[ MODULE Sem(
Checked with
Pes ={1, 2, 3, 4}
N =5
EXTENDS Integers
CONSTANTS Pcs, N
ASSUME N € Nat AN >1
State space
VARIABLES counter, state, ret
vars = (ret, counter, state)
Blocking = {“blocking”, “timed”, “non-blocking”}
PcsState = {"idle", “exception”, “timeout”} U Blocking
Result “success’, “failure” }
Typelnv A counter € Nat
A counter < N
A state € [Pcs — PesState)
A ret € Result

Next-state relation

2

Requesting the semaphore can be done in one of three ways
* blocking — wait until counter > 0 then /succeed/
* non-blocking — if counter > 0 then succeed else /fail/
* timed — wait until counter > 0 or t secs elapse
— if counter > 0 then /succeed/
— else (t secs have elapsed) /timeout/
For the meaning of /success/, /failure/ and /timeout/, see
Return statement below.
Request(b, p) = A b € Blocking
A state[p] = “idle"
A state’ = [state EXCEPT ![p] = b]
A UNCHANGED (counter, ret)
ReturnSuccess(p) = A state[p] € Blocking
A counter > 0
A counter’ = counter — 1

A ret’ = “success”

A state’ = [state EXCEPT ![p] = “idle"]
ReturnTimeout(p) = A state[p] = “timeout”

A state’ = [state EXCEPT ![p] = “exception”]

A UNCHANGED (counter, ret)

ReturnFail(p) = A state[p] = “non-blocking”
A counter =0
A ret’ = “failure”
A state’ = [state EXCEPT ![p] = “idle"]

A UNCHANGED counter



Return statement: they can result in one of three
* Success — counter is decreased
* Failure — counter is unchanged
* Timeout — An exception is thrown, counter is unchanged
Return(p) = V ReturnSuccess(p)
V ReturnFail(p)
V ReturnTimeout(p)
Release(p) = A state[p] = “idle”
A counter < N
A counter’ = counter + 1
A UNCHANGED (state, ret)
Timeout(p) = A state[p] = “timed”
A state’ = [state EXCEPT ![p] = “timeout”]
A UNCHANGED (counter, ret)

Process specification

OneProc(p) = V (3b € Blocking : Request(b, p))
V Return(p)
V Release(p)
V Timeout(p)

System Specification
Waiting(p)
DeadLock

state[p] € Blocking

V A (Yp € Pcs: Waiting(p) V state[p] = “exception”)
A counter = 0
A UNCHANGED vars

V A (Vp € Pes : state[p] = “exception”)
A UNCHANGED vars

The DeadLock event states the only conditions under which

=

the semaphore can cause a deadlock among a set of processes.
The model-checker looks for deadlocks and adding this

event tells it that this is a known issue and the model
checker won’t treat it as a fault.

Init = A counter = 1
A ret = “success”
A state = [p € Pcs — "idle”]
Next = V(3p € Pes: OneProc(p))
V DeadLock
Live = A (Vp € Pes : SFyors (Return(p)))
A (Vp € Pcs : WF o5 ( Timeout(p)))
Spec 2 Init A O[Next]yars A Live
Properties
BoundedWait = OO(counter > 0) = (¥ p € Pes : OO(~ Waiting(p)))
As long as processes keep releasing the semaphore, no process

waits forever



NonBlocking = (¥ p € Pcs : OO (state[p] # “non-blocking” A state[p] # “timed”))
No matter the circumstances, no process stays blocked

in non-blocking mode or in timed mode

Disj(p) = A —(ENABLED ReturnSuccess(p) A ENABLED ReturnTimeout(p))
A —(ENABLED ReturnSuccess(p) A ENABLED ReturnFail(p))
A —(ENABLED ReturnFail(p) ~ A ENABLED ReturnTimeout(p))
Disjoint = (¥p € Pcs : Disj(p))
The outcome of Return is uniquely specified by the Next

state relation
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Request(b, p)
// with b € {“blocking”, “non-blocking”, “timed” }
// in the python code, b would also specify a timeout
// but we abstract away from time durations
“waiting”
r < Return(p)
//T € {“success”, “failure” }
//state € {"idle”, “exception” }
Release(p)
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