
module Sem0
Checked with

Pcs = {1, 2, 3, 4}
N = 5

extends Integers
constants Pcs, N
assume N ∈ Nat ∧N ≥ 1
State space

variables counter , state, ret
vars

∆
= 〈ret , counter , state〉

Blocking
∆
= {“blocking”, “timed”, “non-blocking”}

PcsState
∆
= {“idle”, “exception”, “timeout”} ∪ Blocking

Result
∆
= {“success”, “failure”}

TypeInv
∆
= ∧ counter ∈ Nat
∧ counter ≤ N
∧ state ∈ [Pcs → PcsState]
∧ ret ∈ Result

Next-state relation

Requesting the semaphore can be done in one of three ways

* blocking – wait until counter > 0 then /succeed/

* non-blocking – if counter > 0 then succeed else /fail/

* timed – wait until counter > 0 or t secs elapse

– if counter > 0 then /succeed/

– else (t secs have elapsed) /timeout/

For the meaning of /success/, /failure/ and /timeout/, see

Return statement below.

Request(b, p)
∆
= ∧ b ∈ Blocking
∧ state[p] = “idle”
∧ state ′ = [state except ! [p] = b]
∧ unchanged 〈counter , ret〉

ReturnSuccess(p)
∆
= ∧ state[p] ∈ Blocking
∧ counter > 0
∧ counter ′ = counter − 1
∧ ret ′ = “success”
∧ state ′ = [state except ! [p] = “idle”]

ReturnTimeout(p)
∆
= ∧ state[p] = “timeout”
∧ state ′ = [state except ! [p] = “exception”]
∧ unchanged 〈counter , ret〉

ReturnFail(p)
∆
= ∧ state[p] = “non-blocking”

∧ counter = 0
∧ ret ′ = “failure”
∧ state ′ = [state except ! [p] = “idle”]
∧ unchanged counter

1

Return statement: they can result in one of three

* Success – counter is decreased

* Failure – counter is unchanged

* Timeout – An exception is thrown, counter is unchanged

Return(p)
∆
= ∨ ReturnSuccess(p)
∨ ReturnFail(p)
∨ ReturnTimeout(p)

Release(p)
∆
= ∧ state[p] = “idle”
∧ counter < N
∧ counter ′ = counter + 1
∧ unchanged 〈state, ret〉

Timeout(p)
∆
= ∧ state[p] = “timed”
∧ state ′ = [state except ! [p] = “timeout”]
∧ unchanged 〈counter , ret〉

Process specification

OneProc(p)
∆
= ∨ (∃ b ∈ Blocking : Request(b, p))
∨ Return(p)
∨ Release(p)
∨ Timeout(p)

System Specification

Waiting(p)
∆
= state[p] ∈ Blocking

DeadLock
∆
= ∨ ∧ (∀ p ∈ Pcs : Waiting(p) ∨ state[p] = “exception”)

∧ counter = 0
∧ unchanged vars

∨ ∧ (∀ p ∈ Pcs : state[p] = “exception”)
∧ unchanged vars

The DeadLock event states the only conditions under which

the semaphore can cause a deadlock among a set of processes.

The model-checker looks for deadlocks and adding this

event tells it that this is a known issue and the model

checker won’t treat it as a fault.

Init
∆
= ∧ counter = 1
∧ ret = “success”
∧ state = [p ∈ Pcs 7→ “idle”]

Next
∆
= ∨ (∃ p ∈ Pcs : OneProc(p))
∨DeadLock

Live
∆
= ∧ (∀ p ∈ Pcs : SFvars(Return(p)))
∧ (∀ p ∈ Pcs : WFvars(Timeout(p)))

Spec
∆
= Init ∧2[Next]vars ∧ Live

Properties

BoundedWait
∆
= 23(counter > 0)⇒ (∀ p ∈ Pcs : 23(¬Waiting(p)))

As long as processes keep releasing the semaphore, no process

waits forever

2

NonBlocking
∆
= (∀ p ∈ Pcs : 23(state[p] 6= “non-blocking” ∧ state[p] 6= “timed”))

No matter the circumstances, no process stays blocked

in non-blocking mode or in timed mode

Disj (p)
∆
= ∧ ¬(enabled ReturnSuccess(p) ∧ enabled ReturnTimeout(p))
∧ ¬(enabled ReturnSuccess(p) ∧ enabled ReturnFail(p))
∧ ¬(enabled ReturnFail(p) ∧ enabled ReturnTimeout(p))

Disjoint
∆
= (∀ p ∈ Pcs : Disj (p))

The outcome of Return is uniquely specified by the Next

state relation

**

Request(b, p)

// with b ∈ {“blocking”, “non-blocking”, “timed”}
// in the python code, b would also specify a timeout

// but we abstract away from time durations

“waiting”

r ← Return(p)

//r ∈ {“success”, “failure”}
//state ∈ {“idle”, “exception”}

Release(p)

**

\ * Modification History

\ * Last modified Sat Feb 13 21:50:39 EST 2016 by Simon

\ * Created Fri Feb 12 16:09:23 EST 2016 by Simon

3

