\forall x \in X, \quad \exists y \leq \epsilon
\alpha, \beta, \gamma, \Gamma,
\pi, \Pi, \phi, \varphi, \Phi
\cos (2\theta) = \cos^2 \theta - \sin^2 \theta
\lim_{x \to \infty} \exp(-x) = 0
a \bmod b
x \equiv a \pmod b
k_{n+1} = n^2 + k_n^2 - k_{n-1}
f(n) = n^5 + 4n^2 + 2 |_{n=17}
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\frac{n!}{k!(n-k)!} = {n \choose k}
\frac{\frac{1}{x}+\frac{1}{y}}{y-z}
{n! \over k!(n-k)!} = {n \choose k}
^3/_7
x = a_0 + \cfrac{1}{a_1
+ \cfrac{1}{a_2
+ \cfrac{1}{a_3 + a_4}}}
\sqrt{\frac{a}{b}}
\sqrt[n]{1+x+x^2+x^3+\ldots}
\sum_{i=1}^{10} t_i
\int_0^\infty e^{-x}\,\mathrm{d}x
\sum_{\substack{
0<i<m \\
0<j<n
}}
P(i,j)
\int\limits_a^b
() \, [] \, \{\} \, || \, \|\| \,
\langle\rangle \, \lfloor\rfloor \, \lceil\rceil
\left(\frac{x^2}{y^3}\right)
( \big( \Big( \bigg( \Bigg(
\begin{matrix}
a & b & c \\
d & e & f \\
g & h & i
\end{matrix}
\begin{matrix}
-1 & 3 \\
2 & -4
\end{matrix}
=
\begin{matrix*}[r]
-1 & 3 \\
2 & -4
\end{matrix*}
A_{m,n} =
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}
M = \begin{bmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\
\frac{5}{6} & 0 & \frac{1}{6} \\
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}
50 \text{ apples} \times 100 \text{ apples}
= \text{lots of apples}^2
50 \textrm{ apples} \times 100
\textbf{ apples} = \textit{lots of apples}^2
\boldsymbol{\beta} = (\beta_1,\beta_2,\ldots,\beta_n)
f(n) = \left\{
\begin{array}{l l}
n/2 & \quad \text{if $n$ is even}\\
-(n+1)/2 & \quad \text{if $n$ is odd}\\
\end{array} \right.
\int y \mathrm{d}x
\int y\, \mathrm{d}x
\int y\: \mathrm{d}x
\int y\; \mathrm{d}x
\left(
\begin{array}[c]
n \\
r
\end{array}
\right) = \frac{n!}{r!(n-r)!}
\left(\!
\begin{array}[c]
n \\
r
\end{array}
\!\right) = \frac{n!}{r!(n-r)!}