Introduction to Beam Physics and Accelerator Technology

University of Ferrara, Italy
April 26 - May 5, 2022
Giulio Stancari
Fermilab
bitbucket.org/gist/apufe22

Experiment design and luminosity

Experiment design: event rates, cross sections, luminosity

The relationship between event rate, detector efficiency, cross section, luminosity and observation time is one of the main factors in the design and analysis of experiments, in both fixed target and collider configurations

How many events do we expect?
How long will the experiment be?
Will the detector be able to sustain the data rate?

Luminosity quantifies the properties of the interaction: it is the event rate per unit cross section

Usually expressed in $\mathbf{c m}^{-2} \mathbf{s}^{-1}$
Other useful units: events/ $/ \mathrm{b} / \mathrm{s}$ or events/fb/yr etc.

$1 \mathrm{~b}($ barn $)=10^{-24} \mathrm{~cm}^{2}=10^{-28} \mathrm{~m}^{2}$

Event rates in the lab frame (stationary target)

How can we express this relationship in any reference frame?

Particle 4-momenta and relative velocity

4-momenta of particles $\quad p_{1}^{\mu}=\left(E_{1}, \boldsymbol{p}_{1}\right) \quad p_{2}^{\mu}=\left(E_{2}, \boldsymbol{p}_{2}\right)$
The contraction of the two 4-momenta is invariant - it can be evaluated in the lab frame, using the definition of relative velocity

$$
p_{1 \mu} p_{2}^{\mu} \equiv E_{1} E_{2}-\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}=\gamma_{1} m_{1} m_{2}=\frac{m_{1} m_{2}}{\sqrt{1-\beta_{\text {rel }}^{2}}}
$$

The relative velocity can therefore be expressed as

$$
\beta_{\mathrm{rel}} \equiv \frac{v_{\mathrm{rel}}}{c}=\sqrt{1-\left(\frac{m_{1} m_{2}}{p_{1 \mu} p_{2}^{\mu}}\right)^{2}}=\ldots=\frac{\sqrt{\left(\boldsymbol{\beta}_{1}-\boldsymbol{\beta}_{2}\right)^{2}-\left(\boldsymbol{\beta}_{1} \times \boldsymbol{\beta}_{2}\right)^{2}}}{1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}}
$$

Generalizing the lab-frame expression for the event rate

We use the available 4-vectors and the transformation properties of energies and densities to choose a factor that makes the whole expression invariant

$$
n_{1} n_{2} \rightarrow n_{1} n_{2} \frac{p_{1 \mu} p_{2}^{\mu}}{E_{1} E_{2}} \quad \frac{p_{1 \mu} p_{2}^{\mu}}{E_{1} E_{2}}=\frac{E_{1} E_{2}-\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}}{E_{1} E_{2}}=1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2} \rightarrow 1 \quad \text { in the lab frame }
$$

Grouping the relative velocity with the new factor, we define a kinematic factor v with the dimensions of a velocity

$$
v \equiv v_{\mathrm{rel}}\left(1-\boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2}\right)=\sqrt{\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)^{2}-\left(\boldsymbol{v}_{1} \times \boldsymbol{v}_{2} / c\right)^{2}} \quad \begin{gathered}
\text { (in general, this is NOT } \\
\text { the relative velocity) }
\end{gathered}
$$

General relation, in any reference frame

luminosity
observed events

,

kinematic factor

$$
v=\sqrt{\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)^{2}-\left(\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}} / c\right)^{2}}
$$

Examples:

Colliding beams with crossing angle

Definitions of luminosity

local luminosity

$v n_{1} n_{2} \Delta V$

Iuminosity (also: instant luminosity)

$$
\begin{aligned}
\mathscr{L}(t)= & \int_{V} v n_{1} n_{2} d V \\
& \text { overlap integral }
\end{aligned}
$$

average luminosity over a specified time interval T
also: "instantaneous" luminosity when averaged over a short time typical of the accelerator (revolution period, pulse period, etc.)

$$
\langle\mathscr{L}\rangle_{T} \equiv \frac{1}{T} \int_{T} \mathscr{L} d t
$$

integrated luminosity over a specified time interval T, often a "long" time scale (one operation cycle, one data-taking period, etc.)

$$
L=\int_{T} \mathscr{L} d t=\int_{T} \int_{V} v n_{1} n_{2} d V d t
$$

Example: continuous and homogeneous beam on fixed target

Luminosity

$$
\mathscr{L}=\int_{V} v n_{1} n_{2} d V=v n_{b} n_{t}\left(\pi R^{2}\right) \Delta z
$$

constant in time

Example: continuous and homogeneous beam on fixed target

Numerical example: antiproton-proton collisions in charmonium experiment E-835 at Fermilab. Beam of $N_{b}=5 \times 10^{11}$ antiprotons, kinetic energy $T=5 \mathrm{GeV}$ distributed approximately uniformly over ring of length $L=474 \mathrm{~m}$ and transverse beam area A. Gas-jet target with thickness $\Delta z=0.5 \mathrm{~cm}$ and number density $n_{t}=10^{14} \mathrm{~cm}^{-3}$.

