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Units of energy

15

Multiples are the keV (103 eV), MeV (106 eV), GeV (109 eV), TeV (1012 eV), etc.

1 V

potential

distance

1 eV ≡ q ⋅ ΔV = (1.602 × 10−19 C) ⋅ (1 V) = 1.602 × 10−19 J

The electronvolt (eV) is a useful unit of energy

It corresponds to the kinetic energy 
acquired by an electron traversing 
a potential difference of 1 V
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Energy: orders of magnitude

16

eV

MeV

TeV μJ

J

MJ

TJ

binding energy of atomic electrons

binding energy of protons and neutrons in the nucleus

maximum energy in an accelerator 
(6.5 TeV protons in LHC)

maximum observed cosmic-ray energy student biking

moving train

yearly energy usage in Italy
(1018 J)

molecular kinetic energy at room temperature

electronvolts

joule
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Formulations of dynamics: a summary

17

Newtonian Lagrangian Hamiltonian

links forces and 
variations in momenta 
(Newton’s second law)

N 2nd order differential eq.

generalized coordinates are
not necessarily orthogonal

takes k constraints into account

2(N-k) 1st order differential eq.

canonical transformations 
may simplify problems

F = ·p d
dt (∂ ·qℒ) − ∂qℒ = 0

coordinates

equations of motion

main features

(N—k) 2nd order differential eq.

xspatial (q, p = ∂ ·qℒ)
canonical pairsgeneralized (q, ·q)

ℒ(q, ·q) = T − V
Lagrangian

H(q, p) = p ·q − ℒ
Hamiltonian

characteristic functions
forces

{
·q = ∂pH
·p = − ∂qH

·x ≡
d x
dt

∂x f ≡
∂f
∂x

concept of phase space
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Example: 1-dimensional harmonic oscillator

18

linear force, i.e. proportional to displacement

p = m ·xmomentum

F = ·p
−kx = m ··x

··x+(k /m)x = 0

Newton’s equation of motion

ω =
k
m

constant oscillation frequency and period

independent of oscillation amplitude

x(t) = A ⋅ cos (ωt + ϕ)
solution

constant amplitude and phase 
from initial conditions

τ =
2π
ω

= 2π
m
k

x(0), ·x(0)
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Example: 1-dimensional harmonic oscillator

19

q = x ·q = ·x
simplest choice of generalized coordinates

T = m ·q2 /2

V = kq2 /2

ℒ(q, ·q) = T − V
= m ·q2 /2 − kq2 /2

d
dt (∂ ·qℒ) − ∂qℒ = 0

m ··q + kq = 0

Lagrangian approach

kinetic energy

potential energy

Lagrangian same equation of motion
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Example: 1-dimensional harmonic oscillator

20

p ≡ ∂ ·qℒ = m ·q

H = p ·q − ℒ
= p2 /m − p2 /(2m) + kq2 /2
= p2 /(2m) + kq2 /2
= T + V

{
·q = ∂pH = p/m
·p = − ∂qH = − kq

·H = ∂qH ⋅ ·q + ∂pH ⋅ ·p + ∂tH
= kq ·q + p ·p/m
= kqp/m − kqp/m = 0

Hamiltonian approach
q = xsame choice of generalized coordinate

canonical momentum

Hamiltonian equations of motion

The Hamiltonian is constant Energy is conserved

In phase space (q, p), the 
system evolves on an ellipse

with constant area
Ellipse:

( x
a )

2

+ ( y
b )

2

= 1

Area = πab

q2

2H/k
+

p2

2mH
= 1

π
2H
k

2mH = H ⋅ τ
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Hamiltonian approach and the system’s phase-space topology

21

The graphical representation of the system 
summarizes its dynamics

Areas and volumes in phase space are related to 
the concept of emittance in beam physics
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Statistical description of dynamical systems

22

P(q, p)

P(q, p) dq dp

dq = dq1 dq2 …dq3N

dp = dp1 dp2 …dp3N

density of systems

number of systems

in phase space volume

System with many particles or many equivalent systems (“ensemble”)

Examples
• Beam of N = 109 non-interacting protons

• N representative points (“particles”) in 6-dimensional phase space or
• 1 representative point (“whole system”) in 6N-dimensional phase space

• Statistical ensemble of L ideal gases with N = 1023 particles each
• L representative points in 6N-dimensional phase space (huge!)

