . 34, 41

N
named-row-pattern . 27
ngenerate-rows . 13
no-place-notation-error . 45
npermute-by-collection . 12
npermute-collection . 12

O
order . 10

P
packages . 3
palindromes . 14
parentheses . 14, 59
parse-pattern . 26
parse-place-notation . 16
parse-row . 8
pattern-parse-error . 28
PDF . 58
permutation-closure . 13
permute . 12
permute-by-collection . 12
permute-by-inverse . 14
permute-collection . 12
place notation . 14, 34
place-notation-string . 18
placesp . 10
Plain Bob Minor . 57
position-of-bell . 9
printing rows . 6

Q
query . 34
Quicklisp . 1, 57
quote . 6, 14
quotes . 59

R
read-place-notation . 16
read-row . 8
reader macro . 6, 14
record-matches . 30
remove-all-patterns . 29
remove-pattern . 29
reset-match-counter . 30
reversed-row . 10
Ringing Class Library . 1
RMS Titanic . 58
roan package . 3
roan-syntax . 7
Robert Roan . 57
rounds . 9
roundsp . 10
row . 7, 9
row-match-p . 26
row-p . 8
row-string . 8

Index 63

S
sets . 20
sharp bang . 14
Shuttleworth, Edmund . 47
single . 51
Smith, Edward . 58
stage . 6, 8
stage-from-name . 6
stage-name . 6
standard extent . 57
Stedman, Fabian . 57
summary falseness . 47
SVG . 45

T
tenors-fixed-p . 11
tests . 59
Texinfo . 58
Titanic . 58

U
unit tests . 59
UNIX . 56
update-method-library . 37
use-roan . 4

V
variations, doubles . 51

W
which-grandsire-lead-head 11
which-plain-bob-lead-head 11
write-place-notation . 17
write-row . 8
writing place notation . 17
writing rows . 6

X
‘x’ in place notation . 14

	Introduction
	Obtaining and installing Roan
	Reporting bugs
	A note on examples
	The roan package

	Fundamental Types
	Bells
	Stages
	Rows
	Properties of rows
	Permuting rows

	Place notation

	Hash-sets
	Properties of hash-sets
	Modifying hash-sets
	Iterating over hash-sets

	Patterns
	Counting matches

	Methods
	Methods library
	Functions of the place notation of methods
	Drawing blue lines

	Internal Falseness
	Calls
	License
	Libraries Used by Roan
	History
	What's with the name?

	Building and Modifying Roan
	Building the documentation
	Running unit tests

	Index

