A_\infty + \pi A_0 \sim \mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+} \boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}} \sim\pmb{A}_{\pmb{\infty}} \pmb{+}\pmb{\pi} \pmb{A}_{\pmb{0}}
\xleftarrow{n+\mu-1}\quad \xrightarrow[T]{n\pm i-1}
\begin{pmatrix} \alpha& \beta^{*}\\ \gamma^{*}& \delta \end{pmatrix}
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)
P_{r-j}=\begin{cases} 0& \text{if $r-j$ is odd},\\ r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}. \end{cases}
\sqrt{\frac{n}{n-1} S}
\sqrt[3]{2}
\boxed{\eta \leq C(\delta(\eta) +\Lambda_M(0,\delta))}
\frac{1}{k}\log_2 c(f)\;\tfrac{1}{k}\log_2 c(f)\;
\Re{z} =\frac{n\pi \dfrac{\theta +\psi}{2}}{ \left(\dfrac{\theta +\psi}{2}\right)^2 + \left( \dfrac{1}{2} \log \left\lvert\dfrac{B}{A}\right\rvert\right)^2}.
2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}
\cfrac{1}{\sqrt{2}+ \cfrac{1}{\sqrt{2}+ \cfrac{1}{\sqrt{2}+\dotsb }}}
\biggl[\sum_i a_i\Bigl\lvert\sum_j x_{ij}\Bigr\rvert^p\biggr]^{1/p}
\left((a_1 b_1) - (a_2 b_2)\right) \left((a_2 b_1) + (a_1 b_2)\right) \quad\text{versus}\quad \bigl((a_1 b_1) - (a_2 b_2)\bigr) \bigl((a_2 b_1) + (a_1 b_2)\bigr)
f_{[x_{i-1},x_i]} \text{ is monotonic,} \quad i = 1,\dots,c+1
\gcd(n,m\bmod n);\quad x\equiv y\pmod b ;\quad x\equiv y\mod c;\quad x\equiv y\pod d
\int_{\abs{x-x_z(t)}<X_0} ...
\int\limits_{\abs{x-x_z(t)}<X_0}
\sum_{\substack{ 0\le i\le m\\ 0<j<n}} P(i,j)
\sideset{}{�} \sum_{n<k,\;\text{$n$ odd}} nE_n
\sideset{_*^*}{_*^*}\prod
\frac{\sum_{n > 0} z^n} {\prod_{1\leq k\leq n} (1-q^k)}
\frac{{\displaystyle\sum_{n > 0} z^n}} {{\displaystyle\prod_{1\leq k\leq n} (1-q^k)}}
\frac{{\displaystyle\sum\nolimits_{n> 0} z^n}} {{\displaystyle\prod\nolimits_{1\leq k\leq n} (1-q^k)}}