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Transverse dynamics and focusing
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Motion in the transverse plane

134

We study the motion of a charged particle in the electromagnetic fields of an 
accelerator

Choice of coordinates
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Motion in a thin quadrupole region

135

FREE 
DRIFT

FOCUSING 
QUADRUPOLE

FREE 
DRIFT

Δx′ = −
(arc)

ρ
≃ −

By Δs

(Bρ)
= −

B′ Δs
(Bρ)

x ≡ −
x
f

The effects of magnetic fields can be analyzed as the superposition of components: 
dipole, quadrupole, etc. The quadrupole is the most basic focusing element.

quadrupole
focusing 

power

angular kick proportional to orbit 
deviation (like a thin lens in optics)
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Piecewise distribution of gradients: equations of motion

136

Δx′ = −
B′ Δs
(Bρ)

x ⟹ x′ ′ +
B′ 

(Bρ)
x = 0

We consider a beam line or a ring with a distribution of gradients along its length

If there is a curvature (dipoles), the complete equation includes a centripetal term

equations of motion

normalized 
gradient 
[length-2]

x′ ′ + [ B′ 

(Bρ)
+

1
ρ2 ] x = 0

Hill’s equation: similar to harmonic oscillator, but with variable restoring force

y′ ′ +
(−B′ )
(Bρ)

y = 0
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Discrete description of transverse motion: transport matrices

137

For the design of accelerator systems and to study their stability, it is convenient to 
introduce transport matrices, which transform the phase-space “vectors” 
and  or 

(x, x′ )
(y, y′ ) (x, x′ , y, y′ , z, δp)

(x
x′ )2

= M (x
x′ )1

free DRIFT of length L

(x
x′ )2

= (1 L
0 1) (x

x′ )1

THIN LENS of focal length f

(x
x′ )2

= (
1 0

− 1
f 1) (x

x′ )1

{x2 = x1 + Lx′ 1

x′ 2 = x′ 1

x2 = x1

x′ 2 = x′ 1 −
x1

f

det M = 1

det M = 1
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Stability of a periodic focusing system

138

(x
x′ )n

= M ⋅ M ⋅ … ⋅ M ⋅ (x
x′ )0

M = (a b
c d) Eigenvalues  and λ1 ≡ eiμ λ2 ≡ e−iμ

det M = 1 ⟹ λ2 = 1/λ1

Initial vector as linear combination of eigenvectors  and  of v1 v2 M

(x
x′ )0

= Av1 + Bv2 ⟹ (x
x′ )n

= Mn (x
x′ )0

= Aλn
1 v1 + Bλn

2 v2

For stability, we require that the  do not diverge and that  be realλn
i μ

Do the coordinates diverge?

Definitions
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Stability condition for a periodic system

139

Eigenvalue equation for M

det (M − λI ) = 0 a − λ b
c d − λ

= 0 (a − λ)(d − λ) − bc = 0

(ad − bc) − λ(a + d) + λ2 = 0

= det M = 1

λ +
1
λ

= a + d eiμ + e−iμ = tr M 2 cos μ = tr M

−2 ≤ tr M ≤ 2

Stability condition for the transport matrix of a periodic system

The trace is invariant under cyclic permutations: the stability condition does not 
depend on the starting point

The parameter  has a physical interpretation: phase advance of the transverse 
oscillation in one period

μ
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Example: properties of the FODO cell

140

Consider a periodic system consisting of a particular case of alternating gradients:
• a thin focusing lens with focal length f
• a drift space of length L
• a thin defocusing lens with focal length -f
• another drift space of length L

(a) Calculate the transport matrix of the FODO cell. Verify that its determinant is 1.
(b) Find the relation that f and L must satisfy for stability
(c) Find an expression for the phase advance
(d) What is the transport matrix of the DOFO cell? Does it have the same trace?

M = MO ⋅ MD ⋅ MO ⋅ MF
pay attention to the order 

of the matrices
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Example: properties of the FODO cell

141

MFODO = (1 − L /f − L2 /f 2 2L + L2 /f
−L /f 2 1 + L /f )

tr MFODO = 2 −
L2

f 2

For stability: L ≤ 2 | f |

cos μ = 1 −
L2

2f 2

Alternating gradients are stable as long as the distance between lenses 
does not exceed twice the focal length
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Linearized equations of motion and Courant-Snyder parameters

142

x′ ′ + [ B′ 

(Bρ)
+

1
ρ2 ] x = 0

y′ ′ +
(−B′ )
(Bρ)

y = 0

x′ ′ + K(s) ⋅ x = 0

K(s + L) = K(s)

In circular machines and other periodic systems, 
the normalized gradient  is periodicK

Solutions of Hill’s equation

x(s) = β(s) ⋅ ϵ ⋅ cos [ψ(s) + δ]

beta(tron) function  
depends on  and 

has the same periodicity
K(s) phase advance  

in general not linear in s

constants determined by 
the initial conditions

single-particle 
emittance
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Phase advances and betatron tunes

143

The functions  and  are not independentβ(s) ψ(s) ψ = ∫
1
β

ds

The number of oscillations in one period is called betatron tune

ν =
1

2π ∮
1
β

ds

Stability of the beam in a real machine is very sensitive to the value of the betatron 
tune. It is one of the most important accelerator parameters.

