
dolfin–adjoint
automatic adjoint models for FEniCS

P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Simon@simula.no

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations
from high-level mathematical specifications of finite element discretizations of partial differential equations.

Adjoint and tangent linear models form the basis of many numerical techniques, including sensitivity

analysis, optimization and stability analysis. The implementation of adjoint models for nonlinear or time-

dependent models are notoriously challenging: the manual approach is time-consuming and traditional

automatic differentiation tools lack robustness and performance.

dolfin-adjoint solves this problem by automatically analyzing the high-level mathematical structure

inherent in finite element methods. It raises the traditional abstraction of algorithmic differentiation

from the level of individual floating point operations to that of whole systems of differential equations.

This approach delivers a number of advantages over the previous state-of-the-art: robust hands-off

automation of adjoint model derivation, optimal computational efficiency, and native parallel support.

1 2 3 4 5 6 7 8 9 10

M Figure: dolfin-adjoint employs a binomial

checkpointing strategy to trade off comput-

ing and storage requirements.

Symbolic forward equations

Symbolic adjoint equations

Symbolic derivation (dolfin-adjoint)

Adjoint code

Forward code
Code generation (FEniCS)

Code generation (FEniCS)

/ Figure: dolfin-adjoint’s implementation is based on the finite-element framework

FEniCS. By adding a few lines of code to an existing FEniCS model, dolfin-adjoint

computes tangent linear and adjoint solutions, gradients and Hessian actions of arbitrary

user-specified functionals.

How it works
Application examples

Consider the time dependent heat equation

∂u

∂t
− ν∇2u = 0 in Ω× (0, T),

u = g for Ω× {0}.
Here Ω is the Gray’s Klein bottle, a closed 2D manifold embedded in 3D, T is the final time, u is the

unknown temperature, ν is the thermal diffusivity, and g is the initial temperature.

The goal is to compute the sensitivity of the norm of temperature at the final time

J(u) =

∫
Ω

u(t = T)2 dx

with respect to the initial temperature, that is dJ/dg.

Initial temperature Final temperature Sensitivity

from dolfin import *

from dolfin˙adjoint import *

Solve the forward system

F = u*v*dx - u˙old*v*dx +

dt*nu*inner(grad(v),grad(u))*dx

while t ¡= T:

t += dt

solve(F == 0, u)

Apply dolfin-adjoint

m = Control(g)

J = u**2*dx*dt[T]

dJdm = compute˙gradient(J, m)

H = hessian(J, m)

M
Code: Implementation excerpt (the

complete code has 37 lines)

Example: Sensitivity analysis

This topology optimization example minimizes the compliance∫
Ω

f T dx + α

∫
Ω

∇a · ∇a dx,

subject to the Poisson equation with mixed Dirichlet–Neumann conditions

−div(k(a)∇T) = f in Ω,

T = 0 on ∂ΩD,

k(a)∇T = 0 on ∂ΩN,

and additional control constraints∫
Ω

a dx ≤ V and 0 ≤ a(x) ≤ 1 ∀x ∈ Ω.

Here Ω is the unit square, T is the temperature, a is the control (a(x) = 1 means material,

a(x) = 0 means no material), f is a source term, k(a) is the Solid Isotropic Material with

Penalisation parameterization, α is a regularization term, and V is the volume bound on

the control. Physically, the problem is to find the material distribution a that minimizes

the integral of the temperature for a limited amount of conducting material.

from dolfin import *

from dolfin˙adjoint import *

...

J = f*T*dx + alpha*inner(grad(a),grad(a))*dx

m = Control(a)

rf = ReducedFunctional(J, m)

minimize(rf, method=”SLSQP”, bounds=...)

M
Code: Implementation ex-

cerpt (the full code uses the

IPOPT optimization pack-

age and has 56 lines)

/ Figure: Optimal mate-

rial distribution a for a unit

square domain and f = 10−2

Example: PDE-constrained optimization

This poster Website References

