
harp

Haplotype Analysis of Reads in Pools

Darren Kessner

March 6, 2013

Introduction

harp is a command-line program for estimating the frequencies of known haplo-
types from pooled sequence data. harp implements an Expectation-Maximization
(EM) algorithm to obtain a maximum-likelihood estimate of the haplotype fre-
quencies.

Known
haplotypes

True
haplotype
frequencies

Sequence
read
data

Estimated
haplotype
frequencies

Region

harp can be run in two modes:

1. Single reference. Pooled reads have been mapped to a single reference,
with the assumption that the haplotypes represent strains that are iden-
tical to the reference except for single-nucleotide variants. In this mode,
harp needs:

• single BAM file with mapped reads

• reference sequence in FASTA format

• SNP file in DGRP format (comma-separated table containing vari-
ants by genomic position and strain – see Examples)

2. Multiple reference. Pooled reads have been mapped to multiple references,
one for each strain/species of interest. In this mode, harp needs:

• list of BAM files (one for each mapping/species)

• corresponding list of reference sequences in FASTA format

1

Citation

Details and evaluation of the method can be found in the paper:

Kessner D, Turner TL, Novembre J. 2013. Maximum Likelihood Estimation
of Frequencies of Known Haplotypes from Pooled Sequence Data. Molecular
Biology and Evolution (accepted January 2013, Open Access)

http://mbe.oxfordjournals.org/cgi/content/abstract/mst016

Usage

harp is written in C++ and has been tested on OSX and Linux. The program
includes multiple functions, which can be run as follows:

harp <function_name> [arguments]

Running harp with no function name or arguments will print the usage in-
formation, including the list of available functions and parameters. Running
harp <function_name> with no arguments will give the list of required param-
eters for that function.

Parameters are (name, value) pairs, and may be specified on the command
line:

--name value

or in a configuration file:

name = value

Typical usage of harp proceeds in two stages:

1. Haplotype likelihood calculation. The harp function like (single refer-
ence) or like_multi (multiple reference) creates an intermediate binary
file (extension .hlk) containing the computed haplotype likelihoods.

2. Frequency estimation. The harp function freq uses the computed haplo-
type likelihoods (.hlk file) to perform the frequency estimation.

This allows the haplotype likelihoods to be calculated in larger regions, with
the frequency estimation performed in smaller (possibly overlapping) windows.

Examples

Included in the harp package are example files to demonstrate usage of harp.
The examples use a relative path to the harp binary (../../bin/harp) so
that they may be run directly from the example directory after unzipping the
package.

2

http://mbe.oxfordjournals.org/cgi/content/abstract/mst016

Example 1: Single Reference

The following files may be found in examples/example1_single_reference:

• example1.bam: BAM file containing simulated mapped pooled reads.
example1.bam.bai is an index file for faster access, created by samtools.

• example1.true.freqs: True haplotype frequencies under which the reads
were drawn in the simulation used to create this example. In this example,
there are 4 haplotypes at frequences .4, .3, .2, .1.

• example1.actual.freqs: Actual haplotype frequencies in the BAM file.
Note that these differ from the true frequecies, as they do in an experi-
mental setting.

• dmel_chr2L.fasta: Reference sequence in FASTA format (first 100kb of
D. melanogaster chromosome 2L). dmel_chr2L.fasta.fai is an index file
for faster access, created by samtools.

• snps.txt: SNP file in DGRP format. In the first row, harp expects
the first field to be the chromosome identifier, and the second field to be
“Ref” (reference), followed by strain (haplotype) identifiers. For subse-
quent rows, harp expects the first column to be position, followed by the
reference base, and then the other haplotype bases. harp currently ignores
the trailing “Coverage” field and comma, and handles files without these.
snps.txt.idx is an index for faster access, which can be created with the
index_snp_table tool included in the harp package.

• harp_like.config, harp_freq.config: Example harp configuration files
for the haplotype likelihood calculation and haplotype frequency estima-
tion, respectively.

• run_example1.sh: Shell script containing the harp commands for this
example.

First we perform the likelihood calculation with this command line:

../../bin/harp like --bam example1.bam --region 2L:30001-50000

--refseq dmel_chr2L.fasta --snps snps.txt --stem example1

We are using the like function, which has 4 required parameters:

• bam: filename of the BAM file

• region: genomic region under consideration

• refseq: filename for the reference

• snps: filename for the SNP file

3

We are also using an optional parameter --stem example1, which harp uses as
the filestem for constructing output filenames (e.g. example1.hlk. By default,
harp uses the BAM filename and region to create the filestem.

Alternatively, we could have specified the parameters in a configuration file
(harp_freq.config), and we specify this on the command line:

../../bin/harp like -c harp_like.config

In either case, harp creates the file example1.hlk, which contains the com-
puted haplotype likelihoods.

Next, we perform the haplotype frequency estimation:

../../bin/harp freq --hlk example1.hlk --region 2L:30001-50000

or:

../../bin/harp freq -c harp_freq.config

This creates the file example1.freqs with the estimated haplotype frequencies.
These commands are collected in the shell script run_example1.sh, which

you can run directly to avoid typing in the above commands.

