Università di Ferrara — Dipartimento di Fisica e Scienze della Terra High Energy Physics Laboratory — Accelerator Physics Module

Practice Report

Name:		Course/Year:			
E-mail:	Date:				
This report consists essay.	of 4 parts: multiple-cho	ice questions, d	lefinitions of terms, a p	problem, and a short	
Multiple-choice q	uestions				
Mark the answer tha	at you think is closest to t	he correct answ	er.		
	ction for a particle of mas onstant. The Hamiltonian			$\mathscr{C}(q,\dot{q},t) = m\dot{q}^2/2 -$	
$\Box -p^2/(2m) - mgq$	$\Box -p^2/(2m) + mgq$	\Box mgq	$\Box p^2/(2m) + mgq$	$\Box \ p^2/(2m) - mgq$	
The magnetic rigidit	ty of a 100-GeV electron	is			
□ 334 T·m	□ 3.34 T·m	□ 100 T·m	□ 10 T·m	□ 1 T · m	
So far, the maximun	n kinetic energy ever reac	hed in a proton	synchrotron is		
□ 1 GeV	□ 4 GeV	□ 1 TeV	□ 6.5 TeV	□ 13 TeV	
Which one of these	machines is not a collider	·?			
\Box AdA	☐ Main Injector	\Box BEPC	□ Tevatron	□ LHC	
What is the tunical	order of magnitude of the	longest nuclean	aross sactions?		
• •	order of magnitude of the	· ·			
$\Box 10^{-42} \text{ m}^2$	□ femtobarn	$\Box 10^{-34} \text{ m}^2$	$\Box 10^{-31} \text{ m}^{-3}$	2 □ barn	

Definitions

Define the following	terms using less t	than 100 words	each: (a) ph	ase space; (b) 1	phase stability.

Problem

Consider a beam of 6-GeV electrons hitting a hydrogen target.

- (a) Calculate the De-Broglie wavelength of the electrons. Compare it with the typical size of a nucleon.
- (b) Calculate the center-of-mass energy of the electron-proton system.

Short essay

Within these two pages, discuss the main aspects of luminosity: concept, definitions, typical values, ways to optimize it, limitations.