partial derivative
change at constant q and p

∂tP

total derivative (“hydrodynamic derivative”) 
time evolution taking into account the variation 
of q and p, i.e. the dynamics of the system

·P
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Evolution of phase-space density and Liouville’s theorem

23

if dynamics is Hamiltonian

if number of systems is constant
(continuity equation)

The density of states along a 
flux line is constant

{
·q = ∂pH
·p = − ∂qH

∂tP + ∇ ⋅ (P ⋅ v) = 0

v = ( ·q, ·p)∇ ⋅ f = ∂q fq + ∂p fp

The density of states can change due to nonconservative forces or  
energy exchanges with the environment

In beam physics, phase-space density variations can be due to
• “heating”: scattering on residual gas, intrabeam scattering, internal targets, …
• “cooling”: synchrotron radiation damping, electron cooling, stochastic cooling, …

divergence and velocity 
in phase space

∂tP + ∂q(P ·q) + ∂p(P ·p) = 0
∂tP + (∂qP) ·q + P∂q

·q + (∂pP) ·p + P∂p
·p = 0

∂tP + (∂qP) ·q + (∂pP) ·p + P (∂q∂pH − ∂p∂qH) = 0
·P = 0

continuity 
equation



Questions?
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Special relativity

25

Principle of relativity: physical laws must have the same form in all inertial 
reference frames

COVARIANCE or INVARIANCE IN FORM of physical laws

A physical quantity is INVARIANT when it has the same numerical value in all 
reference frames

Example: electric charge

Example: Newton’s second law Example: Gauss’s law

F =
dp
dt

→ F′ =
dp′ 

dt′ 
∇ ⋅ E = ρ/ϵ0 → ∇′ ⋅ E′ = ρ′ /ϵ′ 0

Q = Q′ 

Example: speed of light in vacuum
c = c′ 
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Relativistic kinematics and dynamics

26

velocity parameter

Lorentz factor

β =
v
c

γ =
1

1 − v2

c2

= (1 − β2)−1/2 β = 1 −
1
γ2

4-vectors

0 ≤ β ≤ 1

1 ≤ γ

The contraction of 4-vectors is invariant

xμxμ ≡
3

∑
μ=0

xμxμ ≡ (ct)2 − x2 − y2 − z2 space-time interval

xμ ≡ (ct, x) ≡ (ct, x, y, z) xμ ≡ (ct, − x) ≡ (ct, − x, − y, − z) μ = 0,1,2,3

4-vector components in different inertial systems change according to Lorentz 
transformations

example
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Relativistic kinematics and dynamics

27

4-momentum of a particle

For convenience, we often redefine masses and momenta in units of energy
mc2 → m

pc → p

pμpμ = E2 − p2 = m2 rest energy of a particle (invariant)

Pμ ≡ pμ
1 + pμ

2 + … PμPμ

total 4-momentum of a system

center-of-momentum energy (invariant)

pμ ≡ (E/c, p) ≡ (E/c, px, py, pz)

Contractions of 4-momenta

p ≡ γmv

Total energy
E = γm

Kinetic energy
T = (γ − 1)m

β =
p
E

Velocity parameter equals 
momentum / energy ratio
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Relativistic dynamics

28

F = ·p

p ≡ γmv

F = ·p = γma

For constant magnitude of the velocity
(uniform circular motion, for instance)

With the relativistic definition of momentum

Newton’s second law can still be written

Same as classical equation, replacing

·γ = 0

m → γm
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Relative momentum, energy and velocity spread of a beam

29

To understand dynamics in accelerators and to design experiments, it is often 
essential to know the range of kinematic beam parameters

RELATIVE
MOMENTUM SPREAD  

(largest)

RELATIVE
ENERGY SPREAD  

(intermediate)

RELATIVE
VELOCITY SPREAD  

(smallest)

dp
p

= γ2 dv
v

dv
v

=
1
γ2

dp
p

dp
p

=
1
β2

dE
E

dE
E

= β2 dp
p

dE
E

= (βγ)2 dv
v

dv
v

=
1

(βγ)2

dE
E
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Example of energy, momentum and velocity spreads

30

The relative beam energy spread of 6.5-TeV protons in the LHC is about 1 x 10-4

What is the relative momentum spread?

What is the relative velocity spread?

