Suppose X is a continuous uniform random variable defined on [−4,−1].
a)
What is the PDF of X?
f_X(x)=
\begin{cases}
\input, & -4 \le x \le -1, \\
\input, & \text{otherwise}.
\end{cases}
b)
Compute the CDF of X.
F_X(x)=
\begin{cases}
\input & x < -4, \\
\input & -4 \le x \le -1, \\
\input & x > -1.
\end{cases}
c)
Calculate:
P(X\ge-3) = \input