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T he dolfin-adjoint project automatically ¢

n-level mathematical specifications of fi

erives and solves adjoint and tangent linear equations
nite element discretizations of partial differential equations.
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automatic differentiation tools lack robustness and performance.
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Adjoint and tangent linear models form the basis of many numerical techniques, including sensitivity S e e e e
analysis, optimization and stability analysis. The implementation of adjoint models for nonlinear or time- e D
dependent models are notoriously challenging: the manual approach i1s time-consuming and traditional -~
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dolfin-adjoint solves this problem by automatically analyzing the high-level mathematical structure
iInherent In finite element methods. [t raises the traditional abstraction of algorithmic differentiation )

from the level of individual floating point operations to that of whole systems of differential equations.
This approach delivers a number of advantages over the previous state-of-the-art: robust hands-off
automation of adjoint model derivation, optimal computational efficiency, and native parallel support.

Code generation (FENICS)

A Figure: dolfin-adjoint employs a binomial
checkpointing strategy to trade off comput-
Ing and storage requirements.

Symbolic forward equations

l Symbolic derivation (dolfin-adjoint)

Code generation (FENICS)

Symbolic adjoint equations

< Figure: dolfin-adjoint’'s implementation 1s based on the finite-element framework
FEnICS. By adding a few lines of code to an existing FEnICS model, dolfin-adjoint
computes tangent linear and adjoint solutions, gradients and Hessian actions of arbitrary
user-specified functionals.

Consider the time dependent heat equation
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2 NVPu=0 i Qx(0,T)

ot
u=g for €2 x {0}.

Here €2 Is the Gray's Klein bottle, a closed 2D manifold embedded in 3D, T s the final time, u Is the
unknown temperature, v I1s the thermal diffusivity, and g Is the initial temperature.
The goal 1s to compute the sensitivity of the norm of temperature at the final time

J(u) = /Qu(t = T)? dx

with respect to the initial temperature, that is dJ/dg.
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from dolfin import *
from dolfin_adjoint import *

# Solve the forward system
F = uwxvxdx - u_old*v*dx +
dt*nu*inner (grad(v) ,grad(u))*dx
while t <= T:
t += dt
solve(F == 0, u)

# Apply dolfin-adjoint

m = Control(g)

J = wkx2*dx*dt [T]

dJdm = compute_gradient(J, m)
H = hessian(J, m)

A
Code: Implementation excerpt (the
complete code has 37 lines)

This topology optimization example minimizes the compliance

/fT dx+a/Va-Va dx,
Q Q
subject to the Poisson equation with mixed Dirichlet—=Neumann conditions

from dolfin import *

from dolfin_adjoint import *
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J = £*T*dx + alpha*inner(grad(a),grad(a))*dx

m = Control(a)
rf = ReducedFunctional(J, m)

—div(k(a)VT) = f in Q, minimize (rf, method="SLSQP", bounds=...)
T =0 on 0S2p, A
k(a)VT =0 on OS2y, Code: Implementation ex-

and additional control constraints

/adXSVandOga(x)gl Vx € (2.
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Here Q2 is the unit square, T is the temperature, a is the control (a(x) = 1 means material,
a(x) = 0 means no material), f is a source term, k(a) is the Solid Isotropic Material with
Penalisation parameterization, o Is a regularization term, and V' s the volume bound on
the control. Physically, the problem i1s to find the material distribution a that minimizes
the integral of the temperature for a imited amount of conducting matenial.

cerpt (the full code uses the
IPOPT optimization pack-
age and has 56 lines)

< Figure: Optimal mate-
rial distribution a for a unit
square domain and f = 1072
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