Example of numerical calculation (SageMathCell)

https://sagecell.sagemath.org/?z=eJxlz0EOgyAQQNE9CXeYnWBVOlabuvAqJjYQwkKDSjh_gVrStDsm_DwGPS_LDCOwe9MrbEHAtRluDzVwuABSYnezOlboMysqWFkaKpBGG3eMPeeUUPJULgbHtjuGUAOKlE0tz8iZJCOeM4Hd25BKhXtUdZcma-NiKGIbHCghBFmTVtiPFtJ_zPuIifRUmZbhU_uLeOEz4v33p16be0x6&lang=sage&interacts=eJyLjgUAARUAuQ==


Questions?
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Electromagnetism is described by Maxwell’s equations

32

Electric charge CONSERVED

INVARIANT

continuity eq.

value independent of reference frame

Charges and currents 
are sources of fields Fields act on charges and currents

Gauss’s law

Law of induction

No magnetic charges

Ampère’s law

∇ ⋅ E = ρ/ϵ0

∇ × E = − ∂tB

∇ ⋅ B = 0

∇ × B = μ0 (j + ϵ0 ⋅ ∂tE)
μ0ϵ0 = 1/c2

∫S
E ⋅ n̂ = QS /ϵ0

∮ E ⋅ ̂t ds = − ·ΦB

∫S
B ⋅ n̂ = 0

∮ B ⋅ ̂t ds = μ0 ⋅ itot

differential form integral form

∂tρ + ∇ ⋅ (ρv) = 0
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Charged particle in electromagnetic field: Lorentz force

33

F = Fe + Fm = qE + qv × B

Electric fields are 
used to accelerate 
and to deflect

Static magnetic fields 
can only deflect: force is 
perpendicular to velocity

Effective at high energy: 
force proportional to 
velocity

High-energy accelerators use magnets 
for confinement and focusing

A major part of accelerator physics is devoted to the study of the motion of charged 
particles in electromagnetic fields
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Example: electric vs. magnetic forces

34

At what velocities do magnetic fields become more effective? 

(a) Choose typical values for strong electric and magnetic fields that 
can be obtained in the laboratory

(b) For these values of the fields, at which velocity does the 
magnetic force become more intense than the electric force?
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Charged particle in constant magnetic field

35

1-keV electron source in 1-mT magnetic field. 
Radius of curvature: 11 cm.

Momentum parallel to the magnetic field is conserved

In the plane perpendicular to the field, momentum 
 changes direction but not magnitude: uniform 

circular motion
p ≡ p⊥

·p∥ = 0

Helical path with radius ρ =
p

qB

ω =
qB
γm

and angular frequency

“cyclotron frequency”

p
q

= Bρ

magnetic rigidity (“B rho”) of the particle 
= momentum / charge

F = qv × B

v2

ρ
=

qvB
γm
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Numerical estimates of magnetic rigidity

36

A convenient conversion factor (adimensional constant equal to 1) Bρq
p

= 1

(Bρ) = [3.34
(T ⋅ m) e
(GeV/c) ] p

q

Useful for momenta in GeV/c and charge in units of the elementary charge e

Example: a 1-GeV/c electron has a magnetic rigidity of 3.34 T m



Questions?
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Magnetic fields in matter

38

In accelerators, ferromagnetic materials are used in electromagnets to amplify 
the magnetic field by a factor 100-1000

Substances are divided into 3 main groups 
according to their behavior in magnetic fields

DIAMAGNETIC

PARAMAGNETIC

FERROMAGNETIC

11.1 Substances responding to magnetic field 525

that neighborhood the field is changing with a gradient of approximately
17 tesla/m, or 1700 gauss/cm.

Maximum force
in this region

Figure 11.2.
An arrangement for measuring the force on a
substance in a magnetic field.

Let’s put various substances into this field and see if a force acts
on them. Generally, we do detect a force. It vanishes when the current
in the coil is switched off. We soon discover that the force is strongest
not when our sample of substance is at the center of the coil where the
magnetic field Bz is strongest, but when it is located near the end of
the coil where the gradient dBz/dz is large. From now on let us support
each sample just inside the upper end of the coil. Figure 11.2 shows one
such sample, contained in a test tube suspended by a spring which can
be calibrated to indicate the extra force caused by the magnetic field.
Naturally we have to do a “blank” experiment with the test tube and sus-
pension alone, to allow for the magnetic force on everything other than
the sample.

