A_\infty + \pi A_0
\sim \mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}
\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}
\sim\pmb{A}_{\pmb{\infty}} \pmb{+}\pmb{\pi} \pmb{A}_{\pmb{0}}
\xleftarrow{n+\mu-1}\quad \xrightarrow[T]{n\pm i-1}
\begin{pmatrix}
\alpha& \beta^{*}\\
\gamma^{*}& \delta
\end{pmatrix}
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
P_{r-j}=\begin{cases}
0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.
\end{cases}
\sqrt{\frac{n}{n-1} S}
\sqrt[3]{2}
\boxed{\eta \leq C(\delta(\eta) +\Lambda_M(0,\delta))}
\frac{1}{k}\log_2 c(f)\;\tfrac{1}{k}\log_2 c(f)\;
\Re{z} =\frac{n\pi \dfrac{\theta +\psi}{2}}{
\left(\dfrac{\theta +\psi}{2}\right)^2 + \left( \dfrac{1}{2}
\log \left\lvert\dfrac{B}{A}\right\rvert\right)^2}.
2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+\dotsb
}}}
\biggl[\sum_i a_i\Bigl\lvert\sum_j x_{ij}\Bigr\rvert^p\biggr]^{1/p}
\left((a_1 b_1) - (a_2 b_2)\right)
\left((a_2 b_1) + (a_1 b_2)\right)
\quad\text{versus}\quad
\bigl((a_1 b_1) - (a_2 b_2)\bigr)
\bigl((a_2 b_1) + (a_1 b_2)\bigr)
f_{[x_{i-1},x_i]} \text{ is monotonic,}
\quad i = 1,\dots,c+1
\gcd(n,m\bmod n);\quad x\equiv y\pmod b
;\quad x\equiv y\mod c;\quad x\equiv y\pod d
\int_{\abs{x-x_z(t)}<X_0} ...
\int\limits_{\abs{x-x_z(t)}<X_0}
\sum_{\substack{
0\le i\le m\\
0<j<n}}
P(i,j)
\sideset{}{�}
\sum_{n<k,\;\text{$n$ odd}} nE_n
\sideset{_*^*}{_*^*}\prod
\frac{\sum_{n > 0} z^n}
{\prod_{1\leq k\leq n} (1-q^k)}
\frac{{\displaystyle\sum_{n > 0} z^n}}
{{\displaystyle\prod_{1\leq k\leq n} (1-q^k)}}
\frac{{\displaystyle\sum\nolimits_{n> 0} z^n}}
{{\displaystyle\prod\nolimits_{1\leq k\leq n} (1-q^k)}}