[MODULE Sem(
Checked with
Pes ={1, 2, 3, 4}
N =5
EXTENDS Integers
CONSTANTS Pcs, N
ASSUME N € Nat AN >1
State space
VARIABLES counter, state, ret
vars = (ret, counter, state)
Blocking = {“blocking”, “timed”, “non-blocking”}
PcsState = {"idle", “exception”, “timeout”} U Blocking
Result “success’, “failure” }
Typelnv A counter € Nat
A counter < N
A state € [Pcs — PesState)
A ret € Result

Next-state relation

2

Requesting the semaphore can be done in one of three ways
* blocking — wait until counter > 0 then /succeed/
* non-blocking — if counter > 0 then succeed else /fail/
* timed — wait until counter > 0 or t secs elapse
— if counter > 0 then /succeed/
— else (t secs have elapsed) /timeout/
For the meaning of /success/, /failure/ and /timeout/, see
Return statement below.
Request(b, p) = A b € Blocking
A state[p] = “idle"
A state’ = [state EXCEPT ![p] = b]
A UNCHANGED (counter, ret)
ReturnSuccess(p) = A state[p] € Blocking
A counter > 0
A counter’ = counter — 1

A ret’ = “success”

A state’ = [state EXCEPT ![p] = “idle"]
ReturnTimeout(p) = A state[p] = “timeout”

A state’ = [state EXCEPT ![p] = “exception”]

A UNCHANGED (counter, ret)

ReturnFail(p) = A state[p] = “non-blocking”
A counter =0
A ret’ = “failure”
A state’ = [state EXCEPT ![p] = “idle"]

A UNCHANGED counter

Return statement: they can result in one of three
* Success — counter is decreased
* Failure — counter is unchanged
* Timeout — An exception is thrown, counter is unchanged
Return(p) = V ReturnSuccess(p)
V ReturnFail(p)
V ReturnTimeout(p)
Release(p) = A state[p] = “idle”
A counter < N
A counter’ = counter + 1
A UNCHANGED (state, ret)
Timeout(p) = A state[p] = “timed”
A state’ = [state EXCEPT ![p] = “timeout”]
A UNCHANGED (counter, ret)

Process specification

OneProc(p) = V (3b € Blocking : Request(b, p))
V Return(p)
V Release(p)
V Timeout(p)

System Specification
Waiting(p)
DeadLock

state[p] € Blocking

V A (Yp € Pcs: Waiting(p) V state[p] = “exception”)
A counter = 0
A UNCHANGED vars

V A (Vp € Pes : state[p] = “exception”)
A UNCHANGED vars

The DeadLock event states the only conditions under which

=

the semaphore can cause a deadlock among a set of processes.
The model-checker looks for deadlocks and adding this

event tells it that this is a known issue and the model
checker won’t treat it as a fault.

Init = A counter = 1
A ret = “success”
A state = [p € Pcs — "idle”]
Next = V(3p € Pes: OneProc(p))
V DeadLock
Live = A (Vp € Pes : SFyors (Return(p)))
A (Vp € Pcs : WF o5 (Timeout(p)))
Spec 2 Init A O[Next]yars A Live
Properties
BoundedWait = OO(counter > 0) = (¥ p € Pes : OO(~ Waiting(p)))
As long as processes keep releasing the semaphore, no process

waits forever

NonBlocking = (¥ p € Pcs : OO (state[p] # “non-blocking” A state[p] # “timed”))
No matter the circumstances, no process stays blocked

in non-blocking mode or in timed mode

Disj(p) = A —(ENABLED ReturnSuccess(p) A ENABLED ReturnTimeout(p))
A —(ENABLED ReturnSuccess(p) A ENABLED ReturnFail(p))
A —(ENABLED ReturnFail(p) ~ A ENABLED ReturnTimeout(p))
Disjoint = (¥p € Pcs : Disj(p))
The outcome of Return is uniquely specified by the Next

state relation
stk ok kb ok ok stk sk ok ok st keok ok ok stk sk ok ok stk ok ke ks ok ok stk ok sk stk ok ok sk ek ok ks sk ok ok ok

Request(b, p)
// with b € {“blocking”, “non-blocking”, “timed” }
// in the python code, b would also specify a timeout
// but we abstract away from time durations
“waiting”
r < Return(p)
//T € {“success”, “failure” }
//state € {"idle”, “exception” }
Release(p)

3k >k 3k >k sk >k sk >k sk ok ok sk >k sk >k sk ok sk ok sk sk sk ok >k sk Sk sk sk ok sk >k sk sk sk sk sk sk >k ok sk sk ok sk sk sk sk >k ok sk sk ok sk sk ok sk >k sk ok sk sk sk sk >kok ok sk ok sk sk sk ke kok ok

\ * Modification History
\ * Last modified Sat Feb 13 21:50:39 EST 2016 by Simon

\ * Created Fri Feb 12 16:09:23 EST 2016 by Simon