We find in such an experiment that the force on a particular sub-
stance – metallic aluminum, for instance – is proportional to the mass of
the sample and independent of its shape, as long as the sample is not too
large. (Experiments with a small sample in this coil show that the force
remains practically constant over a region a few centimeters in extent,
inside the end of the coil; if we use samples no more than 1 to 2 cm3 in
volume, they can be kept well within this region.) We can express our
quantitative results, for a given substance, as so many newtons force per
kilogram of sample, under the conditions Bz = 1.8 tesla, dBz/dz = 17
tesla/m.

But first the qualitative results, which are a bit bewildering. For
a large number of quite ordinary pure substances, the force observed,
although easily measurable, seems ridiculously small, despite all our
effort to provide an intense magnetic field. Typically, the force is 0.1
or 0.2 newtons per kilogram, that is, no more than a few percent of the
weight of the sample (which is 9.8 newtons per kilogram). It is directed
upward for some samples, downward for others. This has nothing to do
with the direction of the magnetic field, as we can verify by reversing the
current in the coil. Instead, it appears that some substances are always
pulled in the direction of increasing field intensity, others in the direc-
tion of decreasing field intensity, irrespective of the field direction.

We do find some substances that are attracted to the coil with con-
siderably greater force. For instance, copper chloride crystals are pulled
downward with a force of 2.8 newtons per kilogram of sample. Liquid
oxygen behaves spectacularly in this experiment; it is pulled into the coil
with a force nearly eight times its weight. In fact, if we were to bring
an uncovered flask of liquid oxygen up to the bottom end of our coil,
the liquid would be lifted right out of the flask. (Where do you think it
would end up?) Liquid nitrogen, on the other hand, proves to be quite
unexciting; it is pushed away from the coil with the feeble force of 0.1
newtons per kilogram. In Table 11.1 we have listed some results that one
might obtain in such an experiment. The substances, including those

weak repulsion

weak attraction

very strong attraction
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Currents, magnetization and fields

39

554 Magnetic fields in matter
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(a) As a source of external electric field E (b)  As a source of external magnetic field B

is equivalent to:

(More generally, for nonuniform magnetization,
magnetized matter is equivalent to a current distribution
J = curl M.)

A uniformly magnetized block can
be divided into such layers. Hence
the block has the
same external
field as the wide
ribbon of surface
current with    = M. 

because a bit of magnetized matter,
volume da · dz, has dipole moment
                                       equal to that of:

is equivalent to

because a bit of polarized matter, volume
da · dz, has dipole moment equal to that of:

q = P da+

− q = − P da

A uniformly polar-
ized block can be
subdivided into
such rods. Hence
the block has the
same external field

as two sheets of surface charge with

        Consider a wide, thin, uniformly polarized slab and its
equivalent sheets of surface charge.

(More generally, for nonuniform polarization, polarized
matter is equivalent to a charge distribution r = − div P.)

PROOF THAT THE EQUIVALENCE EXTENDS TO
THE SPATIAL AVERAGE OF THE INTERNAL FIELDS

Consider a long uniformly magnetized column and its
equivalent cylinder of surface

current.

        Conclusion:  〈B〉 = B′ ; the spatial average of
the internal magnetic field is equal to the field B′ that
would be produced at that point in empty space by the
equivalent charge  distribution described above (together
with any external sources).

        Conclusion:  〈E〉 = E′ ; the spatial average of
the internal electric field is equal to the field E′ that
would be produced at that point in empty space by the
equivalent charge distribution described above (together
with any external sources).

da
Current

M dz

I = M dz

S!1

for the internal field, then    B . da = 0. But  B = B′ on the 
surface external to the column. Hence     B . da =     B′ . da′
over any interior portion of surface, like S1, S2, etc.
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on the external path. Hence     E ·d   =      E′ ·d    for all

internal paths.
Ú 1
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Near the middle the external field is slight and E′ is uniform.

If ∇ × E = 0 for the internal field, then      E ·d   = 0. But E = E′Ú οC

Near the middle the
external field is slight and
B′ is uniform. If ∇.B = 0
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Figure 11.19.
The electric (a) and magnetic (b) cases
compared.
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The electric (a) and magnetic (b) cases
compared.

