
Bouncers: A Swing Application Utilizing JR Concurrency

Crystal Tse and Edmund Yan

University of California, Davis, CA

cytse@ucdavis.edu, eyan@ucdavis.edu

March 15, 2012

Abstract

The final assignment for ECS 140B: Programming Languages, Winter 2012 was to apply the

parallel programming constructs learned throughout the quarter to a creative JR application

with visuals from Java’s Swing/AWT. We created an interactive video game called Bouncers,

where multiple people (or one person) click on soccer balls to prevent them from falling into a

pit of fire.

1 Introduction

The inspiration for Bouncers came from a similar video game named Zurroball [4] on the popular

website Neopets. The basic game concepts of preventing a ball from falling onto the ground were

taken from here. We expanded on this by adding multiple balls, levels, and a scoring system, and

also introduced a multiplayer aspect, so that players from different computers can work together

towards the goal. By using JR, we were able to easily parallelize the basic game functionality such

as moving balls and testing for collisions. Additionally, the multiplayer portion was very simple,

as JR uses transparent communication between its virtual machines–meaning at the programmer

level, send and receive statements from remote operations have the same syntax as if they were

for an operation that existed on the same virtual machine.

1

BoardHost

myToys

ball1 ball2 ... ballN

Creates

ball1.doCollision(ball2)

ball1.doCollision(ball3)

...

ball1.doCollision(ballN)

ball1.moveToyOneUnit()

ball2.moveToyOneUnit()

...

ball2.doCollision(ball3)

...

ball(N-1).doCollision(ballN)

ballN.moveToyOneUnit()

Each process is run simultaneously.
Non-deterministic

O(N) calls

(N-1) + (N-2) + … + 2 + 1
=
O(N(N+1) / 2) calls

Figure 1: How BoardHost moves Ball objects

BoardHostBoardHost

myToys
BoardClient1 BoardClient2 BoardClientM

allClientBoard[M]

…

hostBoard hostBoardhostBoard hostBoard

Figure 2: How the multi-VMs are connected

BoardHost

myToys

BoardClient1 BoardClient2 BoardClientM

allClientBoards[M]

…

hostBoard hostBoardhostBoard hostBoard

Creates

1

allClientBoards[0]).receiveToys(myToys, clientDone)

allClientBoards[1]).receiveToys(myToys, clientDone)

...

allClientBoards[M]).receiveToys(myToys, clientDone)

op receiveToys op receiveToys op receiveToys

op clientDone

clientDone() clientDone() clientDone() clientDone()

2

op receiveToys

Figure 3: How the multi-VMs communicate

2

2 Project Design

The design of Bouncers was based off of the game BnB [1]. We used BnB as a template for our

first version of Bouncers, and slowly expanded it from there. Much of the class structure is kept

the same, such as having a Board class which manage the creation and movement of Ball objects.

There is a SwingAppplication class that deal with creating and updating all of the Swing GUIs

such as labels, buttons and text.

When supporting multiplayer, the class structure of Bouncers changes dramatically from the typical

structure shown in BnB. In a world with multiple virtual machines, there is a single ”host” virtual

machine and many ”client” virtual machines. The host in this case is a BoardHost object and

all of the clients are BoardClient objects. Both of these classes are subclasses of the parent class

Board. This object oriented approach was very helpful, as it provided a way to combine shared

functionality between a host’s board and a client’s board.

3 Class Structure Overview

3.1 Main

The Main class is where the program immediately begins after execution. If there are no command

line arguments, a single remote BoardHost object will be created on localhost and an asynchronous

send command to the object’s goahead operation will occur. If command line arguments are given,

the first string will be used as the machine where the remote BoardHost object will exist and any

additional strings will have a remote BoardClient object created on them. Each command line

argument will be a machine name. On that machine, there will be a new JR VM created with a

Board object, Window Object, and SwingApplication object.

3.2 Window

The Window class is used by both the host VM and client VM(s) to setup the GUIs in JPanel

and create the Board and SwingApplication objects. The Window constructor will also pass Board

capabilities into the SwingApplication object so that it can communicate with the Board.