The phase advance between two points is Δψ = ψ2 − ψ1 = ∫
s2

s1

1
β

ds
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Courant-Snyder parameters and phase space

144

β(s)

α(s) ≡ −
β′ (s)

2

γ(s) ≡
1 + α2(s)

β(s)

beta(tron) function or amplitude function [m]

[adimensional]

[m-1]

Useful to
describe particle motion
express the elements of transport matrices
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Courant-Snyder parameters and phase space

145

From the solutions of Hill’s equation one can show that γx2 + 2αxx′ + β(x′ )2 = ϵ

For each position  along the accelerator, there is an ellipse in phase space 
 that describes particle motion

s
(x, x′ )

The location of the particle on the ellipse 
is determined by the initial phase, by the 
betatron tune and by the turn number



Giulio Stancari      Introduction to Beam Physics and Accelerator Technology University of Ferrara      April-May, 2022

Beam emittance

146

The beam emittance is the emittance that contains a specified fraction 
of the single-particle beam emittances

For Gaussian beams, the “rms” (39%) emittances  and  are 
related to the rms beam sizes

ϵx ϵy

ϵx =
σ2

x

βx
ϵy =

σ2
y

βy
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Courant-Snyder parameters and transport matrices

147

Transport matrix of one period

Transport matrix between two locations

M(s1 → s2) =

β2

β1
(cos Δψ + α1 sin Δψ) β1β2 sin Δψ

−
1 + α1α2

β1β2
sin Δψ +

α1 − α2

β1β2
cos Δψ

β1

β2
(cos Δψ − α2 sin Δψ)

M = (cos Δψ + α sin Δψ β sin Δψ
−γ sin Δψ cos Δψ − α sin Δψ)
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Example: evolution of the beam in the FODO cell

148
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Deviations from ideal linear motion

149

Imperfections in the fields create resonances, which are amplified if tunes are close 
to rational numbers mx ⋅ νx + my ⋅ νy = m with integer mx, my, m

The distribution of particle momenta generates differences in focusing, 
parameterized by chromaticity ξ

Δν = ξ
Δp
p

Intense beams experience self fields and wake fields in addition to the external 
focusing fields

In colliders, the beam-beam force between colliding bunches is intense and highly 
nonlinear

Studying the rich interplay between these complex effects is 
stimulating and challenging. Understanding of phenomena yields 
advances, solutions and, often, more questions!
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Beam distributions in the tune diagram

150

One way to visualize the effects on dynamics is through the tune diagram
198 CHAPTER 2. TRANSVERSE MOTION

Figure 2.57: The resonance
lines: mxνx + mzνz = integer
with |mx|+ |mz| ≤ 4 (left) and
|mx| + |mz| ≤ 8 (Right). The
symbol qx and qz are the frac-
tional parts of betatron tunes
νx and νz. When higher or-
der resonances are important,
resonance-free tune space be-
comes small.

resonances becomes very small. Betatron tune stability has becomes an important
issue for successful operation of storage rings.

A. Emittance growth, beam loss and dynamic aperture

As illustrated in previous Sections, resonances can form resonance islands with phase
space area 16

√
g/α in the asymptotic region (see Exercise 2.7.6e), where g is the

effective resonance strength and α is the effective detuning parameter. A larger
betatron detuning has a smaller resonance perturbation. If these resonance islands
are bounded by invariant tori, the beam bunch is bounded, and the result is emittance
growth, or “emittance dilution.” However, when both the betatron detuning and beam
emittance are large, the betatron tune spread of the beam may cover many resonances
and result in particle loss and limited dynamic aperture.

When the betatron tunes of particles in a beam bunch sit on a resonance condition
mνx + nνz = #, the betatron motion is strongly perturbed by a resonance, some par-
ticles may be trapped in resonance islands, some may drift beyond dynamic aperture
and lost. We design and operate accelerators to avoid all low order betatron reso-
nances up to |m|+ |n| ≤ 4 (see Fig. 2.57). The left plot of Fig. 2.58 shows phase space
distribution of a Gaussian beam with rms emittance 4.64 πµm sitting on a third order
resonance at νx = 6.33 with G3,0,! = 0.1483 (πm)−1/2 and α = 391 (πm)−1. Beam
density is diluted by the existence of a nearby resonance. Accelerator magnets are
designed to minimize higher order multipoles, and thus higher order resonances are
normally weaker.

Similar experiments of beam loss and stability region in tune space have been car-
ried out in electron analog of the AGS accelerator and the FFA accelerators.84 These
experiments confirm the Kolmogorov Arnold Moser (KAM) theorem: the particle
motion in accelerator is stable and quasi-periodic if the betatron tunes can avoid low
order resonances.

84E.D. Courant, Proc. of the CERN Symposium on High Energy Accelerators and Pion Physics
Vol. 1, p. 257 (CERN, 1956); F. T. Cole, et al., Review of Scientific Instruments 28, 403 (1957).

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 1
08

.2
39

.1
49

.9
1 

on
 1

1/
01

/2
1.

 R
e-

us
e 

an
d 

di
str

ib
ut

io
n 

is 
str

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.

mx ⋅ νx + my ⋅ νy = m
|mx | + |my | ≤ 4

mx ⋅ νx + my ⋅ νy = m
|mx | + |my | ≤ 8

νxνx

νy νy

BEAM



Giulio Stancari      Introduction to Beam Physics and Accelerator Technology University of Ferrara      April-May, 2022

Concepts in nonlinear dynamics

151

In accelerator physics, the concept of dynamic aperture 
represents the region of phase space where motion is stable

Nonlinear dynamics is a vast field with many applications in physics, engineering, 
biology, etc.

In phase space, nonlinear equations of motion generate 
regular and chaotic regions

Deterministic chaos manifests itself as an extremely 
sensitive dependence on initial conditions and in 
motion that appears random

When motion is nonlinear and periodic, oscillation frequencies 
in general depend on amplitude



Transverse dynamics with sextupole



Transverse dynamics with octupole



Transverse dynamics with McMillan lens, Q = 0.618



Transverse dynamics with McMillan lens, Q = 0.25


