x = a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \frac{1}{\displaystyle a_3 + a_4}}}
\frac{x+y}{y-z}
\frac{\frac{1}{x}+\frac{1}{y}}{y-z}
\left(\frac{x^2}{y^3}\right)
\left[ \begin{array}{ c c } 1 & 2 \\ 3 & 4 \end{array} \right]
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}}
x = a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \frac{1}{\displaystyle a_3 + a_4}}}
\begin{tabular}{ r l } \(10xy^2+15x^2y-5xy\) & \(= 5\left(2xy^2+3x^2y-xy\right)\) \\ & \(= 5x\left(2y^2+3xy-y\right)\) \\ & \(= 5xy\left(2y+3x-1\right)\) \end{tabular}
\begin{tabular}{ r c l } \(10xy^2+15x^2y-5xy\) & \(=\) & \(5\left(2xy^2+3x^2y-xy\right)\) \\ & \(=\) & \(5x\left(2y^2+3xy-y\right)\) \\ & \(=\) & \(5xy\left(2y+3x-1\right)\) \end{tabular}