3

3.3 SwingApplication

The SwingApplication class is the main controller of the GUI aspects the player sees and interacts

with on the Window. Once createComponents is called (from Window’s constructor), a new Timer

object is setup to trigger the ActionListener, taskPerformer, every tenth of a second. The Action-

Listener uses the Board capabilities passed into the function as parameters to retrieve the current

game state (”Game Over” or ”Loading”), current game points, and the current level. Additionally,

every 20 seconds (or maxCounter number of triggers), the ActionListener will tell the Board to

drop two additional balls onto the field and increase the current level.

3.4 Board

The Board class is a base class that provides the fields and methods that all boards have in common.

Since all Boards look the same and have the same things, the constructor loads up the graphics and

creates a list of toys (myToys). Another thing Boards have in common is the paintComponent()

method, which paints the background and all the toys. Board also defines the operations that are

essential for game play: newLevel(), plusPoints(), getPoints(), and startBall().

The two classes that extend from Board are BoardHost and BoardClient. In the case of a single-

player game, only BoardHost is used; in the case of multi-player game, both are used. On the

surface, BoardHost does all computation for toy movement and sends the updated list of myToys

to BoardClient, while BoardClient receives myToys and simply displays them in the aforementioned

paintComponent() method. This provides the desired effect of replicating the screen on all virtual

machines. More implementation details follow.

3.4.1 BoardHost

BoardHost extends the Board class. The board code contains a startup process to handle board

start up (receiving remote references for allclientBoards), waiting for allClientBoards to be initial-

ized, and starting the boardManager. boardManager is an overridden operation that controls all

ball movement and collision, then repaints all balls to the screen. An important thing to note is

that after calculating the next positions of all balls, boardManager sends the list of myToys to

allClientBoards, then waits to receive clientDone until it can proceed.

4

Another overridden operation is mymouseclick, which is triggered whenever this board receives

clicks, or when anyone in allclientBoards sends a click. Each click punches the ball up, so this part

determines ball movement and increases the game points. If a ball has been clicked, mymouseclick

sends a message to allClientBoards plusPoints operation, telling them to update their points. An-

other important thing to note is that allClientBoards only has to update points, and nothing else,

because BoardHost will take care of the rest.

Other overridden operations are gameOver, which stops the game when one balls hits the bottom

of the screen, and restartBoard, which starts up a new game and resets all game values. Similarly

to the previous operations, these also send messages to allClientBoards. Also as before, allClient-

Boards need only minimal informationfor gameOver, allClientBoards flips their gameStatus bit; for

restartBoard, allClientBoards sets resets initial game values and sends a message to BoardHost.

Another important thing to note is that whenever BoardHost needs to iterate through myToys, it

uses the Java synchronized statement to provide mutually exclusive access to the myToys collection.

This ensures that other processes do not change myToys while the iterator is going through the

collection. This is important because, for example, we dont want to get a toys position and do

collision detection based on that position, only to have that position be changed somewhere else.

3.4.2 BoardClient

BoardClient also extends the Board class. This class is used if the game is being played on multiple

virtual machines. In its startup process, the receives a link to the hostBoard, sends a goahead to

the hostBoard to notify it that we are created, then starts up boardManager(). Unlike hostBoards

boardManager, this one merely has a loop that receives the list of myToys (sent from hostBoard),

sends back the clientDone capability to notify hostBoard that we received myToys, then refreshes

the screen to account for the updated toys. Similarly, the mymouseclick() operation, which gets

called when this board receives clicks, merely sends a message to boardHosts mymouseclick opera-

tion, which handles the calculations. The restartBoard operation is slightly different, because any

Board can click Start Game to start a new game. If the player on a BoardClient starts a game,

restartBoard sends a message to boardHosts restartBoard operation, which takes care of notifying

all the other BoardClients.

5

3.5 Toy

Toy is the base class for clickable objects that appear on the screen, providing the mutators and

accessors for the class variables. In the current version of Bouncers, only the Ball class is derived

from Toy.

