
An Algorithm Selection Benchmark of the
Container Pre-Marshalling Problem

(Extended version)

Kevin Tierney1 and Yuri Malitsky2

1 Decision Support & Operations Research Lab, University of Paderborn, Germany
tierney@dsor.de

2 IBM T.J Watson Research Center, USA
ymalits@us.ibm.com

Abstract. We present an algorithm selection benchmark based off of
optimal search algorithms for solving the container pre-marshalling prob-
lem (CPMP), an NP-hard problem from the field of container terminal
optimization. Novel features are introduced and then systematically ex-
panded through the recently proposed approach of latent feature analy-
sis. The CPMP benchmark is interesting, as it involves a homogeneous
set of parameterized algorithms that nonetheless result in a diverse range
of performances. We present computational results using a state-of-the-
art portfolio technique, thus providing a baseline for the benchmark.

1 Introduction

The container pre-marshalling problem (CPMP) is a well-known, NP-hard prob-
lem in the container terminals literature [7, 2, 6] that was first introduced in [5].
In the CPMP, stacks of containers (called a bay) at a container terminal are
sorted by a crane such that containers that must leave the stacks first are placed
on top of containers that must leave the stacks later. This prevents mis-overlaid
containers from blocking the timely exit of other containers. A crane moving
the containers can only access the top container on each stack, each stack has
a maximum height, and the maximum number of stacks is fixed. The goal of
the CPMP is to find the minimal number of container movements necessary to
ensure that all of the stacks are sorted by the exit time of each container from
the stacks. Solving the CPMP assists container terminals in reducing delays and
increasing the efficiency of their operations.

A recent approach for solving the CPMP to optimality [8] presents two state-
of-the-art approaches, based on A* and an IDA*, that we use to form a bench-
mark for algorithm selection. We introduce 22 novel features to describe CPMP
instances and show how the approach of latent feature analysis (LFA) [?] can
assist domain experts in developing useful features for algorithm selection ap-
proaches. Finally, we augment the existing CPMP instances with instances from
a new instance generator.

2 Kevin Tierney and Yuri Malitsky

1 2 3

4

3

2

1

(a)

Tier No.

Stack No.

1 3 6

4 42

5

1 2 3

4

3

2

1

(b)

1 3 6

2 5

1 2 3

4

3

2

1

(c)

1 3 6

4

2 5

1 2 3

4

3

2

1

(d)

1 3 6

4

2 5

Fig. 1: An example solution to the CPMP with mis-overlays highlighted.
From [8].

2 The container pre-marshalling problem

Given an initial layout of a bay, the goal of the CPMP is to find the minimal
number of container movements (or rehandles) necessary to eliminate all mis-
overlays in the bay. Formally, a bay contains S stacks which are at most T tiers
high. Each container in the bay is assigned a priority, pst ∈ N0 (s ∈ S, t ∈ T). We
set pst = 0 if there is no container at the position s, t. Containers with a smaller
priority value are retrieved first, meaning they must be above containers with a
larger priority value in a configuration with no mis-overlays. Thus, a bay has no
mis-overlays iff pst ≤ ps,t+1 for all s ∈ S, 1 ≤ t < |T |. As previously mentioned
we focus on a single bay, thus no movements between bays are allowed and all
containers are assumed to be of the same size.

Consider the simple example of Figure 1, which shows a bay composed of
three container stacks where containers can be stacked at most four tiers high.
Each container is represented by a box with its corresponding priority.3 This is
not an ideal layout as the containers with priority 2, 4 and 5 will need to be
relocated in order to retrieve the containers with higher priority (1 and 3). That
is, containers with priority 2, 4 and 5 are mis-overlaid. Consider a container
movement (f, t) defining the relocation of the container on top of the stack f to
the top position of the stack t. The containers in the initial layout of Figure 1 can
reach the final layout (d) with three relocation moves: (2, 3) reaching layout (b),
(2, 3) reaching layout (c) and (1, 2) reaching layout (d) where no mis-overlays
occur.

