x = a_0 + \frac{1}{\displaystyle a_1
+ \frac{1}{\displaystyle a_2
+ \frac{1}{\displaystyle a_3 + a_4}}}
\frac{x+y}{y-z}
\frac{\frac{1}{x}+\frac{1}{y}}{y-z}
\left(\frac{x^2}{y^3}\right)
\left[
\begin{array}{ c c }
1 & 2 \\
3 & 4
\end{array} \right]
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}}
x = a_0 + \frac{1}{\displaystyle a_1
+ \frac{1}{\displaystyle a_2
+ \frac{1}{\displaystyle a_3 + a_4}}}
\begin{tabular}{ r l }
\(10xy^2+15x^2y-5xy\) & \(= 5\left(2xy^2+3x^2y-xy\right)\) \\
& \(= 5x\left(2y^2+3xy-y\right)\) \\
& \(= 5xy\left(2y+3x-1\right)\)
\end{tabular}
\begin{tabular}{ r c l }
\(10xy^2+15x^2y-5xy\) & \(=\) & \(5\left(2xy^2+3x^2y-xy\right)\) \\
& \(=\) & \(5x\left(2y^2+3xy-y\right)\) \\
& \(=\) & \(5xy\left(2y+3x-1\right)\)
\end{tabular}