Magnetization  = magnetic dipole densityM

∇ × B = μ0 (jf + jb)
Ampère’s law in terms of free (“conduction”) and bound (“microscopic”) currents

∇ × M = jb

related to bound currents

H ≡ B/μ0 − M

Definition of  “magnetic field”H

Ampère’s law for free (“conduction”) currents, 
which are experimentally controllable

∇ × H = jf ∮ H ⋅ ̂t ds = if

Useful to estimate magnet strengths

[ A m2 / m3 = A / m ]

𝒥 = M × n̂
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Magnetic properties of materials

40

11.11 Ferromagnetism 569

the voltage induced in one of the coils, we can determine changes in flux
!, and hence in B inside the iron. If we keep track of the changes in B,
starting from B = 0, we always know what B is. A current through the
other coil establishes H, which we take as the independent variable. If
we know B and H, we can always compute M. It is more usual to plot
B rather than M, as a function of H. A typical B-H curve for iron is
shown in Fig. 11.32. Note the different units on the axes; B is measured
in tesla while H is measured in amps/meter. If there were no iron in the
coil, B would equal µ0H, so H = 1 amp/meter would be worth exactly
B = 4π · 10−7 tesla. Or equivalently, H = 300 amps/meter would yield
B ≈ 4 · 10−4 tesla. But with the iron present, the resulting B field is
much larger. We see from the figure that when H = 300 amps/meter, B
has risen to more than 1 tesla. Of course, B and H here refer to an average
throughout the whole iron ring; the fine domain structure as such never
exhibits itself.

Iron

H (in amp/m)

B 
(te

sl
a)

0.4

0–80 80 160 240 320

0.8

1.2

Figure 11.32.
Magnetization curve for fairly pure iron. The
dashed curve is obtained as H is reduced from
a high positive value.Starting with unmagnetized iron, B = 0 and H = 0, increasing H

causes B to rise in a conspicuously nonlinear way, slowly at first, then
more rapidly, then very slowly, finally flattening off. What actually
becomes constant in the limit is not B but M. In this graph, however, since
M = B/µ0−H, and H # B/µ0, the difference between B and µ0M is not
appreciable.

The lower part of the B-H curve is governed by the motion of domain
boundaries, that is, by the growth of “right-pointing” domains at the
expense of “wrong-pointing” domains. In the upper flattening part of the
curve, the atomic moments are being pulled by “brute force” into line
with the field. The iron here is an ordinary polycrystalline metal, so only
a small fraction of the microcrystals will be fortunate enough to have an
easy direction lined up with the field direction.

H (in 104 amp/m)

Alnico V

B 
(te

sl
a)

1.2

0.8

0.4

1.6–1.6–3.2–4.8 0

Figure 11.33.
Alnico V is an alloy of aluminum, nickel, and
cobalt that is used for permanent magnets.
Compare this portion of its magnetization curve
with the corresponding portion of the
characteristic for a “soft” magnetic material,
shown in Fig. 11.32.

If we now slowly decrease the current in the coil, thus lowering H,
the curve does not retrace itself. Instead, we find the behavior given by
the dashed curve in Fig. 11.32. This irreversibility is called hysteresis.
It is largely due to the domain boundary movements being partially irre-
versible. The reasons are not obvious from anything we have said, but are
well understood by physicists who work on ferromagnetism. The irre-
versibility is a nuisance, and a cause of energy loss in many technical
applications of ferromagnetic materials – for instance, in alternating-
current transformers. But it is indispensable for permanent magnetiza-
tion, and for such applications, one wants to enhance the irreversibility.
Figure 11.33 shows the corresponding portion of the B-H curve for a
good permanent magnet alloy. Note that H has to become about 50,000
amps/meter in the reverse direction before B is reduced to zero. If the
coil is simply switched off and removed, we are left with B at 1.3 tesla,
called the remanence. Since H is zero, this is essentially the same as
µ0M. The alloy has acquired a permanent magnetization, that is, one
that will persist indefinitely if it is exposed only to weak magnetic fields.

Properties of materials (“equation of state”) parameterized by

M = χmH

B = μ0(1 + χm)H ≡ μH

χmmagnetic susceptibility

magnetic permeability μ ≡ μ0(1 + χm)

Usually not a constant, especially for ferromagnets

Hysteresis cycles are needed for 
reproducibility of magnet strengths
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μ1

μ2

B1n

B2n

H1t

H2t

∇ ⋅ B = 0 ⟹ { B1n = B2n

μ1H1n = μ2H2n
∇ × H = 0 ⟹ { H1t = H2t

B1t /μ1 = B2t /μ2

The normal component of the B field and 
the tangential component of the H field 
do not change

The surface integral of B is zero
(always)

The line integral of H is zero
(no conduction currents)
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Dipole or “magnetic prism” for deflection

Quadrupole or “magnetic lens” for focusing and defocusing

constant field

field proportional to distance from axis

plus many other types…
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584 Magnetic fields in matter
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Figure 11.41.
(a) How large is the magnetic moment of the rock if the amplitude

of the induced electromotive force is 1 millivolt? The formula
derived in Exercise 11.19 is useful here.