Example 2: Multiple Reference

The following files may be found in examples/example2_multiple_reference:

• example1.reads.fastq: Contains the raw reads and base quality scores,
in FASTQ format.

• example2.true.freqs, example2.actual.freqs: The true haplotype
frequencies for the simulated data, and the actual realized frequencies
of the reads, as in Example 1.

• ref?.fasta: Reference sequences in FASTA format.

• ref?.bam: BAM mapping file for each reference sequence. (These were
created by mapping the reads in example1.reads.fastq to each reference
sequence, using bwa and samtools).

• refseqlist.txt, bamlist.txt: Text files containing the lists of refer-
ence sequences and BAM files, respectively.

• run_example2.sh: Shell script containing the commands for this example.

In this example, there are 4 known haplotypes in the pool, as well as
1 unknown haplotype. Because of the unknown, we first analyze our read
data to calculate parameter values for the haplotype likelihood filter, using the
qual_hist_fastq tool included in the harp package:

../../bin/qual_hist_fastq 75 example2.reads.fastq example2.harp_like_multi

4

This creates the file example2.harp_like_multi.config, which is a text
file containing three parameters needed for haplotype likelihood filtering. Now
we can calculate haplotype likelihoods:

../../bin/harp like_multi --refseqlist refseqlist.txt --bamlist bamlist.txt

--stem example2 -c example2.harp_like_multi.config

Note that we passed the configuration file directly to harp, but we could have
passed the parameters on the command line or appended them to an existing
configuration file.

Finally, we perform the haplotype frequency estimation:

../../bin/harp freq --hlk example2.hlk

which creates the file example2.freqs with the estimated haplotype frequencies.
These commands are collected in the shell script run_example2.sh, which

you can run directly to avoid typing in the above commands.

Function and Parameter Summary

Running harp with no arguments will print the usage text, which includes a
summary of functions and parameters available in harp. This text is reproduced
here for convenience:

harp: Haplotype Analysis of Reads in Pools

Usage: harp function_name [args]

Available functions:

bqi : calculate empirical base quality interpretation from monomorphic sites

freq : estimate haplotype frequencies

freq_stringmatch : estimate haplotype frequencies using simple string matching

like : calculate haplotype likelihoods (create .hlk file)

like_multi : calculate haplotype likelihoods from multilple refseqs/alignments

(create .hlk file)

likedump : print info from likelihood (.hlk) file

For required parameters, use ’harp function_name’ with no arguments.

Parameters may be specified on the command line:

--name value (e.g. --bam filename.bam)

or in a configuration file:

name = value (e.g. bam = filename.bam)

Parameters:

Command line only:

5

-c [--config] arg (=config.harp) filename of configuration file

Input:

-b [--bam] arg BAM filename

--bamlist arg text file list of BAM files

-r [--region] arg region (e.g. 2L:1001-2000)

--refseq arg refseq filename

--refseqlist arg text file list of refseq filenames

--snps arg SNP filename

Output:

--stem arg output filename stem [default: generated from BAM

filename and region]

--out arg directory for additional output files [default:

(stem).output]

--hlk arg haplotype likelihood filename (.hlk) [default:

(stem).hlk]

--freqs arg haplotype frequencies filename (.freqs) [default:

(stem).freqs]

-v [--verbose] verbose output

--compute_standard_errors compute standard errors

Likelihood calculation (like):

--bqi arg base quality interpretation filename

--min_mapping_quality arg (=15) minimum mapping quality

Likelihood multiple-reference calculation (like_multi):

--logl_min_zscore arg (=-inf) filter out reads below specified minimum

log-likelihood

--logl_mean arg (=0) required with logl_min_zscore

--logl_sd arg (=1) required with logl_min_zscore

Frequency estimation (freq):

--window_step arg window step size [default: length of

region, i.e. single window]

--window_width arg window width [default: window_step]

--em_iter arg (=30) EM iteration count

--em_converge arg (=0) EM convergence threshold

--em_random_start_count arg (=0) number of additional random starts

--em_random_start_alpha arg (=1) symmetric dirichlet parameter for random

initial estimates

--em_random_start_seed arg (=0) seed for random initial estimates

--em_min_freq_cutoff arg (=0.0001) EM minimum frequency cutoff

--haplotype_filter arg haplotype filter (0 == Ref) [e.g.

1-3,5-7,10]

6

String matching requency estimation (freq_stringmatch):

--max_mismatch arg (=3) maximum # of mismatches allowed

Building

Source code for harp is hosted on github:
https://github.com/dkessner/harp

harp uses the samtools API for accessing BAM files. Before building harp,
you will need to download and build samtools. This can be done with the
script get_samtools.sh in the source directory.

harp makes extensive use of the Boost C++ libraries, as well as the Boost
build system, i.e. you will need to install Boost before building harp . To build,
run bjam from the project directory, where it will find Jamroot for the build
instructions. Executables will be placed in the bin subdirectory.

7

https://github.com/dkessner/harp