$$
\begin{aligned}
& \text { kinematic factor } v=\beta c \\
& \beta=\sqrt{1-\left(\frac{m}{T+m}\right)^{2}}=0.987
\end{aligned}
$$

luminosity

$$
\begin{aligned}
\mathscr{L} & =v n_{b} n_{t} A \Delta z=v \frac{N_{b}}{L A} n_{t} A \Delta z=\frac{\beta c N_{p} n_{t} \Delta z}{L} \\
& =1.56 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=15.6 \text { events } / \mu \mathrm{b} / \mathrm{s}
\end{aligned}
$$

Example: fixed-target experiment with pulsed Gaussian beam

What is the integrated luminosity over one crossing?

What is the average luminosity over many pulses?

Head-on collisions of Gaussian bunches

Counter-propagating Gaussian packets with
 equal transverse and longitudinal dimensions

$$
\begin{aligned}
& n_{1}(x, y, z, t)=\frac{N_{1}}{(2 \pi)^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}\right) \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \exp \left(-\frac{(z-v t)^{2}}{2 \sigma_{z}^{2}}\right) \\
& n_{2}(x, y, z, t)=\frac{N_{2}}{(2 \pi)^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}\right) \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \exp \left(-\frac{(z+v t)^{2}}{2 \sigma_{z}^{2}}\right)
\end{aligned}
$$

Peak luminosity at maximum overlap $(t=0)$

$$
\begin{aligned}
\mathscr{L}(0) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 2 v n_{1}(t=0) n_{2}(t=0) d x d y d z \\
& =\frac{2 v N_{1} N_{2} \pi^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}}{(2 \pi)^{3} \sigma_{x}^{2} \sigma_{y}^{2} \sigma_{z}^{2}}=\frac{v N_{1} N_{2}}{4 \pi^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}}
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} e^{-x^{2} / 2 \sigma^{2}} d x=\sqrt{2 \pi} \sigma
$$

$$
\int_{-\infty}^{\infty} e^{-x^{2} / \sigma^{2}} d x=\sqrt{\pi} \sigma
$$

Head-on collision of Gaussian bunches

Integrated luminosity over one crossing

$$
L_{1}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 2 v n_{1} n_{2} d x d y d z d t=\ldots=\frac{N_{1} N_{2}}{4 \pi \sigma_{x} \sigma_{y}}
$$

Average ("instantaneous") luminosity over one revolution

$$
\langle\mathscr{L}\rangle=N_{b} f_{\mathrm{rev}} \frac{N_{1} N_{2}}{4 \pi \sigma_{x} \sigma_{y}}
$$

Maximizing collider luminosity

The average ("instantaneous") luminosity in a collider is maximized by

$$
\begin{aligned}
& \begin{array}{c}
\text { increasing the } \\
\text { number of bunches }
\end{array} \\
& \qquad \mathscr{L}\rangle=N_{b} f_{\mathrm{rev}} \frac{N_{1} N_{2}}{4 \pi \sigma_{x} \sigma_{y}} \begin{array}{c}
\text { maximizing bunch } \\
\text { populations }
\end{array} \\
& \text { reducing } \\
& \text { if possible, increasing the } \\
& \text { revolution frequency (determined } \\
& \text { by orbit length and particle speed) }
\end{aligned}
$$

Luminosity optimization gives rise to some of the challenges we discussed

Collider luminosity: numerical example

LHC parameters (from the 2021 Review of Particle Properties)

$$
\begin{aligned}
& C=26.659 \mathrm{~km} \Longrightarrow f_{\mathrm{rev}}=? \\
& \beta=1 \\
& N_{1}=N_{2}=1.1 \times 10^{11} \text { protons/bunch } \\
& N_{b}=2556 \text { bunches } \\
& \sigma_{x}=\sigma_{y}=9.5 \mu \mathrm{~m}
\end{aligned}
$$

(neglect the crossing angle)

$$
\langle\mathscr{L}\rangle=3.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=31 \text { events } / \mathrm{nb} / \mathrm{s}
$$

Problem: maximize integrated luminosity taking into account luminosity lifetime and machine turn-around time. What is the optimal data-taking duration?

LUMINOSITY $\langle\mathscr{L}\rangle$

Observations

Experiment design

What is the optimal spatial distribution of events?

What is the ideal time structure of events?
Constant? Pulsed?

Measurement of luminosity

 absolute vs. relative known cross sections van der Meer scansFactors affecting luminosity emittance dilution
crossing angle
misalignments of the beams
non-zero dispersion
hourglass effect
beam imaging

Grafström and Kozanecki, Luminosity determination at proton colliders, Prog. Part. Nucl. Phys. 81, 97 (2015)