Pre-marshalling is important both in terms of operational and tactical goals
at a container terminal. We refer to [8] for more information and a discussion of
related work.

3 We note that multiple containers may have the same priority, but in order to make
containers easily identifiable, in this example we have assigned a different priority
to each container.

An Algorithm Selection Benchmark for the CPMP 3

3 Latent feature analysis (LFA)

Given a set of solvers for a problem and a set of instance, algorithm selection
is the study of finding the best performing solver for each instance. There are a
variety of approaches that can be used to make this decision, including machine
learning techniques as well as scheduling algorithms. For an overview of this area,
we refer the reader to a recent survey [?]. Regardless of the selection technique
employed, the quality of features in differentiating instances is critical to the
success or failure of any algorithm selection strategy.

Features are normally created based on the knowledge of domain experts.
As an alternative to this unsystematic approach to feature generation, a recent
paper [?] theorized how latent features gathered from matrix decomposition
could help guide researchers to the kinds of structural features they should be
looking for. Following the guidelines of the original work, this paper puts those
ideas into practice.

The idea proposed by [?] motivated the use of Singular Value Decomposi-
tion (SVD) to find the latent features that best describe the changes in the actual
performance of solvers on instances. SVD is a method for identifying and order-
ing the dimensions along which data points exhibit the most variation, which is
mathematically represented by the following equation: M = UΣV T , where M
is the m × n matrix representing the original data. In our case, we consider an
M where there are m instances each described by the performance of n solvers.
This means that the m × n orthonormal columns of U can be interpreted as a
latent feature that describes that instance. The columns of the V T matrix refer
to each solver, with each row presenting how active, or important a particular
feature is for that solver.

Fundamentally, this decomposition means that if for a given instance it were
possible to predict the latent features, we could multiply by the existing Σ
and V T matrices to get back the performance of each solver. While this is of
course impossible in practice, we can use an existing set of structural features to
predict these latent features. By then studying these predictions, we can identify
exactly which latent features are currently difficult to predict accurately and even
identify which latent feature we should focus on getting right to maximize the
quality of the resulting prediction.

It is assumed that if we are unable to accurately predict a latent feature using
our existing features, then our feature set is missing something critical about
the underlying structure of an instance. By computing the correct value for this
latent feature and sorting all training instances based on it, we assume that there
must be something different for the instances where the latent feature is large
and those instances where the value is small. It is then up to the researcher to
try to analyze this difference and propose a new expanded set of features for the
algorithm selection approach to take advantage of.

4 Kevin Tierney and Yuri Malitsky

4 Algorithm selection benchmark

We now describe the optimal algorithms, datasets from the literature and fea-
tures from two iterations of latent feature analysis that used in our benchmark.
We have made this benchmark available in the Algorithm Selection Library
(www.aslib.net) under the name “PREMARSHALLING-ASTAR-2013”.

4.1 Algorithms

We include four algorithms, which are parameterizations of the A* and IDA*
approaches in [8]. All four algorithms solve the CPMP to optimality, returning
either the number of moves required to sort the bay or proving that the bay is
not sortable. We parameterize a symmetry breaking heuristic present in both
the A* and IDA* algorithms using either a greater than or less than constraint
in a symmetry breaking heuristic. Due to space constraints, we refer interested
readers to [8] for algorithm and heuristic details.

An interesting aspect of the pre-marshalling benchmark in relation to other
benchmarks, such as those based on SAT, CSP, QBF, etc. is that the portfolio of
algorithms is not particularly diverse, but performance variations are nonetheless
very large. Most algorithm selection benchmarks consist of either a set of diverse
algorithms, or a set of diverse algorithm parameterizations. In the case of the
CPMP benchmark, the heuristics used within the IDA* and A* approaches
are essentially the same, except for small variations to the way the heuristic
functions as mentioned above. This is especially interesting because it opens
possibilities for performing algorithm selection in lieu of algorithm configuration
with a parameter tuner (e.g., GGA [?]).

