Suppose X is a continuous uniform random variable defined on [−4,−1].
a)
What is the PDF of X?
f_X(x)= \begin{cases} \input, & -4 \le x \le -1, \\ \input, & \text{otherwise}. \end{cases}
b)
Compute the CDF of X.
F_X(x)= \begin{cases} \input & x < -4, \\ \input & -4 \le x \le -1, \\ \input & x > -1. \end{cases}
c)
Calculate:
P(X\ge-3) = \input