3.6 Ball

The Ball class is a child of the Toy class. We take advantage of Java’s static class variables by

declaring image scaled as static. In Bouncers, each Ball object draws an image of a soccer ball

onto the screen instead of a solid-color circle. Rather than having each Ball object read the file

from disk, the Image variable is stored once in memory and only read from disc the first time a

Ball object is created.

3.6.1 Physics

All of the physics and movement mechanics of the game are defined within the operations of the

Ball class. The physics and algorithms for 2D ball collisions have been implemented many times

before, and we drew a lot of our inspiration from the help of online websites [2][3]. All of these

operations are used by the BoardHost class to simulate ball movements and collisions.

3.6.2 KeyInput / MouseInput

The MouseInput class takes a capability (mouseClick) for an operation in its board to which the (x,

y) coordinates are to be sent. We use mousePressed because its faster than mouseClicked, because

mouseClicked coalesces the clicks together. The KeyInput class doesnt need a capability, because

we only use the keyboard to handle exiting the game.

4 Improvements

Pete Doctor, the director of Pixar’s UP, once said that ”Pixar films don’t get finished, they just

get released”. While we are extremely satisfied with the current state of Bouncers, we would have

6

loved the opportunity to spend more time with the game and improve it. Here are some things we

would have loved to implement if we had more time:

4.1 Game Mechanics

There are lots of cool things that we could add to make the ”game” aspect more fun. For one, the

Toy class was created to allow us to easily create different types of Toys. Currently, there is only

a single Ball class, but we would have loved to expand this. Some interesting ideas tossed around

were:

• ”Bombs” that look similar to Balls but would end the game immediately if a player tried to

punch it.

• Balls with different sizes and speed.

• Power-Ups that when punched, altered the game state (adding more points, slowing down

the game, etc.).

4.2 MultiVM Speed Optimizations

The current host and client VM structure made the program very easy to convert from a single

player game to a multi-player game (the main reason we chose this path). However, the performance

of the game dips dramatically with this method. The reason is that every time step, the host must

send to each client a full copy of the myToys list. The client receives the list and simply does a

repaint() method call. Here, the processing power of the client is not used at all. A possible

solution is to have the host send myToys every T time steps to each client. The times where

no data is sent, the clients will simulate their own physics. This would cut down the number of

synchronization steps by a linear factor of T.

As the number of balls gets larger, the time to compute one time step for all of the balls becomes

very long and the slowdown is noticable to the user. An obvious fix would be to divide the work

(collisions and movement) into chunks so that other PCs are able to compute and simply send back

the result to the host.

7

5 Conclusion

Bouncers was an extremely fun and rewarding program to write. We learned a lot about being able

to read and understand every part of someone else’s code (BnB). This is an important lesson, as in

the real world, you often face the task of maintaining code that was not originally yours or having

to integrate foreign code to your own. We learned about Swing and had a real hands on approach

to creating a large application using JR.

References

[1] A. Keen and R. Olsson, The JR Programming Language: Concurrent Programming in an Ex-

tended Java. Norwell, MA: Kluwer Academic Publishers, 2004.

[2] BlueThen, [Online] Available: http://bluethen.com/wordpress/index.php/

processing-app/do-you-like-balls/

[3] C. Chuan, Java Game Programming: Introduction - The World Of Bouncing Balls.

[Online] Available: http://www3.ntu.edu.sg/home/ehchua/programming/java/J8a_

GameIntro-BouncingBalls.html

[4] Neopets Inc., [Online] Available: http://www.neopets.com/games/zurroball.phtml

8

http://bluethen.com/wordpress/index.php/processing-app/do-you-like-balls/
http://bluethen.com/wordpress/index.php/processing-app/do-you-like-balls/
http://www3.ntu.edu.sg/home/ehchua/programming/java/J8a_GameIntro-BouncingBalls.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J8a_GameIntro-BouncingBalls.html
http://www.neopets.com/games/zurroball.phtml

	Introduction
	Project Design
	Class Structure Overview
	Main
	Window
	SwingApplication
	Board
	BoardHost
	BoardClient

	Toy
	Ball
	Physics
	KeyInput / MouseInput

	Improvements
	Game Mechanics
	MultiVM Speed Optimizations

	Conclusion