4.2 Datasets

We divide existing pre-marshalling instances into a training and test set based on
well-known, existing data from the literature and generated instances similar to
literature instances. We do not include instances in which all four parameterized
algorithms timeout/memout, or in which all solvers finish within a second.

In the training set, we include 267 instances from [1] and 260 from [3]. In
our test set, we use the instance generator from [4] to make 257 instances4. We
further created an instance generator to mimic the instances from [1] and [3],
allowing for an additional 163 and 127 instances, respectively. We note that our
instances mimicking those from [1] are not exactly the same, as the authors
do not completely describe their instance generation process. In total, we have
527 training instances and 547 test instances. We note, however, that researchers
testing algorithm selection approaches can combine these datasets and use cross-
validation. We avoid this in order to show the value of the latent feature analysis
process to generate features.

An Algorithm Selection Benchmark for the CPMP 5

1. Number of stacks
2. Number of tiers
3. Tiers/stacks ratio
4. Container density
5. Empty stack percentage

6,7. Percent of all {slots, stacks} that are mis-overlayed
8. Bortfeldt & Forster lower bound

9–12. Min/max/mean/stdev container priority counts
13–16. Min/max/mean/stdev priority of top non-mis-overlayed container

17. Left container density
18. Tier-weighted groups
19. Largest group L1 distance from top left (average)
20. Percentage contiguous empty space including one empty stack

21. Mis-overlaid stack (≥ 2 containers) (percentage)
22. Low-group containers near stack tops (percentage)

Fig. 2: Features for the CPMP.

4.3 Features

The features used in our dataset are given in Figure 2. We split our features
into three categories. The first set of features, 1 through 16, were designed before
performing latent feature analysis. Features 17 through 20 were created based
on our first iteration of latent feature analysis, and features 21 and 22 using our
second iteration. All of the features we propose are easy to compute and take no
longer than 0.001 CPU seconds (in total) even on large instances. Our feature
generation code (and instance generator) is available at https://bitbucket.

org/eusorpb/cpmp-as. We now describe the features in more detail.

Original features The first 5 features address the problem size and density of
containers. Problems with a high container density are likely to pose different
challenges than those where there is lots of empty space. Features 6 and 7 look
at the lower bound on the number of moves necessary to fix the bay in two
different ways. Feature 6 simply counts the number of mis-overlayed containers,
which is an obvious lower bound to the problem. Feature 7 provides the lower
bound from [1], which analyzes indirect container movements in addition to the
mis-overlays present in feature 7. Features 8 through 11 offer information on how
many containers belong to each priority group. Some instances have a one-to-one
mapping of groups to containers, whereas other instances have large numbers of
containers in particular priority groups. Finally, features 12 through 15 attempt
to uncover the structure of the priorities of the top non-mis-overlaid container
on each stack. It is possible that low values of this feature could lead to more

4 We do not use the instances from [4] because the original instances were lost.

6 Kevin Tierney and Yuri Malitsky

difficult problems, or at least problems where more moves are required, as low
valued containers will have to trade places with higher valued ones.

LFA iteration 1 features Our first feature added in LFA iteration 1 is the density
of containers on the “left” side of the instance. Given S stacks, we define this as
stacks 1 through #stacks/3. We note that this value was determined through the
analysis, but has no formal basis. This feature is somewhat tuned to the algo-
rithms themselves and may not generalize to other pre-marshalling approaches,
as the symmetry breaking heuristics can focus on certain sides of the problem.
Feature 18 attempts to measure whether containers with high group values are
on high or low tiers. It does this by multiplying the tier of a container by its
group, summing these values together and dividing by the maximum this value
could take. Feature 19 measures the L1 (manhattan) distance from the top left
of a problem to each container in the largest group (i.e., the highest exit time),
averaging these distances if there are multiple containers in the group. The final
feature from iteration 1 computes the percentage of empty space in the instance
in which an area of contiguous empty space includes at least one empty stack.
This gives a rough indication of the distribution of containers in stacks across
the problem.

