
TrueBeam .xim image format
For questions, please send us an email at: TrueBeamDeveloper@varian.com

XIM images are binary files. Generally, XIM images have 4 main sections in the following

order:

1. Header: 32 bytes, fixed size

File Format Identifier Char, 8 bytes

File Format Version Int4

Image Width in pixels Int4

Image Height in pixels Int4

Bits Per Pixel Int4

Bytes Per Pixel Int4

Compression indicator Int4

(0=Uncompressed, 1=HND

compression)

2. Pixel Data:

A. Uncompressed Data (Only if Compression Indicator =0):

Uncompressed Pixel Buffer Size Int4 (= Image Width * Image Height *

Bytes Per Pixel)

Uncompressed Pixel Buffer Char1 x Uncompressed Pixel Buffer Size.

These are the uncompressed pixel values

B. HND Compressed Data (Only if Compression Indicator =1):

Lookup Table Size Int4

Lookup Table Char1 x Lookup Table Size

Compressed Pixel Buffer Size Int4

Compressed Pixel Buffer Char1 x Compressed Pixel Buffer Size

Uncompressed Pixel Buffer Size Int4 (= Image Width * Image Height *

Bytes Per Pixel)

3. Histogram: optional

Number of Bins in Histogram Int4 (0 if no histogram) -- 1024 is typical

for XI

Histogram Int4 x Number of Bins in Histogram

4. Properties: optional

Number of Properties Int4 (=0 if no properties)

Properties:

Property Name length Int4 String length

Property Name Char1 X Property Name Length

Property Type Int4,

0 = Integer, 1 = Double, 2 = String, 4 =

Double Array, 5 = Integer Array

Property Value Per Property Type

Notes:

a) Multi-byte data types are stored as Little-endian, i.e. least-significant byte first. Images

are gray scale from 8 to 32 bits/pixel.

b) The properties are not necessarily ordered.

c) Image orientation is in beam’s eye view with pixel order top left to bottom right. The first

row defines a line parallel to the plane of gantry motion.

d) Pixel data are encoded using slope and intercept. To convert, use the relationship: Pixel

Value = (Stored Pixel Value * Slope) + Intercept

HND Compression/Decompression:

HND compression is a lossless compression algorithm. The compression algorithm exploits the

typically prevalent similarity of neighboring pixel values by storing differences only instead of

the actual pixel values.

HND compression applies only to 2 and 4 bytes/pixel images. Images with 1 byte/pixel are

always stored uncompressed.

The XIM header contains Image Width, Image Height and Bytes Per Pixel, which are required to

interpret the compressed pixel data.

The first row and the first pixel of the second row are stored uncompressed. The remainders of

the pixels are compressed by storing only the difference between neighboring pixels.

E.g. consider the following hypothetical 12 pixel image:

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

Pixels R11 through R14 and R21 are stored uncompressed, while pixels R22 through R34 are

compressed by storing only the difference: diff = R11 + R22 - R21 - R12

Exploiting the fact that most images exhibit similarity in neighboring pixel values, the above

difference can be stored using fewer bytes, e.g. 1, 2 or 4 bytes. Thus, the smoother the pixel

values in the image the higher the compression ratio.

For decompression, the algorithm needs to know the byte size of each stored difference. To

accomplish this, a lookup table is placed at the beginning of the image. The lookup table contains

a 2-bit flag for each pixel which defines the byte size for each compressed pixel difference. So a

flag value of 0 means the difference fits into one byte while 1 and 2 mean a two and four byte

difference respectively.

Note: Since this lookup table represents additional storage overhead, a compressed image

containing high frequency noise (and thus prevalent differences between neighboring pixel

values) may end up being larger than the uncompressed image. In that case the image is typically

stored uncompressed.

Thus, the size of the lookup table depends only on image size and can be computed using the

expression: Lookup table size = [<Image Width> * (<Image Height> – 1)] / 4 + 0.5

The -1 accounts for the fact that the first row is stored uncompressed and thus requires no entries

in the lookup table. The 4 denominator represents the fact that each lookup table entry needs two

bits, thus four lookup table entries can be stored per byte. Finally 0.5 is added to round up to the

next integer value.

Note: What about the first pixel of the second row that is also uncompressed?

Lookup table doesn’t contain any flag corresponding to this pixel.

Note: Dimensionality of the image can result in unused 2-bit flag fields in the last byte of the

lookup table. The number of unused flag fields can be determined by mod([<Image Width> *

(<Image Height-1> – 1)], 4) where mod denotes the mathematical modulus operator. Therefore,

last byte in the lookup table can contain 1-3 unused flags (i.e., 2 to 6 bits)