(b) In order of magnitude, what is the minimum amount of ferro-
magnetic material required to produce an effect that large?

11.40 Deflecting high-energy particles ***
For deflecting a beam of high-energy particles in a certain exper-
iment, one requires a magnetic field of 1.6 tesla intensity, main-
tained over a rectangular region 3 m long in the beam direction, 60
cm wide, and 20 cm high. A suitable magnet might be designed
along the lines indicated in parts (a) and (b) of Fig. 11.41; part
(b) shows the cross section of two horizontal coils. Taking the

(1) What B field is necessary to obtain the required deflection or “kick”?

(2) What is the corresponding H field?

(3) What current I is required to generate a given H?

F = ·p ⟹

∫
t2

t1

F dt = ∫
s2

s1

F
ds
v

= p2 − p1

impulse
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(Edwards and Syphers, problem 1.11)

NI

B

Show that the magnetic field is approximately

B =
2μ0NI

h

iron

air

What assumptions did we make?

current in the coils

gap size

path
γ
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2.2. QUADRUPOLES 11

transverse planes simultaneously1.
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Figure 2.8: Focusing quadrupole and the transverse dependence of its field.

Figure 2.9: Blue magnetic field
and red force directions for a fo-
cusing quadrupole

By convention, we say that a “focusing magnet” focuses in the horizontal
plane, and a “defocusing magnet” focuses in the vertical. To achieve overall
beam focusing, we must arrange the magnets in an alternating repeating pattern
known as a lattice. The smallest repeating pattern of quadrupoles is known
as a cell, and is used to name the type of lattice. For example, the Main
Injector has a “FODO” lattice: “F” is a focusing quad, “O” is a drift space with
no quads, and “D” is a defocusing quad. In accelerator physics terminology,
alternating quadrupoles to achieve net focusing is known as strong focusing, or
alternating-gradient focusing. Quadrupoles are arranged in an al-

ternating pattern known as a lat-

tice, the smallest repeating piece
of which is called a cell.

The strong-focusing process causes the beam to oscillate in the transverse
plane about the center of the beam pipe. This motion is called betatron
oscillation, and the number of complete oscillations per revolution around a
circular machine is called the tune. Betatron oscillation and tune are explained
in more detail in Chapter 5. The number of betatron oscilla-

tions that a particle completes in
one revolution is known as the
tune.

Figure 2.10 shows how the quadrupole magnetic field exerts a focusing force
in one transverse plane while defocusing in the other. If the quadrupoles are
arranged so the distance between magnets is less than or equal to twice the
focal length, then we achieve overall focusing in both planes [1].

Recall that the magnetic force on a charged particle depends on the particle’s
momentum, leading to the dispersion e↵ect with dipoles; a dipole loses bending
ability as the particle momentum increases2. Similarly, a quadrupole magnet
loses focusing ability for higher-momentum particles. This e↵ect is known as
chromatic aberration, which means that the focal length of a quadrupole magnet
depends on the momentum of the beam particles. This e↵ect also exists in
optical physics, where the focal length of a lens depends on the color of the
light passing through it. The analogy between beam and optical chromatic
aberration is shown in Figure 2.11.

The result of chromatic aberration is that the tune of a given particle depends
on its momentum. We can write an equation relating the tune spread of the

1This is derived in Appendix A
2This e↵ect is called “magnetic rigidity” and is expressed as B⇢ = p

q for particle momentum

p and charge q.
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Force

Field

B(x, y) = {
Bx = B′ y
By = B′ x

Field gradient  for a “focusing” or F magnet 
(positive particles moving into the page) 
horizontal focusing and vertical defocusing

B′ > 0x
y

z

F = qv × B
For an ideal quadrupole, the force is proportional to the distance from the axis

The quadrupole gradient is approximately

B′ =
2μ0NI

R2

current in the coils

square of the aperture radius

B = B2
x + B2

y = B′ r

2R μ ≫ μ0
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(see also Edwards and Syphers, problem 1.12)



Questions?