LFA iteration 2 features In the second iteration, we determined two additional
features. Feature 21, counts how many stacks with more than two containers are
mis-overlaid. Finally, feature 22 counts “low” valued containers on the top of
stacks, where we define low as being any group less than or equal to the largest
group-id (exit time) divided by four. As in feature 17, this is an arbitrary value
we determined through the LFA process and has no formal backing.

The features generated through LFA are significantly different than those
generated before LFA. A couple concentrate specifically on the left side of the
problem, which is clearly in relation to the greater than or less than constraints
that play a role in symmetry breaking. Additionally, our LFA features are not
the kind of features one would try without some evidence that they might be
useful – and a guess-and-check approach would result in many ridiculous features
that have little predictive value. We make no claim that this is an exhaustive
list of features, indeed there are a number of other possibilities, such as probing
features using various heuristics. At the very least, these features offer a good
starting point for algorithm selection research into the CPMP.

5 Computational results

We evaluate our features using the cost-sensitive hierarchical clustering (CSHC)
approach from [?]. Table 1 provides the performances5 of a CSHC based portfolio
when trained on the three datasets versus the best single solver (BSS) and the

5 All runtime data was generated on an AMD Opteron 2425 HE processor running at
2100 MHz with a one hour timeout.

An Algorithm Selection Benchmark for the CPMP 7

Solver Avg. PAR-10 Solved

BSS 78.6 5,923 458
Original Features 51.6 3,469 495
LFA Iteration 1 Features 46.6 2,741 506
LFA Iteration 2 Features 45.4 2,543 509
VBS 12.8 12.8 547

Table 1: The best single solver (BSS) and the virtual best portfolio (VBS) are
provided for comparison.

virtual best solver (VBS), which is a portfolio that always picks the correct solver.
CSHC using just the initial arbitrary features already performs significantly
better than the BSS, indicating even the original features have some descriptive
value. When a CSHC portfolio is trained on the first iteration of features, the
performance improves not only in the number of instances solved, but also on the
average time taken to solve each instance. This shows that by utilizing the latent
feature analysis, a researcher is able to develop a richer set of features to describe
the instances. Furthermore, the process can be repeated, as is evidenced by the
performance of CSHC on the second iteration of features. Note that the overall
performance is again improved not only in the number of instances solved, but
the time taken to solve them on average.

6 Conclusion

We presented an algorithm selection benchmark for the container pre-marshalling
problem, a well-known problem from the container terminals literature. Our
benchmark includes novel features and instances. We further showed that latent
feature analysis can help in augmenting problem features. We hope that this
benchmark will help further algorithm selection research on real-world problems.

References

1. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. European Journal of Operational Research 217(3), 531–540 (2012)

2. Carlo, H., Vis, I., Roodbergen, K.: Storage yard operations in container terminals:
Literature overview, trends, and research directions. European Journal of Opera-
tional Research 235(2), 412 – 430 (2014)

3. Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling
problem. In: Giacobini, M. et al. (ed.) Applications of Evolutionary Computing.
Lecture Notes in Computer Science, vol. 5484, pp. 788–797. Springer (2009)

4. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling prob-
lem: Heuristic solution method and instances generator. Expert Systems with Ap-
plications 39(9), 8337–8349 (2012)

5. Lee, Y., Hsu, N.: An optimization model for the container pre-marshalling problem.
Computers & Operations Research 34(11), 3295–3313 (2007)

8 Kevin Tierney and Yuri Malitsky

6. Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage
areas: Survey and classification. European Journal of Operational Research 239(2),
297 – 312 (2014)

7. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature up-
date. OR Spectrum 30(1), 1–52 (2008)

8. Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimality
with A* and IDA*. Tech. Rep. WP#1401, DS&OR Lab, University of Paderborn
(2014)

